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Abstract— A high-level partitioning methodology is introduced,
which uses formulation-level discrete signal transform properties
to provide improved results for their partitioning to distributed
hardware architectures. We discuss how discrete signal trans-
form characteristics were taken into account to focus design
exploration during partitioning. Additionally, a description is
given of the experiments conducted to determine the effect
of formulation-level properties on solution quality. Perceived
patterns in experimental results were used to generate ‘partition-
friendly’ formulations for distributed hardware architectures.

I. INTRODUCTION

The achievement of effective algorithm implementations to
distributed hardware architectures (e.g multi-FPGA boards) is
highly dependent on the process of partitioning. Most of the
proposed high-level partitioning strategies apply generic local
optimization techniques that miss out on alternate consider-
ations which become apparent with knowledge of the algo-
rithm’s functionality [1]. Discrete signal transforms (DSTs)
possess algorithmic level properties that have been used to
manually obtain effective formulations for diverse computa-
tional architectures. Recently, methodologies such as FFTW
and SPIRAL have been developed for the automated optimiza-
tion of DST implementations to general purpose processor
platforms [2][3]. However, these methods have yet to be
successfully adapted for automated partitioning methodologies
on dedicated distributed hardware architectures (DHAs). The
current trend toward reconfigurable computers and multi-
core systems-on-chip underlines the importance of developing
effective partitioning techniques [4][5].

In our research we study the integration of properties such
as symmetry, index mappings, and decomposition rules into
automated partitioning strategies for DSTs to DHAs. We
hypothesize that awareness of such characteristics during par-
titioning will result in a more focused exploration of the design
space and improved solution quality. To this end, we designed
a methodology that incorporates formulation-level transforma-
tions and other DST-derived strategies throughout the high-
level partition process [6]. In this paper, we describe our
methodology, emphasizing how DST-specific considerations
influence the implementation of our partition optimization
heuristic. We also describe several experiments designed to
understand the effect of DST formulation-level characteristics
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on partition solution quality. The breakdown sequence of
small-sized FFTs using the Cooley-Tukey factorization rule
was found to have an orderly effect on partition results. Re-
sults from these experiments allowed us to define breakdown
strategies for larger FFTs, achieving superior solution quality
and reduced exploration time. Besides allowing us to define
heuristic rules for our partitioning methodology, results from
these experiments could be used by designers as guidelines
for choosing DST formulations targeted to established topolo-
gies or to design cost-effective communication topologies for
specific DSTs.

The rest of this paper has been organized as follows. Section
II discusses related work in the area of DST partitioning
to DHAs. In Sections III andIV we discuss the two main
inputs to our problem: the discrete signal transforms and the
target architecture. Next, Section V presents the proposed
partitioning methodology and Sections VI and VII describe
essential considerations taken, specifically, for partitioning
DSTs and our chosen optimization heuristic. Section VIII
reports on the experiments and their results. Finally, Section
IX draws several conclusions and plans for future work.

II. RELATED WORK

DSTs have received a variety of partitioning treatments
when intended for DHA implementation. Generic high-level
partitioning (HLP) methods are commonly benchmarked with
DST algorithms such as the FFT and Discrete Cosine Trans-
forms [1][7]. Throughout the HLP process, these methods treat
DSTs as any other benchmark. They apply generic DFG-based
local optimization techniques that don’t consider functional-
level opportunities. Among the few multi-device DST-oriented
approaches, Kumhom used exhaustive exploration methods to
search for optimal partitions of an FFT to a distributed memory
multi-FPGA system [8].

Albeit these proposed automated methods, the favored
approach to obtain high-performance DST implementations
remains essentially manual and most benefits are obtained
through careful manipulation and matching between the un-
derlying computational architecture and the algorithm [9]. The
implementation of fast DST algorithms requires a regular but
congested communication scheme among the various com-
putational elements, which can dominate performance even
when the algorithm is manually mapped. A representative
example of this situation was documented by Jones, et al.



[10]. The variety and manual nature of these treatments
underlines the need for efficient automated methods to improve
DST partitioning onto DHAs. We propose the use of DST
algorithmic properties to improve their partitioning to DHAs.

