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Abstract — The cyclic convolution theorem is used to formally
link certain factorizations of the DFT matrix to factorizations
of the circulant matrices. As an example, the DFT matrix
decomposition leading to the decimation in time fast Fourier
transform is mathematically linked to a circulant matrix
decomposition, which in turn leads to a fast cyclic convelution
algorithm. Most importantly, permutations of the DFT matrix
are shown to be related to permutations of the circulant
matrices. It is therefore illustrated how certain factorizations,
in one domain, could lead to fast algorithms in both domains,
thus, providing further insight and needed unification.

1. INTRODUCTION

Some permutations of the DFT matrix are known to lead
to convenient factorizations suitable to fast transform
algorithms. In the past, using a methodology by analogy to
the well known decimation in time and decimation in
frequency techniques, several decompositions of the circulant
matrices, leading to fast cyclic convolution algorithms, were
successfully obtained [1], [2]. In the present work no
analogy is used, instead, a formal mathematical derivation is
offered, thus, establishing a general relation between certain
permutations of the DFT matrix and permutations of the
circulant matrices. Using this novel methodology a new
algorithm is constructed, showing that decompositions of the
DFT matrix (decimation in time FFT in this case), could
trigger decompositions of the circulant matrices suitable to
the formulation of fast cyclic convolution algorithms. The
obtained algorithm has a regular structure with a high
degree of parallelism making it suitable for VLSI or
multiprocessor ~ implementation. It  uses 2.3M-1
multiplications and relates to the Walsh transform, therefore
belonging to a class of algorithms developed in [1], [2], and
shown in [3], to be special cases of multidimensional
formulations. For a discussion of these algorithm's
efficiency. structure and relation to the Walsh transform, the
reader is referred to [1], [2], [3]. Reference [4] offers a
detailed discussion of a linear convolution algorithm with a
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similar structure. Reference [5] further discuss the
microprocessor implementation of algorithms with this kind
of structure.

1I. ALGORITHM FORMULATION

The sequences g and d are of length N = M Mez, its
cyclic convolution s is:

s=g#\d Q)
The convolution thecorem states that:
(Fy)s = [(Fy)e] - [(Fy)d] 2)

where Fy is the DFT matrix. Applying to both sides of the
expression the even-odd decomposition of the DFT matrix
that leads to the decimation in time FFT, we obtain the

following:
B k7| Nz _
e g ][22 -

g [ SRy 1R B e 8]

k =0...N-1 3)

where S, g and sy, dy are the even and odds entries of
vectors s and d. Note that the usual minus sign appears when
N is taken from o to N/2-1. Alternatively, the notation using
summations could be used. The term at the right side is a
point wise multiplication, therefore, distributive and
associative propertics may be applied. Applying the
distributive property to the right hand side and then
collecting similar terms with respect to WkN yields:
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noting that;
W7 = wr s k=0, N-1, )
it follows:
N2 k1| s
[F ][se]+[wN].[FN 2}[50] _ ©
N/2 N/2

FIEESRA ORES A S FA R
(S S U R SR 3]

Q)
Now, letting N go from 0 to N/2-1:
k
[wk ] _| "Nz
N/2 [0, N-1 me
T k=0,.,N/2-1
k
k Y
L I e ®
k=0,,N-1 | Lwyg
k=0,.,N/2-1

and noting that (6) is identical to (7), we equate coefficients
of similar terms with respect to WII\(I, obtaining;

(Fyyp lsel = [Fyn Hge ] Fyyp lde]

+W Yoy B o ) gy Tdo ]

1©))
[Fayya) 801 = [Eygp 2o HEyy p Mde]
+ [FN/2][ge]'[FN/2][do]
after taking the inverse of Fpy/, at both sides, it follows:
[se] = [Faa ]~ o lge HEyy lide ]
+Fn] Waiza Tigga llgo (P o | 10)

(501= [Fago I [y g 1 Epgya llde ]

+ Ry ) Rp e [Fagja Jldo ]

The point wise multiplication is avoided writing [Fy/2l(gel
and [Fy/7][g,] in diagonal form, we call them Ge and Go:

(5] = [P/ ] [Ge lFxgy lde
N ]—1W1}\(1/2 1Go lEy/p lldo ]
[51= [y 1 [Go Mgy Nide ]

+[Fnpl [GellFyp ldo]

an

in matrix form the previous expression becomes:

So] | (Fyyg 1 180 IlFyy5 ]

[seHlle‘l[Geltm] [FN/ZI“W%G/z-tGo][FN/Z1}[%]

