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Chapter 6 Overview

 Number Systems and Radix Conversion

 Fixed point arithmetic

 Seminumeric Aspects of ALU Design

 Floating Point Arithmetic
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Digital Number Systems

 Digital number systems have a base or radix b

 Using positional notation, an m digit base b number is
written

x = xm-1 xm-2 ... x1 x0

0 ≤ xi ≤ b-1, 0 ≤ i < m

 The value of this unsigned integer is

Eq. 6.1
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Range of Unsigned m Digit Base b Numbers

 The largest number has all of its digits equal to b-1, the largest
possible base b digit

 Its value can be calculated in closed form

• An important summation—geometric series

Eq. 6.2

Eq. 6.3
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Radix Conversion: General Matters

 Converting from one number system to another involves
computation

 We call the base in which calculation is done c and the
other base b

 Calculation is based on the division algorithm

  — For integers a & b, there exist integers q & r such that  a
= q⋅b + r, with 0 ≤ r ≤ b-1

 Notation:
                         q = a/b

                          r = a mod b
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Digit Symbol Correspondence Between Bases

 Each base has b (or c) different symbols to represent the digits

 If b < c, there is a table of b+1 entries giving base c symbols for
each base b symbol & b
 If the same symbol is used for the first b base c digits as for the

base b digits, the table is implicit

 If c < b, there is a table of b+1 entries giving a base c number for
each base b symbol & b
 For base b digits ≥ c, the base c numbers have more than one digit

Base 12:   0  1  2   3    4    5    6     7    8     9     A    B    10
Base 3:     0  1  2  10  11  12  20  21  22  100  101 102  110
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Convert Base b Integer to Calculator’s Base, c

1) Start with base b x = xm-1 xm-2 ... x1 x0

2) Set x = 0 in base c

3) Left to right, get next symbol xi

4) Lookup base c number Di for symbol xi

5) Calculate in base c:  x = x⋅b + Di

6) If there are more digits, repeat from step 3

 Example: convert 3AF16 to base 10

x = 0
x = 16x + 3 = 3
x = 16⋅3 + 10(=Α) = 58
x = 16⋅58 + 15(=F) = 943
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Convert Calculator’s Base Integer to Base b

1) Let x be the base c integer

2) Initialize i = 0 and v = x & get digits right to left
3) Set Di = v mod b & v = v/b. Lookup Di to get xi

4) i = i + 1; If v ≠ 0, repeat from step 3

 Example: convert 356710 to base 12
          3587 ÷ 12 = 298 (rem = 11) ⇒ x0 = B

          298 ÷ 12 = 24 (rem = 10) ⇒ x1 = A

          24 ÷ 12 = 2 (rem = 0) ⇒ x2 = 0

          2 ÷ 12 = 0 (rem = 2) ⇒ x3 = 2

    Thus 358710 = 20AB12
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Fractions and Fixed Point Numbers

 The value of the base b fraction .f-1f-2...f-m is the value of the
integer f-1f-2...f-m divided by bm

 The value of a mixed fixed point number

                 xn-1xn-2...x1x0.x-1x-2...x-m

    is the value of the n+m digit integer

                 xn-1xn-2...x1x0x-1x-2...x-m

    divided by bm

 Moving radix point one place left divides by b
 For fixed radix point position in word, this is a right shift of word

 Moving radix point one place right multiplies by b
 For fixed radix point position in word, this is a left shift of word
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Converting Fraction to Calculator’s Base

 Can use integer conversion & divide result by bm

 Alternative algorithm

     1) Let base b number be .f-1f-2...f-m
     2) Initialize f = 0.0 and i = -m

     3) Find base c equivalent D of fi
     4) f = (f + D)/b; i = i + 1

     5) If i = 0, the result is f. Otherwise repeat from 3

 Example: convert 4138 to base 10

          f = (0 + 3)/8 = .375

          f = (.375 + 1)/8 = .171875

          f = (.171875 + 4)/8 = .521484375
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Non-terminating Fractions

 The division in the algorithm may give a non-terminating
fraction in the calculator’s base

 This is a general problem: a fraction of m digits in one
base may have any number of digits in another base

 The calculator will normally keep only a fixed number of
digits
 Number should make base c accuracy about that of base b

 This problem appears in generating base b digits of a
base c fraction
 The algorithm can continue to generate digits unless

terminated



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Convert Fraction from Calculator’s Base to
Base b

1) Start with exact fraction f in base c

2) Initialize i = 1 and v = f
3) D-i = b⋅v; v = b⋅v - D-i; Get base b f-i for D-i

4) i = i + 1; repeat from 3 unless v = 0 or enough base b digits have
been generated

 Example: convert .3110 to base 8
          .31×8 = 2.48  ⇒  f-1 = 2

          .48×8 = 3.84  ⇒  f-2 = 3

          .84×8 = 6.72  ⇒  f-1 = 6

 Since 83 > 102, .2368 has more accuracy than .3110
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Conversion Between Related Bases by Digit
Grouping

