Semantic Analysis
Typechecking in COOL

Lecture 7
Outline

• The role of semantic analysis in a compiler
 - A laundry list of tasks

• Scope

• Types
The Compiler So Far

• **Lexical analysis**
 - Detects inputs with illegal tokens

• **Parsing**
 - Detects inputs with ill-formed parse trees

• **Semantic analysis**
 - Last “front end” phase
 - Catches more errors
What's Wrong?

• Example 1

 `let y: Int in x + 3`

• Example 2

 `let y: String ← "abc" in y + 3`
Why a Separate Semantic Analysis?

• Parsing cannot catch some errors

• Some language constructs are not context-free
 - Example: All used variables must have been declared (i.e. scoping)
 - Example: A method must be invoked with arguments of proper type (i.e. typing)
What Does Semantic Analysis Do?

• Checks of many kinds . . . coolc checks:
 1. All identifiers are declared
 2. Types
 3. Inheritance relationships
 4. Classes defined only once
 5. Methods in a class defined only once
 6. Reserved identifiers are not misused
 And others . . .

• The requirements depend on the language
Scope

• Matching identifier declarations with uses
 - Important semantic analysis step in most languages
 - Including COOL!
Scope (Cont.)

• The **scope** of an identifier is the portion of a program in which that identifier is accessible.

• The same identifier may refer to different things in different parts of the program:
 - Different scopes for same name don’t overlap.

• An identifier may have restricted scope.
Static vs. Dynamic Scope

• **Most languages have static scope**
 - Scope depends only on the program text, not run-time behavior
 - Cool has static scope

• **A few languages are dynamically scoped**
 - Lisp, SNOBOL
 - Lisp has changed to mostly static scoping
 - Scope depends on execution of the program
Static Scoping Example

let x: Int <- 0 in
{
 x;
 let x: Int <- 1 in
 x;
 x;
 x;
}
Static Scoping Example (Cont.)

```plaintext
let x: Int <- 0 in
{
  x;
  let x: Int <- 1 in
  x;
  x;
}

Uses of x refer to closest enclosing definition
```
Dynamic Scope

• A dynamically-scoped variable refers to the closest enclosing binding in the execution of the program

• Example

```java
Class foo {
    a : Int ← 4;
    g(y : Int) : Int {y + a};
    f() : Int { let a ← 5 in g(2) }
    - When invoking f() the result will be 6
```

• More about dynamic scope later in the course
Scope in Cool

• Cool identifier bindings are introduced by
 - Class declarations (introduce class names)
 - Method definitions (introduce method names)
 - Let expressions (introduce object id’s)
 - Formal parameters (introduce object id’s)
 - Attribute definitions in a class (introduce object id’s)
 - Case expressions (introduce object id’s)
Implementing the Most-Closely Nested Rule

• Much of semantic analysis can be expressed as a recursive descent of an AST
 - Process an AST node \(n \)
 - Process the children of \(n \)
 - Finish processing the AST node \(n \)
Implementing . . . (Cont.)

- Example: the scope of \texttt{let} bindings is one subtree

\[
\text{let } x: \text{Int} \leftarrow 0 \text{ in } e
\]

- \texttt{x} can be used in subtree \texttt{e}
Symbol Tables

- Consider again: `let x: Int ← 0 in e`
- Idea:
 - Before processing `e`, add definition of `x` to current definitions, overriding any other definition of `x`
 - After processing `e`, remove definition of `x` and restore old definition of `x`

- A symbol table is a data structure that tracks the current bindings of identifiers
Scope in Cool (Cont.)

• Not all kinds of identifiers follow the most-closely nested rule

• For example, class definitions in Cool
 - Cannot be nested
 - *Are globally visible* throughout the program

• In other words, a class name can be used before it is defined
Example: Use Before Definition

Class Foo {
 ... let y: Bar in ...
};

Class Bar {
 ...
};
More Scope in Cool

Attribute names are global within the class in which they are defined

Class Foo {
 f(): Int { a };
 a: Int ← 0;
}
More Scope (Cont.)

• Method and attribute names have complex rules

• A method need not be defined in the class in which it is used, but in some parent class

• Methods may also be redefined (overridden)
Class Definitions

- Class names can be used before being defined
- We can’t check this property
 - using a symbol table
 - or even in one pass

Solution
- Pass 1: Gather all class names
- Pass 2: Do the checking

Semantic analysis requires multiple passes
- Probably more than two
Types

• What is a type?
 - The notion varies from language to language

• Consensus
 - A set of values
 - A set of operations on those values

• Classes are one instantiation of the modern notion of type
Why Do We Need Type Systems?

