DISCRETE SIGNAL PROCESSING PRIMER

Prof. Domingo Rodriguez
domingo@ece.uprm.edu
http://www.ece.uprm.edu/~domingo

February 2007
Digital Signal Processing:

It is defined as the treatment of signals using digital electronics technology and digital computation techniques, in an algorithmic manner, to extract information important or relevant to a user. The diagram below depicts a basic digital signal processing system conformed of three basic components: an analog-to-digital (A/D) conversion system, a digital processor system, and a digital-to-analog (D/A) conversion system. The digital processor system takes as its input a digital signal and it produces as an output another digital signal. An analog-to-digital system converts a continuous-domain signal or analog signal into a digital signal. A digital-to-analog system performs an inverse operation; that is, it converts a digital signal into an analog signal or continuous-domain signal. A continuous-domain signal is normally referred to as a continuous-time signal or simply a continuous signal since it can describe the variations or scales of a physical quantity such as pressure, temperature, or sound as a function of time. Examples of continuous-time signals such as speech signals abound all around us.

Continuous-domain Signal or Analog Signal:
A continuous-domain signal or analog signal denotes a function x whose value $x(t)$ is defined for every value t of a set D called the domain of the function. The set D is a

The value $x(t)$ may be a real or complex number.

Discrete-time Signal Processing:

It is a more general treatment of signals, which includes digital signal processing, using other technologies such as surface acoustic wave (SAW) devices and charged-coupled devices (CCDs) as well as analog computation techniques such as optical and biological computing.
Discrete Signal:
A discrete signal or discrete function has as its domain a discrete set such as the set of integers, namely \(\mathbb{Z} = \{ \cdots, -2, -1, 0, 1, 2, \cdots \} \). The number of elements in the discrete set serving as the domain of the discrete signal may be finite or infinite. As an example of a discrete signal we have the following function
\[
x = \{ x[n] = 2^n, \ n \in \mathbb{Z} \} = \{ \cdots, -\frac{1}{8}, -\frac{1}{4}, -\frac{1}{2}, 1, 2, 4, 8, \cdots \}
\]
A signal which is discrete is also called a sequence. As an example of a finite sequence, we provide the following function over the finite set \(\mathbb{Z}_4 = \{ 0, 1, 2, 3 \} \):
\[
x = \{ x[n] = \cos \left(\frac{2\pi}{N} n \right), \ n \in \mathbb{Z}_4 \} = \{ +1, 0, -1, 0 \}
\]
A discrete signal can be obtained from a continuous signal by making the time axis a discrete set. That is, if we have a continuous signal \(x : \mathbb{R} \rightarrow \mathbb{C} \)
\[
t \rightarrow x(t) = e^{+j2\pi f_d t}
\]
To make \(x \) a discrete signal, we proceed in the following manner
\[
t \mid_{t=nT_s, n \in \mathbb{Z}} \rightarrow x(t) \mid_{t=nT_s, n \in \mathbb{Z}} = x[nT_s]
\]
Digital Signal
A digital signal has as its co-domain a finite discrete set.

Example 12: Creation of a Digital Signal
\(x : \mathbb{R} \rightarrow \mathbb{B} \)
\[
\cdots \rightarrow x(t) \in \mathbb{B}
\]
\[
i \in \mathbb{R}
\]
A discrete signal can be converted into a digital signal by using a quantizer:

\[
x[n], n \in Z \quad \xrightarrow{Q} \quad x_d[n] \in A
\]

The set A is a finite discrete set.

Discrete Signal:

It is a signal of the form \(\{x[n], n \in Z\} \), where the set \(Z \) is the set of integers or

\[Z = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\} . \]

We notice that the signal \(x[n] \) takes an infinite number of values.

Example:

\[
x = \{x[n] = 2^n, n \in Z\} = \{\ldots, -\frac{1}{8}, -\frac{1}{4}, -\frac{1}{2}, 1, 2, 4, 8, \ldots\}
\]

A discrete signal is also called a *sequence*.

Causal Discrete Signal:

It is a sequence \(\{x[n]\} \) such that \(x[n] = 0 \) for \(n < 0 \).

Example 1: Unit step sequence
\[u[n] = \begin{cases}
1, & n \geq 0 \\
0, & n < 0
\end{cases} \]

Example 2: Unit Sample Sequence

\[\delta[n] = \begin{cases}
1, & n = 0 \\
0, & n \neq 0
\end{cases} \]

Discrete Finite Causal Signals:

Let \(Z_N = \{0, 1, 2, \ldots, N-1\} \). Example \(Z_5 = \{0, 1, 2, 3, 4\} \).

A sequence \(\{y[n]\} \) is causal and finite if \(\{y[n], n \in Z_N\} \). In this case we say that the signal has length \(N \).

Example 3:

\(y[n] = 3^n, n \in Z_4 \)

\(y[4] = \{y[0], y[1], y[2], y[3]\} \)

\(y[4] = \{3^0, 3^1, 3^2, 3^3\} = \{1, 3, 9, 27\} \)

Discrete System:

A discrete system \(T \) takes as input a discrete signal, say \(\{x[n]\} \) and it produces as output another discrete signal, say \(y[n] \).

Block Diagram Representation of a Discrete System:

A discrete system is usually represented using a rectangular figure, called a black box. To the left of the box an inward directed arrow is attached to indicate the input signal to the system. To the right of the box an outward directed arrow is attached to indicate the output signal produced by the system. Two modalities are commonly used to describe the
input and output signals as depicted in the diagrams below. The diagram on the left describes the input and output signals as sets but does not identify the domain of the signals. The diagram on the right depicts an arbitrary element of the input and output signals and provides the domains where these signals are evaluated.

\[
\begin{align*}
\{x[n]\} & \xrightarrow{\text{Discrete System } T} \{y[n]\} \\
\{y[n]\} & \xrightarrow{\text{Discrete System } T} \{z[n]\}, \ n \in \mathbb{Z}
\end{align*}
\]

Discrete Linear System:

A discrete system \(T \) is linear if it satisfies the following condition:

\[
T = \{ax_1[n] + bx_2[n]\} = aT\{x_1[n]\} + bT\{x_2[n]\}
\]

Problem 1: Determine if \(T \) is linear

\[
\begin{align*}
\{x[n]\}, \ n \in \mathbb{Z} & \xrightarrow{T} \{y[n]\}, \ n \in \mathbb{Z} \\
\{y[n]\} & \xrightarrow{T} \{z[n]\}, \ n \in \mathbb{Z}
\end{align*}
\]

Solution 1:

1. Use the equation of the system,

\[
y[n] = T\{x[n]\} = e^{x[n]}, \text{ to obtain: }
\]

\[
T\{x_1[n]\} = e^{x_1[n]},
\]

\[
T\{x_2[n]\} = e^{x_2[n]}
\]

2. Use an intermediate step:

Let \(x_3[n] = ax_1[n] + bx_2[n] \)

Using induction, we obtain:

\[
T\{x_3[n]\} = e^{x_3[n]}
\]

Substituting for \(x_3[n] = ax_1[n] + bx_2[n] \) in the equation above, we obtain:

\[
T\{ax_1[n] + bx_2[n]\} = e^{ax_1[n] + bx_2[n]}
\]

3. Construct the expression

\[
aT\{x_1[n]\} + bT\{x_2[n]\}
\]

From the equation in 1, we arrive at the following expression:

\[
aT\{x_1[n]\} + bT\{x_2[n]\} = ae^{x_1[n]} + be^{x_2[n]}
\]
Finally, we check for the identity:

\[T\{ax_1[n] + bx_2[n]\} = aT\{x_1[n]\} + bT\{x_2[n]\}, \]

which helps to determine whether or not the system \(T \) is linear:

\[\therefore \text{The system } T \text{ is not Linear.}\]

Discrete Linear System

The system \(T \) is linear if:

\[T\{ax_1[n] + bx_2[n]\} = aT\{x_1[n]\} + bT\{x_2[n]\}\]

Simplified condition:

1. Additivity or Superposition: \(a = b = 1 \)

\[T\{x_1[n] + x_2[n]\} = T\{x_1[n]\} + T\{x_2[n]\} \]

2. Homogeneity: \(b = 0 \)

\[T\{ax_1[n]\} = aT\{x_1[n]\} \]

For the system to be linear it must satisfy, both, the additivity and homogeneity conditions.

Example 4: Squarer Discrete System

\[y[n] = T\{x[n]\} = x[n] \cdot x[n] = x^2[n] \]

Check the homogeneity condition:

1. \(T\{x_1[n]\} = x_1^2[n] \)

\[aT\{x_1[n]\} = ax_1^2[n] \]

2. Let \(g[n] = ax_1[n] \)

\[T\{g[n]\} = g^2[n] \]

Substituting for \(g[n] = ax_1[n] \), we obtain

\[T\{ax_1[n]\} = (ax_1[n])^2 = a^2x_1^2[n] \]

\[\therefore \text{The system is not Linear.}\]

Discrete Shift Invariant or Time Invariant System:
A system \(T \) is shift invariant or time invariant if it satisfies the following condition: if \(y[n] = T\{x[n]\} \), then \(T \) is T.I. if \(y[n - n_0] = T\{x[n - n_0]\} \).

Example 5: Time Invariance Property in a Discrete System

Discrete Filter:

A discrete filter \(T \) is a system, which is, both, linear and time invariant.

