Algebraic Methods for the Analysis and Design
of Time-Frequency Signal Processing Algorithms

Domingo Rodriguez
Electrical and Computer Engineering Department
University of Puerto Rico, Mayaguez PR 00681-5000
E-mail: domingo@rmece0l.upr.clu.edu

Jaime Seguel
Mathematics Department
University of Puerto Rico, Mayaguez PR 00681-5000
E-mail: jseguel@rummat].upr.clu.edu

Abstract - This work presents some results on the study of
algebraic methods for the analysis and design of time-frequency
signal processing algorithms. A time-frequency signal is defined as
a signal whose spectral characteristics vary with time. Time-
frequency signal processing is the mathematical treatment of signals
with the objective of extracting relevant information. The processing
of time-frequency signals is accomplished through the development
of suitable algorithms. The work concentrates on the analysis,
design, and modification of time-frequency algorithms for machine
implementation, and on the development of an environment to assist
on this implementation. This environment is termed a computational
mathematics environment (CME).

I. INTRODUCTION

Time-frequency signals appear in many scientific and engineering
application areas such as speech signal processing,
SONAR/RADAR signal processing, seismic signal processing,
image processing, biomedical signal processing, Fault diagnostics
signal processing, Holographic interferometry signal processing,
etc. For many years signal processing tools such as the discrete
short-time Fourier transform (DSTFT), the discrete finite ambiguity
function (DFAF), and the discrete Wigner-Ville distribution
(DWVD) have been used successfully in these areas. New
computational tools such as the discrete wavelet transform (DWT)
are now reaching the field of signal processing. This work presents
algorithms for the DSTFT, DFAF, DWVD, and DWT. The
algorithms are implemented in workstations using C-language and
numerical computation packages. They are also analyzed for their
inherent parallel and vector processing structures for implementation
on multiprocessing environments. One of the goals of this work is
to obtain low-cost parallel implementation of signal processing
algorithms.

The central idea of this work is the analysis and design of time-
frequency signal processing algorithms. These algorithms operate
on finite discrete signals (one-dimensional or two-dimensional, as
the case may be), called input signals, to produce an output or
processed signal. An prime objective is to process input signals in a
fast and efficient manner. Thus, it is desired to obtain algorithm
implementations on available machines which can achieve this
objective.

Implementing an algorithm on a specific machine for optimal results
is not a trivial matter. Several reasons can be provided to support
this claim. One reason is that the performance of an algorithm varies
from machine to machine, and it is desirable to identify on which
machine it performs best. Another reason is that, for a specific
machine, many variants of a given algorithm must be tried in order
to reach an optimal implementation.

II. COMPUTATIONAL MATHEMATICS
ENVIRONMENT

The concerns stated above suggest the development of a
methodology for the machine implementation of time-frequency
signal processing algorithms. This work presents a methodology
based on algebraic methods. To describe this methodology, several
definitions and concepts are now presented.

0-7803-1254-6/93503.00 ® 1993 IEEE

Edgardo Cruz
Electrical and Computer Engineering Department
University of Puerto Rico, Mayaguez PR 00681-5000
E-mail: cruz@rmece0l.upr.clu.edu

An algorithm can be defined, in a loose manner, as a formulated
computational procedure, with a finite number of steps, which acts
on elements of a set called input set to produce an output which
belongs to an output set. These formulations can take the form of
mathematical expressions as it is the case for this work. All
mathematical formulations of algorithms are considered to belong to
an environment termed a computational mathematics (CME)
environment. The CME consists essentially of an input set, an
output set, a set of mathematical operators, and a set of rules for
these operators. A CME is defined as « software based environment
with special subsets called computaticnal mathematics frameworks
(CMF). A CMF is a set formed by a mathematical formulation of an
algorithm, presented in what is called its canonical or standard form,
and all its possible variants. A mathematical formulation is called a
variant of a canonical formulation if this variant can be obtained
from the canonical formulation through algebraic manipulations or
techniques.

Consider the scenario (see Figure 1) where it is desired to implement
an algorithm on a given machine (we shall use the generic term
computational hardware structure (CHS) to refer to any arbitrary
machine). The computational mathematics environment (CME) can
assist in this implementation in the following manner. Information
about inherent CHS attributes, such as main memory configuration,
size of main memory, number of processing units, types of
processing units, size of cache, compiler specifications,
programming languages, etc., can be acquired in the form acquired
by the CME, some of them in the form of parameters. A
computational mathematics framework (CMF) can then be
constructed where the algorithm and some of its variants are
formulated using the acquired information from the CHS. Each
variant is then implemented and tested for optimality based on
certain performance criteria. A variant will then be chosen which
best satisfies these performance criteria.

