1 Eigenvectors of a Continuous Filter

If $Av = \lambda v = s$, then v is an eigenvector of A and λ is an associated eigenvalue

$$\mathbb{T}\{x(m_x, m_y)\} = y(m_x, m_y) = \beta x(m_x, m_y),$$

where β is a scalar.

$$y(m_x, m_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\lambda_x, \lambda_y) e^{2j\pi f_x(m_x - \lambda_x)} e^{2j\pi f_y(m_y - \lambda_y)} d\lambda_x d\lambda_y$$

$$= e^{2j\pi f_x m_x} e^{2j\pi f_y m_y} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\lambda_x, \lambda_y) e^{-2j\pi f_x \lambda_x} e^{-2j\pi f_y \lambda_y} d\lambda_x d\lambda_y$$

$$H(f_x, f_y) = \beta$$

Therefore

$$y(m_x, m_y) = H(f_x, f_y) e^{2j\pi f_x m_x} e^{2j\pi f_y m_y}$$

$$= \beta x(m_x, m_y)$$

We notice that \mathbb{T} is then shift operator $S_{\alpha, \beta}$.

http://www.ece.uprm.edu/~domingo
1.0.1 Object Domain Representation

Obtain the impulse of $S_{\alpha,\beta}$; that is

$$S_{\alpha,\beta}\{\delta(m_x, m_y)\} = h(m_x, m_y)$$

where

$$h(m_x, m_y) = \delta(m_x - \alpha, m_y - \beta).$$

To obtain

$$y(m_x, m_y) = S_{\alpha,\beta}\{x(m_x, m_y)\}$$
for \(x(m_x,m_y) \) an arbitrary signal, we proceed as follows:

\[
y = x * * h = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(\lambda_x,\lambda_y) h(m_x - \lambda_x, m_y - \lambda_y) \, d\lambda_x d\lambda_y
\]

\[
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(\lambda_x,\lambda_y) \delta(m_x - \alpha - \lambda_x, m_y - \beta - \lambda_y) \, d\lambda_x d\lambda_y
\]

\[
= x(m_x - \alpha, m_y - \beta).
\]

Theorem 1 Object Domain Convolution

The Fourier transform of the linear convolution of two arbitrary signals, say \(x \) and \(h \) is equal to the product of the Fourier transform of each of the individual signals.

If

\[
y = x * * h \implies Y(f_x, f_y) = X(f_x, f_y) \cdot H(f_x, f_y).
\]

Theorem 2 Spectral Domain Convolution

The Fourier transform of the product of two arbitrary signals is equal to the linear convolution of the Fourier transform of each of the individual signals.

If

\[
x_v = x \cdot v \implies X_v(f_x, f_y) = X(f_x, f_y) * * V(f_x, f_y).
\]

1.1 **ODCT: Object Domain Convolution theorem**

The Fourier transform of the impulse response function is called the frequency response or spectral response of the system.

1.2 **Multi–input/Multi-output LSI systems**

for \(m_0, m_1, ..., m_{N-1} \in \mathbb{R} \).
1.3 Modeling of multidimensional systems through filters

1.3.1 Direct method: Type I

We substitute the input delta function by Gaussian white noise.
1.4 System Identification

Objective: Minimize ε

$$\varepsilon = y_n - y_m$$

Example 3 Ideal filter are filters that assume values of zero or one only is prescribed spectral bands We the have

$$H_L = \begin{cases}
1, & |f_x| \leq f_{M_x} , |f_y| \leq f_{M_y} , \\
0, & \text{otherwise.}
\end{cases}$$

Figure 6: System identification.

Figure 7: .

Figure 8: .
1.5 Objective in multidimensional signal processing

A main objective of multidimensional signal processing is the processing of multidimensional using discrete samples techniques.

Figure 9:

where CSD: Changed coupled deviles; SAW filter: Surfase Acoustic wave filter; DSP: Digital Signal Processor.