Example 6: Discrete Linear and Time Invariant System Defined as a Filter
\[\delta[n] = -1 \cdot x[n] \quad \text{Filter} \quad T(\delta[n]) = h[n] \]

\[h[n] = T(\delta[n]) \]

\[T(\delta[n]) = T(-1 \cdot x[n]) \]

\[T(\delta[n]) = -1 \cdot T(x[n]) = h[n] \]

Example 7: Sinusoid Excitation to a Discrete Filter

\[x[n] = \cos \frac{2\pi n}{4}, \quad n \in \mathbb{Z} \]

\[\gamma[n] = T(x[n]) \]

\[x[0] = \cos \frac{2\pi(0)}{4} = 1 \]
\[x[1] = \cos \frac{2\pi(1)}{4} = 0 \]
\[x[2] = \cos \frac{2\pi(2)}{4} = -1 \]
\[x[3] = \cos \frac{2\pi(3)}{4} = 0 \]
\[x[4] = \cos \frac{2\pi(4)}{4} = 1 \]

Observation 1:

Any discrete signal can be expressed as a sum of delayed unit sample functions:

\[x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k] \]

Example 8: Representation of a Discrete Signal as a Linear Combination
\[x[n] = \cos \frac{2\pi n}{4}, n \in \mathbb{Z} \]

\[x[n] = \sum_{k=-\infty}^{\infty} x(k) \delta[n-k] \]

\[x[n] = \sum_{k=-\infty}^{\infty} \cos \frac{2\pi k}{4} \delta[n-k] \]

A finite representation:

\[x[n] = \sum_{k=-2}^{6} \cos \frac{2\pi k}{4} \delta[n-k] \]

\[x[n] = \cos \frac{2\pi (-2)}{4} \delta[n+2] + \cos \frac{2\pi (-1)}{4} \delta[n+1] + \cos \frac{2\pi (0)}{4} \delta[n] + \cos \frac{2\pi (1)}{4} \delta[n-1] + \cos \frac{2\pi (2)}{4} \delta[n-2] \]

\[+ \cos \frac{2\pi (3)}{4} \delta[n-3] + \cos \frac{2\pi (4)}{4} \delta[n-4] + \cos \frac{2\pi (5)}{4} \delta[n-5] + \cos \frac{2\pi (6)}{4} \delta[n-6] \]

Problem 2: Obtain the output \(y[n] \) of the system below with input a sinusoid

\[x[n] = \cos \frac{2\pi n}{4}, n \in \mathbb{Z}_4 \]

\[y[n] = T(x[n]) \]

\[x[n] = \sum_{k=0}^{3} x[k] \delta[n-k] \]

\[x[n] = \sum_{k=0}^{3} \cos \frac{2\pi k}{4} \delta[n-k] \]

\[y[n] = T\{x[n]\} = T\{x[n]\} = \sum_{k=0}^{3} x[k] \delta[n-k] \]

$$x[n] = \sum_{k=-\infty}^{3} x[k] \delta[n-k] = T\{\delta[n]\} - T\{\delta[n-2]\} = h[n] - h[n-2]$$

Homework 1: The Linear Convolution Operation of Discrete Filters

Prove that if the input to a discrete filter is the signal $x[n]$ and the filter has the impulse response signal $h[n]$, then the output is given by the convolution operation:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k], \; n \in \mathbb{Z}$$

Solution to Homework 1:

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

$$y[n] = T\{\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]\}$$
Apply Superposition: $T\{ax_1[n] + bx_2[n]\} = aT\{x_1[n]\} + bT\{x_2[n]\}$

So, $y[n] = \sum_{k=-\infty}^{\infty} T\{x[k]\delta[n-k]\}$

Apply Homogeneity: $T\{ax_1[n]\} = aT\{x_1[n]\}$

So, $y[n] = \sum_{k=-\infty}^{\infty} x[k]T\{\delta[n-k]\}$

Since, $T\{\delta[n-k]\} = h[n-k]$

then, $y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$

Problem 3: Provide examples of FIR filters.

Finite Impulse Response Filter:

It is any filter whose impulse response signal is of final duration, that is, it has duration equal to, say N_h, an arbitrary but fixed length.

Example 9: Averager or Smoother Filter of Order N_h

$$h[n]=\begin{cases}
\frac{1}{N_h}, & 0 \leq n < N_h \\
0, & \text{otherwise}
\end{cases}$$

If $N = 4$
Causal Filter:

A filter T is called causal if the impulse response signal of the filter is a causal signal.

\[h[n] = \begin{cases}
 h[n], & n \geq 0 \\
 0, & n < 0
\end{cases} \]

Matrix Representation of the Linear Convolution Operation:

Example 10: Matrix Representation of a Finite Impulse Response Filter Operation

Let's compute \(y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k] \) for \(x = [1, -2, 3] \) and \(h = [1, -1] \).

This simplifies to the following expression due to the finite length of the signal \(x \):

\[y[n] = x[n] * h[n] = \sum_{k=0}^{2} x[k] h[n-k] \quad n \in \mathbb{Z}_4 \]

Notice that \(x = \{1, -2, 3\} = \{x[0], x[1], x[2]\} \). This signal is not defined for any other values and it is assumed equal to zero. For this reason the indexation becomes finite.

Since the linear convolution operation is a commutative operation, we can also write the following expression due to the length of the signal \(h \):

\[y[n] = x[n] * h[n] = \sum_{k=0}^{1} h[k] x[n-k] \quad n \in \mathbb{Z}_4 \]

Expanding the sum \(y[n] = x[n] * h[n] = \sum_{k=0}^{3} x[k] h[n-k] \), we get

The resulting system of equations for the computation of the linear convolution can be represented as a matrix-vector computation in the following manner:

\[
\begin{bmatrix}
 y[0] \\
 y[1] \\
 y[2] \\
 y[3]
\end{bmatrix} =
\begin{bmatrix}
 h[0] & 0 & 0 \\
 h[1] & h[0] & 0 \\
 0 & h[1] & h[0] \\
 0 & 0 & h[1]
\end{bmatrix}
\begin{bmatrix}
 x[0] \\
 x[1] \\
 x[2] \\
 x[3]
\end{bmatrix}
\]

RC-Filter:

The figure below depicts an example of an electric circuit modeling a continuous passive RC-filter. The filter is called continuous or analog due to the fact that it operates as a rule which assigns to an input signal, say, \(x(t) \), \(t \in \mathbb{R} \) an output signal, \(y(t) \), \(t \in \mathbb{R} \). It is called RC since all the components in the circuit are made up of either resistors or capacitors. Each resistance element in the circuit models a dissipative load. Also, each capacitive element in the circuit models an energy storage load. The overall circuit is conformed by two basic first order filters coupled in cascade. A first order continuous passive filter may be described by a first order differential equation with constant coefficients.

General Continuous Filters:

In general, a continuous passive filter with input the signal \(x(t) \) and output the signal \(y(t) \) may be represented in terms of a differential equation of the form:

\[
a_M \frac{d^M}{dt^M} (y(t)) + a_{M-1} \frac{d^{M-1}}{dt^{M-1}} (y(t)) + \ldots + a_0 y(t) = b_N \frac{d^N}{dt^N} x(t) + b_{N-1} \frac{d^{N-1}}{dt^{N-1}} x(t) + \ldots + b_0 x(t)
\]

This can also be expressed as follows using summation expressions:
The input signal \(x(t) \) is also called the forcing function of the continuous filter.

Example 11: First Order Continuous Passive Filter

Using Kirchoff’s Voltage Law (KVL), we proceed to formulate a differential equation that describes the dynamics of the system. We assume that \(i_c(t) \) is the input current to the storage capacitor. The resistor value is denoted by \(R \) and the capacitor constant is labeled \(C \):

\[
x(t) = R i_c(t) + y(t)
\]

\[
i_c(t) = C \frac{dy(t)}{dt}
\]

Substituting, we get

\[
x(t) = RC \frac{dy(t)}{dt} + y(t)
\]

\[
\therefore \sum_{m=0}^{M} a_m \frac{d^m}{dt^m} y(t) = x(t)
\]

\[
a_0 = 1, a_i = RC, b_0 = 1
\]

Discrete Filters:

Discrete filters may be represented using difference equations of the form

\[
\sum_{k=0}^{N} d_k y[n-k] = \sum_{k=0}^{M} p_k x[n-k],
\]

where the sequence \(x[n], n \in \mathbb{Z} \), represents an arbitrary input signal, the sequence \(y[n], n \in \mathbb{Z} \) represents the output signal, and \(d_k, p_k \) are complex scalars. The output
signal \(y[n] \), \(n \in \mathbb{Z} \) can be expressed in terms of the input signal and past values of the output si

Homework 2: Difference Equation Generation

Show that a difference equation can be obtained from a differential equation using the following approximation

\[
\frac{dy(t)}{dt} \approx \frac{\Delta y}{\Delta t} = \frac{Y[nTs] - Y[(n-1)Ts]}{Ts}
\]

1. Use the RC circuit given.
2. Set \(T_s = 1 \).

Solution to Homework 2:

For an RC-filter we have the following differential equation

\[
y(t) = x(t) - RC \frac{dy(t)}{dt}
\]

Using the proposed approximate, we get

\[
y[nTs] = x[nTs] - RC \left[\frac{y[nTs] - y[(n-1)Ts]}{Ts} \right]
\]

Simplifying by normalizing the equation (setting \(T_s = 1 \)), we get

\[
y[n] = x[n] - RCy[n] + RCy[n-1]
\]

\[
(1 + RC)y[n] = x[n] + RCy[n-1]
\]

\[
y[n] = \frac{1}{1 + RC} x[n] + \frac{RC}{1 + RC} y[n-1]
\]

\[
\alpha = \frac{1}{1 + RC}, \beta = \frac{RC}{1 + RC}
\]

FIR Filter used in Cardiology:

\[
h[n] = c[n]
\]

\[
y[n] = \sum_{k=-N}^{N} h[k] x[n-k]
\]

\[
x[n] \xrightarrow{\text{Filter with } h[n]} y[n] = T(x[n]) = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]
\]
\[y[n] = T\{x[n]\} = \sum_{k=-\infty}^{\infty} x[k]h[n-k] \]

Let \(m = n - k \), thus \(k = n - m \).

