Power System Protection

Dr. Lionel R. Orama Exclusa, PE
Week 10
Pilot Relaying for Transmission Lines

- Blocking schemes
- Tripping schemes
- Hybrid schemes
- Transmission Line Protection
 - Dependability
 - Ability to operate correctly when required (trip when required-internal fault)
 - Security
 - Ability to never operate incorrectly (do not trip when not required-external fault)
Blocking Schemes

• Directional comparison
• Phase comparison
• Characteristics
 – Two way communication between each pair of terminals
 – Typically power line carrier
 – Provides high speed protection of transmission lines
Blocking Schemes

• Advantages
 – Dependable
 – Does not require communication channel to trip

• Disadvantages
 – Less secure (channel required during external fault)
 – Loss of channel can cause false tripping

• Failure mode-comm. channel loss
Logic Circuits - short review

AND Gate

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

OR Gate

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

NOT Gate

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Mixed AND

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Mixed OR

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Time Delay Units

- **Upper Left Value**: ON Delay
- **Lower Right Value**: OFF Delay

Fixed

- **X - Pickup Time**: Time that elapses between an input signal being received and an output signal appearing.

Adjustable

- **Y - Dropout Time**: Time after the input signal is removed until the output signal goes to zero.
Directional comparison blocking scheme; Over-reaching relays

1. MT - Overreaching Trip
2. MB - Blocking
3. MB - Keys XMTR On
4. Receipt of Blocking Signal Blocks Tripping

5. C = Coordinating Time Delay
6. Trip When Local Trip Function Operates and No Blocking Signal Received
Directional comparison blocking scheme

Blocking relays over-reach a little, so a good continuous blocking signal exists for close in external faults.
Directional Comparison

- **Advantages**
 - Highly dependable
 - Does not require operation of communication channel to trip
 - Applicable on all types of line configurations

- **Disadvantages**
 - Loss of communication channel causes over-tripping
 - Less secure
Phase comparison blocking scheme; A current differential scheme

Internal Fault: OR must have O, O for 3 msec to Trip
External Fault: OR must not have O, O for > 3 msec
TERMINAL A

EXTERNAL FAULT

TERMINAL B

OUTPUT SQ. AMP
XMTOUT
RCVR OUT
OR
OUTPUT
NOT OUTPUT

INTERNAL FAULT

OUTPUT SQ. AMP
XMTOUT
RCVR IN
OR
OUTPUT
NOT OUTPUT

Copyright L.R. Orama 2006
Phase Comparison
(a form of current differential scheme)

• Advantages
 – Simple – one relay required
 – No PT required
 – Channel not require to trip for internal faults

• Disadvantages
 – Relatively insensitive
 – Slow
 – Loss of channel may cause tripping when not required (less secure)
Pilot Relaying Tripping Schemes

• Advantages
 – Secure, loss of channel does not cause over tripping
 – Simple schemes

• Disadvantages (limitations)
 – Less dependable, loss of channel delays tripping
Transfer Trip Schemes

• Direct Underreaching (DUTT)
• Permissive Underreaching (PUTT)
• Permissive Overreaching (POTT)
• Characteristics
 – Two way communication between each pair of terminals
 – Frequency shift signal generally used over a wire line or microwave
 – Provides high speed protection of transmission lines
Direct Underreaching Transfer Trip Operation

– External Fault (F1)
 • None of relays detect the fault- No trip

– Internal Fault (F2)
 • M_{1A} detects fault, M_{1B} does not
 • M_{1A} directly trips CB A
 • M_{1A} shift transmitter from guard to trip & transfer trip to B
• G (Guard)
 – Open when guard frequency is received (normal condition)
 – Closed when guard frequency is not received (fault)
• T (Trip)
 – Open when trip frequency is not received (normal condition)
 – Closed when trip frequency is received (fault)
Permissive Underreaching Transfer Trip Operation

- **External Fault (F1)**
 - M2_B detects fault, but M1_A or M2_A does not, **no trip**