 Let base b = ck; for example b = c2

 Then base b number x1x0 is base c number y3y2y1y0, where x1

base b = y3y2 base c and    x0 base b = y1y0 base c

 Examples:   1021304 = 10 21 304 = 49C16

                            49C16 = 0100 1001 11002

                        1021304 = 01 00 10 01 11 002

      0100100111002 = 010 010 011 1002 = 22348
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Negative Numbers, Complements, &
Complement Representations

We will:

 Define two complement operations

 Define two complement number systems
 Systems represent both positive and negative numbers

 Give a relation between complement and negate in a
complement number system

 Show how to compute the complements

 Explain the relation between shifting and scaling a number by a
power of the base

 Lead up to the use of complement number systems in signed
addition hardware
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Complement Operations—
for m Digit Base b Numbers

 Radix complement of m digit base b number x

xc = (bm - x) mod bm

 Diminished radix complement of x

xc = bm - 1 - x
 The complement of a number in the range 0≤x≤bm-1 is in

the same range

 The mod bm in the radix complement definition makes this
true for x = 0; it has no effect for any other value of x

 Specifically, the radix complement of 0 is 0
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Complement Number Systems

 Complement number systems use unsigned numbers to
represent both positive and negative numbers

 Recall that the range of an m digit base b unsigned number is
0≤x≤bm-1

 The first half of the range is used for positive, and the second
half for negative, numbers

 Positive numbers are simply represented by the unsigned
number corresponding to their absolute value
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Use of Complements to Represent Negative
Numbers

 The complement of a number in the range from 0 to bm/2
is in the range from  bm/2 to bm-1

 A negative number is represented by the complement of
its absolute value

 There are an equal number (±1) of positive and negative
number representations
 The ±1 depends on whether b is odd or even and whether

radix complement or diminished radix complement is used

 We will assume the most useful case of even b
 Then radix complement system has one more negative

representation
 Diminished radix complement system has equal numbers of

positive and negative representations
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Reasons to Use Complement Systems for
Negative Numbers

 The usual sign-magnitude system introduces extra symbols + &
- in addition to the digits

 In binary, it is easy to map 0⇒+ and 1⇒-

 In base b>2, using a whole digit for the two values + & - is
wasteful

 Most important, however, it is easy to do signed addition &
subtraction in complement number systems
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Table 6.1  Complement Representations of Negative
Numbers

 For even b, radix comp. system represents one more negative
than positive value

 while diminished radix comp. system has 2 zeros but
represents same number of pos. & neg. values

Radix Complement Diminished Radix Complement
Number NumberRepresentation Representation

0 0 0 0 or bm-1
0<x<bm/2 x 0<x<bm/2 x

-bm/2≤x<0 |x|c = bm - |x| |x|c = bm - 1 - |x|-bm/2<x<0
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Table 6.2   Base 2 Complement
Representations

 In 1’s complement, 255 = 111111112 is often called -0

 In 2’s complement, -128 = 100000002 is a legal value, but trying
to negate it gives overflow

8 Bit 2’s Complement 8 Bit 1’s Complement
Number NumberRepresentation Representation

0 0 0 0 or 255
0<x<128 x 0<x<128 x

-128≤x<0 256 - |x| 255 - |x|-127≤x<0



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Negation in Complement Number Systems

 Except for -bm/2 in the b’s comp. system, the negative of
any m digit value is also m digits

 The negative of any number x, positive or negative, in the
b’s or b-1’s complement system is obtained by applying
the b’s or b-1’s complement operation to x, respectively

 The 2 complement operations are related by

xc = (xc + 1) mod bm

 Thus an easy way to compute one of them will give an
easy way to compute both
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Digitwise Computation of the Diminished Radix
Complement

 Using the geometric series formula, the b-1’s complement of x
can be written

• If 0≤xi≤b-1, then 0≤(b-1-xi)≤b-1, so last formula is
just an m digit base b number with each digit
obtained from the corresponding digit of x

Eq. 6.9
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Table Driven Calculation of Complements in
Base 5

 4’s complement of 2013415 is

2431035

 5’s complement of 2013415 is

2431035 + 1 = 2431045

 5’s complement of 444445 is

000005 + 1 = 000015

 5’s complement of 000005 is

 (444445 + 1) mod 55 = 000005

Base 5
Digit

4’s
Comp.

0
1
2
3
4

4
3
2
1
0
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Complement Fractions

 Since m digit fraction is same as m digit integer divided by bm,
the bm in complement definitions corresponds to 1 for
fractions

 Thus radix complement of x = .x-1x-2...x-m is

   (1-x) mod 1, where mod 1 means discard integer

 The range of fractions is roughly -1/2 to +1/2

 This can be inconvenient for a base other than 2

 The b’s comp. of a mixed number

x = xm-1xm-2...x1x0.x-1x-2...x-n   is  bm - x,

where both integer and fraction digits are subtracted
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Scaling Complement Numbers by Powers of the
Base

 Roughly, multiplying by b corresponds to moving radix point
one place right or shifting number one place left

 Dividing by b roughly corresponds to a right shift of the
number or a radix point move to the left one place

 There are 2 new issues for complement numbers

    1) What is new left digit on right shift?