[yl [GellFy/a! [Ldo
(12)

where we notice that all entries are itself matrices. For the
second entry of the first row the following identity applies:

(13)

-1 -1k
SnralBnsl (G N 1= [Fyja ]~ Wiya [Go N 2 ]

where Syy/p, will be shown to be the Cyclic Shift Operator,

- _ -1
S = xral Wa50- 10, By R 1 16 B 1] (14)

-1k I
Sn/g = Bl Wnyg [Go My EN2] [Go] [Fyjp] (15)

Sniz =Nz 1_1W§/2-lGo][Go ]“I[FN/2] (16)
Snia = (Bl W [ ] a7
Sniz = [FN/2]_1[diagW1l\(I/2][FN/2] (18)
(P2 Bnra Nz - [diagW§/21 (19)

where the operator, whose associated matrix is diagonalized
as the roots of unity by the DFT matrix is known to be the
Cyclic Shift Operator; Syj/;:

000 ..00°1
100 ..000
010. 000
001 ..000

SN2 = 20
00..10
0 010
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Thus, the matrix expression of our algorithm becomes:

note that all entries are N/2 by N/2 circulant matrices, the
second entry of the first row, in particular, is a circulant
matrix multiplied by the shift operator. When the matrix
multiplication is actually carried out, we have four N/2-
points cyclic convolutions. Each of those N/2-points cyclic
convolutions can in turn be formulated through the same
algorithm by wusing N/4-points cyclic convolutions,
continuing with this procedure we will finally reach four-
points convolutions. Applying a well known matrix
factorization, the number of N/2-points cyclic convolutions
can be reduced to three, thus reducing the number of
required multiplications. From (21) it follows:

[Fnr2 fl[Ge][FN/z lde + S x5 [Fyyz ] 16, 1N/, ]d"}
[, MIFyplde TPy ]—I[Gc][FN/Q Jdo

M|

The factorization that reduces the number of sections from
four to three it is based upon rewriting the second entry of
(23) as follows:

-1 _ -1 ,

(Fnal [GellEnsal SnpplFne] (66 HEy/g)
-1 -

(Fnpl 16 Iy ] RNY I[Ge IRNZY

Se de
d

s 0

]

@n

o]

Se

So [Fn/al

[Fap | 16 lFy lde + [Fyjp | G, IlFyldo =

= ~[Fyjpl [GellFyyp lde

-1 -1
T([Fypl [GellFyp1+[Fypl [GollFys, D(de +do)

-1

Fa ] 16 1[Fyyp Ido
(23)
substituting (23) in (22) and writing as a matrix

multiplication gives:

-1
(N2l [GellFyyp 1de
| W7 10 By 2 1+ [y 1 16 Wy D(de + do)
-1
[FN/Z] [Go][FN/Z]dO

s 0

]

SN2
“Inn

Inn
~Inn

e

So INi2

(24)
after diagonalization, the circulant matrix factorization
leading to a fast cyclic convolution algorithm is finally
obtained:

s Ing 0 Snn

s “Ing Ina ~Ing

'
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= -1
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0

0
0

0 [Fgal [,y

1 Ina

0
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(25)
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Fig. 1. Block diagram for the fast cyclic convolution algorithm.

Fig. 2. Signal flow graph for N=4
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N=4 sections

Fig. 3. Signal flow graph for N =8

III. PERMUTATIONS OF THE DFT MATRIX AND THEIR RELATION
TO PERMUTATIONS OF THE CIRCULANT MATRICES

Some permutations of the DFT matrix lead to convenient
factorizations suitable to fast algorithms formulations. In the
past, by analogy, some of those decompositions were
successfully tried on the circulant matrices, [1], [2]. This
gives a motivation for formally establishing a relation
between permutations of the DFT matrix, and permutations
of the circulant matrices.

Given a permutation of the DFT matrix. we will be
looking for a corresponding permutation of the circulant
matrices and the convolved signals, such that:

a) The permuted circulant matrix is diagonalized by the
permuted DFT matrix.

b) An expression with the form of the cyclic convolution
theorem, still holds.

¢) Given an appropriate pre permuted version of the input
signal, and post permuting the result, the new permuted
version of the circulant matrix is appropriate to compute the
cyclic convolution of the original signals.

Let h and d, be the coordinate vector representations of the N
-point sequences.
Let Hy;. be the circulant matrix and therefore; s =Hyd

Let p. be any permutation matrix.

Let (Fy ) = Fnew» be a permuted version of the DFT

matrix.

