ON THE IMPLEMENTATION OF FAST ALGORITHMS FOR LINEAR
CODES USING T805 MICROCOMPUTER ARRAYS

Domingo Rodriguez, Alberto Rodriguez and Nayda G. Santiago

University of Puerto Rico
Electrical and Computer Engineering Department
Mayagtiez Puerto Rico 00681-5000
E-mail: domingo@rmece01.upr.clu.edu
E-mail: albert@rmece01.upr.clu.edu
E-mail: santial1{@egr.msu.edu

ABSTRACT

This work deals with the implementation of fast
algorithms for linear codes using T805 microcomputer
arrays. Special emphasis is given to the design and
implementation of algoritluns for convolutional encoders.
The results show that, by proper computational load
distribution and good data techniques, improvements are
obtained over direct implementations.

L. INTRODUCTION

Digital Signal Processing is an engineering field
with many branches. Among them is the theory of
Error Control Codes (ECC). The central problem
treated by ECC is the detection and correction of
information against errors that may appear during its
transmission. It has been demonstrated that, by proper
encoding of the information to be transmitted (or
stored), certain errors induced by a noisy channel can
be detected and corrected; and, thus, maintain an
acceptable transmission rate. Currently, the use of
error control techniques has become and integral part
of any digital communications system:.

II. BASIC COMMUNICATIONS SYSTEM

A Dbasic communications system connects an
information source and an information user through a
channel, (see Figure 1). The information source
transmits sequences, which enter the communications
system, and are first operated on or processed by the
source coder. The source coder is used to remove
redundancies from the signals or sequences coming
from the information source. The source coded
sequences are called information words. The
information words enter the channel coder which
transforms them into encoded sequences called code
words. A set of code words is called a code. The code
words are longer sequences which contain more
redundancy than the information words. The code
words are then transmitted through the channel using
a modulator (not shown in Figure 1).

Because the channel is subject to various types of
noise, distortion, or interference, its output may be
0-7803-2972-4/96$5.00©1996 IEEE

1284

different from the channel input. Typical transmission
media or channels include telephone lines, microwave
links, satellite links, and so on. The demodulator (not
shown in Figure 1), converts each received channel
output signal into a received word.

The channel decoder transforms the received words,
using the redundancy of the signals, and corrects the
errors to produce sequences called estimated words.
Ideally, estimated words will be equal to the
information words. Finally, the source decoder
performs the inverse operation of the source encoder,
and delivers its output to the information user. ECC
are dedicated to the channel coder/decoder stages only.

e
i Info. > Channel Noise
, Source i 1 Coder
S] Pl ot
Source |
Coder
—— i Channel
Source | ‘
Decoder |
‘—+___J
Info. <J [_| Channel J
User i Decoder
Comm. System

Figure 1. Basic Communications System

III. LINEAR CODES

This work deals with linear codes exclusively.
Some basic definitions niust be presented to define
linear codes as entities of well defined mathematical
structures. Let GF(g) be a Galois field with ¢ elements.
Let GF(g)” be an n-dimensional vector space over
GF(qg). Let GF(g){x] be the ring of polynomials over
the field GF(g) in the indeterminate x. A polynomial
afx)=afl-1]x" +a[l-2]x"2+...+a[1]x+a[0] is called
the monic polynomial if af/-1/=1. The polynomial
a(x)eGF(g)[x] is called a prime polynomial if it is
monic and irreducible; that is, if it is divisible only by
itself. The polynomial ring GIF(g)/x] can be turned

into a quotient ring by taking an arbitrary polynomial
b(x)eGF(g)[x] and performing polynomial addition
and polynomial multiplication modulo the polynomial
b(x). This quotient ring will be denoted by
GF(qg)[x]/b(x), and it is composed of all polynomials of
degree less than b(x). The quotient ring GF(g)/x]/b(x)
becomes a field if the polynomial b(x) is a prime
polynomial. Then, a linear code £ is defined as a
subspace of GF(g)" . There are two types of codes in
common use today: block codes and convolutional
codes. From these two, convolutional codes have been
selected for implementation.

IV. CONVOLUTIONAL CODES

Convolutional codes are linear codes which divide
the incoming data stream into smaller blocks of length
ko, which are called information frames. These
information frames typically contain no more than a
few symbols. The information frames are encoded into
code word frames of length #,. Convolutional codes

previous information frames into a single
word. A convolutional code with these

store
code

characteristics is known as an (nmo,mko)
convolutional code.

Any convolutional code can be expressed as a
matrix-vector multiplication. But, to appreciate the

parallel structure of these codes, they will be expressed
by n, sets of finite-impulse-response (FIR) filters,

each set consisting of ko FIR filters (see Figure 2).