    2) When does a left shift overflow?
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Right Shifting a Complement Number to Divide
by b

 For positive xm-1xm-2...x1x0, dividing by b corresponds to
right shift with zero fill

0xm-1xm-2...x1

 For negative xm-1xm-2...x1x0, dividing by b corresponds to
right shift with b-1 fill

(b-1)xm-1xm-2...x1

 This holds for both b’s and b-1’s comp. systems

 For even b, the rule is: fill with 0 if xm-1 < b/2 and fill with (b-
1) if xm-1 ≥ b/2



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Complement Number Overflow on Left Shift to
Multiply by b

 For positive numbers, overflow occurs if any digit other
than 0 shifts off left end

 Positive numbers also overflow if the digit shifted into left
position makes number look negative, i.e. digit ≥ b/2 for
even b

 For negative numbers, overflow occurs if any digit other
than b-1 shifts off left end

 Negative numbers also overflow if new left digit makes
number look positive, i.e. digit<b/2 for even b
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Left Shift Examples With Radix Complement
Numbers

 Non-overflow cases:

     Left shift of 7628 = 6208, -1410 becomes -11210

     Left shift of 0318 = 3108, 2510 becomes 20010

 Overflow cases:
     Left shift of 2418 = 4108 shifts 2≠0 off left

     Left shift of 0418 = 4108 changes from + to -

     Left shift of 7138 = 1308 changes from - to +
     Left shift of 6628 = 6208 shifts 6≠7 off left
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Fixed Point Addition and Subtraction

 If the radix point is in the same position in both operands,
addition or subtraction act as if the numbers were integers

 Addition of signed numbers in  radix complement system
needs only an unsigned adder

 So we only need to concentrate on the structure of an m digit,
base b unsigned adder

 To see this let x be a signed integer and rep(x) be its 2’s
complement representation

 The following theorem summarizes the result
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Theorem on Signed Addition in a Radix
Complement System

 Theorem: Let s be unsigned sum of rep(x) & rep(y). Then s =
rep(x+y), except for overflow

 Proof sketch: Case 1, signs differ, x≥0, y<0. Then x+y = x-|y|
and s = (x+bm-|y|) mod bm.

    If x-|y|≥0, mod discards bm, giving result, if

    x-|y|<0, then rep(x+y) = (b-| x-|y| |) mod bm.

   Case 3, x<0, y<0. s = (2bm - |x| - |y|) mod bm, which reduces to s
= (bm - |x+y|) mod bm. This is rep(x+y) provided the result is in
range of an m digit b’s comp. representation. If it is not, the
unsigned s<bm/2 appears positive.
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Fig. 6.1  An m-digit base B unsigned adder

 Typical cell produces sj = (xj + yj + cj) mod b and cj+1 = (xj + yj + cj)/b
 Since xj, yj ≤ b-1, cj ≤ 1 implies cj+1 ≤ 1, and since c0 ≤ 1, all carries are ≤1,

regardless of b
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Unsigned Addition Examples

 If result can only have a fixed number of bits,
overflow occurs on carry from leftmost digit

 Carries are either 0 or 1 in all cases

 A table of sum and carry for each of the b2

digit pairs, and one for carry in = 1, define the
addition

   12.034 = 6.187510    .9A2C16
    13.214 = 7.562510     .7BE216 Overflow
Carry 01 01         1 11 0   for 16 bit
Sum  31.304 = 13.7510    1.160E16 word

Base 4
+ 0     1     2    3
0 00  01  02  03
1 01  02  03  10
2 02  03  10  11
3 03  10  11  12



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Implementation Alternatives for Unsigned
Adders

 If b = 2k, then each base b digit is equivalent to k bits

 A base b digit adder can be viewed as a logic circuit with
2k+1 inputs and k+1 outputs

• This combinational logic
circuit can be designed with
as few as 2 levels of logic

• PLA, ROM, and multi-level
logic are also alternatives

• If 2 level logic is used, max.
gate delays for m digit base b
unsigned adder is 2m s

x y

c0c1

Fig 6.1a
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Two Level Logic Design of a Base 4 Digit Adder

 The base 4 digit x is represented by the 2 bits xb xa, y by yb

ya, and s by sb sa

 sa is independent of xb and yb, c1 is given by
ybyac0+xaybc0+xbxac0+xbyac0+xbxaya+xaybya+xbyb,

   while sb is a 12 input OR of 4 input ANDs

xb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
xa 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
yb 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
ya 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
c0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
c1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1
sb 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1
sa 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
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Fig. 6.2   base b Complement Subtracter

 To do subtraction in the radix complement system, it is only
necessary to negate (radix complement) the 2nd operand

 It is easy to take the diminished radix complement, and the adder
has a carry in for the +1
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Overflow Detection in Complement Add &
Subtract

