D11.2

A NEW FFT ALGORITHM AND ITS IMPLEMENTATION ON THE DSP96002

Domingo Rodriguez

Electrical and Computer Engineering Department
University of Puerto Rico, Mayagiiez Campus
Mayagiiez, PR 00709-5000

ABSTRACT

This work presents a new algorithm for com-
puting the discrete Fourier transform (DFT). This
fast Fourier transform (FFT) algorithm is obtained
through decomposition of the Fourier matrix repre-
senting the DFT operator into a product of sparse
matrices not all square matrices. The algorithm is
based on additive properties of the input and output
indexing sets of the Fourier transformation. Mathe-
matical formulations of the algorithm are presented
using tensor product algebra. Properties of this al-
gebra are used to assist in the adaptation of the algo-
rithm to the DSP96002 microprocessor architecture.
This results in efficient implementations which take
into account the inherent software and hardware fea-
_ tures of this microprocessor.

1. Introduction

Computing the DFT y of an n-point complex sequence
z is-equivalent to the computation of the matrix product

y="Fo-z (1)
where F,, is the Fourier matrix of order n defined by

Fo = [w5]ocscn , wao=e 9 i=yC1 (2)

0<t<n

Straightforward computation (direct method) of Eq. (1)
requires n? multiplications and n(n — 1) additions. When n
is a composite number of the form n = r?-m, r and m any
positive integers greater than one, the Fourier matrix F, may
be factored into a product of sparse matrices, not all square,
which reduces the number of arithmetic computations (addi-
tions and multiplications) during a DFT calculation. We set
out to describe this factorization technique by using proper-
ties of tensor product algebra. We first present some defi-
nitions. Then, we proceed to describe the algorithm for the
specific case of n = 22 - m. This is done for the purpose of
clarity; but, then the algorithm is generalized.

Define the tensor product A ® B of the matrices A and
BasA®B= [a(;,j) . B]; thus,

ap0B ... a(0,.-1)B
a(1,0 B e a1, —I)B
AeB = | 07 g (3)
a(r—1,0B a(r-1,-1)B

where a;) is the entry in the s-th row and j-th column
of the matrix .
A = [as]osicr @)
A®B = C = [a4,0)] 8 [br)] = [eem] (B)

where
Ctu) = Clpirias) = G(p.a) " Dire) (6)

The double indexation of the entries of the C matrix is en- -
acted lexicographically.
Define the m X 1 vector U,, as

Um-1

If A, is a square matrix of order n, then

Ur® A, = [A,. Ap An ... A,.] (8)

If A,, is symmetric, then
(UI®A)T = Un® AL = Un® A, = |4n]| (9)

Define I, as the identity matrix of order n. Thus, we
have

(I, ® F,) = diag[F, F, ... F] (10

- 2189 -

CH2977-7/91/0000-2189 $1.00 © 1991 IEEE

A stride by s permutation matrix P,, of order n = r-g
is-defined by

Pood = [doyds,da,.- 41, dogrse oo nyeseor] (1)

d = ﬁdﬂx dy,dyy...ndy_y,dy, Aoty enn ,,d'(:« _1y..§;¢&,_1,fr (12)

When n = 2s, the permutation matrix P, , is called the
perfect-shuffle matrix. If s = 2, P, 3 is called the even-odd
permutation matrix.

Using the matrix equality
Pl,=Pl=P,, n=r-s (13)
the following result is established:
(Pau-d)T =dT - P7Y=dT P, = ldo,duy .. dns] (14}

When the Fourier matrix F,, of order n = r -, is multiplied
on the right. by the permutation matrix P, ,, the product is
defined as the matrix Cj ,»

