V1.7

TENSOR PRODUCT ALGEBRA AS A TOOL FOR VLSI
IMPLEMENTATION OF THE DISCRETE FOURIER TRANSFORM

Domingo Rodriguez

Electrical and Computer Engineering Department
University of Puerto Rico, Mayagiiez Campus
Mayagiez, PR 00709-5000

ABSTRACT

This work describes a tool to aid in the auto-
mated VLSI implementation of the discrete Fourier
transform (DFT). This tool is tensor product alge-
bra, a branch of finite-dimensional multilinear al-
gebra. Tensor product formulations of fast Fourier
transform (FFT) algorithms to compute the DFT
are presented. These mathematical formulations are
manipulated, using properties of tensor product al-
gebra, to obtain variants that adapt to performance
constraints in a VLSI implementation process. The
possibility of automating this procedure by process-
ing these mathematical formulations or expressions
in a behavioral synthesis environment of a silicon
complilation system is discussed. A transformation
technique between a symbolic computation environ-
ment and a behavioral synthesis environment for the
transferring of functional primitives is also discussed.

1. Introduction

The objective of this work is to present a methodology
to assist in the the high level functional description of fast
Fourier transform (FFT) algorithms in an automated VLSI
synthesis system. This methodology is based on the use of
tensor product algebra as a language for mathematical for-
mulations of FFT algorithms. Properties of this algebra al-
lows for the analysis and synthesis of the various stages of
a given algorithm, obtaining a mathematical expression for
each stage. These mathematical expressions are named func-
tional primitives and are then used in a transformational en-
vironment. We concentrate on additive, Cooley-Tukey type
FFT algorithms; but, the methodology can be also extended
to multiplicative, Winograd type FFT algorithms.

Tensor product algebra can assist a designer at the func-
tional specification level in an automated VLSI synthesis sys-
tem. How this can be accomplished is illustrated with the
following simple example. Consider taking the DFT of an 8-
point complex sequence z. If we decide to compute the DFT
using an FFT algorithm, this algorithm may be described us-
ing a signal flow graph (SFG) like the one in Fig. 1. A tensor
product formulation of this algorithm can also be provided
as it is shown in the same figure.

This way, a one-one correspondence is established be-
tween a tensor product decomposition and the signal flow
graph (SFG) of an FFT algorithm. How to arrive at these
mathematical expressions is clearly explained in the sections
that follow. Pipepilining and parallel implementation pos-
sibilities can be exploited by applying properties of tensor
product algebra to this decomposition. Examples of other
tensor product decompositions obtained are shown on subse-
quent illustrations. We can use properties of tensor product
algebra to go from one of these decompositions to another.
We can also obtain other decompositions. At the present
time we are trying to develop a methodology by which we
can automate this process in a symbolic computation envi-
ronment. This environment may, in turn, produce high level
language programming code of an algorithm which can be
translated to register transfer language {RTL) description as
demonstrated by T. Tanaka, T. Kobayashi, and O. Karatsu
[5). Thus, this work concentrates on the mathematical for-
mulations of FFT algorithms in tensor product language to
be used in an abstract environment. Properties of these lan-
guage allow manipulation of these formulations with relative
ease, For this reason it can be used as a tool to search for
tensor product decompositions suitable for VLSI implemen-
tations in a silicon compilation system.

2. Concepts of Tensor Product Algebra

We present some basic concepts of tensor product al-
gebra. This algebra is becoming an important tool for pre-
senting mathematical formulations of fast Fourier transform
algorithms [3] for two main reasons. First, it serves as a
mathematical language or environment in which to analyze
in a unified format similarities and differences among canoni-
cal forms of commonly known FFT algorithms and their vari-
ants. Second, it serves as an analytic tool for the study of
algorithm structures or constructs for machine hardware and
software implementations as well as the identification of new
algorithms. For instance, tensor product expressions can be
identified with specific processing operations performed on
targeted VLSI architectures. These identifications will assist
in determining, in an automated VLSI design process which
FFT algorithm constructs will produce efficient VLSI imple-
mentations relative to specified design constraints. This will
help in reducing multiple design iterations. We start with the
following definition of the tensor product of two matrices.

- 1025 ~

CH2977-7/91/0000-1025 $1.00 © 1991 IEEE

Let A be a t x r matrix. Let B be a u X s matrix. The
tensor product A ® B of the matrices A and B is a matrix C

[snB apnB ... e@,-yB
| samB egnB ... ag,-yB W

- "

Lo-1.08 @198 - Gp-1-nB)

The matrix € is m x n where m = t-u, and n = r - 4.
Let Z/t = {0,1,...,¢ — 1}. Let Zft x Z/u be the Cartesian
set formed by Z/t and Z/u. We can relate the elements of
the set Z/t x Z/u, ordered lexicographically, to the elements
of the set Z/m ordered in the natural order, i.e., Z/m =
{0,%,...,m ~ 1}. A possible mapping follows

a:Zft x Zfw — Z[m
Gua) r—alini) = O) = A+t

@)

In the same manner, we can establish a mapping be-
tween the set Z/r X Z/s, ordered lexicographically, and the
set: Z/n, ordered in the natural order. We describe this map-
ping in the following way:

B:2fr x Zfs — Zn @)
(bu k) — Bl k) = (B) = kybrky O

Using the above mappings, we write the tensor product of 4
and B in the following way:

C=A@B=[cguyl={cli+timk +rk}] @)

where j1 € Z/t, j2 € Zfu,ky € Zfr.ky € Zfs.