Substituting:

\[y[n] = \sum_{m=-\infty}^{\infty} x[n-m]h[n-(n-m)] \]

\[y[n] = \sum_{m=0}^{-\infty} x[n-m]h[m] \]

\[y[n] = \sum_{m=-\infty}^{0} h[m]x[n-m] \]

\[y[n] = \sum_{k=-\infty}^{0} h[k]x[n-k] \]

If \(h[k] = \{h[-N],...,h[0],...,h[+N]\} \)

Discrete Filter Implementation:

A large class of discrete filters can be expressed in terms of a difference equation of the form:

\[\sum_{k=0}^{M} d_k y[n-k] = \sum_{k=0}^{N} b_k x[n-k] \]

This is the only type of filters that we will study in this primer!

Filter Operators: The diagrams below represent operators to implement all filters

\[x[n] \rightarrow a \times x[n] \]

Example 13: Finite Impulse Response Filter Implementation using Operators
\[d_0 = 1, \quad b_0 = 1, \quad b_1 = -1, \quad b_2 = 3.7 \]

\[y[n] = \sum_{k=0}^{2} b_k x[n-k] \]

Expanding

\[y[n] = b_0 x[n] + b_1 x[n-1] + b_2 x[n-2] \]

If \(x[n] = \delta[n] \), then \(y[n] = h[n] \). Thus,

\[h[n] = T\{\delta[n]\} = \delta[n] * h[n] = h[n] \]

\[h[n] = b_0 \delta[n] + b_1 \delta[n-1] + b_2 \delta[n-2] \]

Remark:

“If I know \(h[n] \) I can tell you the output of the system for any input \(x[n] \).”
Discrete Time Fourier Transform:

Let $x[n]$ be a discrete signal. Its discrete-time Fourier transforms is defined as follows

$$F \{x[n]\} = DTFT \{x[n]\} = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}, \quad \omega \in \mathbb{R}; \quad j = \sqrt{-1}$$

Remember that $e^{-j\omega n} = \cos \omega n - jsin \omega n$. This implies that the DTFT of the signal $x[n]$ is a complex function signal.

Periodic Property of the DTFT

Example 13: The DTFT of a Signal is Always Periodic Modulo 2π

A signal $X(\omega)$ is periodic with period ω_p if the following condition is satisfied:

$$X(\omega + \omega_p) = X(\omega).$$

Define $X(\omega) = \mathbb{F} \{x[n]\} = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}; \omega \in \mathbb{R}$

If we let ω go to $\omega + \omega_p$ by changing the argument of $X(\omega)$, we get

$$X(\omega + \omega_p) = \sum_{n=-\infty}^{\infty} x[n]e^{-j(\omega+\omega_p)n} = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}e^{-j\omega_p n}$$

Allow $\omega_p = 2\pi$

Then, $e^{-j\omega_p n} = e^{-j2\pi n} = \cos(2\pi n) - jsin(2\pi n), n \in \mathbb{Z}$

We then have the following result:

$$X(\omega + \omega_p) \bigg|_{\omega_p = 2\pi} = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega_p n} = X(\omega)$$

Example 14: Picture Plot Depicting The Periodicity of
Discrete Fourier Transform:

This is only defined for finite discrete signals, say of length N. Let \(x[n] \) be a discrete signal of length N. Its DFT is given by the following equation:

\[
X(\omega) \bigg|_{\omega = 2\pi f/N} = X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi kn/N}, k \in \mathbb{Z}_N
\]

The DFT can be represented in matrix form:

\[
X = F_Nx
\]

When \(x \) is a column vector and is the input signal, \(X \) is a column vector and it is the output signal or transformed signal and \(F_N \) is a matrix of order \(N \) (\(N \) rows by \(N \) columns) called the Fourier matrix.

Homework 3:

Write in matrix form the DFT of an arbitrary signal of length \(N=8 \) and check the MATLAB instruction “dftmtx”.

Problem 4: Spectral Resolution:

Let \(x = \{1,1,1,1\} = \{x[0], x[1], x[2], x[3]\} \) be an initial discrete signal

Let \(x_m = \{x[0], x[1], x[2], x[3], p_m\} \), \(m = 1, 2, 3, ..., 8 \). This new signal is created by appending a sequence of zeros to the original signal \(x = \{1,1,1,1\} \). For example, allowing \(m = 1 \), we get \(p_1 = \{0,0,0,0\} \) and the signal \(x \) results in

\(x_1 = \{x[0], x[1], x[2], x[3], p_1\} = \{x[0], x[1], x[2], x[3], 0, 0, 0, 0\} \). Also, the sequences \(p_m; m = 1,2,3,\cdots,8 \) are generated as follows:

\(p_2 = \{p_1, p_1\}, \ p_3 = \{p_2, p_1\}, \cdots, p_8 = \{p_7, p_1\} \).

We now proceed to describe the effect of this zero-padding action. We start with the discrete Fourier transform (DFT) of a signal.
Let the DFT of a discrete signal x be expressed as follows:

$$X[k] = DFT\{x[n]\} = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$$

Let $W_N = e^{-j\frac{2\pi}{N}}$

$$X[k] = dft\{x[n]\} = \sum_{n=0}^{N-1} x[n]W_N^{-kn}; \quad N = 4$$

$$X[k] = \sum_{n=0}^{3} x[n]W_4^{-kn} = x[0] + x[1]W_4^{-k} + x[2]W_4^{-2k} + x[3]W_4^{-3k}, \quad k \in \mathbb{Z}_4$$

$$X[k] = 1 + W_4^{-k} + W_4^{-2k} + W_4^{-3k}, \quad k \in \mathbb{Z}_4$$

$$X_1[k] = DFT\{x_1[n]\} = \sum_{n=0}^{N-1} x_1[n]W_N^{-kn}; \quad N = 8$$

$$X_1[k] = \sum_{n=0}^{7} x_1[n]W_8^{-kn} = x_1[0] + x_1[2]W_8^{-k} + x_1[1]W_8^{-2k} + x_1[3]W_8^{-3k} + ... + x_1[7]W_8^{-7k}, \quad k \in \mathbb{Z}_8$$

$$X_1[k] = x_1[0] + x_1[1]W_8^{-k} + x_1[2]W_8^{-2k} + x_1[3]W_8^{-3k}; \quad k \in \mathbb{Z}_8$$

$$X_1[k] = 1 + W_8^{-k} + W_8^{-2k} + W_8^{-3k}, \quad k \in \mathbb{Z}_8$$

$$X(\omega) = DTFT\{x[n]\} = \sum_{n=\infty}^{\infty} x[n]e^{-j\omega n}; \quad \omega \in \mathbb{R}$$

$$X(\omega) = \sum_{n=\infty}^{3} x[n]e^{-j\omega n} = x[0] + x[1]e^{-j\omega} + x[2]e^{-j2\omega} + x[3]e^{-j3\omega}; \quad \omega \in \mathbb{R}$$

$$X_1(\omega) = DTFT\{x_1[n]\} = \sum_{n=\infty}^{\infty} x_1[n]e^{-j\omega n}$$

$$X_1(\omega) = \sum_{n=\infty}^{3} x_1[n]e^{-j\omega n} = x_1[0] + x_1[1]e^{-j\omega} + x_1[2]e^{-j2\omega} + x_1[3]e^{-j3\omega}$$

$$X_1(\omega) = x_1[0] + x_1[1]e^{-j\omega} + x_1[2]e^{-j2\omega} + x_1[3]e^{-j3\omega}, \quad \omega \in \mathbb{R}$$
Spectral Resolution:

It is defined as the smallest distance between two samples in the spectrum of a signal.
Problem 5:

A radar signal is normally processed in order to extract information regarding the distance and uniform speed of an object in space. After a signal has been demodulated and sampled, it is expressed as $y[n] = x[n - n_0] e^{j\omega_0 n}$. This signal, known as the received signal $y[n]$, has the parameter n_0, from where we can determine the range of the object from the radar, and the parameter ω_0, known as the Doppler frequency, from where we can obtain the DTFT of the signal $y[n]$.

Solution 5:
\[
Y(\omega) \big|_{\omega = \omega_0} = \sum_{n=-\infty}^{\infty} x[n-n_0] e^{j\omega_0 n} e^{-j\omega n}; \omega \in \mathbb{R}
\]

\[
= \sum_{n=-\infty}^{\infty} x[n-n_0] e^{-j(\omega-\omega_0)n}; \omega \in \mathbb{R}
\]

Let \(k = n - n_0; \ n = k + n_0 \)

\[
Y(\omega) = \sum_{k=-\infty}^{\infty} x[k] e^{-j(\omega-\omega_0)(k+n_0)}
\]

\[
Y(\omega) = \sum_{k=-\infty}^{\infty} x[k] e^{-j(\omega-\omega_0)k} e^{-j(\omega-\omega_0)n_0}
\]

\[
Y(\omega) = e^{-j(\omega-\omega_0)n_0} \sum_{k=-\infty}^{\infty} x[k] e^{-j(\omega-\omega_0)k}
\]

Let \(\lambda = \omega - \omega_0 \)

\[
Y(\omega) = e^{-j(\omega-\omega_0)n_0} \sum_{k=-\infty}^{\infty} x[k] e^{-j\lambda k}
\]

\[\therefore Y(\omega) = e^{-j(\omega-\omega_0)n_0} X(\lambda) = e^{-j(\omega-\omega_0)n_0} X(\omega - \omega_0)\]

Periodic Discrete Signals:

A signal \(x[n] \) is said to be periodic, with fundamental period \(N \), if the following condition is satisfied:

\[x[n + qN] = x[n], \text{ for } q \in \mathbb{Z}\]

Example 15:

The signal \(x[n] \) has a fundamental period equal to \(N \). In this case \(N = 4 \):
Let $q = 1$

$$x[n + 4] = x[n]$$

For $n = -3$

$$x[-3 + 4] = x[-3]$$

∴ $x[-3] = x[1]$

Observation 2:
Any periodic signal $x[n]$ with fundamental period N, can uniquely be represented by a causal signal $x[n]$, of length equal to N, whose values are equal to the N values of the periodic signal in its fundamental period.