CME
CMF
Algorithm Algorithm Algorithm e Algorithm
A, A Ay A

~N / e
SO

Inherent
Auributes

Figure 1

Thus, an algorithm can be referred to as a mathematical formulation
describing a composition of a finite number of operators, this
composition acting on an input elemeit or input signal to produce a
processed signal. To obtain mathemetical formulations of a given
algorithm, structures, called computational mathematics structures
(CMS), are identified on the input and output data sets.

As stated above, this work concentrates on the analysis, design, and
modification of time-frequency algorithms for machine
implementation, and on the development of an environment to assist
on this implementation. This environment is termed a computational
mathematics environment (CME). Its main features are the
characterization of algorithms and their variants from the algebraic
structure point of view.

Consider another scenario where several computational hardware
structures (CHS) are provided (see Figure 2) and it is desired to
implement a mathematical formulation of an algorithm on these
various machines. In this case the CME can acquire the inherent
attributes from each of the machines and then determine which of the
computational hardware structures effect the most efficient
implementation of the given algorithm formulation.

CME

CMF

o oy
AN
NN

AR

Figure 2

As it was defined above, an algorithm can be referred to as a
mathematical formulation describing a composition of a finite
number of operators, this composition acting on an input element of
input signal to produce a processed or output signal. To obtain
mathematical formulations of a given algorithm, structures, called
computational mathematics structures (CMS), are identified on the
input and output sets.

HI. COMPUTATIONAL MATHEMATICS
STRUCTURES

As an example of the algebraic structures used in this work, tensor
product algebra, convolution operations, Hadamard products, direct
sums, permutation operations, etc., are presented. In the case of
tensor product algebra, properties of this algebra and the associated
permutation matrices are used to study the structure and the
computational complexity of algorithms. as well as to formulate
variants [2]. Signals to be processed are interpreted as living over
finite Abelian groups. This approach results in an algebraic
characterization of all the algorithms presented in this work from the
point of view of computational complexities and implementation
frameworks.

The ideas presented in this section do not intend to exhaust the rich
variety of ways in which symbolic processing based on well-known
algebraic settings can help in algorithm design. Indeed, in the
following paragraphs, we just point out to what we believe are the
most natural and in some sense, most elementary examples of
mathematical structures underlying the modification and adaptation

of algorithms for computing v = Au, A a square matrix and « a
generic vector, to different machine architectures.

Let A ® B = [a,B], where A = [a,].

01 1 0
A, =
1 0 01
and let us denote by

P=01,®I,®J,
, =L, ®J,®1,,
P,=J,®I ®I,

Let 12=[

3

197

These permutations represent nearest neighbor exchanges in a 3-D
hypercube. In fact,

6 7
» P
P <« 4 5
CFe=—"1
*
e | b0
N
P, <
=
Figure 3
the group generated by P,,P, and P, consist of

p,=1,81,®1, P, P, P, and P, = PP,
P, = PP, P, = PP, and P, = P P,P,. Anyparallel data
transmission in a 3-D hypercube correspond to a particular PI..

Any 8 X 8 matrix A can be expressed as
7

A=Y DP,
j=0

where Dj is a diagonal matrix. This decomposition provides
important insights for the design of algorithms for computing

Vv u
in a 3-D hypercube. For example, let's consider the 8-point Cooley-
Tukey FFT. In matrix terms, the algorithm consist of computing

u = Fu
through the matrix factorization F, = S,5,S,B,

where B is the 8-point bit-reversal permutation and
S, =T,(I,®1,®F,),
T,(I, ® F, ®1,),
S, =T,(F,®1,®1,).
where T; is the diagonal matrix representing the "twiddle" or phase
factor [1]. Using decomposition of the type shown above

S=T[(,®L®L)+(l,®1,®J,)D]|
:TI(PII +P1Dl)
S, =T[(1,®1,®1)+(l,®J,®1,)D,]
=T2(P0 +P2D2)
and
S,=T,[(,®1,®1L)+(J,® ®1)D,]

= T}(Pu + P‘,DA)

Each of these expressions contains only one nearest neighbor
exchange permutation. Thus, each step in the 8-point Cooley-Tukey
FFT requires only one parallel exchange in a 3-D hypercube.

The algebraic structure of group with which the set {PD yeens Py }

is endowed allows the expression of each permutation in this set in
terms of compositions of nearest neighbor exchanges. This

property, in its turn, allows for convenient nestings of nearest
neighbor exchanges able to eliminate more complicated data

movements. For example, if A is athick 8 X 8 matrix, then none
of the diagonal D, is null and therefore we get

A=D,+PD +PD, + PD,+...+P.,D,
Now, using the group structure of {P(, .o
A=[(D, + PD)+ P, (D, + PD,)]| +

P, } we can write

P,,[(Da + PD;) + P,(D, + PID,)]

which again contains only nearest neighbor exchanges.

