Offsets & Bias

INEL 5207 - Spring 2009
Operational Amplifier Limitations

Realistic Opamp Model: Finite gain, input and output resistance

Maximum Ratings
• Power supply voltages, power dissipation

• Common and differential-mode voltage range

• Short-circuit or overload output current protection

• First stage output is nonlinear for large differential input.
 \[i_{o1} = I_A \tanh \frac{v_p - v_n}{2V_T} \]

• Output voltage swing can reach saturation.
uA741 Simplified Schematic Diagram
Bias Current

- I_B: Bias current. Average current flowing into grounded inputs:

$$I_B = \frac{I_p + I_n}{2}$$

- I_{OS}: Offset current. Absolute value of the difference between input currents:

$$I_{OS} = |I_p - I_n|$$

- I_B flows into opamps with NPN-BJTs in the first stage, out for PNPs.
• Offset current sign can not be predicted and changes from device to device.

• The offset current is typically an order of magnitude smaller than the bias current.

• Error due to bias currents:
Assume input terminals are virtually connected.

\[v_n = v_p = -I_p R_x \]
and

\[I_{R1} = -\frac{R_x}{R_1} I_p \]

Output error is then given by

\[E_O = -I_p R_x + \left(I_n - \frac{R_x}{R_1} I_p \right) R_2 \]

Example: neglect \(I_{OS} \) and assume \(I_p = I_n = 80nA \), for \(R_x = 0 \), \(R_1 = 22k\Omega \), and \(R_2 = 2.2M\Omega \)

\[E_O = \left(2.2 \times 10^6 \right) \left(80 \times 10^{-9} \right) = 0.176V \]

To reduce error:

- reduce size of \(R_2 \) and \(R_1 \)
• select $R_x = R_1 \parallel R_2$ to cancel the error due to I_B

We are left out with the error due to I_{OS}.

Bias Current Temperature Drift

• BJT: decrease with T because β increases with T

• JFET: doubles with every $10^\circ C$ increase.

$$I_B(T) = I_B(T_0) \times 2^{(T-T_0)/10}$$

• MOSFET: similar to JFET due to presence of electrostatic-discharge protection diodes.
Low Input Bias Current Opamps

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Mfg</th>
<th>type</th>
<th>I_B</th>
<th>I_{OS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>741C</td>
<td>bjt</td>
<td>80nA</td>
<td>20nA</td>
<td></td>
</tr>
<tr>
<td>OP-77</td>
<td>bjt</td>
<td>1.2nA</td>
<td>0.3nA</td>
<td></td>
</tr>
<tr>
<td>LM308</td>
<td>superbeta</td>
<td>1nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OP-07</td>
<td>cancellation</td>
<td>1nA</td>
<td>0.4nA</td>
<td></td>
</tr>
<tr>
<td>LF356</td>
<td>biFET</td>
<td>30pA</td>
<td>3pA</td>
<td></td>
</tr>
<tr>
<td>AD549</td>
<td>biFET</td>
<td>below 100fA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPA129</td>
<td>biFET</td>
<td>below 100fA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLC279</td>
<td>CMOS</td>
<td>0.7pA</td>
<td>0.1pA</td>
<td></td>
</tr>
</tbody>
</table>

- Superbeta: use very thin base to produce very high β transistors.
- Input-bias-current cancellation: additional circuitry provides the input transistor current internally. Looks like $I_B = 0$ from outside. I_{OS} and I_B are same order magnitude.

- biFET: use JFET front end, bipolar elsewhere.

- biMOS: use MOSFET front end, bipolar elsewhere.

- CMOS: use CMOSFETS only.

 Input Offset Voltage, V_{OS}

- $v_{out} \neq 0$ when input terminals are grounded
• Works like an offset in one input,

\[V_{OS} = \frac{v_{og}}{a} \]

where \(v_{og} \) is \(v_0 \) when inputs are grounded, \(a \) is open-loop gain.

• \(V_{OS} \) gain is same than signal.

• Both \(V_{OS} \) and \(I_B \) will cause integrators to saturate.

• Varies linearly with temperature. Typical temperature coefficient is 5mV/°C (741), 0.1mV/°C (OP-77).
• Changes with common-mode voltage:

\[
\frac{dV_{OS}}{dv_{CM}} = \frac{1}{CMRR}
\]

Since CMRR drops with frequency, \(V_{OS} \) increases with \(f \).
Since \(v_{CM} \approx v_p \approx v_n \), we can use \(v_p \) in the above formula.

• Changes with power supply voltage variations.

\[
\frac{dV_{OS}}{dV_S} = \frac{1}{PSRR}
\]

• Changes with output swing because \(v_n - v_p \) change. \(\Delta V_{OS} = \frac{\Delta v_{out}}{a} \).
Effect of common-mode signals & CMRR

\[v_O = a v_d + \frac{a}{CMRR} v_{CM} \]

\[\frac{\partial v_O}{\partial v_{CM}} = \frac{a}{CMRR} \]

The effect of the CM signal can be expressed as a change in the input offset

\[\frac{\partial V_{OS}}{\partial v_{CM}} = \frac{1}{a} \frac{a}{CMRR} = \frac{1}{CMRR} \]

\[\Delta V_{OS} = \frac{\Delta v_{CM}}{CMRR} \approx \frac{\Delta v_P}{CMRR} \]

If application uses an inverting configuration, \(v_P = 0 \) and \(v_{CM} \) has no effect.
Summarizing,

\[V_{OS} = V_{OS0} + TC \times \Delta T + \frac{\Delta v_p}{CMRR} + \frac{\Delta V_s}{PMRR} + \frac{\Delta v_{out}}{a} \]
Techniques to reduce V_{OS}

- For BJT opamps

$$V_{OS} = V_T \ln \frac{I_{s1} I_{s4}}{I_{s2} I_{s3}}$$

- A 10% mismatch in I_s's give $V_{OS} = 2.4 mV$ at 300K.

- Since $V_T = \frac{kT}{q}$,

$$TC_{V_{OS}} = \frac{V_{OS}}{T}$$
• I_s also depend on temperature:

$$I_s = \frac{qD_n}{N_B} \times n_i^2(T) \times \frac{A_E}{W_B}$$

• Fabrication process variations affect A_E, W_B, N_B. Large device size helps reduce these errors.

• Improved layout (common-centroid layout) can reduce thermal gradients and thus the effect of temperature.

• On-chip laser (known as Zener zapping) trimmings can be added to the circuit to reduce V_{OS}.
• *Chopper-stabilized*, or *autozero opamps* include internal circuitry to periodically correct V_{OS} and keep it at a minimum.

Offset Nulling

• Many opamps have terminals for offset nulling.

• External trimming can also be used to correct for V_{OS} and I_{OS}.
Offset Nulling Networks

Inverting non-inverting