Consider the assembly language fragment

```
addi $r1, $r2, $r3
```

What are the types of \$r1, \$r2, \$r3?
Types and Operations

- Certain operations are legal for values of each type
 - It doesn’t make sense to add a function pointer and an integer in C
 - It does make sense to add two integers
 - But both have the same assembly language implementation!
Type Systems

• A language’s type system specifies which operations are valid for which types

• The goal of type checking is to ensure that operations are used with the correct types
 - Enforces intended interpretation of values, because nothing else will!

• Type systems provide a concise formalization of the semantic checking rules
What Can Types do For Us?

- Can detect certain kinds of errors
- Memory errors:
 - Reading from an invalid pointer, etc.
- Violation of abstraction boundaries:

```java
class FileSystem {
    open(x: String): File {
        ...
    }
    ...
}

class Client {
    f(fs: FileSystem) {
        File fdesc <- fs.open("foo")
        ...
    }
    ...
} -- f cannot see inside fdesc!
```
Type Checking Overview

• Three kinds of languages:
 - *Statically typed:* All or almost all checking of types is done as part of compilation (*C, Java, Cool*)
 - *Dynamically typed:* Almost all checking of types is done as part of program execution (*Scheme*)
 - *Untyped:* No type checking (*machine code*)
The Type Wars

- Competing views on static vs. dynamic typing
- Static typing proponents say:
 - Static checking catches many programming errors at compile time
 - Avoids overhead of runtime type checks
- Dynamic typing proponents say:
 - Static type systems are restrictive
 - Rapid prototyping easier in a dynamic type system
The Type Wars (Cont.)

• In practice, most code is written in statically typed languages with an “escape” mechanism
 - Unsafe casts in C, Java

• It’s debatable whether this compromise represents the best or worst of both worlds
Type Checking in Cool
Outline

• Type concepts in COOL

• Notation for type rules
 – Logical rules of inference

• COOL type rules

• General properties of type systems
Cool Types

• The types are:
 - Class names
 - SELF_TYPE
 - Note: there are no base types (as in Java int, ...)

• The user declares types for all identifiers

• The compiler infers types for expressions
 - Infers a type for every expression
Type Checking and Type Inference

• **Type Checking** is the process of verifying fully typed programs

• **Type Inference** is the process of filling in missing type information

• The two are different, but are often used interchangeably
Rules of Inference

• We have seen two examples of formal notation specifying parts of a compiler
 - Regular expressions (for the lexer)
 - Context-free grammars (for the parser)

• The appropriate formalism for type checking is logical rules of inference
Why Rules of Inference?

- Inference rules have the form
 \textit{If Hypothesis is true, then Conclusion is true}

- Type checking computes via reasoning
 \textit{If E_1 and E_2 have certain types, then E_3 has a certain type}

- Rules of inference are a compact notation for "If-Then" statements
From English to an Inference Rule

- The notation is easy to read (with practice)

- Start with a simplified system and gradually add features

- Building blocks
 - Symbol \land is “and”
 - Symbol \Rightarrow is “if-then”
 - $x : T$ is “x has type T”
From English to an Inference Rule (2)

If \(e_1 \) has type \(\text{Int} \) and \(e_2 \) has type \(\text{Int} \),
then \(e_1 + e_2 \) has type \(\text{Int} \)

\[(e_1 \text{ has type } \text{Int} \land e_2 \text{ has type } \text{Int}) \Rightarrow e_1 + e_2 \text{ has type } \text{Int}\]

\[(e_1: \text{Int} \land e_2: \text{Int}) \Rightarrow e_1 + e_2: \text{Int}\]
From English to an Inference Rule (3)

The statement

\[(e_1: \text{Int} \land e_2: \text{Int}) \Rightarrow e_1 + e_2: \text{Int}\]

is a special case of

\[(\text{Hypothesis}_1 \land \ldots \land \text{Hypothesis}_n) \Rightarrow \text{Conclusion}\]

This is an inference rule
Notation for Inference Rules

• By tradition inference rules are written

\[
\text{Conclusion} \quad \underbrace{\text{Hypothesis}_1 \ldots \text{Hypothesis}_n}_{\text{Hypotheses}}
\]

• Cool type rules have hypotheses and conclusions of the form:

\[
\text{``e : T''}
\]

• \text{``means “it is provable that ...”}
Two Rules

\[i \text{ is an integer} \]
\[\overline{i : \text{Int}} \] [Int]

\[\overline{\text{e}_1 : \text{Int}} \]
\[\underline{\text{e}_2 : \text{Int}} \] [Add]
\[\overline{\text{e}_1 + \text{e}_2 : \text{Int}} \]
Two Rules (Cont.)