Chrw = PoPy, = F.PL (15)
The diagonal matrix D, ., of order r is defined by

D’:n‘kr' = diag El'x'uur,wzu ltli, o "~y‘~"”:"'zw‘\]‘L y Wy, = e il
(16)
The twiddle factor (phase factor) matrix T, ¢y, of order n,
is.defined as the direct sum of s diagonal matrices Dy pa of

order r = 2:
s—1 i]
Totr) = 3 &b, ., 7y
=0
If n = r.g; then
a—-1 . e—1 B
Tn,}c({n)*« = Tm‘, = E @D’,Jh" Lo = E@Dihr (18)
7=0 =0

2. Description of the n = 2% .m Case
Qbservation : H n.=4m, then
Fy = (U3n®F1® Ly} (T g (w) {F1m @U@ F3) P am. (19)

Direct matrix multiplication shows that the matrix
Cp am can be factorized into a product of an n X mn ma-
trix G times an mn X n matrix H:

Cn am = G‘n:x,mn - H, ;nr\xu, (20)

Here, we set the matrix H to be
Honxn = (I1m ® Up @ Fy) (21}

and
G = { Ihn Dﬁ.lmr e Dz:;v:l ; (22)‘
VT | B 0™Dpgm ... w*mDIGY
We then proceed to extract a special twiddle factor Toin,2min)
from: G xcmn:

G — f‘;fzm» }é,wt« Ilnv e Iﬂm _
| 0™ lim Bm . @D |

(23)

pim—1
. ny2m:
Rewriting the above matrices in tensor products form, we
obtain:
G;nv)’(;mn = (Ug ® F. 2 ® Ilm),(Tﬁne,meysl),’ 624)
Since,
F, = ’;a',me ;s.,,Zm = G‘nx’nm-Hmnan w,2m y (,25)

we get the desired result

(26)
3. Variants of the Algorithm

Variants of the 2% - m algorithm may be formulated by
using some- properties of tensor products algebra. For in-
stance, we can expressed Eg.(19) in a form which: clearly
identifies the number additions required for performing the
overall computation. We: present a couple of examples. The
first example is a decimation in time (DIT) tensor product
formulation. The second example is a decimation in. fre-
quency (DIF) formulation. We proceed to describe the basic
operations performed on the matrix Hp,pxn and the matrix

product G‘"*MﬂT;’f,z‘m(u) to arrive at the desired result.

Hmnxn = cflm ® Um ® F%)
L ® (U Uy @ I - Fy)
B ® (U ® L)} - (U @ Fy) (27)
< B Iy & (U @ L) - Fy
(L. ® U @ o }(J2m. ® Fy)
(U,£ & Fz ® Lhu)‘
(UF -UL@F-B)® hhm
(TR U@ L)® I, (28)
Fy- (UL ®)@ ym - I3
(F3® LmJ(UL © [® Iy}

I

it

H

It

G’&anT'—rr

mn, 2m{n)

]

it

]

il

I

Thus,
Fa= Fim = (F1 ® lim){(U% ®) ® Bym)-

Tﬁu, 2m(nj€[2m & (Um @ II)([lu & F leim:.ih (;29)
This expression of the Fyn matrix identifies the number of
required additions to be 2(2 -2m) = 8m. From the twiddle
factor matrix we can also identify the number of required
multiplications to be 4m(m — 1}.

By taking the matrix transpose of Fy,,, we obtain deci-
mation in frequency algorithms: From Eg.(19},

— 2190 -

Fim = Pim,3(lzm ® U ® F2) T 2m(n)(Um ® F2 @ Im) (30)
From (30),
Fim = Pima(Izm ® F2)(I2m ® (UR, ® I))-

Tmn.Zm(n)((Um ® I2) ® I2m)(F2 ® Iﬂm) (31)

4. General r? - m Algorithm

Here we present a generalization of the 22 - m algorithm
for the case when n = r? - m and r is any integer. This will
result in a two-factor formulation (n = r-s) of the algorithm.
We can use this formulation in a recursive manner to obtain
a general formulation of the algorithm for the case when n
is a composite of the form n = a2 - a2’ ...a} - a} - ao.
For the two-factor formulation we use a “divide and conquer”
approach where the input and output indexing sets are rep-
resented as two dimensional arrays. We use this indexation
scheme in Eq.(1) and properties of tensor product algebra to
obtain the desired representation.