- **Internal Fault (F2)**
 - M1_A detects & directly trips CB A
 - M2_A & M2_B detect, but not M1_B
 - M2_B permits transfer trip to A and B
 - M1_A shift transmitter to trip & completes transfer trip at A & B
Permissive Overreaching Transfer Trip Operation

- **External Fault (F1)**
 - M_{2B} detects fault, but M_{2A} does not
 - M_{2B} keys transmitter from G to T & closes local contact (permits)
 - Transmitter at A remains on G

- **Internal Fault (F2)**
 - M_{2A} & M_{2B} detect fault
 - Each closes local contact (permits) & shift transmitter to transfer trip

Copyright L.R. Orama 2006
Hybrid Scheme

• Uses features of Tripping and Blocking Schemes
 – Has the dependability of the blocking
 • Only local relay must operate
 – Has the security of permissive trip scheme
 • Loss of channel does not make misoperation
• Advantage over POTT
 – Only local tripping relay must operate to trip local CB
 – For an internal fault M_T^A operates, M_T^B does not
 • $XMTR^A$ keyed - $RCVR^B$ ON
 • MB^B does not operate - $XMTR^B$ keyed - $XMTR^B$ ON – TRIP A

• Advantage over Direct comparison Blocking
 – Loss of channel does not cause overtripping
Hybrid Scheme

• Advantages
 – Dependable – does not require relay OP at all terminals
 – Secure – loss of channel does not cause overtripping
 – Can provide weak infeed tripping

• Limitations
 – Requires blocking relays
 – Slightly more complex than other schemes
 – Tripping can be delayed if channel is lost
<table>
<thead>
<tr>
<th>Scheme</th>
<th>Most Common Channel</th>
<th>Relay Types</th>
<th>Carrier Types</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase Comparison</td>
<td>Power Line Carrier (PLC)</td>
<td>SLD</td>
<td>Blocking signal sent when Vnetwork positive.</td>
<td>Out of phase blocking signals produced for external fault. In phase blocking signals produced for internal fault.</td>
</tr>
<tr>
<td>Directional Comparison</td>
<td></td>
<td></td>
<td>Keyed On-Off Blocking</td>
<td>Blocking & tripping relay at each terminal.</td>
</tr>
<tr>
<td>Blocking</td>
<td>Power Line Carrier (PLC)</td>
<td>Distance Directional Overcurrent</td>
<td>Blocking signal sent when blocking relay operates.</td>
<td></td>
</tr>
<tr>
<td>Tripping</td>
<td>Wire Line (tones)*</td>
<td>Distance</td>
<td>Frequency Shift Tripping (CT/CR 51B, 61A, 71A)</td>
<td>Underreaching trip relay at each terminal.</td>
</tr>
<tr>
<td>DUTT</td>
<td>PLC-unblocking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUTT</td>
<td>PLC-unblocking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUTT</td>
<td>Wire Line (tones)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POTT</td>
<td>PLC-unblocking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hybrid</td>
<td></td>
<td>Distance</td>
<td>Frequency Shift Tripping</td>
<td>Blocking and tripping relay at each terminal like directional comparison. Do not need trip relay at remote end to operate to trip at local end. Local trip signal is "echoed" from remote end.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
% of Entities Who use or Prefer

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dir. Comp. Blocking</td>
<td>61</td>
<td>61</td>
<td>39</td>
<td>13</td>
</tr>
<tr>
<td>Phase Comp. Blocking</td>
<td>22</td>
<td>18</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>PUTT</td>
<td>31</td>
<td>49</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>DUTT</td>
<td>14</td>
<td>4</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>PUTT</td>
<td>12</td>
<td>10</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>AC Pilot Wire</td>
<td>7</td>
<td>22</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Step Distance/Dir. Overcurrent</td>
<td>19</td>
<td>45</td>
<td>66</td>
<td>55</td>
</tr>
<tr>
<td>Back-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step Distance w/ directional OC</td>
<td>45</td>
<td>70</td>
<td>68</td>
<td>35</td>
</tr>
<tr>
<td>POTT</td>
<td>34</td>
<td>17</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

Source IEEE survey
Transmission Line Categories

- A – Most Important
- B – Important
- C – Secondary (less important)
- D – Sub-transmission