 We saw that all cases of overflow in complement addition
came when adding numbers of like signs, and the result
seemed to have the opposite sign

 For even b, the sign can be determined from the left digit of
the representation

 Thus an overflow detector only needs xm-1, ym-1, sm-1, and an
add/subtract control

 It is particularly simple in base 2



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig. 6.3   2’s Complement Adder/Subtracter

 A multiplexer to select y or its complement becomes an
exclusive OR gate
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Speeding Up Addition With Carry Lookahead

 Speed of digital addition depends on carries

 A base b = 2k divides length of carry chain by k

 Two level logic for base b digit becomes complex quickly as
k increases

 If we could compute the carries quickly, the full adders
compute result with 2 more gate delays

 Carry lookahead computes carries quickly

 It is based on two ideas:

  —a digit position generates a carry

  —a position propagates a carry in to the carry out
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Binary Propagate and Generate Signals

 In binary, the generate for digit j is Gj = xj⋅yj

 Propagate for digit j is Pj = xj+yj

 Of course xj+yj covers xj⋅yj but it still corresponds to a carry out for a carry
in

 Carries can then be written:  c1 = G0 + P0⋅c0

 c2 = G1 + P1⋅G0 + P1⋅P0⋅c0

 c3 = G2 + P2⋅G1 + P2⋅P1⋅G0 + P2⋅P1⋅P0⋅c0

 c4 = G3 + P3⋅G2 + P3⋅P2⋅G1 + P3⋅P2⋅P1⋅G0 + P3⋅P2⋅P1⋅P0⋅c0

 In words, the c2 logic is: c2 is one if digit 1 generates a carry, or if digit 0
generates one and digit 1 propagates it, or if digits 0&1 both propagate
a carry in
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Speed Gains With Carry Lookahead

 It takes one gate to produce a G or P, two levels of gates
for any carry, & 2 more for full adders

 The number of OR gate inputs (terms) and AND gate
inputs (literals in a term) grows as the number of carries
generated by lookahead

 The real power of this technique comes from applying it
recursively

 For a group of, say 4, digits an overall generate is G1
0 = G3

+ P3⋅G2 + P3⋅P2⋅G1 + P3⋅P2⋅P1⋅G0

 An overall propagate is P1
0 = P3⋅P2⋅P1⋅P0
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Recursive Carry Lookahead Scheme

 If level 1 generates G1
j and propagates P1

j are defined for
all groups j, then we can also define level 2 signals G2

j and
P2

j over groups of groups

 If k things are grouped together at each level, there will be
logkm levels, where m is the number of bits in the original
addition

 Each extra level introduces 2 more gate delays into the
worst case carry calculation

 k is chosen to trade-off reduced delay against the
complexity of the G and P logic

 It is typically 4 or more, but the structure is easier to see for
k=2
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Fig. 6.4   Carry Lookahead Adder for Group
Size k = 2
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Fig. 6.5   Digital Multiplication Schema

p: product                               pp: partial product
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Serial By Digit of Multiplier, Then By Digit of
Multiplicand

 If c ≤ b-1 on the RHS of 9, then c ≤ b-1 on the LHS of 9 because
0 ≤ pj+i, xi, yj ≤ b-1

1. for i := 0 step 1 until 2m-1
2. pi := 0;
3. for j := 0 step 1 until m-1
4. begin
5. c := 0;
6. for i := 1 step 1 until m-1
7. begin
8. pj+i := (pj+i + xi yj + c) mod b;
9. c := (pj+i + xi yj + c)/b;
10. end;
11. pj+m := c;
12. end;
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Fig. 6.6  Parallel Array Multiplier for Unsigned
Base b Numbers
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Operation of the Parallel Multiplier Array

 Each box in the array does the base b digit calculations
pk(out) := (pk(in) + x y + c(in)) mod b and c(out) := (pk(in) + x
y + c(in))/b

 Inputs and outputs of boxes are single base b digits,
including the carries

 The worst case path from an input to an output is about 6m
gates if each box is a 2 level circuit

 In base 2, the digit boxes are just full adders with an extra
AND gate to compute xy
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Series Parallel Multiplication Algorithm

 Hardware multiplies the full multiplicand by one multiplier
digit and adds it to a running product

 The operation needed is p := p + xyjbj

 Multiplication by bj is done by scaling xyj, shifting it left, or
shifting p right, by j digits

 Except in base 2, the generation of the partial product xyj is
more difficult than the shifted add

 In base 2, the partial product is either x or 0
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Fig. 6.7 Unsigned Series-Parallel Multiplication
Hardware
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Steps for Using the Unsigned Series-Parallel
Multiplier

1) Clear product shift register p.
2) Initialize multiplier digit number j=0.
3) Form the partial product xyj.
4) Add partial product to upper half of p.
5) Increment j=j+1, and if j=m go to step 8.
6) Shift p right one digit.
7) Repeat from step 3.
8) The 2m digit product is in the p register.
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Multiply with Fixed Length Words: Integer and
Fraction Multiply