• These rules give templates describing how to type integers and + expressions

• By filling in the templates, we can produce complete typings for expressions
Example: $1 + 2$

\[
\begin{array}{ll}
\text{1 is an integer} & \text{2 is an integer} \\
\backslash 1 : \text{Int} & \backslash 2 : \text{Int} \\
\backslash 1 + 2 : \text{Int}
\end{array}
\]
Soundness

• A type system is **sound** if
 - Whenever `e : T`
 - Then `e` evaluates to a value of type `T`

• We only want sound rules
 - But some sound rules are better than others:

 `i` is an integer

 `i : Object`
Type Checking Proofs

- Type checking proves facts $e : T$
 - Proof is on the structure of the AST
 - Proof has the shape of the AST
 - One type rule is used for each kind of AST node
- In the type rule used for a node e:
 - Hypotheses are the proofs of types of e's subexpressions
 - Conclusion is the proof of type of e
- Types are computed in a bottom-up pass over the AST
Rules for Constants

\`false : Bool \ [Bool]\n
\`s : String \ [String]\n
\`s is a string constant
Rule for New

new T produces an object of type T
 - Ignore SELF_TYPE for now ...

`new T : T` [New]
Two More Rules

\[\begin{align*}
\text{\`e : Bool} & \quad \text{\`not \ e : Bool} \\
\text{\`not e : Bool} & \quad \text{[Not]} \\
\text{\`e_1 : Bool} & \quad \text{\`e_2 : T} \\
\text{\`e_2 : T} & \quad \text{[Loop]} \\
\text{\`while e_1 loop e_2 pool : Object} &
\end{align*} \]
Typing: Example

- Typing for while not false loop 1 + 2 * 3 pool
Typing Derivations

• The typing reasoning can be expressed as a tree:

```
`false : Bool
-----------
not false : Bool
------------------
while not false loop 1 + 2 * 3 : Object
```

```
2 * 3 : Int
-----------
2 : Int

3 : Int

not false : Bool
------------------
1 : Int

1 + 2 * 3 : Int

2 : Int

3 : Int
```

• The root of the tree is the whole expression
• Each node is an instance of a typing rule
• Leaves are the rules with no hypotheses
A Problem

• What is the type of a variable reference?

\[
x \text{ is an identifier} \quad \frac{x : ?}{\text{[Var]}}
\]

• The local, structural rule does not carry enough information to give \(x\) a type.
A Solution: Put more information in the rules!

- A type environment gives types for free variables
 - A type environment is a function from ObjectIdentifiers to Types
 - A variable is free in an expression if:
 - It occurs in the expression
 - It is declared outside the expression

- E.g. in the expression “x”, the variable “x” is free
- E.g. in “let x : Int in x + y” only “y” is free
Type Environments

Let O be a function from ObjectIdentifiers to Types.

The sentence $O \ ` e : T$

is read: Under the assumption that variables have the types given by O, it is provable that the expression e has the type T.

Modified Rules

The type environment is added to the earlier rules:

\[\frac{i \text{ is an integer}}{O \cdot i : \text{Int}} \quad [\text{Int}] \]

\[\frac{O \cdot e_1 : \text{Int}}{O \cdot e_2 : \text{Int}} \quad [\text{Add}] \]

\[O \cdot e_1 + e_2 : \text{Int} \]
New Rules

And we can write new rules:

\[
\frac{O(x) = T}{O \cdot x : T} \quad [\text{Var}]
\]
Now

• More (complicated) typing rules

• *Connections between typing rules and safety of execution*
Let

\[O[T_0/x] \text{ `e}_1 : T_1 \]
\[O \ ` \text{let} \ x : T_0 \ \text{in} \ e_1 : T_1 \]

\[\text{[Let-No-Init]} \]

\(O[T_0/x] \) means \(O \) modified to return \(T_0 \) on argument \(x \) and behave as \(O \) on all other arguments:

\[O[T_0/x] (x) = T_0 \]
\[O[T_0/x] (y) = O(y) \]
Let's Example.

- Consider the Cool expression

\[
\text{let } x : T_0 \text{ in } (\text{let } y : T_1 \text{ in } E_{x,y}) + (\text{let } x : T_2 \text{ in } F_{x,y})
\]

(where \(E_{x,y}\) and \(F_{x,y}\) are some Cool expression that contain occurrences of “\(x\)” and “\(y\)”)

- Scope
 - of “\(y\)” is \(E_{x,y}\)
 - of outer “\(x\)” is \(E_{x,y}\)
 - of inner “\(x\)” is \(F_{x,y}\)

- This is captured precisely in the typing rule.
Let. Example.

AST

Type env.