The key to analyze tensor product fopmulations of FET’s
is: establishing a relationship between one-dimensional and
two-dimensional arrays of indexing sets in a given tensor
product decomposition. This type of relationship is also use-
ful when studying stride permutation matrices. Below we
give a brief description of stride permutation matrices. We
then proceed in the next section with a tensor product for-
mulation of a canonical form of the Cooley-Tukey FFT algo-
rithm and discuss VLSI implementation.

Permutation matrices play a crucial role when trying to
obtair: variants of FPT algorithms to match targeted VLSI
architectures. Specifically, we can state that the actual data
flow required to carry out Cooley-Tukey type algorithms can
be guided by stride permutation matrices. They are termed

_ “stride” permutations because they can essentially be per-
formed by striding or sampling through the data with a con-
stant distance or length.

Take n. = r - 8. Consider a “stride by s” permutation
Pr» of order n. Its action on a tensor product g ® y of two
vectors:iz and y, of length r and s, respectively, can be used to
define the matrix itself. We can use two-dimensional arrays
for this definition. Below, T* denotes matrix transposition.
The tensor product z ® y is equivalent to the 2-dimensional

array ’
[0y 21y .. zr—1g] ®)
[zoyz1y .‘uzg‘zyji'r = [yoz Wiz ... varz} (6}
PoJz®y) = y®z 4

3. Implementation of the DFT

In this section we describe how tensor product algebra
can assist in the VLSI implementation of fast algorithms for
the computation of the DFT. The main idea is as follows. We:
associate basic hardware computational kernels with what
we call functional primitives. A given FFT algorithm can be
written as a composition of functional primitives. This action
establishes a one-one correspondence between a mathemati-
cal formulation of an algorithm and & given hardware imple-
mentation. Variants of this mathematical formulation can be
obtained using properties: of tensor product algebra. These
variants may satisfy certain design: criteria such as: pipelin-
ing, parallelism, data flow control, etc. In turn, each of these
new variants will produce: a different hardware implementa-
tion. The efficiency of the algorithm is evaluated when a cost.
function: is imposed on the design criteria. In this section we'
present tensor product formulations of a.class of fast Fourier
transform: algorithms to compute the one-dimensional dis-
crete Fourier transform of a complex sequence. These algo-
rithms are known as. additive Cooley-Tukey FFT’s. They are
called additive because they take advantage of the additive
structure of the input and output data indexing sets during
computation. To: this class belong canonical forms such as
the Pease algorithm, the autosort or Stockham algorithm,
the. Agarwal-Cooley algorithm, etc. [4]. Variants of these
forms may be obtained by using properties of tensor product
algebra. Here we present a canonical form of the Cooley-
Tukey FFT algorithm and discuss some of its variants. We:
first introduce some important definitions.

The diagonal matrix Dj,,, of order r is defined by

Doy = diag [, Wny- o 0]y wn = €3 i = /2T (8)

The twiddle factor (phase factor] matrix T, ,¢), of order n,
is defined as the direct sum of ¢ diagonal matrices D, ,/, of
order n/s:

o~L

Taue) = 3 ODL,, ©)
=0

The discrete Fourier transform (DFT) of ar n-point se-
quence z is defined as

y(k) = E ”(J)V’Zﬂ 0<k<n; '”n=5'-aﬂ%" (1“0)»
0<i<n,

where y(k) represents the kth-term of the DFT sequence y;
and y = F, -z, where F, denotes the DFT matrix: of order
n. Here n is & composite of the form n =r-s.

The sequence z is represented as a 2-dimensional array
which we denote by X. The transformed output sequence
y = F, -z is also expressed as a 2-dimensional array which
we denote by Y. Through these identifications, the original
DFT sum is turned into a set of two recursive equations, each
equation describing a modified Fourier sum. We first state
the identifications explicitly and then proceed to formulate
the Cooley-Tukey algorithm, expressing it in tensor product
form. Using input /output index correspondences of the form:

a:Zfax Zfr — Zn

(i) = alidi) =@ =ia +aia O

- 1026 -

-B:Z/rx Zfs — Z[n

(kl,kz) oad ﬂ(kl,kg) = (k) = kl + fkg) (12)

we obtain 2-dimensional array representations of Eq.(10)

=1 r—1
Yikpka)= Y 3wt tdrkalx (i js) - (13)
3=05,=0

which we rewrite as

=1 r—1

Y (ki k) = Z[Z Xl(j1,jz)w3"k’]“’.".’k'“'i’k2 (14

J2a=0 51=0

Let X; = XT and let z, be the vector formed by reading, in
order, down the columns of X;. The arrays X; and X are
then related through the one-dimensional equivalence z; =
P, ,.z. If we look closely at the inner Fourier sum

r—1
Yilks,go) = Y Xa(s, da)wit®, (15)

n=0

We notice that it can be written, using tensor product nota-
tion, in the following manner.