 If words can store only m digits, and the radix point is in a
fixed position in the word, 2 positions make sense

      integer: right end, and fraction: left end

 In integer multiply, overflow occurs if any of the upper m
digits of the 2m digit product ≠0

 In fraction multiply, the upper m digits are the most
significant, and the lower m digits are discarded or
rounded to give an m digit fraction
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Signed Multiplication

 The sign of the product can be computed immediately from the
signs of the operands

 For complement numbers, negative operands can be
complemented, their magnitudes multiplied, and the product
recomplemented if necessary

 A complement representation multiplicand can be handled by a
b’s complement adder for partial products and sign extension
for the shifts

 A 2’s complement multiplier is handled by the formula for a 2’s
complement value: add all PP’s except last, subtract it.

value(x) = -xm-12m-1 + ∑xi2i

i=0

m-2 Eq. 6.25
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Fig. 6.8   2’s Complement Signed Multiplier
Hardware
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Steps for Using the 2’s Complement
Multiplier Hardware

1) Clear the bit counter and partial product accumulator register.

2) Add the product (AND) of the multiplicand and rightmost
multiplier bit.

3) Shift accumulator and multiplier registers right one bit.

4) Count the multiplier bit and repeat from 2 if count less than m-1.

5) Subtract the product of the multiplicand and bit m-1 of the
multiplier.

Note: bits of multiplier used at rate product bits produced
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Examples of 2’s Complement Multiplication

  -5/8=    1. 0 1 1      6/8=    0. 1 1 0
× 6/8= × 0. 1 1 0   ×-5/8=× 1. 0 1 1
pp0 0 0. 0 0 0   pp0 0 0. 1 1 0
acc. 0 0. 0 0 0 0   acc. 0 0. 0 1 1 0
pp1 1 1. 0 1 1   pp1 0 0. 1 1 0
acc. 1 1. 1 0 1 1 0   acc. 0 0. 1 0 0 1 0
pp2 1 1. 0 1 1   pp2 0 0. 0 0 0
acc. 1 1. 1 0 0 0 1 0 acc. 0 0. 0 1 0 0 1 0
pp3 0 0. 0 0 0   pp3 1 1. 0 1 0
res. 1 1. 1 0 0 0 1 0 res. 1 1. 1 0 0 0 1 0
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Booth Recoding and Similar Methods

 Forms the basis for a number of signed multiplication
algorithms

 Based upon recoding the multiplier, y, to a recoded
value, z.

 The multiplicand remains unchanged.

 Uses signed digit (SD) encoding:

 Each digit can assume three values instead of just 2:
+1, 0, and -1, encoded as 1,  0, and 1. This is

known as signed digit (SD) notation.
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A 2’s Complement Integer’s Value can be
Represented as:

value(y) = −ym −12m−1 + Yi2
i            (Eq 6.26)

i=0

m−2
∑

This means that the value can be computed by adding the
weighted values of all the digits except the most significant, and
subtracting that digit.
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Example: Represent -5 in SD Notation

−5 = 1011 in 2' s Complement Notation
1011= 1 011 = −8 + 0 + 2 +1 = −5 in SD Notation
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The Booth Algorithm (Sometimes Known as "Skipping
Over 1's.)

€ 

Consider -1 =  1111. In SD Notation this can
be represented as 0001 

The Booth method is:
1. Working from lsb to msb, replace each 0 digit of the original
number with 0 in the recoded number until a 1 is encountered.
2. When a 1 is encountered, insert a 1 in that position in the
recoded number, and skip over any succeeding 1's until a 0 is
encountered.
3. Replace that 0 with a 1. If you encounter the msb without
encountering a 0, stop and do nothing.
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Example of Booth Recoding

0011 1101 1001 = 512 + 256 +128 + 64 +16 + 8 + 1 = 985
       ↓            ↓
0100 01 10 1 011 = 1024 − 64 + 32 − 8 + 2 −1 = 985
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Tbl 6.4  Booth Recoding Table

yi yi−1 zi Value Situation
0 0 0 0 String of 0's
0 1 1 +1 End of string of 1's
1 0 1 −1 Begin string of 1's
1 1 0 0 String of 1's

Consider pairs of numbers, yi, yi-1. Recoded value is zi.

Algorithm can be done in parallel.
Examine the example of multiplication 6.11 in text.



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Recoding using Bit Pair Recoding

 Booth method may actually increase number of multiplies.

 Consider pairs of digits, and recode each pair into 1 digit.

 Derive Table 6.5, pg. 279 on the blackboard to show how bit
pair recoding works.

 Demonstrate Example 6.13 on the blackboard as an example of
multiplication using bit pair recoding.