Types

O ` let x : T₀ in : int

O[T₀/x]` + : int

O[T₀/x]` let y : T₁ in : int

E(x, y): int

(O[T₀/x])[T₁/y]` x : T₀

(O[T₀/x])[T₂/x]` F(x, y): int

(O[T₀/x])[T₁/y]` let x : T₂ in : int
Notes

• The type environment gives types to the free identifiers in the current scope

• The type environment is passed down the AST from the root towards the leaves

• Types are computed up the AST from the leaves towards the root
Let with Initialization

Now consider \texttt{let} with initialization:

\[
\frac{O \ ` e_0 : T_0 \quad O[T_0/x] \ ` e_1 : T_1}{O \ ` \text{let } x : T_0 \leftarrow e_0 \ \text{in } e_1 : T_1} \quad \text{[Let-Init]}
\]

This rule is weak. Why?
Let with Initialization

• Consider the example:

```java
class C inherits P { ... }
...
let x : P ← new C in ...
...
```

• The previous let rule does not allow this code
 - We say that the rule is too weak
Subtyping

• Define a relation $X \cdot Y$ on classes to say that:
 - An object of type X could be used when one of type Y is acceptable, or equivalently
 - X conforms with Y
 - In Cool this means that X is a subtype of Y

• Define a relation \leq on classes
 - $X \leq X$
 - $X \leq Y$ if X inherits from Y
 - $X \leq Z$ if $X \leq Y$ and $Y \leq Z$
Let with Initialization (Again)

Both rules for let are correct
But more programs type check with the latter
Let with Subtyping. Notes.

• There is a tension between
 - Flexible rules that do not constrain programming
 - Restrictive rules that ensure safety of execution
Expressiveness of Static Type Systems

• A static type system enables a compiler to detect many common programming errors

• The cost is that some correct programs are disallowed
 - Some argue for dynamic type checking instead
 - Others argue for more expressive static type checking

• But more expressive type systems are also more complex
Dynamic And Static Types

• The **dynamic type** of an object is the class \(C \) that is used in the “new \(C \)” expression that creates the object
 - A run-time notion
 - Even languages that are not statically typed have the notion of dynamic type

• The **static type** of an expression is a notation that captures all possible dynamic types the expression could take
 - A compile-time notion
Dynamic and Static Types. (Cont.)

• In early type systems the set of static types correspond directly with the dynamic types.

• Soundness theorem: for all expressions E

 $\text{dynamic_type}(E) = \text{static_type}(E)$

 (in all executions, E evaluates to values of the type inferred by the compiler)

• This gets more complicated in advanced type systems.
Dynamic and Static Types in COOL

- A variable of static type \(A \) can hold values of static type \(B \), if \(B \leq A \)

```java
class A { ... }
class B inherits A { ... }
class Main {
    A x ← new A;
    ...
    x ← new B;
    ...
}
```

Here, \(x \)'s value has dynamic type \(A \)

Here, \(x \)'s value has dynamic type \(B \)
Dynamic and Static Types

Soundness theorem for the Cool type system:
\[\forall E. \quad \text{dynamic_type}(E) \leq \text{static_type}(E) \]

Why is this Ok?
- All operations that can be used on an object of type \(C \) can also be used on an object of type \(C' \leq C \)
 - Such as fetching the value of an attribute
 - Or invoking a method on the object
- Subclasses can only add attributes or methods
- Methods can be redefined but with same type!
Let’s Examples.

- Consider the following Cool class definitions

 Class A { a() : int { 0 }; }
 Class B inherits A { b() : int { 1 }; }

- An instance of B has methods “a” and “b”
- An instance of A has method “a”
 - A type error occurs if we try to invoke method “b” on an instance of A
Example of Wrong Let Rule (1)

• Now consider a hypothetical let rule:

\[
\frac{O \vdash e_0 : T \quad T \cdot T_0 \quad O \vdash e_1 : T_1}{O \vdash \text{let } x : T_0 \triangleright e_0 \text{ in } e_1 : T_1}
\]

• How is it different from the correct rule?

• The following good program does not typecheck

\[
\text{let } x : \text{Int} \triangleright O \text{ in } x + 1
\]

• Why?
Example of Wrong Let Rule (2)

• Now consider a hypothetical let rule:

\[
\begin{align*}
\text{O ` e}_0 : T & \quad T_0 \cdot T & \quad O[T_0/x] ` e_1 : T_1 \\
\hline
\text{O ` let x : T}_0 \tilde{\lambda} e_0 \text{ in } e_1 : T_1
\end{align*}
\]

• How is it different from the correct rule?
• The following bad program is well typed

\[
\text{let x : B } \tilde{\lambda} \text{ new A in } x\text{.b()}
\]

• Why is this program bad?
Example of Wrong Let Rule (3)

• Now consider a hypothetical let rule:

\[
\begin{array}{c}
O`e_0 : T \\
\hline
T \cdot T_0 \quad O[T/x]`e_1 : T_1 \\
\hline
O`\text{let } x : T_0 \tilde{A} e_0 \text{ in } e_1 : T_1
\end{array}
\]

• How is it different from the correct rule?
• The following good program is not well typed

\[
\text{let } x : A \tilde{A} \text{ new } B \text{ in } \{ \ldots x \tilde{A} \text{ new } A; x.a(); \}
\]
• Why is this program not well typed?
Morale.