2 bits per

_ unittime \

[FIR ”

> FIR
FIR filter

bank

Figure 2. 1/2 Rate CE FIR Filters.

The impulse response of any FIR filter can be
represented by a polynomial of finite degree. These
polynomials are called the generator polynomials of
the code. The rate of a convolutional code is defined as

R=k,/n,
Parallel Structure of Convolutional Codes

A set of FIR filters can be put together in a
generator-polynomial matrix, a k, x n, matrix of
polynomials given by G(X):[gij(x)]. The input
information frames should be considered as &,
svmbols in parallel. These frames may be represented

1285

by /(0 information polynomials d,. (x) for
i=1,2,- ky,, or as a row vector of such
polynomials:

d(x):[dl(x)adl(x)7“'7dk0(x')]' (1)

Similarly, the output code word can be represented
by #, code word polynomials

() =[a(Des(w) e (5]

The coefficients of the code word polynomials are
interleaved in order to pass them trough the channel.
The encoding operation can now be described

2

compactly as the vector-matrix product,
c (xg =d (X)G(X), or equivalently,
k()
c(x)=> d(x)g,(x). 3)
i=1

By expanding equation (3), it can be demonstrated
that the CE perform different filtering operations over
the same data set (see Figure 3). This is the corner
stone for the parallel implementation process.

R D s }\ﬁ“—»;

—
| A A |

u | ‘f ; !)&(Q‘L‘—J—J’
> TL_J]
o yy
>

Figure 3. 1/2 Rate CE shilt register.

B

<> =)
(19)

ﬁ@

Figure 4. Transputer Topology for the Parallel
Implementation of the 1/2 Rate CE

V. IMPLEMENTATIONS

Several convolutional encoders (CE) have been
implemented using transputer computational
structures. The (16,8) 1/2 rate CE was implemented in
one, two and three transputer nodes where a transputer
node is a single microprocessor chip.

(16,8) 1/2 Rate CE Implementation Concept

As mentioned before, a 1/2 rate CE performs two

FIR filtering operations on the same data set at the
same time (see Figure 3). The generator polynomials
are used to generate the code words. This is done by
polynomial multiplication, but for these codes the
operations are done strictly in GF(2). Therefore, the
polynomial multiplication and addition are done
modulo-2. The polynomial multiplication modulo-2
can be represented as a shift register with connections
to modulo-2 adders (see Figure 3). These connections
were represented using pointers. The shift register has
been implemented using a double linked list and the
adders connections as memory pointers. Thus, every
generator polynomial coefficient possesses a pointer to
the memory address of its respective node in the linked
list. Using this concept the polynomial multiplication
has been reduced to data manipulation and additions
making the implementation faster.

(16,8) 1/2 Rate CE Parallel Implementations

The 1/2 Rate CE representation shown in Figure 2
is very useful to see the inherent paralielism that these
codes possess. It can be seen that the coder possesses
two FIR filters plus an interleaving process at the
filter’s output. Therefore, 1/2 rate CE can be
implemented using a maximum of three transputer
nodes. Using three transputer processors each task can
be easily distributed. The implementation is very
simple, the transputer topology, or network, used for
the implementation is shown in Figure 4. The network
load distribution is as follows; The root node, or node
number one, reads the data from the PC computer and
delivers it to the entire network. The transputer nodes
number two and three perform the FIR filtering
process, while the root node is dedicated to receive and
interleave the received data. This paralelization along
with the software implementation techniques improves
the implementation execution time.

(30,6) 1/ 5 Rate CE Transputer Implementation

The principles used to implement the 1/2 rate
convolutional encoders can be used to implement the
1/5 rate. The major difference is the number of
generator polynomials which span the (30,6) 1/5 rate
convolutional encoder, which are five. Each generator
polynomial can be seen as an FIR filter, as mentioned
before, see Figure 5.

Figure 5 also shows the transputer topology used to
implement this 1/5 rate convolutional encoder. In this
parallel implementation five nodes are used to perform
the filtering process and one extra node for the
interleaving process. The FIR filtering operations
should be assigned to the nodes wisely. It can be seen
that nodes number two and four must deal with a high

1286

communications load, see Figure 5. These nodes are
responsible of reading and transmitting data to and
from nodes three, five and six. Therefore, the FIR
filter that requires more computational power should
be assigned to the nodes three, five, and six. One of
the most important nodes is node number one or the
root node, see Figure 4.

The root node is responsible of reading and
distributing all the input data to the entire transputer
network. When the transputer network finishes with
the FIR filtering process, the root node collects the
data for the interleaving process.