 There are many variants on this approach.
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Table 6.5 Radix-4 Booth Encoding
(Bit-Pair Encoding)
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Digital Division: Terminology and Number Sizes

 A dividend is divided by a divisor to get a quotient and a
remainder

 A 2m digit dividend divided by an m digit divisor does not
necessarily give an m digit quotient and remainder

 If the divisor is 1, for example, an integer quotient is the
same size as the dividend

 If a fraction D is divided by a fraction d, the quotient is
only a fraction if D<d

 If D≥d, a condition called divide overflow occurs in
fraction division
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Fig 6.9  Unsigned Binary Division Hardware

 2m bit dividend
register

 m bit divisor

 m bit quotient

 Divisor can be
subtracted from
dividend, or not
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Use of Division Hardware for Integer Division

1) Put dividend in lower half of register and clear upper half. Put
divisor in divisor register. Initialize quotient bit counter to
zero.

2) Shift dividend register left one bit.

3) If difference positive, shift 1 into quotient and replace upper
half of dividend by difference. If negative, shift 0 into
quotient.

4) If fewer than m quotient bits, repeat from 2.

5) m bit quotient is an integer, and an m bit integer remainder is
in upper half of dividend register.
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Use of Division Hardware for Fraction Division

1) Put dividend in upper half of dividend register and clear lower
half. Put divisor in divisor register. Initialize quotient bit counter
to zero.

2) If difference positive, report divide overflow.

3) Shift dividend register left one bit.

4) If difference positive, shift 1 into quotient and replace upper
part of dividend by difference. If negative, shift 0 into the
quotient.

5) If fewer than m quotient bits, repeat from 3.

6) m bit quotient has binary point at the left, and remainder is in
upper part of dividend register.
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Integer Binary Division Example: D=45, d=6,
q=7, r=3

  D 0 0 0 0 0 0 1 0 1 1 0 1
  d 0 0 0 1 1 0
Init. D 0 0 0 0 0 1 0 1 1 0 1 -
  d 0 0 0 1 1 0
diff(-) D 0 0 0 0 1 0 1 1 0 1  - - q                 0
  d 0 0 0 1 1 0
diff(-) D 0 0 0 1 0 1 1 0 1  - -  - q              0 0
  d 0 0 0 1 1 0
diff(-) D 0 0 1 0 1 1 0 1  - -  -  - q           0 0 0
  d 0 0 0 1 1 0
diff(+) D 0 0 1 0 1 0 1  - -  -  -  - q        0 0 0 1
  d 0 0 0 1 1 0
diff(+) D 0 0 1 0 0 1  -  - -  -  -  - q     0 0 0 1 1
  d 0 0 0 1 1 0
diff(+) rem. 0 0 0 0 1 1   q  0 0 0 1 1 1
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Fig 6.10  Parallel Array Divider

R := (c → D:
   ¬c → (D-d-bi) mod 2

Borrow always
computed
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Branching on Arithmetic Conditions

 An ALU with two m bit operands produces more than just an m
bit result

 The carry from the left bit and the true/false value of 2’s
complement overflow are useful

 There are 3 common ways of using outcome of compare
(subtract) for a branch condition

    1) Do the compare in the branch instruction

    2) Set special condition code bits and test     them in the branch

    3)Set a general register to a comparison outcome and branch on
this logical value
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Drawbacks of Condition Codes

 Condition codes are extra processor state; set, and overwritten,
by many instructions

 Setting and use of CCs also introduces hazards in a pipelined
design

 CCs are a scarce resource, they must be used before being set
again
 The PowerPC has 8 sets of CC bits

 CCs are processor state that must be saved and restored during
exception handling
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Drawbacks of Comparison in Branch and Set
General Register

 Branch instruction length: it must specify 2 operands to be
compared, branch target, and branch condition (possibly
place for link)

 Amount of work before branch decision: it must use the
ALU and test its output—this means more branch delay
slots in pipeline

 Setting a general register to a particular outcome of a
compare, say ≤ unsigned, uses a register of 32 or more
bits for a true/false value
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Use of Condition Codes: Motorola 68000

 The HLL statement:

if (A > B) then C = D

    translates to the MC68000 code:

       For 2’s comp. A & B          For unsigned A & B
     MOVE.W  A, D0        MOVE.W  A, D0
     CMP.W   B, D0        CMP.W   B, D0
     BLE     Over         BLS     Over
     MOVE.W  D, C         MOVE.W  D, C
Over:     . . .      Over:     . . .
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Standard Condition Codes: NZVC

 Assume compare does the subtraction s = x-y

 N: negative result, sm-1 = 1 if

 Z: zero result, s = 0

 V: 2’s comp. overflow, C: carry from leftmost bit position, sm = 1

 Information in N, Z, V, and C determines several signed &
unsigned relations of x & y€ 

xm−1ym−1s m−1 + x m−1y m−1sm−1
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Correspondence of Conditions and NZVC Bits

Condition Unsigned Integers   Signed Integers
carry out     C       C
overflow       C       V
negative     n.a.       N
      >       C⋅Z        (N⋅V+N⋅V)⋅Z
      ≥         C           N⋅V+N⋅V
      =         Z       Z
      ≠         Z       Z
      ≤       C+Z        (N⋅V+N⋅V)+Z
      <         C           N⋅V+N⋅V
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Branches That Do Not Use Condition Codes