Since the above formula holds for every matrix A, an important
question regarding algorithm design is whether there exist a matrix

factorization of A, letssay A = §,-...-S,, in which each factor
A/. decomposes with fewer nearest neighbor exchanges than A, as
it happens with £, in the Cooley-Tukey FFT. The answer to this
question can be provided by a symbolic treatment of A.

In the same way in which the group {Pﬂ yoon P } characterizes
the 3-D hypercube architecture other computational architectures can
also be characterized by groups of purmutations. For example, §
processors linked by a ring can be characterized by the group
generated by the cyclic-shift permutation

01 60 0
001 0 ...0
0001 ...0
C, = .
0000 ... 1
100 0 ... 0

This group consists of all the powers of C,, namely
{Csu Gy, C] } As in the case of the 3-D hypercube, any
8 X 8 matrix A admits a decomposition as:
~+
A= DC
j=0
and the nesting formula

A=D,+(D +(D, + (D, +(D, + (D, +
(D, + D,C)HC,)C)C)C)HC)E,

allows the expression of all permutations involved in computing
v =Au
in aring, in terms of the simplest permutation.

The group generated by the tensor product C; @ C,, this is the
group of permutations of the form:

{¢;®C/: 0<i,j<T}

corresponds to a wrap-around 8 X 8 mesh.

<

This algebraic set up can be exploited in many ways. Symbolic
processing can provide different factorizations for a given matrix A,
and these factors can be tested for proficiency in different
architectures, through the above mentioned expressions in terms of
groups of permutations.

Different decompositions (d} maps in Figure 4 below) give rise to

different algorithms. Also, a fixed algorithm can be tested
symbolically in different architectures through algebraic maps
between the group of permutations that characterize the given

architectures. These maps are represented by ¢, in the following
figure. In general, a procedure v = Au will be well adapted to a
given architecture if there are permutations P, Q and "well
structured” factors S,,..., S, such that v = PBQu, where
B = § -...-S,nissmall, and each S, is expressible in terms of

198

the group permutations associated to the architecture with few basic
permutations and full diagonal matrices.

i
1
group 1 <4——p | Architecture 1
d
h
d ‘2 .
v=Su |«—2—» group2 | <4——» | Architeclure 2
d
) ¢l,
h
group3 | €—— | Architecture 3
Figure 4
L, j=1,2: group relation maps
s J = 1,2,3: decomposition of A in terms of the elements
in group j.
i, J =1,2,3: identification maps.

IV. ALGEBRAIC REPRESENTATIONS OF TIME-
FREQUENCY FRAMEWORKS

As an example of the type of algorithrus presented in this work, the
discrete finite ambiguity function 3] is briefly discussed below, and
an algorithm and a variant are described for the computation of this
function.

Let x be a transmitted signal. Let y be the returned echo after the
signal bounces off a stationary object or an object moving at a
constant velocity. The discrete finite ambiguity function (DFAF)
can then be used to estimate the range and velocity parameters of the
moving object. It is defined as the absolute value of the following
function

N-1

Az)Im k] =Y

n=0

kn '\
. -]
x[nly [m+ nle ,

This function can be computed, for instance, as a filtering operation
(hence, the term the filter method) of the incoming signal y with a
weighted version of the transmitted signal x. This is accomplished

N —/2ME)
by forming the product z [k] = x|n]e M7 It follows that

N~

AGo)lm okl = Y 2, [kly [m + n)

n=0

The function can also be computed by forming the Hadamard

product u, [m] = x[n]O y, [m]for y,[m] = y[m + n],
and then taking the discrete Fourier transform (DFT) of the result
(hence, the term the DFT method). This produces the following
expression

Alx,) m, k| = DFT{u,[m]|} = U, |m]

As an example of how to develop @ computational mathematics
framework (CMF) the filter method is chosen to produce a standard
algorithm mathematical formulation and some variants. A functional
diagram is presented below (see Figure 5) for an algorithm to
compute discrete finite ambiguity function using the filter method
{2]. The functional diagram describes the action of a composition of
linear, finite dimensional operators on finite complex sequences
which can be considered elements of the input set of & computational
mathematics environment (CME).