Algorithmic-level rules have been successfully integrated
into methodologies for automated DST code generation.
FFTW and SPIRAL, two such methodologies, are essentially
solution-space exploration engines which utilize DST fac-
torization rules to generate and evaluate DST formulations
for general-purpose processor architectures [2][3]. In FFTW,
Cooley-Tukey’s and Rader’s algorithms are used to compose
efficient FFT formulations by combining smaller, highly opti-
mized blocks of code implementing smaller transforms [2].
SPIRAL incorporates a computer algebra system that uses
breakdown and manipulation rules to explore alternative DST
formulations as part of its design-exploration strategy [3]. An
important objective of our work is to determine whether these
rules can be successfully applied to the automated partitioning
and mapping of DSTs to DHAs.

III. DSTS AND ALGEBRAIC FRAMEWORK

A linear separable d-dimensional transform of x is defined
as:

X [k1, .., kd] =
Nd−1∑

ad=0

..

N1−1∑

a1=0

x[a1, .., ad]α1(a1, k1)..αd(ad, kd) (1)

where the αi’s are the transform’s functions. For example,
for the d-dimensional DFT αi(ai, ki) = e−j2πaiki/Ni . A d-
dimensional transform can be expressed as a tensor (Kro-
necker) product of unidimensional transforms:

X̂ = (AN1 ⊗ . . . ⊗ ANd
)x̂ (2)

where ANi is the Ni point discrete signal transform matrix, ⊗
denotes Kronecker product and x̂, and X̂ are vectors of size
N = N1 · ·Nd obtained by ordering x and X lexicographically
[11].

DSTs can be reformulated into algorithms with reduced
computational complexity by taking advantage of symmetries
in the transform’s functions (e.g. the roots of unity in the case
of the discrete Fourier transform). These fast algorithms can
be expressed as a multiplication of the input signal vector
by a succession of sparse matrices, which can be compactly
expressed in Kronecker products algebra.

Expressions in Kronecker products algebra (KPA) are gov-
erned by well known rules, and have been used successfully,
in a manual manner, to assist in the implementation of fast
algorithms for the computation of DSTs [12]. The main idea
is as follows. A given mathematical canonical formulation
of an algorithm is expressed as a composition of functional
primitives, i.e. factors which have been identified as efficient
procedures on the targeted DHA, establishing in this a one
to one correspondence. Variants of this canonical formulation
are then sought using properties of KPA and trying to satisfy
design criteria such as pipelining, parallelism, and data flow

control. Each new variant, in turn, produces a different DHA
implementation. The efficiency of the algorithm is evaluated
using a cost objective function imposed on the design frame-
work.

Our current efforts have been mostly directed toward Fast
Fourier Transform implementations. Figure 1 shows a Cooley-
Tukey formulation for the FFT size n=8 and its corresponding
dataflow graph. DFGs derived from common FFT size n
formulations (e.g. Cooley-Tukey, Pease) consist of log2(n)
stages of n/2 butterfly-twiddle kernels. The high connectivity
in DSTs, coupled with the limited inter-device communication
resources available in DHAs emphasizes the need for effective
mapping schemes.

Fig. 1. Cooley-Tukey formulation of FFT size n=8 and its corresponding
dataflow graph. Each kernel (denoted by a box) corresponds to a butterfly and
twiddle multiplication.

IV. TARGET ARCHITECTURE

Figure 2 illustrates our target architecture model, referred to
as a Distributed Hardware Architecture (DHA). It consists of
k dedicated hardware devices with local memory, connected
in a ring or linear array topology with a crossbar serving as a
global communication channel. This architecture is modeled
after common multi-FPGA boards produced by vendors such
as Annapolis (Wildforce) and Gidel (PROC20KE).

Fig. 2. Target topology.