- The typing rules use very concise notation
- They are very carefully constructed
- Virtually any change in a rule either:
 - Makes the type system unsound
 (bad programs are accepted as well typed)
 - Or, makes the type system less usable
 (perfectly good programs are rejected)

- But some good programs will be rejected anyway
 - The notion of a good program is undecidable
Assignment

More uses of subtyping:

\[
\frac{O(\text{id}) = T_0 \quad O \cdot e_1 : T_1 \quad T_1 \cdot T_0}{O \cdot \text{id} \ 	ilde{A} \ e_1 : T_1} \quad \text{[Assign]}
\]
Initialized Attributes

- Let $O_C(x) = T$ for all attributes $x:T$ in class C

- Attribute initialization is similar to let, except for the scope of names

\[
\begin{align*}
O_C(id) &= T_0 \\
O_C \cdot e_1 : T_1 \\
\frac{T_1 \cdot T_0}{O_C \cdot id : T_0 \tilde{\AA} e_1} & \quad [\text{Attr-Init}]
\end{align*}
\]
If-Then-Else

• Consider:

 if \(e_0 \) then \(e_1 \) else \(e_2 \) fi

• The result can be either \(e_1 \) or \(e_2 \)

• The type is either \(e_1 \)'s type or \(e_2 \)'s type

• The best we can do is the smallest supertype larger than the type of \(e_1 \) and \(e_2 \)
If-Then-Else example

- Consider the class hierarchy

 \[
 \begin{array}{c}
 P \\
 \end{array}
 \begin{array}{c}
 \downarrow \\
 A \quad B
 \end{array}
 \]

- ... and the expression

 \[\text{if } \ldots \text{ then new } A \text{ else new } B \text{ fi}\]

- Its type should allow for the dynamic type to be both \(A \) or \(B \)
 - Smallest supertype is \(P \)
Least Upper Bounds

- \(\text{lub}(X,Y) \), the least upper bound of \(X \) and \(Y \), is \(Z \) if
 - \(X \leq Z \land Y \leq Z \)
 - \(Z \) is an upper bound
 - \(X \leq Z' \land Y \leq Z' \implies Z \leq Z' \)
 - \(Z \) is least among upper bounds

- In COOL, the least upper bound of two types is their least common ancestor in the inheritance tree
If-Then-Else Revisited

\[
\begin{align*}
&O \ e_0 : \text{Bool} \\
&O \ e_1 : T_1 \\
&O \ e_2 : T_2
\end{align*}
\]
\[
O \ if \ e_0 \ then \ e_1 \ else \ e_2 \ fi : \text{lub}(T_1, T_2)
\]

[If-Then-Else]
Case

- The rule for case expressions takes a lub over all branches

\[
\begin{align*}
O \cdot \text{case } e_0 \text{ of } x_1 : T_1 & \rightarrow e_1; \ldots; x_n : T_n & \rightarrow e_n; \text{ esac} : \text{lub}(T_1', \ldots, T_n') \\
\text{where } O[e_0 : T_0] = [\text{Case}] \quad O[T_1/x_1] \cdot e_1 : T_1' \\
& \quad \ldots \\
& \quad O[T_n/x_n] \cdot e_n : T_n'
\end{align*}
\]
Outline

• Type checking method dispatch

• Type checking with SELF_TYPE in COOL
Method Dispatch

• There is a problem with type checking method calls:

\[
\begin{align*}
O \cdot e_0 &: T_0 \\
O \cdot e_1 &: T_1 \\
&\cdots \\
O \cdot e_n &: T_n \\
\hline
O \cdot e_0.f(e_1, \ldots, e_n) &: ?
\end{align*}
\]

• We need information about the formal parameters and return type of \(f \)
Notes on Dispatch

- In Cool, method and object identifiers live in different name spaces
 - A method \texttt{foo} and an object \texttt{foo} can coexist in the same scope
- In the type rules, this is reflected by a separate mapping \(M \) for method signatures
 \[
 M(C,f) = (T_1, \ldots, T_n, T_{n+1})
 \]
 means in class \(C \) there is a method \(f \)
 \[
 f(x_1:T_1, \ldots, x_n:T_n): T_{n+1}
 \]
An Extended Typing Judgment