We start by considering the length of the input sequence
z to be a composite integer of the form n = r - 5. Using the
identities £ = £; + 8€y and k = k; + sko, the index product
k¢ given in Eg.(1) is expanded into

kt = (k1+ako) (lr}—sto) = k151+skllo+8ko¢1+32kolo (32)

where 0 < ky,€; < s and 0 < ko, &g < r. Substituting
this product expansion into Eq.(1) results in the following
expression

-1 r—1

y(ky, ko) = Z Z w(knlx+l’¢|¢o+lbo¢l+l7k0’olz(thlo)’

£,=0£,=0
(33)
which we can rewrite as

y(k1, ko) = E Whl'{ kb [Z wh oz, (£, tl)]} (34)

4;=0

Throughout, we think of the sequences z and y as one-
dimensional vectors with a two-dimensional indexing scheme.
This allows us to relate the sequences 1 (¢, &) and z(fo, &)
through the identity

Pn,l:(tlv EO) = :1(£0> tl)’ 0 < to <r 0< tl <s (35)

We let s = r - m. After some manipulation, we obtain the
following expression for the inner bracket of Eq.(34)

yi(k1, &) = (Um @ F)z3(lo,81) = (Um ® Ir)Frzl(CO)tlge)

yi(k1, &) = (1. @ Um ® I.)(L, ® F,)z1(lo, &1) (37)

The twiddle or phase-factor w¥1% can be expressed in matrix
form in the following manner

-1

TJ’,J(n] = E @ [D:n,m ® Dn,']j (38)

=0

Thus, we can write

ya(k1, &) = Toa y(nywi(ks, &) (39)

Finally, the expression

y(ky, ko) = Ew“"“ (kr, &1) (40)
£4,=0

is formulated in tensor product notation in the following way
y(ks, ko) = (F, @ L)(Un ® I,) ® L)ya(k1, &) (41)

Combining, we obtain the general expression of the r? - m
algorithm

y(k1, ko) = (F. ® L)(UL ® I,) ® 1,)-

To2,0(n)((1s ® Um) ® I,)(1, ® F;)Pnex(ky, ko) (42)

5. DSP Microprocessor Implementation

Analysis of the implementation process guided us to de-
vote a close attention to the manner in which twiddle or
phase-factor operations are performed. For the special case
of the 22 - m algorithm, the major bulk of the multiplication
operations reside in the computation of the twiddle factors.
This can be evidenced in Eq.(19) and Eg.(29) above. For
this reason special macros are developed for the generation
of lookup tables. Properties of tensor or Kronecker product
are used to go from Eg.(19) to Eq.(29). The latter equation
reveals the hidden butterfly operations. These operations are -
performed using butterfly kernels built using the FADDSUB
instruction as the basic building block.

We looked very closely at implementation procedures
for the expressions ((UX ®) ® Iam) and (Iim ® (Um ®
I)). They, in essence, control the data flow of the algorithm.
The stride permutation matrix Pym 3m is simply the perfect-
shuffle permutation. This operation was implemented using
special properties of the Address Generation Unit (AGU).

We then proceeded to identify efficient implementation
procedures for expressions of the form (I, ® F,) and (F, ®
I,) which we call Fourier factors. These factors play a very
important role during the implementation of linear, shift-
invariant, finite impulse response (LSI-FIR) filters as can be
seen in the following mathematical description of these filters
using tensor product algebra.

Suppose that the sequence z is the input to the LSI-FIR
system T},. The output sequence y is given by

= Tu(z) = hOnz (43)

where O, denotes cyclic convolution.