 SRC compares a single number to zero

 The simple comparison can be completed in pipeline stage 2

 The MIPS R2000 compares 2 numbers using a branch of the
form:  bgtu R1, R2, Lbl

 Different branch instructions are needed for each signed or
unsigned condition

 The MIPS R2000 also allows setting a general register to 1 or 0
on a compare outcome

sgtu R3, R1, R2
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ALU Logical, Shift and Rotate Instructions

 Shifts are often combined with logic to extract bit fields from,
or insert them into, full words

 A MC68000 example extracts bits 30..23 of a 32 bit word
(exponent of a floating point #)

  MOVE.L D0, D1   ;Get # into D1
  ROL.L  #9, D1   ;exponent to bits 7..0
  ANDI.L #FFH, D1 ;clear bits 31..8
 MC68000 shifts take 8+2n clocks, where n = shift count, so

ROL.L #9 is better then SHR.L #23 in the above
example
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Types and Speed of Shift Instructions

 Rotate right is equivalent to rotate left with a different shift
count

 Rotates can include the carry or not

 Two right shifts, one with sign extend, are needed to
scale unsigned and signed numbers

 Only a zero fill left shift is needed for scaling

 Shifts whose execution time depends on the shift count
use a single bit ALU shift repeatedly, as we did for SRC
in Chap. 4

 Fast shifts, important for pipelined designs, can be done
with a barrel shifter
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Fig 6.11  A 6 Bit Crossbar Barrel Rotator for
Fast Shifting
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Properties of the Crossbar Barrel Shifter

 There is a 2 gate delay for any length shift

 Each output line is effectively an n way multiplexer for shifts of
up to n bits

 There are n2 3-state drivers for an n bit shifter
 For n = 32, this means 1024 3-state drivers

 For 32 bits, the decoder is 5 bits to 1 out of 32

 The minimum delay but large number of gates in the crossbar
prompts a compromise:

the logarithmic barrel shifter



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 6.12  Barrel Shifter with a Logarithmic
Number of Stages
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Elements of a Complete ALU

 In addition to the arithmetic hardware, there must be a controller
for multi-step operations, such as series parallel multiply

 The shifter is usually a separate unit, and may have lots of gates
if it is to be fast

 Logic operations are usually simple

 The arithmetic unit may need to produce condition codes as well
as a result number

 Multiplexers select the result and condition codes from the
correct sub-unit



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 6.13  Complete Arithmetic Logic Unit Block
Diagram
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Floating Point Preliminaries: Scaled Arithmetic

 Software can use arithmetic with a fixed binary point position,
say left end, and keep a separate scale factor e for a number
f×2e

 Add or subtract on numbers with same scale is simple, since
f×2e + g×2e = (f+g)×2e

 Even with same scale for operands, scale of result is different
for multiply and divide

    (f×2e)⋅(g×2e) = (f⋅g)×22e;   (f×2e)÷(g×2e) = f÷g

 Since scale factors change, general expressions lead to a
different scale factor for each number—floating point
representation
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Fig 6.14  Floating Point Numbers Include Scale
& Number in One Word

 All floating-point formats follow a scheme similar to the one above

 s is sign, e is exponent, and f is significand

 We will assume a fraction significand, but some representations have
used integers
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Signs in Floating Point Numbers

 Both significand and exponent have signs

 A complement representation could be used for f, but sign-
magnitude is most common now

 The sign is placed at the left instead of with f so test for
negative always looks at left bit

 The exponent could be 2’s complement, but it is better to use a
biased exponent

 If -emin ≤ e ≤ emax, where emin, emax > 0, then

    e = emin + e is always positive, so e replaced by e

 We will see that a sign at the left & a positive exponent left of
the significand, helps compare
^ ^



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Exponent Base and Floating Point Number
Range

 In a floating point format using 24 out of 32 bits for
significand, 7 would be left for exponent

 A number x would have a magnitude 2-64≤x≤263, or about
10-19≤x≤1019

 For more exponent range, bits of significand would have to
be given up with loss of accuracy

 An alternative is an exponent base >2

 IBM used exponent base 16 in the 360/370 series for a
magnitude range about 10-75≤x≤1075

 Then 1 unit change in e corresponds to a binary point shift
of 4 bits
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Normalized Floating Point Numbers

 There are multiple representations for a FP #

 If f1 and f2 = 2df1 are both fractions & e2 = e1-d, then (s, f1, e1)
& (s, f2, e2) have same value

 Scientific notation example: .819×103 = .0819×104

 A normalized floating point number has a leftmost digit non-
zero (exponent small as possible)

 With exponent base b, this is a base b digit: for the IBM
format the leftmost 4 bits (base 16) are ≠0

 Zero cannot fit this rule; usually written as all 0s

 In norm. base 2 left bit =1,  so it can be left out
 So called hidden bit
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Comparison of Normalized Floating Point
Numbers