• Now we have two environments O and M

• The form of the typing judgment is

$$O, M ` e : T$$

read as: “with the assumption that the object
identifiers have types as given by O and the
method identifiers have signatures as given by
M, the expression e has type T”
The Method Environment

- The method environment must be added to all rules
- In most cases, M is passed down but not actually used
 - Example of a rule that does not use M:
 \[
 \begin{align*}
 O, M \ ` e_1 : T_1 \\
 O, M \ ` e_2 : T_2
 \end{align*}
 \]
 \[
 \text{[Add]}
 \]
 \[
 O, M \ ` e_1 + e_2 : \text{Int}
 \]
 - Only the dispatch rules uses M
The Dispatch Rule Revisited

\begin{align*}
O, M \ ` e_0 : T_0 \\
O, M \ ` e_1 : T_1 \\
\quad \ldots \\
O, M \ ` e_n : T_n \\
M(T_0, f) = (T_1', \ldots, T_n', T_{n+1}') \\
T_i \cdot T_i' \quad (\text{for } 1 \cdot i \cdot n) \\
\hline
O, M \ ` e_0.f(e_1, \ldots, e_n) : T_{n+1}'
\end{align*}
Static Dispatch

• Static dispatch is a variation on normal dispatch

• The method is found in the class explicitly named by the programmer

• The inferred type of the dispatch expression must conform to the specified type
Static Dispatch (Cont.)

\[
O, M \ ` e_0 : T_0 \\
O, M \ ` e_1 : T_1 \\
 \vdots \\
O, M \ ` e_n : T_n \\
T_0 \cdot T
\]

\[
M(T, f) = (T_1', \ldots, T_n', T_{n+1}') \\
T_i \cdot T_i' \quad (\text{for } 1 \cdot i \cdot n)
\]

\[
O, M \ ` e_0 @ T.f(e_1, \ldots, e_n) : T_{n+1}'
\]
Handling the SELF_TYPE
Flexibility vs. Soundness

• Recall that type systems have two conflicting goals:
 - Give flexibility to the programmer
 - Prevent valid programs to “go wrong”
 • Milner, 1981: “Well-typed programs do not go wrong”

• An active line of research is in the area of inventing more flexible type systems while preserving soundness
Dynamic And Static Types. Review.

- The **dynamic type** of an object is the class C that is used in the “new C” expression that created it
 - A run-time notion
 - Even languages that are not statically typed have the notion of dynamic type

- The **static type** of an expression is a notation that captures all possible dynamic types the expression could take
 - A compile-time notion
Dynamic and Static Types. Review

Soundness theorem for the Cool type system:

\[\forall E. \ dynamic_type(E) \leq static_type(E) \]

Why is this Ok?

- All operations that can be used on an object of type \(C \) can also be used on an object of type \(C' \leq C \)
 - Such as fetching the value of an attribute
 - Or invoking a method on the object
- Subclasses can only add attributes or methods
- Methods can be redefined but with same type!
An Example

class Count {
 i : int ← 0;
 inc () : Count {
 i ← i + 1;
 self;
 }
};

• Class Count incorporates a counter
• The inc method works for any subclass
• But there is disaster lurking in the type system
• Consider a subclass **Stock** of **Count**

```java
class Stock inherits Count {
    name : String; -- name of item
};
```

• And the following use of **Stock**:

```java
class Main {
    Stock a ← (new Stock).inc ();  // Type checking error!
    ... a.name ... 
};
```
What Went Wrong?

- (new Stock).inc() has dynamic type Stock
- So it is legitimate to write
 \[\text{Stock a} \leftarrow (\text{new Stock}).\text{inc}() \]
- But this is not well-typed
 \((\text{new Stock}).\text{inc}() \) has static type Count
- The type checker “looses” type information
- This makes inheriting \text{inc} useless
 - So, we must redefine \text{inc} for each of the subclasses, with a specialized return type
SELF_TYPE to the Rescue

• We will extend the type system
• Insight:
 - `inc` returns “self”
 - Therefore the return value has same type as “self”
 - Which could be `Count` or any subtype of `Count`!
 - In the case of `(new Stock).inc ()` the type is `Stock`
• We introduce the keyword `SELF_TYPE` to use for the return value of such functions
 - We will also need to modify the typing rules to handle `SELF_TYPE`
SELF_TYPE to the Rescue (Cont.)