V. METHODOLOGY

Figure 3 shows a conceptual map of our partitioning
methodology. The inputs are (1) a DST specified as a KPA
formulation and parameterized at least by the resolution of
its points, and (2) a high-level specification of the target
architecture, which includes the number and logic capacity of
the devices and their connection topology. Based on the inputs,
a series of heuristics reformulate the transform to expose
characteristics that will be exploited by the partition/placement



process. The algorithmic formulation is converted to a dataflow
graph (DFG) whose nodes denote functional primitives. DFG
nodes are as fine-grained as deemed necessary by the ini-
tial topology/transform heuristic analysis, in an effort to re-
duce design exploration time. Then, a partitioning/placement
(P/P) algorithm is run on the DFG, assisted by high-level
area and communication estimators. P/P is handled by a
communication-channel-aware, n-way graph partitioning al-
gorithm. Both Kernighan-Lin (KL) and simulated annealing
based adaptations have been studied as iterative improvement
strategies for P/P. The P/P solution and its cost are used
by the control heuristics to guide the reformulation of the
DST onto finer grained expressions. Formulation exploration
ceases when a given number of successive reformulations have
produced no considerable gain in partition quality.

Fig. 3. Conceptual map of methodology.

To be able to define the heuristics controlling the opti-
mization process, we need to have an idea of the effect
of formulation properties on partitioning quality. We have
conducted several experiments to gain insight into these effects
and to see whether or not we can envision a strategy to
heuristically guide the optimization. In the next sections we
discuss our general partitioning rationale, the graph partition
optimization heuristic, as well as the experiments performed
to assess the effect of formulations in the partitioning results.

VI. DST PARTITIONING RATIONALE

Several DST considerations have been incorporated into
our partitioning/placement algorithm to focus its optimization
efforts and arrive at improved solutions. Fast DST algorithms,
because of the regularity of their dataflow and inter-stage data
dependence, have traditionally been partitioned vertically or
horizontally [13][14]. Vertical partitioning maps computation
as in an architectural-level pipeline, where one or more com-
plete DST computational stages are assigned to each hardware
device. In horizontal partitioning, each device carries out all
stages of computation for a data subset, similar to single-
instruction-multiple-data (SIMD) processing. We argue that,
for the type of architecture we are targeting, horizontal par-
titioning will obtain lower latencies than the vertical scheme.
To begin with, in vertical partitioning, all data enter through
the first device and leave through the last. Thus, the potential
of using each device as an input (reading new data from its
own local memory) is lost. Furthermore, in a pipeline scheme,
every data point must cross through each of the channels,
while in a horizontal scheme even a naı̈ve linear partitioning
can reduce data communications requirements in half. When
communication channels are the system’s bottleneck, as they

are in DHA systems, the excess communication in pipeline im-
plementations hinders performance. Based on this reasoning,
our partition/placement algorithm explores the solution space
by exclusively considering horizontal partitioning schemes.

An additional distinctive feature of our partitioning algo-
rithm is that the initial partition, instead of being random,
is a balanced linear partition that respects the formulation’s
structure. The concept of balanced linear horizontal partitions
is illustrated in Figure 1 by the dashed horizontal lines.
Given a DFG, the initial partition scheme is obtained by
dividing horizontally the structure into k equally weighted
partitions. This initial solution strategy is used in an effort to
conserve algorithm regularity on the final partitioning solution.
Furthermore, linear partitions of common DST formulations
already represent good solutions in themselves, potentially
reducing exploration time.

Finally, most of the operations in fast DST formulations
can only be scheduled to a specific c-step. Our algorithm
takes advantage of this fact by only considering solutions
that exchange nodes from the same computational stage. This
schedule-aware consideration achieves a more focused solution
space exploration.

VII. KERNIGHAN-LIN ADAPTATION

The ultimate goal of the partitioning/placement process is to
assign each of the DFG operations to an architectural device,
while maximizing the estimated latency of the implementation.
Our partitioning algorithm is an adaptation of the Kernighan-
Lin heuristic extended for k-way partitioning to heterogeneous
channel topologies. An overview of our implementation, KL-
H, is presented in Algorithm 1. The objective function is the
maximum communication cost of all available channels, where
communication cost of a channel is defined as the product
of the channel weight times the number of communications
through that channel. The weight for a channel c is a relative
measure of the impact on system latency of communicating a
data point through c.