Example 16:
The periodic signal $x[n]$, with fundamental period $N = 4$, can be represented uniquely by the signal $x[n]$, of length $N = 4$.

Cyclic or Circular Convolution of Periodic Signals:
Given two periodic signals, say $x[n]$ and $h[n]$, with the same fundamental period N, the cyclic or circular convolution of $x[n]$ and $h[n]$ is a new periodic signal

$$y[n] = x[n] \otimes h[n],$$

with fundamental period also equal to N and which is defined by the following equation

$$y[n] = \sum_{k=0}^{N-1} x[k]h[n-k]; n \in Z_N.$$

Circular or Cyclic Convolution of Periodic signals using Causal Representations:
Let $x[n]$ and $h[n]$ be two periodic signals with fundamental period N. Let $x[n]$ and $h[n]$ be their causal representations, respectively. The circular or cyclic convolution of the causal representation is a new causal signal, of length N, and denoted by $y[n]$.

The signal $y[n]$ is given by
\[y[n] = \sum_{k=0}^{N-1} x[k]h[< n - k >_N]; \quad n \in \mathbb{Z}_N \]

The symbol \(< p >_N\) denotes the remainder of \(p\) after being divided by \(N\). This is sometimes called “\(p\) modulo \(N\)”. The periodic signal \(y[n]\) is obtained from its causal representation \(y[n]\) by repeating the causal signal \(y[n]\), starting at the fundamental period.

Observation 3:

\[
\text{Remainder}\left(\frac{P}{N}\right) = \text{Remainder}\left(\frac{P + qN}{N}\right) = \text{Remainder}\left(\frac{P}{N}\right) + \text{Remainder}\left(\frac{qN}{N}\right)
\]

1. \(<5>_4 = \text{Remainder}\left(\frac{5}{4}\right) = 1
2. \(<-1>_4 = <-1 + 4>_4 = <3>_4 = 3

Problem 6: Compute \(x[n]O_Nh[n] = y[n]\)

Solution 6:

Homework 4:

Write the cyclic convolution in matrix form.

Relating the cyclic convolution and the DFT:

The cyclic convolution \(x[n]O_Nh[n] = y[n]\) can be expressed in matrix form as follows:

\[y = H_Nx \]

Here, the matrix \(H_N\) is called the filter matrix of the cyclic convolution and it has the property that all its diagonals have a constant parameter. This matrix is also called a circulant matrix since the whole matrix can be generated from the first column (or first row) of the matrix. The first column of the matrix contains the impulse response values of the filter.
Example 17: $N = 4$

$$y[n] = x[n]O_4h[n] = \sum_{k=0}^{N-1} x[k]h[< n - k >_N]; \; n \in Z_4$$

Expanding, we get

Example 18:

$$x[n + q \times 4] = x[n]$$

$q = 1$

$$x[n + 4] = x[n]$$

Observation 4:

1. The efficiency of computing a cyclic convolution operation can be improved using a Fast Fourier Transform (FFT) algorithm. An FFT algorithm is an efficient method for computing the DFT.

2. Any linear convolution can be computed using a cyclic convolution operation.

 Remember that the filters only do linear convolution.

3. The Discrete Time Domain Convolution Theorem states that the DFT of the cyclic convolution of two discrete signals is equal to the product of the DFT of each of the individual signals.
Discrete Time Domain Convolution Theorem or DTDCT:

Let $x[n]$ and $h[n]$ be two causal representations, each of length N.

Let $y[n] = x[n] \circ h[n]$ be the cyclic convolution operation between these two signals.

Let $Y[k] = DFT\{y[n]\}; \quad X[k] = DFT\{x[n]\}; \quad H[k] = DFT\{h[n]\}$

$DFT\{x[n] \circ h[n]\} = DFT\{x[n]\} \bullet DFT\{h[n]\}$

$\therefore Y[k] = X[k] \bullet H[k]$

In MATLAB, the Hadamard product is expressed as ‘ . * ’.

Expressing a Hadamard product as a Matrix-Vector Multiplication:

Example:

$A = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix}; \quad B = \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix}; \quad C = A \bullet B$

$C = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} \bullet \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} a_0 b_0 \\ a_1 b_1 \\ a_2 b_2 \end{bmatrix}$

In matrix-vector product form, we get:

1. Write one of the vectors as a diagonal matrix.
2. Perform a matrix-vector multiplication operation with the other vector.

$\begin{bmatrix} a_0 & 0 & 0 \\ 0 & a_1 & 0 \\ 0 & 0 & a_2 \end{bmatrix} \circ \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} a_0 b_0 \\ a_1 b_1 \\ a_2 b_2 \end{bmatrix}$

$\begin{bmatrix} b_0 & 0 & 0 \\ 0 & b_1 & 0 \\ 0 & 0 & b_2 \end{bmatrix} \circ \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} a_0 b_0 \\ a_1 b_1 \\ a_2 b_2 \end{bmatrix}$

Applying the DFT Fourier Matrix to the DTDCT:

$Y = F_N \cdot y \quad \quad X = F_N \cdot x \quad \quad H = F_N \cdot h$

$Y[k] = X[k] \bullet H[k]$

$F_N \cdot y = (F_N \cdot x) \bullet (F_N \cdot h)$
\[F_N \cdot y = D_h \cdot x \]

\[D_h = \begin{bmatrix} H[0] & 0 & 0 & \cdots & 0 \\ 0 & H[1] & 0 & \cdots & \cdot \\ 0 & 0 & H[2] & \cdots & \cdot \\ \cdot & \cdots & \cdots & \cdots & \cdot \\ \cdot & \cdots & \cdots & \cdots & \cdot \\ \cdot & \cdots & \cdots & \cdots & \cdot \\ 0 & \cdots & \cdots & \cdots & H[n-1] \end{bmatrix} \]

\[F_N \cdot y = D_h \cdot (F_N \cdot x) \]
\[F_N \cdot y = D_h \cdot F_N \cdot x \]
\[F_N^{-1} \cdot F_N \cdot y = F_N^{-1} \cdot D_h \cdot F_N \cdot x \]
\[I_N \cdot y = F_N^{-1} \cdot D_h \cdot F_N \cdot x \]
\[y = (F_N^{-1} \cdot D_h \cdot F_N) \cdot x \]
\[y = H_N \cdot x \]
\[\therefore H_N = F_N^{-1} \cdot D_h \cdot F_N \]
\[F_N \cdot H_N \cdot F_N^{-1} = F_N \cdot (F_N^{-1} \cdot D_h \cdot F_N) \cdot F_N^{-1} \]
\[\therefore D_h = F_N \cdot H_N \cdot F_N^{-1} \]

Therefore, the Discrete Fourier Matrix diagonalizes any circulant matrix \(H_N \).

Review:

Time Invariance

A discrete system \(T \) is said to be time invariant (T.I.) if it commutes with the discrete system \(D_{n_0} \). The system \(D_{n_0} \) acts on a discrete signal in the following manner:

\[D_{n_0} \{ x[n] \} = x[n - n_0] \]

The system \(T \) is T.I. if

\[T(D_{n_0} \{ x[n] \}) = D_{n_0} \{ T(x[n]) \} \]

The system \(D_{n_0} \) is called an \(n_0 - \text{step} \) delay system. It is also a filter.

Example: Show if \(T \{ x[n] \} = x[n] \cos \frac{2\pi n}{N} \) is a T.I. system.

Solution:
Is T T.I.?

1. $(TD_{n_0})\{x[n]\} = T(D_{n_0}\{x[n]\})$

 Let $g[n] = x[n - n_0]$

 $$T\{g[n]\} = g[n]\cos\frac{2\pi n}{N} = x[n - n_0]\cos\frac{2\pi n}{N}$$

2. $D_{n_0}T\{x[n]\} = D_{n_0}\{x[n]\cos\frac{2\pi n}{N}\}$

 Let $s[n] = x[n]\cos\frac{2\pi n}{N}$

 $$D_{n_0}\{s[n]\} = s[n - n_0] = x[n - n_0]\cos\frac{2\pi [n - n_0]}{N}$$

 \therefore The system T is not T.I.!

Observation:

$$T(D_{n_0}\{x[n]\}) = D_{n_0}\overline{T\{x[n]\}}$$

$$T\{x[n - n_0]\} = y[n - n_0]$$

Block Diagram Representation of T.I.:
Z – Transform:

Let \(x[n], n \in \mathbb{Z} \) be an arbitrary signal. Its Z – transform, if it exists, is given by

\[
X(Z) = \sum_{n=-\infty}^{\infty} x[n]Z^{-n}; \quad Z \in C
\]

where \(C \) is the set of complex numbers.

Z – Plane

\[
Z_0 = (Z_{OR}, Z_{OL})
\]

\[
Z_{OR} = \text{Re}(Z_0)
\]

\[
Z_{OL} = \text{Im}(Z_0)
\]

\[
Z_{OR} = |Z_0| \cos \theta
\]

\[
Z_{OL} = |Z_0| \sin \theta
\]

\[
Z_0 = |Z_0| e^{+j\theta}; \quad \theta \text{ is the argument of } Z_0.
\]

We say that a Z – transform function, say \(X(Z) \), exists at a point, say \(Z_0 \), if \(X(Z_0) < \infty \).

Remember \(X(Z_0) = \sum_{n=-\infty}^{\infty} x[n]Z_0^{-n} \)

Region of Convergence of a Z – transform Function:

Let \(X(Z) \) be an arbitrary Z – transform function.