y,=(L®F)z,=(L®F)Paz (18)
The next stage of the computation:
Ya(k,2) = Ya(ks, ja)wis® an)
can be given by the diagonal matrix multiplication

Y, = Tnuy, (18)
where T, , was previously defined by Eq.(9) above.
We complete the computation by

-1

Y(ky ko) = Y Ya(ke, a)wi*. (19)
32=0

If we denote by y, the vector obtained by writing down, in
order, the columns of Y3, we can write

y=(F.oL)y, (20)

Combining the above results we arrive at the tensor
product formulation of the Cooley-Tukey FFT algorithm for
computing a given n-point sequence z, where n =r-4:

y= (Fa ® Ir)Tn,n(In ® Fr)Pn.aI (21)

which produces the following decomposition for the Fourier
matrix Fp:

Fpo = (Fo® I)T0o(1,® F;)Pa, (22)

This tensor decomposition is commonly known as the
decimation in time {DIT) Cooley-Tukey 2-factor FFT algo-
rithm.

Performing a matrix transposition on both sides of the
equation results in decimation in frequency (DIF):

Fo = PLULL® F)Tou(F.® L) (23)

Properties of tensor product algebra may be used in
these two formulations to obtain other FFT variants. Also
if n is a composite of the form n = nonyngns...nk—1, itera-
tive procedures can be used to obtain general tensor product
decompositions. Many FFT variants can be obtained in this
fashion, with certain classes of variants being identified with
VLSI hardware structures.

6. Conclusion

As a conclusion it is important to emphasize that the in-
creasing demand on VLSI circuits for digital signal processing
applications is forcing some electronic companies to develop
their own silicon compilation systems in order to improve the
VLSI circuit design effort. Some of these companies claim to
have reduced from months to days the time it takes to design
custom integrated circuits for some of their products. Unfor-
tunately, as expressed by Jonathan Allen on a recent article
(1], current CAD synthesis resources still require the active
participation of a skillful designer; and, as the design efforts
grow large, “a human designer alone cannot handle the com-
plexity implied by the large set of design possibilities.” We
see tensor product algebra as an important tool to aid at
the high end level of functional specification so that we can
exploit many alternative representations at the layout level
and select the ones that best conform to given performance
constraints.

Acknowlegement:

We acknowledge the assistance provided by the under-
graduate student Marinés Puig Medina in the preparation of
the illustrations.

REFERENCES:)

[1] 3. Allen, “Performance-Directed Synthesis of VLSI
Systems,” Proceedings of IEEE, Vol. 78, No. 2, pp. 336-
355: February 1990.

[2] W. G. Bliss, A. W. Julien, “Efficient and Reliable
VLSI Algorithms and Architectures for the Discrete Fourier
Transform,” Proc. ICASSP ‘90, Vol. 2, pp. 901-904: April
1990.

[3] H. V. Sorensen, C. A. Katz, C. S. Burrus, “Efficient
FFT Algorithms for DSP Processors Using Tensor Product
Decompositions,” Proc. ICASSP ‘90, Vol. 3, pp. 1507-1510:
April 1990.

[4] D. Rodriguez, “Tensor Products Formulations of Ad-
ditive Fast Fourier Transform Algorithms And Their Imple-
mentations,” Ph.D. Thesis, City University of New York,
Feb. 1988. :

[5] T. Tanaka, T. Kobayashi, O. Karatsu, “HARP: For-
tran to Silicon,” IEEE Trans. on Computer-Aided Design,
Vol. 8, No. 6, pp. 649-660: June 1989.

- 1027 -

) - -1 T
[(43" €2p (3 (4} 05y 6y

(o) h®P)Pyy (1) A8 (2 (LOF
(3) (GO®Tyy) (4) (L® IFR®L)) (5) Tsx (6} Fi®LY

Figure: 1

0 o

£

x|

2} o l‘\(p“(p P ; it
X 20205 5
X RS

"y, ;

O (F (2y (3 ey 51 (6}

x[3] q

X[5] o

x5 &

(@) @O®Pyy) Py 1) 8L (2F @38l (Py @)
(3) (1@ Pyg) (Py e (8T 5) Pyp) (L8 Pyu))
(4} (F®L) P @) (S} Tye (6] UFRRL) (P, ,8h)

Figure 3

—» —> —p-> .

€0y (33 €2} €3} (4x (5}
(1) By (2) Py {1, 8T, 1) Py,
(5) (F,8L) (P, 8T}

(0} (L@LY
(3] ®,80) (L8 (F,81)) (4% Taa

Figure: 2

" x{o}
Ao xpiy
L f S 12}
o xi3l
o x4]
o, (51
o x5}

©ogey ew g2y B (4F 5y

(0} @@ F)Pgs) (1) Tae (2) (® F)Pgo
(3F W Pys) (Py ol ®T) Py) (O Puz)
4y (LOFY Py (5) ALL)

Figure 4

- 1028 -