Let pld= dyews be a permuted version of the signal d

Let Hyey» be the corresponding, permuted version of the

circulant matrix.

The cyclic convolution theorem states:
(Fp)s = (Bph - (Fpd (26)

and multiplying for pp~!, in order to introduce Frew Without

altering the equality, gives:

@7
(28

(Fppppls = (Fyppp Th . (Fyppld
FppLs) = Fppeth) . Fyppeld)

since (Fy)p=Fyew» P ld=dNey, Ph=hye, and

p'ls =SNew- 1t follows:
Frew(SNew) = };New(hNew) - FNew(dNew) (29)
(5New) = FNew)” FNew(New) - FNew(dNew)] (39)
(sNew) = HNew(dNew) (31)

Therefore to completely satisfy b) we still have to determine
Hyjew in terms of Hy:

ls) = (Fppr! [Epe . Eopeld] (32)
(pls)=pl(Fp) ! [(Fpeh) - Eppp(e~ )] 33)
o ls) =p iy ! Enb) - Enpeld) (34)

and in order to eliminate the point wise multiplication, we
write Fyh = H in diagonal form, Dy,

ol =p I (Fry 1Dy Erpper!d) (35)
It is well known that
Hy = Py 1Dy (36)
and substituting (36) in (35) gives:
@ls)=p Hyp o) 37
finally Hyjey, can now be defined as:
Hyjew = plHY p (38)

where substituting (38) in (37) gives (31). Therefore
condition b) is completely satisfied.

Substituting (36) in (38) gives:

Fiew = P~ (PN 1Dy (Fp)p (39)
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which can be written in terms of Fye,, as follows:
Hew = (FN)P)" Dyt (PP = (Fiven)™ Dt (Fiyew) (40)

or

Dy = (FNew) HNew (FNew)-1 (41
Therefore condition a), it is also completely satisfied.
Considering that (Fy )p = Few and Hyew = p'l Hy p
the equivalence between (36) and (41) is clearly seen:

Dy = (FNp (07! Hyg p) ((Fypp)™!
=Fpp ! Hypp'! (FN>'1
Dyy = (Fy) Hy (P!

Now, substituting (38) in (37) we verify that condition c) it is
also satisfied:

(42)

43)

<p'1s> Hylew <p'1d>
= p Hyew (071d)

44
45)

Therefore, factorization (21) can also be obtained applying to
a N by N circulant matrix the same permutation p, as
indicated in (38), which when applied to the DFT matrix
leads to the decimation in time FFT.

Now, for completeness, it will be shown that the permuted
version of the circulant matrices, can be written as a linear
combination of the powers of a permuted version of the
cyclic shift operator. It is well known that a circulant matrix
can be written in terms of the cyclic shift operator as follows

[6]:

N-l
Hy = 2 h, Sy

(46)

Substituting (46) in (38), and using linearity of the
permutation operator, gives:

-1 -1 N~ -1 n
HNew= P Hyp=p° (nzoh SN)P= 2 hap (SX)p
“47
N-1 N-1
_ -1, n
HNew = X ha(p Sxp)' = I hy(Snew)  (49)

where Sy, Which is defined as:

SNew = p! S5np

is not necessarily a shift operator anymore, as well as Hyjey
1s not necessarily circulant anymore. Note that (48) follows
from (47), since:

(-l sy pt=

=0 sy P Sy P 7! Sy pXPT! Sy p)
=Sy Sy Sy Sy Sy p)
= plstp 49)
In addition, note that the permuted version of the cyclic shift
operator matrix is diagonalized as the roots of unity by the
permuted version of the DFT matrix. This can be seen as
follows:

(Frew) SNew FNew) L = (FN p )(p'1 Sy PXEN P 1 (50
=Fnyp pl 1? pp FN
= Fy Sy Fn ! = diag wky 61

where (51) is known to diagonalize as the roots of unity.

IV. ConcLUSIONS

The DFT matrix factorization leading to the decimation in
time FFT, has been mathematically linked to a factorization
of the circulant matrices. This factorization, in turn, has
been shown to lead to a fast cyclic convolution algorithm.
Most importantly, permutations of the DFT matrix have been
related to permutations of the circulant matrices. The
previous results suggest that factorizations in the discrete
frequency domain, have associated factorizations in the
discrete time domain, with the cyclic convolution theorem
being one link among such decompositions. Some of these
factorizations, as it was shown, could lead to fast algorithms
in both domains, thus, providing further unification and the
possibility of obtaining additional algorithms from a single
original decomposition.
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