These implementations were performed using a data
set that varies from 400 to 5000 symbols, where each
symbol is represented by x bits, which depends on the
code type. Also, different node to node communication
rates were implemented Lo verify their performance.

-’JI_R J (—;Me,
FI h }_ unit time

— FIR r———»
—| FIR QJ
[FIR J—Eﬁﬁ?ﬁ‘

FIR Filter
Banks

{

e

(=)

o))

«>{~)

d--

Figure 3. Six Nodes Transputer Topology and Filter Bank
for the 1/5 Rate CE.

(16,6) 3/8 CE Parallel Implementation

The (16,6) 3/8 convolutional encoder possesses a 24
FIR filter bank. Instead of doing one shift register, as
the 1/2 and 1/3 rate convolutional encoders cases, this
encoder needs three double linked lists because it
possesses eight generator polynomials. The
implementation principle stills intact, the use of shift
registers and memory pointers. In this implementation
eight nodes are used for the filtering process and one
for interleaving. The topology wused for this
implementation is shown in Figure 5. The task
distribution is a follows; The filters labeled G1 were
implemented in one transputer node, the filter labeled

G2 in another, and so forth. The filtering load is not
the same for the entire network either. Transputer
nodes two and nine has the highest communications
load in the network. Therefore, the longest generator
polynomials or the polynomials with the highest
number of coefficients should be assigned to the nodes
with less communications load.

» FIRG2 A

P _TIR e b

8 bits per
unit time
7

3 bits per >

unit time
7

o

Input

timing
buffer L]
[]

bCe :
i

#,‘ FIR G3 7

»_TIRGA

[—
[

J Qutput
[timing
buffer

> FIRGS T i
ey d

—oFRGE — T
FIR filter
Bank
Figure 5. Nine Nodes Transputer Topology and

Filter Bank for the (16,6) 3/8 CE.
V1. RESULTS

The experimental results presented in this section
are based on the (16,8) 1/2 rate convolutional encoder
sequential and parallel implementations. To
understand the information provided in Table 1 the
following definitions should be presented. Speed up,
efficiency, and transmission rate. The speed up of an
algorithm or implementation is measured as the ratio
of the sequential implementation time over the parallel
implementation time. The following equation defined
the relation,

1287

The efficiency of an algorithm per processor is
defined as the ratio of the speed up over the number of
processors used. The following equation shows the
relation,

E= 2
n

The implementations presented were tested using
40,000 bits as input. The time indicates how much
time it took to complete each task. The table shows the
associated transmission rate defined as follows,

rR = 49,000
T

Node | Packet Time Speed Trans. Rate Eff.
s Length (s) Up
1 - 1.049 - 38.09 Kbps -

*34.5 Mbps

3 1 .888 1.181 45 Kbps 39.38
3 8 754 1.391 53.02 Kbps 46.39
3 16 755 1.390 52.97 Kbps 46.34
3 24 757 1.386 52.83 Kbps 46.23
3 32 751 1.397 53.24 Kbps 46.58

* TMS320C31 Sequential Implementation
Table 1. (16,8) 1/2 Rate Convolutional Encoder Results

VIL CONCLUSIONS

The implementations reveal that CE possesses an
inherent parallel structure suitable for parallel
implementation. The parallel implementations showed
a decrease in execution time when compared to
sequential implementations. It can be experimentally
demonstrated that the best communication rate is
obtained as a function of the information word length;
that is, there exisls a relationship between the length
of the information word and the transmission rate.
Increasing computation time and decreasing
communication time in each node decreases the
overall time spent encoding a signal; but, this process
has a limit.

VIII. REFERENCES

[1}] R. E. Blahut, "Principles and Practices of Information Theory,”
Addison-Wesley Publishing Company, 1991.

[2] G. R. Redinbo, “Finite Fault-Tolerant Digital Filtering
Architectures,” IEEE Trans. on Computers, Vol. C-36, No.10, Oct.
1987.

[3] R. E. Blahut, *Algebraic Methods for Signal Processing and
Communications Coding,” Springer Verlag, New York, 1992.

[4] INMOS, “The Transputer Data Book,” Consolidated Printers,
CA, 1989.

[5] R. Tolimieri, M. An, C. Lu, “Algorithms for Discrete Fourier
Transform and Convolution,” Springer Verlag, New York, 1989.

[6] 8. R. Whitaker, J. A. Canaris, K. B. Cameron, “Reed Solomon
VLSI Codes for Advanced Television,” IEEE Trans. On Circuits and
Systems for Video Technology, Vol. 1, No. 2, June 1991,

[7] J.J. Komo, M. S. Lam, “Primitive Polynomials and M-Sequences

643-647, March 1992.