VIII. EXPERIMENTS AND RESULTS

In order to use DST functional properties to improve their
partitioning process, we need to first understand their effect on
partition solution quality and exploration efficacy. To this end,
several experiments were carried out to assess the effect of
two properties that can be controlled algorithmically on DST
formulations: inter-stage permutations and kernel granularity.
The resulting observations are used to devise the heuristics
employed throughout our proposed methodology. Diverse FFT
formulations of various sizes and characteristics where parti-
tioned using KL-H to target architectures consisting of four
and eight devices. For all the experiments we assumed adja-
cent and crossbar channels weights of 1 and 2, respectively.
Solution costs are measured according to the objective function
in Algorithm 1.



Algorithm 1 KL-H: Adapted KL algorithm for n-way hetero-
geneous channel architectures.
Input: Data Flow Graph G(V, E), Info about target architecture:
devices D = {P0 . . . PM−1}, communication channels C =
{C0, . . . , CN−1} and their weights W = {W0 . . . WN−1}
Output: Partition assignment for each v ∈ V .
1. Initial balanced partition |P0| ∼= |P1| ∼= . . . |PM−1|
2. while not all nodes are locked

2.1. Determine ai, bi ∈ V s.t. p(ai)↔ p(bi) minimizes cost()
2.2. Perform swap p(ai)↔ p(bi). Ci ← cost()
2.3. Lock ai, bi

2.4. [ai, bi, Ci]→ queue
2.5. i← i + 1

3. end while
4. Choose k s.t. C′

k = min
0<j<i

(Cj)

5. Reverse all swaps aj , bj where j > k
6. if C′

k < Ck then
6.1. C′

k ← Ck, unlock nodes, goto step 2
7. else stop

cost() = max
i∈[0,N−1]

[Ri ×Wi],

where Ri = number of required communications through Ci

A. Permutations

Solution quality of deterministic partitioning methods, such
as Kernighan-Lin is highly dependent on the initial solution.
Some popular graph partitioning algorithms actually run sev-
eral times with different randomly created initial solutions and
then chose the best result [15]. In an effort to salvage regularity
through the final solution, our methodology generates initial
linear horizontal partitions. Thus, formulations with different
inter-stage permutations represent distinct initial solutions.
To observe the effect of permutations, and possibly detect
heuristic strategies to be applied in partitioning, we partitioned
a range of sizes of five common FFT formulations: Cooley-
Tukey (CT), Gentleman-Sande (GS), Pease (P), Stockham (S)
and Transposed Stockham (TS).

Figure 4 illustrates a representative result from this exper-
iment. The graph shows the percent difference in solution
cost for various formulations on a architecture with 4 devices
connected in linear array topology. Average solution costs
for a randomly determined initial partition are also included.
Two main observations can be drawn from these results.
First, in general, randomly generated initial solutions yield
inferior results than when starting with linear partitioning
initial solutions. Secondly, none of the formulations exhibit a
consistent advantage over others for all sizes and/or topologies.

B. Granularity

Clustering is commonly used during graph partitioning to
help prune the solution space while improving solution qual-
ity and reducing time of convergence. When dealing purely
with graphs, clustering techniques determine the formation
of clusters based on graph qualities such as connectedness
[15]. In generic HLP methods, information extracted from the
high-level language algorithm specification or manually added
information has been used to cluster DFG operations to form
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Fig. 4. Representative results from the permutation experiment.

coarse-node graphs. At the formulation level, the granularity
of a DST can be manipulated by decomposing larger sized
DST kernels into combinations of smaller ones. We used
the Cooley-Tukey factorization formula to study the effect of
granularity in the partitioning of FFTs. This formula states
that, if n = pm, then:

Fn = (Fp ⊗ Im)Tn,m (Ip ⊗ Fm) Pn,p (3)

where n = mp , Fn represents a size n DFT, In is an identity
matrix, Tn,m is a diagonal matrix of weights, and Pn,p is a
stride permutation matrix.

Using Equation 3 we generated formulations for every
combination of stage granularities for a range of sizes of FFTs.
For instance, for an FFT size n = 8, three formulations were
generated: 2·2·2, 2·4, and 4·2, where each number corresponds
to the size of kernels in each stage (e.g. the 2·2·2 formulation
corresponds to that in Figure 1). The formulations were con-
verted to their corresponding dataflow graphs and partitioned
using KL-H. Table I summarizes our results by showing the
formulations that achieved minimum cost for each of the FFT
sizes 16 through 512. In this table, Array P and Ring P denote
architectures with P devices connected in a linear array and
ring topologies with an additional crossbar, correspondingly.
Asterisks identify cases where multiple formulations achieved
the minimum cost. For these cases, we show the minimum
cost formulation with finest granularity.

