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Abstract—The Agarwal-Cooley fast cyclic convolution
algorithm and the Good-Thomas Prime Factor algorithm have
been traditionally independently derived. In this work we show
how the Prime Factor Algorithm triggers the Agarwal-Cooley
decomposition in the discrete time domain. A new polynomial
expression based on the tensor product formulation of the
Prime Factor Algorithm is used in conjunction with the cyclic
convolution theorem, to obtain a novel and insightful derivation
of the Agarwal-Cooley fast cyclic convolution algorithm.

I. INTRODUCTION

Traditionally, the Prime Factor FFT Algorithm and the
Agarwal-Cooley fast cyclic convolution algorithm, have
been, each, independently derived in the discrete frequency
domain and in the discrete time domain respectively [1]. In
this work we show how the Agarwal-Cooley fast cyclic
convolution algorithm can be directly derived from the
Prime Factor algorithm. We first establish a new polynomial
expression based on the tensor product formulation of the
Prime Factor algorithm. This decomposition, following a
methodology used in [2], [3], is then inserted into the
expression of the cyclic convolution theorem. Comparing
both sides, using the indeterminate coefficients method, and
noting that the polynomial multiplication is modular, we
obtain the Agarwal-Cooley fast cyclic convolution algorithm.
This approach not only gives a novel derivation for the
algorithm, but also a better understanding of the underlying
relations between both decompositions.

II. ALGORITHM FORMULATION

Given a discrete Fourier transform of size N, with N = R.S
and (R,S) = I (relatively primes), one form of the Good-
Thomas PFA is given by [1]

Fy = Q1(FR®FS)Q2 O]

where Q; and Q5 are permutation matrices and F, F and
Fg are Fourier matrices of size N by N, R by R and S by S
respectively.
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Let x/n], hfn] and y/n] be sequences of length N , where
y[n] is the cyclic convolution of x/n] and #/n]

N ki -k 2
y[n]—kgox[ 1hln - k] 2)

which can also be written in matrix form as follows
y=Hx

where H is the circulant matrix formed with the vector h.
The cyclic convolution theorem gives

Y[k} = Hlk]. X[k]

or in matrix form

Fyy=Fh Fyx 3
Substituting (1) into (3) we obtain the following:

[0} (Fr ® Fig )0, 1y = (10} (Fg ® F )0, 1h).(1Q; (F ® Fg )0, 1x)
1G]

Since Q; is a permutation matrix and the multiplication is
point wise Q; cancels

(FR ®F5)Q2y= ((FR ® FS)th)A((FR ® Fs)sz) (5)

The remaining tensor product expressions can be formulated
in a polynomial form as follows

R ki Rl ki Rl ki

iEO[WR ®Fs]yqi=(i§O[WR ®Fs]hqi)'(,-§0[WR ® Fylxy;)
©)

where

Vgi = Q2% hgi=Q2h  xgi =Q2%

are the permuted vectors y, /4 and x, partitioned in R
sections (i = 0,..,R-I) of length S. The W, | in turn, are
the columns of the size R by R, Fourier matrix, Fg.
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Expanding each factor in (6) gives

x0 K K(R-1)
g @ Fglyo +Wg @ Fgly,+.. 4+ " @ Fglyyp )

= (W @ Fy Vg + W @ Fy g+ +I R D @ Fylhyp )

(R ® Fg 0 il @ Fig )« At AWEED @ o LR

)

and since

ki

k(R
Wr =Wg

®

the indicated polynomial multiplication is modulo *RoJ.
After performing the multiplication and collecting similar
terms we obtain

kO k1
Wgp ®FSqu+WR ®FSyq1+ +WR

k0
=Wp ®(F.h
R (SqO

)®Fsy G(R-1)

F Foh Fox 4.
5790 TS g r-1) s "
+F h )+W1§1®(Fh

. F
S ql x

F Fh F
qu(R 1) S g0 " S q0 qul+
F h L+ EED

+ F x )+.
S q2 § g(R-

1 ®(Fh

g(R-1) Fex q0

+...+F h )

+F h F x F x
S g(R-2) S gl S q0 S qg(R~1)

®

Note that the following tensor product properties were used:

(A®B)(D) = A®BD (10)

(A®B)(C®D) = AC®BD (11

Comparing both sides in (9) using the indeterminate
coefficients method yields

Foy  =Fh Ak Fox
570 = Fshao ts% 0 s  ger-1) +FS 1 S g(R-1)
Foy . =F.h .
S =1 Fs¥ g0 Hish a0 Ts™n ™ +Fsh Fs¥aR-1)
h . :
Y-y I g r-1y Es g0 T g r-2y T
+F h

M0t r-1)
(12)

and after multiplying by F, S‘I at both sides, we obtain:
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=F

.F
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YWEn Fx )+F.
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+FNFR Fx
s s s qr -1
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. +
S q1 )

-1

=F F
Yq = Fg € 5740
+ 7

F h
S(

F x
S g2 S qg(R-1)

~1

- F N(F.h Fx Y.
Yar-1 " s Froy s )

+F)

F h
5 ¢

F x )
S q0 S g(R-1)

3)

Where each term is a cyclic convolution and thus can be
written in terms of appropriate circulant matrices such

-1
Hypxg = By (Fghy; Fexg) (14)
using (14) to rewrite (13) gives
- o o +H
%90 = H 0% g0 T - T -y
=H H ...+H
Yl qlxq0+ quq1+ v g2 g(R-1)
= H ...+H
YaRD =y r g0 THyr-2 1 T T g0 (R -1y
(15)
which writing in matrix form yields:
; 1T ar
Yq0 Ao Hyrep Hp  Hg | %
I, Hy — Hyg . Hg Hyp | Xy
Yar-2| | Har2) Har3 - Hoo Hyr) | *gr-2)
Yarn | [Pary Heray - Hao Hgo | Aqrn
(16)
Where 7, dgo, YgR-1)- ate theR sections of lengthSm the

permuted version of y, y,; = Qpy, and H q0-- (R— 1)
are circulant matrices of size S by .S which are the enmes of
the block circulant matrix, H , of size R by R. Thus, (16) can
now be written as

0y = HyOyx 17



or

y=0;" Hy0px (18)

which is the well known Agarwal-Cooley fast cyclic
convolution algorithm [1], where Hq is a block circulant
matrix such that,

Hy = Q2HO;! (19)

This methodology automatically accounts for the fact, that
the same permutation Q,, is used in both, the PFA and the
Agarwal-Cooley fast cyclic convolution algorithm.

III. PrREVIOUS WORK

When the permutations involved are stride permutations,
such in the case of the radix r decimation in time
decomposition, we obtain through a similar procedure [2],
[3]. a fast cyclic convolution algorithm based on block
pseudocirculant matrices. Additional details on the
traditional derivation of the PFA and the Argawal Cooley
fast cyclic convolution algorithm, including their tensor
product formulations, can be found in [1].

IV. CONCLUSIONS

Using a novel methodology the Agarwal-Cooley fast cyclic
convolution algorithm has been directly derived from the
Prime Factor factorization in the discrete frequency domain.
Since the traditional methodology derives both algorithms
independently and within respective domains, the present
approach gives a better understanding of the underlying
relations between both decompositions. A useful polynomial
expression for certain tensor product formulations involving
the Fourier matrix, has also been proposed and illustrated.
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