The set of all values of \(Z \) for which \(X(Z) \) exists is called its region of convergence or R.O.C:

\[
\text{R.O.C of } X(Z) = \{ Z : X(Z) = \sum_{n=-\infty}^{\infty} x[n]Z^{-n} < \infty; \quad Z \in C \}
\]

Relating the Z – transform and the Discrete Time Fourier Transform:
Observation:

The equation $Z = e^{j\theta}; 0 \leq \theta \leq 2\pi$

$$Z = e^{j\theta} = \cos \theta + j \sin \theta$$

$$|Z| = (\cos^2 \theta + \sin^2 \theta)^{\frac{1}{2}} = 1$$

Let $X(Z)$ be the Z – transform of the signal $x[n]$. The discrete time Fourier transform (DTFT) of the signal $x[n]$ can be obtained from its Z – transform $X(Z)$ by evaluating $X(Z)$ on the unit circle:

$$X(\omega) = DTFT\{x[n]\} = X(Z)|_{Z = e^{j\omega}} = X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n](e^{j\omega})^{-n}; 0 \leq \omega \leq 2\pi$$

Discrete Complex Signal:

$$x : Z \rightarrow C$$

$$n \rightarrow x[n] = e^{j\left(\frac{2\pi \omega n}{N}\right)}$$

A complex signal can be represented in the following manner:

$$x[n] = x_r[n] + jx_i[n], n \in Z.$$ If n is a fixed number or value n_o, we get a complex number.

$$x[n_o] = x_r[n_o] + jx_i[n_o]$$

A complex function can also be represented in polar notation:

$$x[n] = |x[n]|e^{j\theta[n]}$$

$$|x[n]| = (X_r^2[n] + X_i^2[n])^{\frac{1}{2}}; \text{ This is the magnitude or absolute value of } x[n].$$

$$\theta[n] = Arg\{x[n]\} = \tan^{-1} \frac{X_i[n]}{X_r[n]} = \theta[n]; \text{ This is the phase, angle, or argument of } x[n].$$
Properties of complex Numbers:

Let a and b be two complex numbers. Let the a^* denote the complex conjugate of a. Then:

1. $(a+b)^* = a^* + b^*$

 \[a = a_R + j a_I; \quad b = b_R + j b_I \]

 \[a^* = a_R - j a_I; \quad b^* = b_R - j b_I \]

 \[a + b = (a_R + b_R) + j(a_I + b_I) \]

 \[a^* + b^* = (a_R + b_R) - j(a_I + b_I) \]

 \[(a + b)^* = (a_R + b_R) - j(a_I + b_I) \]

2. $(ab)^* = a^* b^*$

3. \[c = \frac{a}{b} \]

 \[|c| = \frac{|a|}{|b|} = \frac{|a|}{|b|} \]

Problem 7: Obtain the DTFT\{x^*[n]\}

Solution:

\[DTFT\{x^*[n]\} = \left[(\sum_{n=-\infty}^{\infty} x^*[n]e^{-j\omega n})^* \right] \]
\[\left(\sum_{n=-\infty}^{\infty} x^*[n] e^{-j\omega n} \right)^* = \sum_{n=-\infty}^{\infty} (x^*[n] e^{-j\omega n})^* \]
\[= \sum_{n=-\infty}^{\infty} x[n] (e^{-j\omega n})^* = \sum_{n=-\infty}^{\infty} x[n] e^{j\omega n} \]
\[= \sum_{n=-\infty}^{\infty} x[n] e^{-j(-\omega)n} \]

Let \(\lambda = -\omega \):
\[= \sum_{n=-\infty}^{\infty} x[n] e^{-j\lambda n} = X(\lambda) = X(-\omega) \]
\[\therefore \text{DTFT}\{x^*[n]\} = [X(-\omega)]^* = X^*(-\omega) \]

Problem 8: Obtain the DTFT\{x[-n]\}

Solution:

DTFT\{x[-n]\} = \sum_{n=-\infty}^{\infty} x[-n] e^{-j\omega n}

Let \(m = -n \):
\[\sum_{n=-\infty}^{\infty} x[-n] e^{-j\omega n} = \sum_{m=-\infty}^{\infty} x[m] e^{-j\omega(-m)} = \sum_{m=-\infty}^{\infty} x[m] e^{-j(-\omega)m} \]

Let \(\lambda = -\omega \):
\[= X(\lambda) = X(-\omega) \].

A signal \(x[n] \) is real if \(x^*[n] = x[n] \).

A real signal \(x[n] \) is called even if \(x[-n] = x[n] \).

Example of a real even signal:
\[x[n] = \cos(\omega_0 n) \]

Fourier Transform (DTFT) of a real even signal.

Let \(x[n] \) be real and even:
\[x[n] = x^*[n] \]
\[x[n] = x[-n] \]
\[X(\omega) = X^*(-\omega) = X(-\omega) \]

Let \(x[n] \) be a real signal:

\[x^*[n] = x[n] \]
\[X^*(-\omega) = X(\omega) \quad \text{The magnitude of every real function is symmetric} \]
\[|X^*(-\omega)| = |X(\omega)| \]

Inverse DTFT:

Let \(X(\omega) \) be the DTFT of the signal \(x[n] \). We can recover the signal \(x[n] \) from its Fourier transform by using the formula (IDTFT):

\[x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega. \]

Problem 9:

Obtain the DTFT of \(x[n] = \alpha^n u[n], |\alpha| < 1 \).

Solution:

\[X(\omega) = DTFT\{x[n]\} = \sum_{n=-\infty}^{\infty} \alpha^n \mu[n] e^{-j\omega n} = \sum_{n=0}^{\infty} \alpha^n e^{-j\omega n} \]

Expanding, we get
\[X(\omega) = 1 + \alpha e^{-j\omega} + \alpha^2 e^{-j2\omega} + \alpha^3 e^{-j3\omega} + \cdots \]

\[X(\omega) = \sum_{n=0}^{\infty} (\alpha e^{-j\omega})^n \]

Let \(b = \alpha e^{-j\omega} \)

\[X(\omega) = \sum_{n=0}^{\infty} b^n = 1 + b + b^2 + b^3 + \cdots \]

\[X(\omega) - bX(\omega) = 1 \]

\[(1 - b)X(\omega) = 1 \]

\[\therefore X(\omega) = \frac{1}{1 - b} = \frac{1}{1 - \alpha e^{-j\omega}} \]

BIBO Stability:

A system \(T \) is said to be BIBO (Bounded Input Bounded Output) Stable if its impulse response satisfies the following condition:

\[\sum_{n=-\infty}^{\infty} |h[n]| < \infty \]

Transfer function of a system \(T \):

A system \(T \) has a transfer function \(H(z) \) if the system is a filter and \(h[n] \) is its impulse response. Thus, we have \(H(z) = Z\{h[n]\} = \sum_{n=-\infty}^{\infty} h[n]z^{-n} \).

The frequency response of a filter is defined as the DTFT of its impulse response. Thus,

\[H(\omega) = \text{DTFT}\{h[n]\} = \sum_{n=-\infty}^{\infty} h[n]e^{-j\omega n} \]

We have \(H(z) \cdot X(z) = Y(z) \) or \(Z\{x[n] * h[n]\} = Z\{y[n]\} = X(z) \cdot H(z) \)

\[H(z) = \frac{Y(z)}{X(z)} \]

Poles of a Transfer Function \(H(z) \):

The poles of a transfer function are the values of \(z \) for which \(H(z) \) does not exist or tends toward infinite.
Zeros of a Transfer Function $H(z)$:

The Zeros of a transfer function $H(z)$ are the values of z for which the transfer function goes to zero.

Difference Method for filter Design Starting from an Analog Passive Filter:

Analog System:

This method consists of turning a differential equation, representing an analog passive filter, into a difference equation representing a discrete time filter.

Example: First-order RC Filter

1. Differential equations

\[
x(t) = Ri_c(t) + y(t)
\]

\[
i_c(t) = C \frac{dy(t)}{dt}
\]

\[
x(t) = RC \frac{dy(t)}{dt} + y(t)
\]

\[
y(t) = x(t) - RC \frac{dy(t)}{dt}
\]

We want

\[
\frac{dy(t)}{dt} \approx \frac{y[nTs] - y[(n-1)Ts]}{Ts}
\]

We proceed with this substitution in the differential equation in order to obtain the difference equation desired:

\[
x[nTs] = RC(\frac{y[nTs] - y[(n-1)Ts]}{Ts}) + y[nTs]
\]
We proceed to normalize the sampling time:

\[T_s = 1 \]

We then have

\[x[n] = RC(y[n] - y[n-1]) + y[n] \]
\[= RCy[n] - RCy[n-1] + y[n] \]
\[x[n] + RCy[n-1] = (RC + 1)y[n] \]
\[\therefore y[n] = \frac{x[n] + RCy[n-1]}{(RC + 1)} \]
\[\frac{1}{a_0} \cdot y[n] = \frac{1}{RC + 1} x[n] + \frac{RC}{RC + 1} y[n-1] \]

Discrete System: First-order filter simulating an RC Filter.

To obtain the impulse response, we proceed as follows:

Let \(x[n] = \delta[n] \), then \(y[n] = h[n] \).

\[h[n] = b_0 \delta[n] + a_1 h[n-1] \]
\[h[0] = b_0 \delta[0] + a_1 h[-1] = b_0 \]
\[h[1] = b_0 \delta[1] + a_1 h[0] = a_1 b_0 \]
\[h[2] = b_0 \delta[2] + a_1 h[1] = a_1^2 b_0 \]
\[h[3] = a_1 h[2] = a_1^3 b_0 \]
\[h[m] = a_1^m b_0 \]
\[\therefore h[n] = a_1^n b_0 \delta[n] \]
The transfer function of the filter is given by

\[H(z) = Z\{h[n]\} = \sum_{n=-\infty}^{\infty} h[n]z^{-n} \]

\[H(z) = \sum_{n=0}^{\infty} a^n b_0 z^{-n} = b_0 \sum_{n=0}^{\infty} \left(\frac{a_1}{z} \right)^n \]

Let \(c = \frac{a_1}{z} \),

\[H(z) = b_0 \sum_{n=0}^{\infty} (c)^n \]

\[H(z) = b_0 (1 + c + c^2 + ...) \]

\[cH(z) = b_0 (c + c^2 + c^3 + ...) \]

\[H(z) = b_0 (1) \]

\[H(z) = \frac{b_0}{(1-c)}; \quad |c| < 1 \]

The transfer function of the filter exists only for values of \(z \) which satisfy the condition \(|c| < 1 \), hence the Region of Convergence is \(z > a_1 \).