AMBIGUITY FUNCTION COMPUTATION: ONE

: Padding Operator
{¥: Con jugate Operator
F,, . DFT Operator
RN : Index Reversal Operator
Sy Shift Operator
Oy : Hadamard Product Operator
A Padding Operator

A(x,y)

Figure 5

In the functional diagram depicted below (see Figure 6), a variant of
the algorithm described above for computing the ambiguity function
using the filter method is presented. This variant was obtained by
using algebraic methods. It was noticed, for instance, that the

character operator W x» the discrete Fourier operator £, and the
shift operator S, are related through the following identity

F,'W, = S,F,

Using properties of linear operators we can produce other variants,
For example, the discrete Fourier transform (DFT) operator can be
represented as a composition of other linear operators [11]. There
are many representations for the DFT operator as was described in
the section on computational mathematics structures.

AMBIGUITY FUNCTION COMPUTATION:TWO

| (),
!‘lAM,N A

b,
R,

=

: Conjugate Operator

F,, . DFT Operator

2

R, : Index Reversal Operator

Sy Shift Operator
Ow 1 Hadamard Product Operator
A : Padding Operator

Figure ¢

V. CONCLUSION

This has presented some results of algebraic methods used as a tool
in the analysis and design of time-frequency algorithms for signal
processing. The experience acquired by the authors in this project
points in the direction of developing a robust computational
mathematics environment as a means to enhance the algorithm
design an implementation process. The essential components of this
environment were described, and examples where given on how to
use this environment in the formulation of fast algorithms for the
computation of the discrete Fourier transform and the discrete finite
ambiguity function. In the case of the ambiguity function, it was
shown how to use simple properties of the algebra of linear
operators to obtain a variant of an algorithm from a given
mathematical formulation.

A typical researcher in the area of signal processing or applied
computational mathematics, for instance, is more interested in using
algorithms to solve the engineering and scientific problems rather
than becoming an skillful programmer or expert on a particular
machine. Tools must then be provided to this researcher so that he
can reduce the time spent in analyzing, designing, modifying, and
implementing algorithms to satisfy his or her particular needs. The
idea of rapid prototyping signal processing systems to address
specific problems in engineering and scientific applications is
becoming amenable to many researchers. The authors believe that a
computational mathematics environment is one of such tools.

A CME was defined above as a software based environment used as
a tool in the development of algorithms. The authors have gained
some experience in configuring some aspects of CME environments
in the numerical computation system MATLAB [7], the visual
programming environment LabVIEW [8], and the computer algebra
systems MAPLE [9] and MATHEMATICA [10]. None of these
systems, however, are adept to implement a CME in a fully
integrated manner. MATLAB, for instance, lacks the needed
symbolic manipulation capability for it is a numerical computation
system. LabVIEW provides visual programming capabilities but
also lacks in symbolic manipulation. The computer algebra systems
MAPLE and MATHEMATICA provide excellent algebraic
manipulation; but they still lack the abstraction capability needed for
certain type algebraic analysis as described in [1] and [2]. For
instance, analysis of the action of operators on vectors representing
elements of the input set of the CME environment has been a
problem area.

VI. REFERENCES

[11J. Seguel, J. Barety "Matrix Algebra and Hypercube Parallel Transmissions.”
Proc. 13th IMACS, Vol.2, pp 787-788, 1991.

[2] J. Johnson, R. Johnson, D. Rodrigucz, R. Tolimicri, A Mecthodology for
Designing, Modifying, and Implementing Fourier Transform Algorithms
Various Architectures.” Journal of Circuits, Sysicms and Signal Processing,
Birkhiuser, Vol. 9, No. 4, 1990.

(3} R. Tolimicri, S. Winograd, "Computing the Ambiguity Surfacc.” IEEE
ASSP Vol. 33, pp. 1239-1245, OcL. 198S.

{4] C. Van Loan, "Compulational Framcworks for the Fast Fouricr Transform.”
Fronticrs in Applicd Mathcmatics, SIAM, Philadelphia, 1992.

{5] W. Kozck, "Time-[requency Signal Processing Based on the Wigner-Weyl
Framework.” Signal Proccssing, Vol 29, pp. 77-92, Elscvicr, 1992,

[6] M. J. Shensa, "The Discrete Wavelet Transform: Wedding the A Trous and
Mallat Algorithms." IEEE Transactions on Signal Processing, Vol. 40, No. 10,
Oct. 1992,

[71 MATLAB for SUN Workstations, The Math Works, Inc., Nalick,
Massachusctts, 1992.

(8] LabVIEW's Uscr Manual, National Instruments Corporation, Austin, Texas,
1991.

[91 Bruce W. Char, ct al. "MAPLE V." Springer-Verlag 1992,
110} Stephen Wolfram, "MATHEMATICA.” Addison-Weslcy, 1991,
[11] D. Rodriguez, "Tensor Product Algebra as a Tool for VLS Implementation

of the Discrete Fouricr Transform.” IEEE ICASSP '91, Vol. 2, pp. 1025-1028,
Toronto, Canada, 1991.

199