 If normalized numbers are viewed as integers, a biased
exponent field to the left means an exponent unit is more
than a significand unit

 The largest magnitude number with a given exponent is
followed by the smallest one with the next higher exponent

 Thus normalized FP numbers can be compared for
<,≤,>,≥,=,≠ as if they were integers

 This is the reason for the s,e,f ordering of the fields and
the use of a biased exponent, and one reason for
normalized numbers
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Fig 6.15  IEEE Single-Precision Floating Point
Format

 Exponent bias is 127 for normalized #s

  e        e                  Value                         Type
255   none   none           Infinity or NaN
254    127      (-1)s×(1.f1f2...)×2127         Normalized
 ...        ...                    ...                               ...
  2     -125      (-1)s×(1.f1f2...)×2-125        Normalized
  1     -126      (-1)s×(1.f1f2...)×2-126        Normalized
  0     -126      (-1)s×(0.f1f2...)×2-126      Denormalized

^
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Special Numbers in IEEE Floating Point

 An all zero number is a normalized 0

 Other numbers with biased exponent e = 0 are called
denormalized

 Denorm numbers have a hidden bit of 0 and an exponent
of -126; they may have leading 0s

 Numbers with biased exponent of 255 are used for ±∞
and other special values, called NaN (not a number)

 For example, one NaN represents 0/0
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Fig 6.16  IEEE Standard Double Precision
Floating Point

 Exponent bias for normalized #s is 1023

 The denorm biased exponent of 0 corresponds to an
unbiased exponent of -1022

 Infinity and NaNs have a biased exponent of 2047

 Range increases from about 10-38≤|x|≤1038 to about 10-

308≤|x|≤10308
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Decimal Floating Point Add and Subtract
Examples

  Operands       Alignment Normalize & round
  6.144 ×102      0.06144 ×104    1.003644 ×105

+9.975 ×104    +9.975     ×104  +  .0005     ×105

       10.03644 ×104    1.004       ×105 

  Operands       Alignment Normalize & round
  1.076 ×10-7      1.076   ×10-7    7.7300   ×10-9

 -9.987 ×10-8     -0.9987 ×10-7  +  .0005   ×10-9

         0.0773 ×10-7    7.730     ×10-9 
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Floating Add, FA, and Floating Subtract, FS,
Procedure

Add or subtract (s1, e1, f1) and (s2, e2, f2)

1) Unpack (s, e, f); handle special operands

2) Shift fraction of # with smaller exponent right by |e1-e2| bits

3) Set result exponent er = max(e1, e2)
4) For FA & s1=s2 or FS & s1≠s2, add significands, otherwise

subtract them

5) Count lead zeros, z; carry can make z=-1; shift left z bits or
right 1 bit if z=-1

6) Round result, shift right & adjust z if round OV
7) er ← er-z; check over- or underflow; bias & pack



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 6.17  Floating Point Add & Subtract
Hardware

 Adders for
exponents and
significands

 Shifters for
alignment and
normalize

 Multiplexers for
exponent and
swap of
significands

 Lead zeros
counter
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Decimal Floating Point Examples for Multiply &
Divide

 Multiply fractions and add exponents
 These examples assume normalzed result is 0.xxx

Sign, fraction & exponent Normalize & round
  ( -0.1403         ×10-3)    -0.4238463 ×102

×(+0.3021         ×106 )    -0.00005     ×102

    -0.04238463 ×10-3+6    -0.4238       ×102

Sign, fraction & exponent Normalize & round
  ( -0.9325         ×102)   +0.9306387 ×109

÷( -0.1002         ×10-6 )   +0.00005     ×109

   +9.306387     ×102-(-6)   +0.9306       ×109

• Divide fractions and subtract exponents
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Floating Point Multiply of Normalized Numbers

Multiply (sr, er, fr) = (s1, e1, f1)×(s2, e2, f2)

1) Unpack (s, e, f); handle special operands
2) Compute sr = s1⊕s2; er = e1+e2; fr = f1×f2
3) If necessary, normalize by 1 left shift & subtract 1 from er;

round & shift right if round OV

4) Handle overflow for exponent too positive and underflow
for exponent too negative

5) Pack result, encoding or reporting exceptions
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Floating Point Divide of Normalized Numbers

Divide  (sr, er, fr) = (s1, e1, f1)÷(s2, e2, f2)

1) Unpack (s, e, f); handle special operands
2) Compute sr = s1⊕s2; er = e1- e2; fr = f1÷f2
3) If necessary, normalize by 1 right shift & add 1 to er; round &

shift right if round OV

4) Handle overflow for exponent too positive and underflow for
exponent too negative

5) Pack result, encoding or reporting exceptions
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Chapter 6 Summary

 Digital number representations and algebraic tools for the study
of arithmetic

 Complement representation for addition of signed numbers

 Fast addition by large base & carry lookahead

 Fixed point multiply and divide overview

 Non-numeric aspects of ALU design

 Floating point number representations

 Procedures and hardware for float add & sub

 Floating multiply and divide procedures