Problem 10:
Obtain the poles and zeros of the previous transfer function and draw a pole-zero plot.

Solution:

\[H(z) = \frac{b_0}{(1-a_1/z)} = \frac{zb_0}{z-a_1} \]

We have one pole at \(z-a_1 = 0 \) or \(z = a_1 \).

We have one zero at \(z = 0 \).

A filter \(T \) is said to be BIBO stable if

\[\sum_{n=-\infty}^{\infty} |h[n]| < \infty. \]

We know that if we have \(H(z) \), we can get \(H(\omega) \) by evaluating \(H(z) \) on the unit circle:
\[H(\omega) = H(z) \big|_{z=e^{j\omega}} = \sum_{n=-\infty}^{\infty} h[n]z^{-n} \big|_{z=e^{j\omega}} = \sum_{n=-\infty}^{\infty} h[n]e^{-j\omega n} \]

Observation:

1) A right-sided signal is a causal signal if it starts at a point \(n \geq 0 \).
2) A left-sided signal is anti-causal if it starts at a point \(n \leq -1 \).
3) The poles are the values of \(z \) for which \(H(z) \) tends to infinity. The region of convergence or R.O.C. of \(H(z) \) are the values of \(z \) for which \(H(z) \) exists. The transfer function \(H(z) \) exists if it is less than infinity. This implies that the R.O.C. cannot have poles.

Problem 11:

Explain why a causal FIR filter is always stable.

BIBO Stability:

\[x[n] \xrightarrow{T} y[n] = T(x[n]) \]

\[y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} h[k]x[n-k], n \in \mathbb{Z} \]

Bounded input implies that \(|x[n]| \leq M_x, n \in \mathbb{Z} \), where \(M_x \) is a positive number no matter how large.
We want \(|y[n]| \leq M_y, n \in \mathbb{Z} \), where \(M_y \) is a positive number.

\[|y[n]| = \left| \sum_{k=-\infty}^{\infty} h[k]x[n-k] \right| \leq \sum_{k=-\infty}^{\infty} |h[k]| |x[n-k]| \leq M_x \sum_{k=-\infty}^{\infty} |h[k]| \]

Given that the input \(x[n] \) is bounded, the output \(y[n] \) will always be bounded provided that \(\sum_{k=-\infty}^{\infty} |h[k]| < \infty \)
We know that
\[H(\omega) = H(z)|_{z=e^{i\omega}} \rightarrow \text{(This evaluation on the unit circle)} \]

A necessary and sufficient condition for the Z-transform of an arbitrary signal, say \(x[n] \), to exist is that

\[\sum_{n=-\infty}^{\infty} |x[n] z^{-n}| < \infty \]

If \(\sum_{n=-\infty}^{\infty} |h[n] z^{-n}| < \infty \) then \(H(z) \) exists at \(z \).

Let \(z = e^{+j\omega} \),

\[\sum_{n=-\infty}^{\infty} |h[n] z^{-n}| < \infty, \quad \sum_{n=-\infty}^{\infty} |h[n]| e^{-j\omega} = \sum_{n=-\infty}^{\infty} |h[z]| < \infty \]

Observation:

If a filter is causal, in order to be BIBO stable, all its poles must be inside the unit circle.

Analog to Digital Conversion Techniques:

- \(x_m(t) \) \(\xrightarrow{\text{PAM Transmitter}} \) \(x_g(t) \) \(\xrightarrow{\text{Uniform Quantizer}} \) \(x_d(t) \) \(\xrightarrow{\text{Coder}} \) \(x_s(t) \)

- **Continuous or Analog signal**
- **Discrete Signal**
- **Digital Signal**
- **A/D Conversion**

Pulse Code Modulation System
Time - Frequency System Analysis:

The signal \(x_m(t) \) is a bandlimited signal with maximum frequency content equal to \(B = f_{\text{max}} \). \(B \) is called the bandwidth of the signal \(x_m(t) \):

\[
 x_m(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(t) g_s(t - \lambda) d\lambda
\]

For the ideal sampler:

\[
s(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_s)
\]

Since \(s(t) \) is a periodic signal, with fundamental period of duration \(T_s \), we can represent this signal in terms of complex exponential Fourier series:

\[
s(t) = \sum_{n=-\infty}^{\infty} C_n e^{j2\pi nf_0 t}; \quad f_0 = \frac{1}{T_s} = F_s; \quad n \in \mathbb{Z}
\]

\[
C_n = \frac{1}{T_s} \int_{-\frac{T_s}{2}}^{\frac{T_s}{2}} s(t)e^{-j2\pi nf_0 t} dt = \frac{1}{T_s} \int_{-\frac{T_s}{2}}^{\frac{T_s}{2}} s(t)e^{-j2\pi nF_s t} dt
\]
\[C_n = \frac{1}{T_s} \int_{-\frac{T_s}{2}}^{\frac{T_s}{2}} \delta(t)e^{-j2\pi F_s t} \, dt = \frac{1}{T_s} = F_s ; \, n \in \mathbb{Z} \]

\[s(t) = \sum_{n=-\infty}^{\infty} F_s e^{j2\pi F_s t} \]

\[s(f) = \mathcal{F}\{ \sum_{n=-\infty}^{\infty} F_s e^{j2\pi F_s t} \} = \sum_{n=-\infty}^{\infty} F_s \mathcal{F}\{ e^{j2\pi F_s t} \} \]

\[\therefore s(f) = \sum_{n=-\infty}^{\infty} F_s \delta(f-nF_s) \]

Let

\[X_m(f) = \mathcal{F}\{ x_m(t) \} \]

So we have,

\[\mathcal{F}\{ x(t) \} = X_s(f) = \mathcal{F}\{ x_m(t) \cdot s(t) \} = \mathcal{F}\{ x_m(t) \} \ast \mathcal{F}\{ s(t) \} = X_m(f) \ast S(f) \]

\[X_s(f) = X_m(f) \ast S(f) = X_m(f) \ast \left(\sum_{n=-\infty}^{\infty} F_s \delta(f-nF_s) \right) = \sum_{n=-\infty}^{\infty} F_s X_m(f) \ast \delta(f-nF_s) \]

We know that

\[X_m(f) \ast \delta(f-nF_s) = \int_{-\infty}^{\infty} X_m(\lambda) \delta(f-nF_s-\lambda) \, d\lambda = X_m(f-nF_s) \]

\[\therefore X_s(f) = \sum_{n=-\infty}^{\infty} F_s X_m(f-nF_s) \]
Example:

\[\max \max \geq -f \]

Nyquist Theorem:

A signal \(x_m(t) \) can be recovered from its samples, \(x_m(nT_s), n \in \mathbb{Z} \), if the signal \(x_m(t) \) is bandlimited, with bandwidth \(B = f_{\text{max}} \), and the sampling frequency satisfies the condition: \(F_s \geq 2B \) or \(F_s \geq 2f_{\text{max}} \).

We want \(F_s - f_{\text{max}} \geq f_{\text{max}} \) or \(F_s \geq 2f_{\text{max}} \).

Analog to Digital Conversion:

PAM Transmitter
\[h(t) = g_\tau(t) = \begin{cases} 1, & 0 \leq t \leq \tau \\ 0, & \text{otherwise} \end{cases} \]

\[x_s(t) = x_m(t) \left(\sum_{n=-\infty}^{\infty} \delta(t - nT_s) \right) = \sum_{n=-\infty}^{\infty} x_m(nT_s) \delta(t - nT_s) \]

\[x_g(t) = x_s(t) * g_\tau(t) = \int_{-\infty}^{\infty} x_s(\lambda) g_\tau(t - \lambda) d\lambda = \int_{-\infty}^{\infty} \left(\sum_{n=-\infty}^{\infty} x_m(nT_s) \delta(\lambda - nT_s) \right) g_\tau(t - \lambda) d\lambda \]

\[x_g(t) = \sum_{n=-\infty}^{\infty} x_m(nT_s) \int_{-\infty}^{\infty} \delta(\lambda - nT_s) g_\tau(t - \lambda) d\lambda \]

\[x_g(t) = \sum_{n=-\infty}^{\infty} x_m(nT_s) g_\tau(t - nT_s) \]
\[x_s(t) = x_m(t)\left(\sum_{n=-\infty}^{\infty} \delta(t-nT_s) \right) = \sum_{n=-\infty}^{\infty} x_m(t) \delta(t-nT_s) = \sum_{n=-\infty}^{\infty} x_m(nT_s) \delta(t-nT_s) \]

\[x_g(t) = \sum_{n=-\infty}^{\infty} x_m(nT_s) g_\tau(t-nT_s) \]

\[x_g(t) = ...x_m(0)g_\tau(t) + x_m(T_s)g_\tau(t-T_s) + x_m(2T_s)g_\tau(t-2T_s) + ... \]

Zero Order Hold Filter:

We get the zero-order-hold filter when \(\tau = T_s \).

Rules for Designing a Uniform Quantizer:

1) Obtain the maximum values among the samples of \(x_g(t) (x_g(nT_s), n \in Z) \)
We call this maximum \(\max \{ x_g(t) \} \)

2) Obtain the minimum value among the samples of \(x_g(t) \) \((x_g(nT_s) \text{ } n \in \mathbb{Z}) \).

We call this minimum \(\min \{ x_g(t) \} \).

3) Determine the number of levels or possible outputs permitted to the quantizer. We call this number of levels \(L \).

4) Compute the quantization step \(\Delta \)

\[
\Delta = \frac{\max \{ x_g(t) \} - \min \{ x_g(t) \}}{L}.
\]

5) Determine or identify the “quantization levels” starting always at \(L_1 = \min \{ x_g(t) \} \).