- **SELF_TYPE** allows the return type of `inc` to change when `inc` is inherited
- Modify the declaration of `inc` to read

  ```
  inc() : SELF_TYPE { ... }
  ```
- The type checker can now prove:

  ```
  O, M \` (new Count).inc() : Count
  O, M \` (new Stock).inc() : Stock
  ```
- The program from before is now well typed
Notes About SELF_TYPE

- SELF_TYPE is not a dynamic type
- It is a static type
- It helps the type checker to keep better track of types
- It enables the type checker to accept more correct programs
- In short, having SELF_TYPE increases the expressive power of the type system
SELF_TYPE and Dynamic Types (Example)

- What can be the dynamic type of the object returned by `inc`?
 - Answer: whatever could be the type of “self”

    ```
    class A inherits Count { } ;
    class B inherits Count { } ;
    class C inherits Count { } ;
    (inc could be invoked through any of these classes)
    ```

- Answer: `Count` or any subtype of `Count`
SELF_TYPE and Dynamic Types (Example)

• In general, if SELF_TYPE appears textually in the class C as the declared type of E then it denotes the dynamic type of the “self” expression:

\[\text{dynamic_type}(E) = \text{dynamic_type}(\text{self}) \leq C \]

• Note: The meaning of SELF_TYPE depends on where it appears
 - We write \(\text{SELF_TYPE}_C \) to refer to an occurrence of SELF_TYPE in the body of C
Type Checking

• This suggests a typing rule:

 \[\text{SELF_TYPE}_C \leq C \]

• This rule has an important consequence:
 - In type checking it is always safe to replace
 \[\text{SELF_TYPE}_C \]
 by \[C \]

• This suggests one way to handle \text{SELF_TYPE}:
 - Replace all occurrences of \[\text{SELF_TYPE}_C \]
 by \[C \]

• This would be correct but it is like not having
 \text{SELF_TYPE} at all
Operations on SELF_TYPE

- Recall the operations on types
 - $T_1 \leq T_2$ \hspace{1cm} T_1 is a subtype of T_2
 - $lub(T_1, T_2)$ \hspace{1cm} the least-upper bound of T_1 and T_2

- We must extend these operations to handle SELF_TYPE
Extending \leq

Let T and T' be any types but `SELF_TYPE`

There are four cases in the definition of \leq

1. `SELF_TYPE_C \leq T` if $C \leq T$
 - `SELF_TYPE_C` can be any subtype of C
 - This includes C itself
 - Thus this is the most flexible rule we can allow

2. `SELF_TYPE_C \leq SELF_TYPE_C`
 - `SELF_TYPE_C` is the type of the "self" expression
 - In Cool we never need to compare SELF_TYPEs coming from different classes
Extending \leq (Cont.)

3. $T \leq \text{SELF_TYPE}_C$ always false
 Note: SELF_TYPE_C can denote any subtype of C.

4. $T \leq T'$ (according to the rules from before)

Based on these rules we can extend lub ...
Extending lub(T, T')

Let T and T' be any types but SELF_TYPE

Again there are four cases:
1. lub(SELF_TYPE_C, SELF_TYPE_C) = SELF_TYPE_C

2. lub(SELF_TYPE_C, T) = lub(C, T)
 This is the best we can do because SELF_TYPE_C ≤ C

3. lub(T, SELF_TYPE_C) = lub(C, T)

4. lub(T, T') defined as before
Where Can SELF_TYPE Appear in COOL?

- The parser checks that SELF_TYPE appears only where a type is expected.
- But SELF_TYPE is not allowed everywhere a type can appear:
 1. `class T inherits T' {...}
 - `T, T' cannot be SELF_TYPE
 - Because SELF_TYPE is never a dynamic type
 2. `x : T
 - `T can be SELF_TYPE
 - An attribute whose type is SELF_TYPE_C
Where Can SELF_TYPE Appear in COOL?

3. let \(x : T \) in \(E \)
 - \(T \) can be \(\text{SELF_TYPE} \)
 - \(x \) has type \(\text{SELF_TYPE}_c \)

4. new \(T \)
 - \(T \) can be \(\text{SELF_TYPE} \)
 - Creates an object of the same type as \(\text{self} \)

5. \(m@T(E_1,\ldots,E_n) \)
 - \(T \) cannot be \(\text{SELF_TYPE} \)
Typing Rules for SELF_TYPE

• Since occurrences of SELF_TYPE depend on the enclosing class we need to carry more context during type checking

• New form of the typing judgment:

\[O,M,C \vdash e : T \]

(An expression \(e \) occurring in the body of \(C \) has static type \(T \) given a variable type environment \(O \) and method signatures \(M \))
Type Checking Rules

• The next step is to design type rules using `SELF_TYPE` for each language construct.

• Most of the rules remain the same except that `≤` and `lub` are the new ones.

• Example:

\[
\begin{align*}
O(id) &= T_0 \\
O \ ` e_1 : T_1 \\
T_1 \cdot T_0 \\
\hline
O \ ` id \text{ lub} e_1 : T_1
\end{align*}
\]
What's Different?