TABLE I

RESULTS FOR THE GRANULARITY EXPERIMENT.

Array 4 Topology Array 8 Topology
Size Cost Min. Cost Form. Cost Min. Cost Form.

32 11 2·2·2·4∗ 32 2·2·2·2·2∗
64 22 2·2·2·2·4∗ 48 2·2·2·2·4

128 43 2·2·2·2·2·2·2∗ 92 2,2,2,2,2,4
256 86 4·4·2·2·4 132 4·2·2·2·2·4
512 171 2·2·2·2·2·2·2·2·2∗ 276 2·2·2·2·2·2·4·2

As evidenced by the results, for the general case we cannot
easily establish a correspondence between granularity scheme,
architectural topology, and quality of solution. A practical fact
that we can observe is that the finest grained formulations
do not necessarily obtain the best results, so in many cases
it would be wise to avoid these formulations as they also
represent an increased exploration time.



C. Breakdown strategy

As evidenced in the previous experiments, the independent
consideration of permutation and granularity did not reveal any
discernible relationship with solution quality. For this reason,
an additional experiment was conducted in which we explored
the effect of breakdown strategy on the partitioning results.
A breakdown strategy describes the order and divisors with
which the decomposition rule such as Equation 3 is applied
to arrive at a formulation. It ultimately has an effect on both
granularity and permutations. Split trees are a common graph-
ical representation of decomposition strategies [16]. Figure
5 shows two split trees for an FFT size n = 26 and their
corresponding formulations.

Fig. 5. Two split trees for FFT size n = 26 and their formulations. Each
node v in the tree represents the computation of a 2v -point DFT. The values
of node v’s children indicate how v’s DFT is recursively computed.

All possible split trees were generated using Equation 3
for a range of FFT sizes from n =16 to 256 and parti-
tioned for architectures with linear array and ring topology.
A manual evaluation of the results revealed some common
breakdown sequences to attain superior partitioning solutions.
For instance, formulations from split trees where a first level
equally distributes size among its children tend to obtain better
partitioned solutions when targeting topologies consisting of
4 devices. In Figure 5, the formulation from tree (a) has
better results than that of tree (b). The breakdown heuristics
for generating ’partitioning-friendly’ formulations vary across
topologies, yet they remain similar across FFT sizes.

Breakdown strategy patterns observed in smaller FFTs were
used to generate ’partition-friendly’ split trees for larger FFT
sizes, with excellent results. Table II reports results for the
generated trees (GT) of several larger sized FFTs after par-
titioning with KL-H. As evidence to their solution quality,
results are compared to the best solution obtained by far more
time consuming simulated annealing (SA) runs.

TABLE II

SOLUTION COSTS FOR FFTS GENERATED USING BREAKDOWN

STRATEGIES VS. BEST OBTAINED BY SIMULATED ANNEALING.

Topology
4 Array 4 Ring 8 Array 8 Ring

Size GT SA GT SA GT SA GT SA
512 171 171 103 109 220 288 116 115
1k 342 342 205 226 398 544 242 231
2k 683 683 410 475 758 1420 446 465
4k 1366 1430 820 923 1668 3074 870 983

IX. CONCLUSIONS

A new methodology for the partitioning of DSTs to dis-
tributed hardware architectures has been proposed which en-
visions the use of DST-specific considerations as part of its
optimization loop. Experiments have been conducted to deter-
mine the effect of DST formulation on partitioning results for
various target topologies. Of the tested properties, breakdown
strategies were found to have an orderly effect on solution
quality that can be exploited to generate ’partition-friendly’
formulations. Our ongoing work includes experimentation
with other common transforms, such as the discrete cosine and
Hartley transforms, which will allow further development of
our heuristics. Methodology components will be implemented
and integrated into a complete prototype partitioning solution.
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