Each quantization level is obtained using the recurrence formula \(L_{n+1} = L_n + \Delta; \ n = 1:1:L, \ L_1 = \min \{ x_g(t) \} \).

6) Determine or identify the “quantization values”, known here as the values \(\nu_n \), as the mid-points between the quantization levels. We get the quantization values using the recurrence formula

\[
\nu_n = L_n + \frac{\Delta}{2}; \ n = 1:1:L.
\]

Filter Design: First-order

\[
\begin{align*}
x[n] & \xrightarrow{b_0} \sum_0^1 L_n = b_0 x[n] + a_1 y[n-1] \\
S & \\
\end{align*}
\]

\[
h[n] = b_0 a^n u[n]
\]

FIR
FIR Filter Design: Windowing Technique

Given the DTFT $X(\omega)$ of an arbitrary signal $x[n]$, the signal can be recovered from its spectrum using the following formula for inverse DTFT:

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega, \quad n \in Z$$

If the signal $X(\omega)$ is the frequency response of a filter, then $X(\omega) = H(\omega)$. The impulse response is then obtained from the frequency response as follows:

$$h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(\omega) e^{j\omega n} d\omega, \quad n \in Z$$

$h : Z \to C$

Low-pass FIR Filter Design:

1. Select an ideal filter with a prescribed frequency response.
2. Take the inverse DTFT to obtain an infinite response.
3. Multiply in the time domain by a window with the desired order or length. Allow this first window to be rectangular.
4. Multiply the result of part 3 by a new window to improve the desired frequency response.

Problem 12:

Design an FIR low-pass filter of length or order equal to N and frequency response (digital frequency) with cut-off ω_c.

Solution:

1.

\[
\begin{cases}
h_D[n] = h[n], & n \in Z_N \\
0, & \text{otherwise}
\end{cases}
\]
2. \[
\begin{align*}
 h_L[n] &= \frac{1}{2\pi} \int_{-\pi}^{\pi} H_L(\omega) e^{j\omega n} d\omega \\
 h_L[n] &= \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega \\
 h_L[n] &= \frac{1}{2\pi} \frac{1}{\pi n} e^{j\omega n} \bigg|_{-\omega_c}^{\omega_c} \\
 h_L[n] &= \frac{1}{\pi n} \left[\frac{e^{j\omega_c n} - e^{-j\omega_c n}}{2j} \right] \\
 h_L[n] &= \omega_c \frac{\sin[\omega_c n]}{\pi n}; \quad \sin c_\theta = \frac{\sin \theta}{\theta}
\end{align*}
\]
3. To obtain an FIR filter \(h_D[n] \), we proceed as follows
\[
h_D[n] = h_L[n] \cdot v_R[n]
\]

Circular Continuous-Frequency Convolution Theorem

\[
DTFT\{h_D[n]\} = H_D(\omega) = DTFT\{h_L[n] \cdot v_R[n]\}
\]

\[
H_D(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_L(\lambda)V_R(\omega - \lambda)d\lambda
\]

\[
H_D(\omega) = H_L(\omega) \otimes V_R(\omega)
\]

Infinite Impulse Response (IIR) Filter Design:

There are many techniques for IIR filter design. We will concentrate on two very important techniques: Impulse Response Invariant and Analog Filter to Digital Filter transformation.

Properties of the Z - transform.

\(Z\{x[n]\} = X(z) \)

Let \(g[n] = x[n-n_0] \)

\[
\begin{align*}
\mathcal{Z}\{x[n]\} &= g[n] = x[n-n_0] \\
\mathcal{T}\{x[n]\} &= h[n] = x[n-n_0] \\
\mathcal{T}\{\delta[n]\} &= \delta[n] = \delta[n-n_0]
\end{align*}
\]

Let \(x[n] = \delta[n] \)
\[Z\{g[n]\} = G(z) \]
\[G(z) = \sum_{n=-\infty}^{\infty} g[n]z^{-n} \]
\[G(z) = \sum_{n=-\infty}^{\infty} x[n-n_0]z^{-n} \]

Let \(m = n - n_0 \); \(n = m + n_0 \)
\[G(z) = \sum_{m=-\infty}^{\infty} x[m]z^{-(m+n_0)} \]
\[G(z) = z^{-n_0} \sum_{m=-\infty}^{\infty} x[m]z^{-m} \]
\[G(z) = z^{-n_0} X(z) \]

Problem 13:
Obtain a Block Diagram Representation of the system below using Z-Transform

Solution:
\[y[n] = b_0x[n] + a_1y[n-1] \]
\[Z\{y[n]\} = Z\{b_0x[n] + a_1y[n-1]\} \]
\[Y(z) = b_0 Z\{x[n]\} + a_1 Z\{y[n-1]\} \]
\[Y(z) = b_0 X(z) + a_1 Z\{y[n-1]\} \]

We know in general that
\[Z\{y[n-n_0]\} = z^{-n_0} Y(z) \]

Let \(n_0 = 1 \)
\[Z\{y[n-1]\} = z^{-1} Y(z) \]

Then
\[Y(z) = b_0 X(z) + a_1 z^{-1} Y(z) \]

We know:
\[Y(z) = X(z) \cdot H(z) \]

or
\[H(z) = \frac{Y(z)}{X(z)} \]

\[Y(z) - a_1 z^{-1} Y(z) = b_0 X(z) \]
\[(1 - a_1 z^{-1}) Y(z) = b_0 X(z) \]

\[H(z) = \frac{b_0}{1 - a_1 z^{-1}} = \frac{Y(z)}{X(z)} \]

Block Diagram Representation:
IIR Filter Design:

Second order Filter Analysis:

General filter of the form

\[y[n] + a_1 y[n-1] + a_2 y[n-2] = b_1 x[n] \]

We want to obtain

\[H(z) = \frac{Y(z)}{X(z)} \]

\[y[n] = b_1 x[n] - a_1 y[n-1] - a_2 y[n-2] \]

\[Z\{y[n]\} = Z\{b_1 x[n] - a_1 y[n-1] - a_2 y[n-2]\} \]

\[= b_1 Z\{x[n]\} - a_1 Z\{y[n-1]\} - a_2 Z\{y[n-2]\} \]

\[Z\{y[n] + a_1 y[n-1] + a_2 y[n-2]\} = b_1 X(z) \]

\[H(z) = \frac{b_1}{1 + a_1 z^{-1} + a_2 z^{-2}} \]

\[H(z) = \frac{z^2 b_1}{z^2 + a_1 z + a_2} \]

Poles of \(H(z) \Rightarrow P_{1,2} = -\frac{1}{2} a_1 \pm \frac{1}{2} \sqrt{a_1^2 - 4a_2} \)

1) If \(a_1^2 \geq 4a_2 \), the poles are on the real line.

2) If \(a_1^2 < 4a_2 \), \(P_{1,2} = -\frac{1}{2} a_1 + j \frac{1}{2} \sqrt{4a_2 - a_1^2} ; \quad a_1^2 - 4a_2 \rightarrow -(4a_2 - a_1^2) \)

\[|H(s)|^2 = H(s) \cdot H^*(s) \]

\[L^{-1}\{H(s)\} = h(t) \]

FIR Filter Implementation using the Z-transform

The FIR filters are also called non-recursive filters or transversal filters.
\[
y[n] = \sum_{k=0}^{M-1} x[k] h[n-k]
\]
\[
y[n] = \sum_{k=0}^{M-1} h[k] x[n-k]
\]
The filter in this case is of order M!
Let \(b[k] = h[k] \)
\[
y[n] = \sum_{k=0}^{M-1} b[k] x[n-k]
\]
Taking the Z – transform of this equation, we get
\[
Y(z) = Z\{ \sum_{k=0}^{M-1} b[k] x[n-k] \} = \sum_{k=0}^{M-1} b[k] Z\{ x[n-k] \} = \left(\sum_{k=0}^{M-1} b[k] z^{-k} \right) X(z)
\]
\[
H(z) = \frac{Y(z)}{X(z)} = \sum_{k=0}^{M-1} b[k] z^{-k}
\]

Fast Fourier Transform:

It is an algorithm to compute the discrete Fourier transform in an efficient manner. There are many fast Fourier transform algorithms. We will concentrate on the algorithms designed by John Tukey and James Cooley in 1965 and are commonly known as Cooley – Tukey FFT algorithms.

Cooley – Tukey FFT algorithms:

The objective is to develop an efficient algorithm to compute the matrix-vector operation:

\[
X = f_n x
\]
The direct computation of this matrix-vector operation required N^2 multiplications and $N(N - 1)$ additions.

Example: $N = 4$

$$X = f_4 x = \begin{bmatrix} 1 & 1 & 1 & 1 \\ w_4 & w_4^2 & w_4^3 & 1 \\ w_4^2 & 1 & w_4^2 & w_4 \\ w_4^3 & w_4^2 & w_4 & 1 \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{bmatrix} = \begin{bmatrix} X[0] \\ X[1] \\ X[2] \\ X[3] \end{bmatrix}$$

$$w_4 = e^{-\frac{2\pi}{4}}$$

$$w_4^6 = e^{-\frac{2\pi}{4}} = e^{-\frac{2\pi}{4}} \cdot e^{-\frac{2\pi}{4}}$$

For $N = 2^M$, a power of 2, the Cooley-Tukey algorithm reduces the number of multiplications to $N \log_2 N$.