- Recall the old rule for dispatch

\[
\begin{align*}
O, M, C \ ` e_0 & : T_0 \\
\cdots \\
O, M, C \ ` e_n & : T_n \\
M(T_0, f) &= (T_1', \ldots, T_n', T_{n+1}') \\
T_{n+1}' &\neq \text{SELF_TYPE} \\
T_i &\leq T_i' \quad 1 \leq i \leq n \\
O, M, C \ ` e_0.f(e_1, \ldots, e_n) & : T_{n+1}'
\end{align*}
\]
What's Different?

• If the return type of the method is **SELF_TYPE** then the type of the dispatch is the type of the dispatch expression:

\[O,M,C \ ` e_0 : T_0 \]

\[\ldots \]

\[O,M,C \ ` e_n : T_n \]

\[M(T_0, f) = (T_1', \ldots, T_n', \ \text{SELF_TYPE}) \]

\[T_i \leq T_i' \quad 1 \leq i \leq n \]

\[O,M,C \ ` e_0.f(e_1, \ldots, e_n) : T_0 \]
What's Different?

- Note this rule handles the Stock example
- Formal parameters cannot be SELF_TYPE
- Actual arguments can be SELF_TYPE
 - The extended \leq relation handles this case
- The type T_0 of the dispatch expression could be SELF_TYPE
 - Which class is used to find the declaration of f?
 - Answer: it is safe to use the class where the dispatch appears
Static Dispatch

• Recall the original rule for static dispatch

\[O, M, C \; e_0 : T_0 \]
\[\ldots \]
\[O, M, C \; e_n : T_n \]
\[T_0 \leq T \]
\[M(T, f) = (T_1', \ldots, T_n', T_{n+1}') \]
\[T_{n+1}' \neq \text{SELF_TYPE} \]
\[T_i \leq T_i' \quad 1 \leq i \leq n \]
\[O, M, C \; e_0@T.f(e_1, \ldots, e_n) : T_{n+1}' \]
Static Dispatch

- If the return type of the method is `SELF_TYPE` we have:

\[
\begin{align*}
O,M,C \ ` e_0 &: T_0 \\
\ldots \\
O,M,C \ ` e_n &: T_n \\
T_0 &\leq T \\
M(T, f) &= (T_1',...,T_n',\text{SELF_TYPE}) \\
T_i &\leq T_i' \quad 1 \leq i \leq n \\
\hline
O,M,C \ ` e_0@T.f(e_1,...,e_n) &: T_0
\end{align*}
\]
Static Dispatch

• Why is this rule correct?

• If we dispatch a method returning `SELF_TYPE` in class `T`, don’t we get back a `T`?

• No. `SELF_TYPE` is the type of the self parameter, which may be a subtype of the class in which the method appears.

• The static dispatch class cannot be `SELF_TYPE`
New Rules

- There are two new rules using `SELF_TYPE`

 - `O,M,C \ self : SELF_TYPE`

 - `O,M,C \ new SELF_TYPE : SELF_TYPE`

- There are a number of other places where `SELF_TYPE` is used
Where SELF_TYPE Cannot Appear in COOL?

\[
m(x : T) : T' \{ \ldots \}
\]

- Only \(T' \) can be SELF_TYPE!

What could go wrong if \(T \) were SELF_TYPE?

class A \{ comp(x : SELF_TYPE) : Bool \{\ldots\}; \};
class B inherits A \{
 b : int;
 comp(x : SELF_TYPE) : Bool \{ \ldots x.b \ldots\}; \};
\[
let x : A ← new B in \ldots x.comp(new A); \ldots
\[
\ldots
Summary of SELF_TYPE

- The extended \leq and lub operations can do a lot of the work. Implement them to handle SELF_TYPE.
- SELF_TYPE can be used only in a few places. Be sure it isn’t used anywhere else.
- A use of SELF_TYPE always refers to any subtype in the current class.
 - The exception is the type checking of dispatch.
 - SELF_TYPE as the return type in an invoked method might have nothing to do with the current class.
Why Cover SELF_TYPE?

- SELF_TYPE is a research idea
 - It adds more expressiveness to the type system
- SELF_TYPE is itself not so important
 - except for the project
- Rather, SELF_TYPE is meant to illustrate that type checking can be quite subtle
- In practice, there should be a balance between the complexity of the type system and its expressiveness
Type Systems

• The rules in these lecture were COOL-specific
 - Other languages have very different rules
 - We’ll survey a few more type systems later

• General themes
 - Type rules are defined on the structure of expressions
 - Types of variables are modeled by an environment

• Types are a play between flexibility and safety