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A Class of Fast Cyclic Convolution
Algorithms Based on Block Pseudocirculants

Marvi Teixeira and Domingo Rodriguez

Abstract— Pseudocirculant matrices have been studied in the
past in the context of FIR filtering, block filtering, polyphase
networks and others. For completeness, their relation to cyclic
convolution, stride permutations, circulant matrices, and to cer-
tain permutations of the Fourier matrix is explicitly established in
this work. Within this process, a class of highly regular fast cyclic
convolution algorithms, based on block psendocirculant matrices,
is obtained.

I. INTRODUCTION

HE availability of multiprocessor architectures makes
Tdesirable the development of algorithms that break a
large block cyclic convolution into smaller cyclic convolutions
within an appropriate multiprocessor structure. Not only is
the computational complexity to be minimized, but most
importantly, the algorithm structure is sought to match the
underlying target architecture. In the past, this problem has
been addressed, among others, by Agarwal and Burrus [1]
and Pitassi [2]. More recently, certain multirate structures
related to pseudocirculant matrices have been studied in the
context of FIR filtering, block filtering, and others [3], [4].
For completeness, we are explicitly establishing the relation
of those pseudocirculant matrices to cyclic convolution, stride
permutations, circulant matrices, and to certain permutations
of the Fourier matrix. Within this process, a highly regular
cyclic convolution algorithm, which is suitable for VLSI and
parallel implementation, is obtained.

II. DESCRIPTION OF THE ALGORITHM

We start by considering the cyclic convolution of z[n] and
h[n], both of length N sequences, which is given by

k=N-1
yin) = D elklhn — k). )
k=0
The cyclic convolution theorem allows us to write
Y[k] = X[k|H k] @

where
Y[k] = DFT{y[n]},
H[k] = DFT{h[n]}.

Manuscript received January 20, 1995; revised February 22, 1995. The
associate editor coordinating the review of this paper and approving it for
publication was Prof. A. E. Yagle.

M. Teixeira is with the Electrical Engineering Department, Polytechnic
University of Puerto Rico, San Juan, PR 00919 USA.

D. Rodriguez is with the Electrical Engineering Department, University of
Puerto Rico, Mayagiiez, PR 00681-5000 USA.

IEEE Log Number 9411211.

X[k] = DFT{z[n]} and

Provided that » is a factor of N, we can perform a radix r
decimation in time on each of the factors in (2), obtaining
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This can also be written in matrix form [5], in which case, we
would have a multiplication of matrix polynomials (in W).
After performing the indicated polynomial multiplication, we
can compare both sides through the indeterminate coefficients
method. Writing the resulting equations in matrix form [5]
gives (4), which appears at the bottom of the next page, which
is the product of a block pseudocirculant matrix H,, times
a vector [X;]. The vectors entries X; and Y; are decimated
sections (of length N/r) of the original sequences z[n] and
y[n]. The block pseudocirculant matrix of size 7 by = has
as its entries the circulant matrices H; and, over the main
diagonal, the circulant matrices multiplied by cyclic shift
operators Sx/.H;. All entries are of size N/r x N/r. The
cyclic shift operator Sy, can be written in matrix form as

00 -01
1 0 - 00
010 -00

(=]

SN/T = &)

000 - 00
000 -10
The whole process involves decimating the sequences by r
and using the subsequences to perform shorter cyclic convo-
lutions that are followed, when appropriate, by cyclic shifts
and, finally, a reconstruction stage. A direct realization of the -
algorithm, which can be easily achieved looking at its matrix
formulation, would take r2 sections or subconvolutions. This
type of direct realization is far from optimal (in terms of
number of sections) and should be used only if it matches
the underlying multiprocessor architecture. A reduction in
the number of sections, however, can be achieved through a

factorization of the pseudocirculant matrices. The cases 7 = 2
and r = 3 are illustrated next.
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Ho + HY
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Fig. 1. N point cyclic convolution; decimation by 2.

For r = 2, we have
Yo| _ [Ho Swy2Hi
Y| |H; Hy

I3

)

which can be decomposed using a technique illustrated in [5]

©

as
[Yo] _ [ Ine 0 Snpe ]
Y —Ins2 Injgz —Ing2 _
Hy 0 0 Ing2 0 Xo
0 Hoy+Hy 0 Injg2 Ing2 [X ]
0 0 H, 0 Ing !

Q)

The corresponding block diagram realization can be found in

Fig. 1.
For » = 3, we have
Yo Ho SnysHy SnysHa| [Xo
Yi|=|Hi Hoe SxpHx||Xa ®)
Y H, H, Hy X,

Similarly, we have (9), which appears at the top of the next
page. The same technique can be used for a higher radix. The
block diagram realization can be found in Fig. 2.

This factorization yields r(r — 1) + 1 sections, which is
an improvement with respect to the direct realization and still
within a highly regular structure. The cyclic subconvolutions
in each section can be decimated, at the previous or different
rate, depending on their length and our overall implementation
strategy. A further reduction in the number of sections can be
achieved by looking at (3) as a polynomial multiplication and
by using the Chinese remainder theorem, as it is done in [6].
This is at the expense of increasing the structural complexity.
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Fig. 2. N point cyclic convolution; decimation by 3.

III. BLOCK PSEUDOCIRCULANT MATRICES AND
THEIR RELATION TO STRIDE PERMUTATIONS,
CIRCULANT MATRICES, AND THE FOURIER MATRIX

The matrix formulation of (3) can be. achieved using the
Fourier matrix Fy, the stride permutation matrices, Py ., and
the sequences z[n], y[n] written in vector form [7]:

FNP;}Pn,y = (FNPy.Py,z) - (FNPy.Py.h) (10)

where Py .,z and Py .,y are the input and output vectors
[Xi], [Y4] found in (4) that are decimated by r, and FNPN
is a permutation of the Fourier matnx From (10), it follows
that [5]

Pnyy = Py HNPR. Py 2. an
The previous expression, however, is identical to (4), allowing
us to write

H, = Py HnPy. (12

which effectively relates the block pseudocirculant matri-
ces H, obtained within a decimation scheme in the con-
text of cyclic convolution to the circulant matrices Hy and
to the stride permutation matrices Py .. It can be further

shown that these pseudocirculants matrices are diagonalized
by FnPy. [5]

IV. RELATION TO PREVIOUS WORK

The case r = 2 was studied in [5] for sequences of length
a power of two and shown to belong to a class of algorithms
related to the Walsh transform. Neither a generalization nor
a relation to the pseudocirculant matrices were provided at
that time. Letting W5* — 2", S — 27!, we establish
a correspondence that partially relates this work with those
found in [3], [4], [6], and others, which, in the context of
FIR filtering, have also exposed these underlying multirate
structures based on block pseudocirculants.
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0 0 0 0 0 0 H,
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V. CONCLUSIONS

Block pseudocirculant matrices were studied in the con-
text of cyclic convolution, including their relation to stride
permutations of the Fourier and circulant matrices. Within
this process, a highly regular class of fast algorithms that
are suitable to handle large size cyclic convolutions through
multiprocessor or VLSI implementation, was derived.
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