Example:

<table>
<thead>
<tr>
<th>N</th>
<th>Direct Method</th>
<th>Cooley-Tukey Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024</td>
<td>$(1024)^2$ multiplications</td>
<td>$1024 \log_2 1024 = (10)1024$</td>
</tr>
</tbody>
</table>

Cooley-Tukey Algorithm Technique:

Additive property of the DFT:

Example: $N = 4$

$$X = F_4 x = F_4 \begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{bmatrix}$$

1. We will represent x as a sum of two vectors: $x[n] = x_e[n] + x_o[n]$, $n \in \mathbb{Z}_4$
2. We will use the linearity property of the DFT $F_4 x = F_4 (x_e + x_0) = F_4 x_e + F_4 x_0$

sparse matrix

$$F_4 x_e = \begin{bmatrix} 1 & 1 & 1 & 1 \\
1 & w_4 & w_4^2 & w_4^3 \\
1 & w_4^2 & 1 & w_4^2 \\
1 & w_4^3 & w_4^2 & w_4 \end{bmatrix} x[0] = \begin{bmatrix} 1 & 0 & 1 & 0 \\
1 & 0 & w_4 & 0 \\
1 & 0 & w_4^2 & 0 \\
1 & 0 & w_4^3 & 0 \end{bmatrix} x[0] = x[0] + x[2]$$

$$F_4 x_0 = \begin{bmatrix} 1 & 1 \\
1 & w_4^2 \\
1 & 1 \\
1 & w_4^3 \\end{bmatrix} x[0] = \begin{bmatrix} x[0] + x[2] \\
x[0] + w_4^2 x[2] \\
x[0] + x[2] \\
x[0] + w_4^2 x[2] \end{bmatrix}$$

$$w_4^2 = e^{-\frac{2\pi^2}{4}} = e^{-j\pi} = \cos \pi - j \sin \pi = -1$$

$$\begin{bmatrix} 1 & 1 \\
1 & -1 \end{bmatrix} x[2] = \begin{bmatrix} x[0] + x[2] \\
x[0] - x[2] \end{bmatrix}$$

Butterfly Block Diagram (Flow Diagram)
Representation of the FFT:

\[
\begin{bmatrix}
 x[0] \\
 x[2]
\end{bmatrix} \rightarrow
\begin{bmatrix}
 x[0] + x[2] \\
 x[0] - x[2]
\end{bmatrix}
\]

\[F_4x_e = \begin{bmatrix} F_2^1 \end{bmatrix} \begin{bmatrix} x[0] & x[2] \end{bmatrix}\]

We want to compute

\[F_4x = F_4x_e + F_4x_0\]

16 multiplications
12 summations

1. \[F_4x_e = \begin{bmatrix} F_2^1 \end{bmatrix} \begin{bmatrix} x[0] \\
 x[2]\end{bmatrix} = F_4 \begin{bmatrix} x[0] \\
 0 \\
 x[2] \\
 0\end{bmatrix}\]

2. \[F_4x_0 = F_4 \begin{bmatrix} 0 \\
 x[1] \\
 0 \\
 x[3]\end{bmatrix}\]

In general, we want to know

\[\text{DFT} \left\{ \frac{x[n - n_0]}{x[n]} \right\} = ?\]

\[\text{DFT} \left\{ x[n-n_0] \right\} = \sum_{n=0}^{N-1} x[n-n_0] w_n^{Kn} \]

\[m = n - n_0, n = m + n_0\]

\[\text{DFT} \left\{ x[n-n_0] \right\} = \sum_{m=-n_0}^{m+(N-1-n_0)} x[m] w_n^{K(m+n_0)}\]
\[W_N^{K_n} \sum_{m=-n_0}^{m=N-1-n_0} x[m] W_N^{K_m} \]

Example:

Remainder \(\left(\frac{P}{N} \right) = < p >_N = < p + qN >_N \)

\(< -3 >_4 = < -3 + 4 >_4 = < -3 + 4 >_4 = < 1 >_4 = 1 \)

\(x[-3] \leftrightarrow x[1] \)

\[G[K] = W_N^{K_{n_0}} \left(\sum_{m=0}^{N-1} x[n] \cdot W_N^{K_m} \right) \]
Hadamard product

\[
\text{DFT } \{x[n-n_0]\} = W_N^{K N_0} \cdot X[K]
\]

\[
W_N^{K N_0} = e^{-j\frac{2\pi K N_0}{N}}
\]

Homework:

Express \(F_4 x_0 \) in matrix form.

\[
G[k] \rightarrow \text{long. } N
\]

\[
G[k] = W_N^{K N_0} \cdot X[k]
\]

\[
G[k] = W_N^{K N_0} \cdot (F_4 x)
\]

\[
F_4 x_0 = \begin{bmatrix}
1 & 1 & 1 & 1 & 0 \\
1 & w_4 & w_4^2 & w_4^3 & x[3] \\
1 & w_4^2 & 1 & w_4^3 & 0 \\
1 & w_4^3 & w_4^2 & w_4 & x[3]
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0 & 1 & 0 & 1 & 0 \\
0 & w_4 & 0 & w_4^3 & x[3] \\
0 & w_4^2 & 0 & w_4^2 & 0 \\
0 & w_4^3 & 0 & w_4 & x[3]
\end{bmatrix}
\]
Compacting, we get

$$F_4 x_0 = \begin{bmatrix} 1 & 1 \\ w_1 & w_3^2 \\ w_2 & w_3^1 \\ w_3 & w_4 \end{bmatrix} \begin{bmatrix} x[1] \\ x[3] \end{bmatrix} = \begin{bmatrix} x[1] + x[3] \\ w_1 x[1] + w_3 x[3] \\ w_2 x[1] + w_3 x[3] \\ w_3 x[1] + w_4 x[3] \end{bmatrix}$$

We know that

$$\text{DFT}_N \{x[n-n_0]_N\} = W_N^{kn_0} \cdot X[K]$$

Example: $N = 4$, $x[n] = \{x[0], x[1], x[2], x[3]\}$

$$y[n] = x[n-n_0]_N; n_0 = 2$$

$$y[n] = x[n-2]_4; n \in Z_4$$

$$y[0] = x[0-2]_4 = x[2]$$

$$y[1] = x[1-2]_4 = x[3]$$

$$y[2] = x[2-2]_4 = x[0]$$

$$y[3] = x[3-2]_4 = x[1]$$

$$< p >_N = < p + qN >_N$$
\[
\left\langle p + qN \right\rangle_N = \text{Remainder}\left(\frac{P + qN}{N}\right) = \\
\text{Remainder}\left(\frac{P}{N}\right) + \text{Remainder}\left(\frac{qN}{N}\right)
\]

\[
\left\langle 1 \right\rangle_4 = 1
\]

\[
\left\langle 5 \right\rangle_4 = \left\langle 1 + 4 \right\rangle_4 = \left\langle 1 \right\rangle_4 + \left\langle 4 \right\rangle_4
\]

\[
\left\langle 9 \right\rangle_4 = \left\langle 1 + 2 \cdot 4 \right\rangle_4 = \left\langle 1 \right\rangle_4 + \left\langle 8 \right\rangle_4
\]

\[
\left\langle 21 \right\rangle_4 = \left\langle 1 + 5 \cdot 4 \right\rangle_4 = \left\langle 1 \right\rangle_4 + \left\langle 20 \right\rangle_4
\]

\[
\left\langle -21 \right\rangle_{11} = \left\langle -21 + 2 \cdot 11 \right\rangle = 1
\]

\[y[n] = \{x[2], x[3], x[0], x[1]\}\]

\[
\begin{bmatrix}
x[0] \\
x[1] \\
x[2] \\
x[3]
\end{bmatrix}
\rightarrow
\begin{bmatrix}
x[3] \\
x[0] \\
x[1] \\
x[2]
\end{bmatrix}
\rightarrow
\begin{bmatrix}
x[2] \\
x[3] \\
x[0] \\
x[1]
\end{bmatrix}
\rightarrow
\begin{bmatrix}
x[1] \\
0 \\
x[3] \\
0
\end{bmatrix}
\]

\[
F_4 = \begin{bmatrix}
x[1] \\
x[3]
\end{bmatrix}
\cdot
\begin{bmatrix}
F_2 \\
F_2
\end{bmatrix}
= \text{DFT}_4\{y[n]\} = S[K]
\]

We want
\[
F_4 \begin{bmatrix}
0 \\
x[1] \\
0 \\
x[3]
\end{bmatrix} = DFT_4 \{ s[<n - n_0>] \}; n_0 = 1
\]

\[
F_4 \begin{bmatrix}
0 \\
x[1] \\
0 \\
x[3]
\end{bmatrix} = W_4^{kn_0} \cdot S[k]; k \in Z_4
\]

If \(n_0 = 1 \)

\[
w_4^{kn_0} = \begin{bmatrix}
1 \\
w_4 \\
w_4^2 \\
w_4^3
\end{bmatrix}
\]

\[
F_4 \begin{bmatrix}
0 \\
x[1] \\
0 \\
x[3]
\end{bmatrix} = \begin{bmatrix}
1 \\
w_4 \\
w_4^2 \\
w_4^3
\end{bmatrix} \cdot \begin{bmatrix}
S[0] \\
S[1] \\
S[2] \\
S[3]
\end{bmatrix}
\]

\[
\therefore F_4 \begin{bmatrix}
0 \\
x[1] \\
0 \\
x[3]
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & w_4 & 0 & 0 \\
0 & 0 & w_4^2 & 0 \\
0 & 0 & 0 & w_4^3
\end{bmatrix} \cdot \begin{bmatrix}
F_2 \\
F_2 \\
F_2
\end{bmatrix} \begin{bmatrix}
x[1] \\
x[3]
\end{bmatrix}
\]

Remember:
\[F_2 = \begin{bmatrix} 1 & 1 \\ 1 & w_4^2 \\ 1 & w_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & w_4 \end{bmatrix} \]

\[
\begin{bmatrix} 1 & 1 \\ w_4 & w_4^3 \\ w_4^2 & w_4^2 \\ w_4^3 & w_4 \end{bmatrix} \begin{bmatrix} x[1] \\ x[3] \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & w_4 & 0 & 0 \\ 0 & 0 & w_4^2 & 0 \\ 0 & 0 & 0 & w_4^3 \end{bmatrix} \begin{bmatrix} 1 \\ w_4^2 \\ x[3] \end{bmatrix}
\]

\[F_4x = F_4x_e + F_4x_0 \]