Applying (DFT) operator (represented by the Fourier
matrix F,) to the above expression results in

Fn(y) = Fn(Th(z)) = Fn(h) (O] Fu(:) (44)

- 2191 -

This is the same as
(FaoTi)(z) = (Fa(h}© Fa)(z) (45)
here, o denotes composition of operators, and © represents a
point-wise multiplication of two sequences. Since the choice
of z was arbitrary, we obtain the following important result

Emphasizing the diagonalization of Ty by the action of the
DFT operator gives us the following expression

F.IF* = F (b oI, (47)

The expression Fn(h) @ I is denoted by Dp(uy = Dy, where
a matrix representation of D is given by

b B = (R 00) 8)

hn- 1

Here, j€ Z/n = {0,1,2,...,n — I} Thus, we can write
Ty = F;'D-F, (9)

This last expression serves as the basis for the formulations
of LSI-FIR systems using FFT algorithms. This is accom-
plished by computing, both, the discrete Fourier transform
and its inverse using fast algorithms. For example Suppose
that & is: the impulse response of the LSI-FIR system T%. If
n is & composite of the form n = r -8, (s = r -m] we can
factor the matrix H = F;* D+ F,, representing the system T}
in a form which uses the r*-m decimation in frequency (DIF)
al»‘gmiﬁtﬁm for the computation of the Fourier transform; and
the r* - m decimation in time (DIT} algorithm for the com-
putation of its inverse. This will allow as to precompute
DA P oDy Pry

&n—l

We can partition the matrix H so that we obtain a block
circulant matrix with circulant blocks. This partition is al-
ways circulant. The block size can be chosen to be either
r ot 8. Thus writing a a partition of H into submatrices
Hy, @< j < r of block size s results in the following

> SieH; (1)

JEZIr

The submatrices, as we have stated above, are circulant;
hence, they may represent lower order LSI-FIR systems.

Diagonalizing the shift operator S, and the matrices H;
simultaneously produces the: following known result

H = Y [F'DFI@FID(F) (52)
€2
where D«« represents the diagonalized shift operator S, § is.

the unit sample sequence of length r, and D;(j) is a diagonal
matrix of order s corresponding to the dlagonahzanon of the
circulants H;. Using properties of tensor product algebra,
we obtain

H= Zer ® F, YDy

€2

SO D(KF-@F) (53)

Also.

H=(F.@F)'[3 (Dg @ Dy()
FEZYr

2 @ F ,Ii éﬁ‘)

Using, again, tensor product properties, we write

B =843 (D5, © 5300 B (55)
where
Byy=(F.® L)L ®F)=(L®F)F.@L) (56)
6. Conclusion

An algorithm has been presented for the computation of
the discrete Fourier transform. Tensor product algebra was:
used as a tool to aid in the implementation of this algorithm
on the DSP96002 microprocessor. We used properties of this
algebra to match this algorithm to the architecture of this
microprocessor, exploiting its: inherent. software and: hard-
ware features. There exists a clear demarcation between the
various processing stages of this algorithm, i.e.. pre-addﬂ;:on,
data routing, multxphcatmn ete. This feature makes it)
able for expressing the algorithm in signal flow graph (SFG)
form. This, in turn, helps in identifying feasible implemen-
tations for real time processing.

Acknowledgement:

We. acknowledge the assistance provided by the under-
graduate students Carlos Cabrera and Jaime Pl4 during the
algorithm implementation process.

REFERENCES:

[1} D. Rodriguez, “Tensor Products Formulations of Ad-
ditive Past Fourier Transform Algorithms and Their Imple-
mentations,” Ph.D. Thesis, City University of New York,
Feb. 1988.

[2} J. Johnson, R.W. Johnson, D. Rodriguez, R. Tolim-
ieri, “A Methodology for Designing, Modifiying, and Imple-
menting Fourfer Transform. Algorithms on Various: Architec-
tures,” accepted for publication in the Journal of Circuits,
Systems, and' Signal Processing, Birkhauser.

- 2192 -

