PaSCoR ... from Space

Developing & Assessing PaSCoR Courses
Workshop
Lueny Morell & Rosa Buxeda
December 17, 1999
Ponce Hilton
PaSCoR ... from Space

Workshop Goal & Objectives

• Provide a guide to develop PaSCoR Courses and assess student learning outcomes
 – Establish the importance of planning.
 – Become aware of learning styles & the impact on course/Course development.
 – Develop Course goals & objectives.
 – Design classroom activities to achieve Course goals & objectives.
 – Identify assessment strategies to evaluate student performance & learning.
PaSCoR … from Space

Agenda

9:00 – 9:40 am Workshop Goal and Objectives
 PaSCoR Educational Paradigm
 PaSCoR Course Template

9:40 – 10:15 Course Description and Topics

10:15 –10:40 Break

10:40 – 12:00 Course Objectives & Skills
PaSCoR … from Space

Agenda…

12:00 – 1:30 Lunch
1:30 – 2:15 PaSCoR Student Learning profile
 Teaching & Learning Strategies
2:15 – 3:00 Assessment strategy
3:00 – 3:30 Break
3:30 – 4:30 Putting together the template
4:30 – 5:00 Presentations
PaSCoR … *from Space*

Educational Paradigm

<table>
<thead>
<tr>
<th>INCOMING STUDENTS</th>
<th>EDUCATIONAL PROCESS</th>
<th>GRADUATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who are our students? What is their back-ground? Skills?</td>
<td>What do we need to do in order to develop the professional we want? Experiences?</td>
<td>What do we want? What kind of engineer or scientist we want? Profile? Skills?</td>
</tr>
</tbody>
</table>
Paradigm...

• Education should:
 – increase *both knowledge & skills*
 – promote new attitudes & values

• Educational process should be designed to:
 – maximize & enhance the student’s knowledge base & skills
 – develop an individual who is a self-learner & thinks critically
PaSCoR \ldots \textit{from Space}

Project Model
The "Learning Factory" Concept
An outcomes-based, student centered initiative

Students

\begin{itemize}
 \item Curriculum
 \item Undergraduate Research
 \item Mentoring & Counseling
 \item Internships
 \item Seminars & Workshops
\end{itemize}

\begin{itemize}
 \item GIS/RS knowledge
 \item Skills
 \begin{itemize}
 \item profession
 \item graduate school
 \end{itemize}
 \item Values
 \begin{itemize}
 \item diversity
 \item teamwork
 \item global awareness
 \item communication
 \end{itemize}
\end{itemize}

PaSCoR Graduates
PaSCoR ... from Space

PaSCoR Courses Main Focus

– outcomes-based
– practice-based, hands-on educational experiences
– balance traditional scientific & mathematical principles with practical experiences
– development of skills
– compliance with ABET 2000
PaSCoR ... from Space

The “Learning Factory” Curriculum Model

Diagram 2: Model Curriculum Alternative Track RS/GIS

- Freshman year course
 - Introduction to RS
 - Introduction to GIS
 - 2 electives
- Undergraduate research
- Integrated research activities
- RS/GIS Professional
PaSCoR ... from Space

Question

• What does the course syllabus represent to you?
PaSCoR … *from Space*

The syllabus or course plan

- The instrument that reflects the course design and establishes what is required and expected from the student
 - Course objectives
 - Content & skills
 - Educational activities to achieve goals/objectives
 - Traditional (e.g., lecture)
 - Non-traditional (e.g., hands on lab activities, team experiences, industrial interaction)
 - Outcomes Assessment
 - traditional (e.g., exams) and custom-made (e.g, to evaluate teamwork)
PaSCoR Courses

• Course Title
• Description
• General Objectives and Skills
• Course Outline
• Student Outcomes Assessment & Evaluation Criteria
PaSCoR ... from Space

Course Design

- Common format/template
 - WORD 7, Power Point 7
- Be available through electronic means
- Team developed
 - Share strategies & assessment tools
PaSCoR … from Space

Course Development Steps

• Step 1: Establish Rationale
• Step 2: Define General Objectives and Student Outcomes (Instructional Objectives)
• Step 3: Design Teaching/Learning Strategies
• Step 4: Develop Criteria/Tools to Assess Student Performance/Outcomes
• Step 5: Determine Special Contacts Needed
• Step 6: Pilot test & assessment
• Step 7: Re-engineer & Report
Why establish instructional objectives?

• Identify critical course material
• Facilitate the design of in-class activities
• Facilitate effective student evaluation
• Focuses the student’s attention on learning tasks by telling what they can expect...
PaSCoR ... from Space

Instructional Objectives

• Example: “At the end of this (course, week, lecture), the student will be able to…”

• “… is an action word like:
 – calculate, estimate, solve, derive
 – describe, compare, distinguish, list
 – explain, outline, construct…”

• Can be measured
PaSCoR … from Space

Bloom’s Cognitive Objectives

• Cognitive Domain
• Affective Domain
• Psychomotor Domain
• Levels
 – Knowledge
 – Comprehension
 – Application
 – Analysis
 – Synthesis
 – Evaluation
PaSCoR \textit{... from Space}

KNOWLEDGE

- Remember previously learned material.
- Lowest level of learning outcome.
- Recognize or recall information about specifics, terminology, facts, methodology, classifications and sequences.
- Verbs to use: define, repeat, name, identify, relate, remember...
PaSCoR … from Space

COMPREHENSION

• Ability to understand the meaning of the information.
• Represents the lowest level of understanding.
• Verbs to be use: describe, explain, discuss, identify…
PaSCoR ... from Space

APPLICATION

• Ability to use learned material in new and concrete situations.
• Represents a higher level of understanding than comprehension.
• Verbs to be use: apply, interpret, demonstrate, illustrate, use...
PaSCoR … from Space

ANALYSIS

• Ability to break down material into its components parts.
• Represents a higher level of understanding than comprehension.
• Verbs to be use: calculate, solve, compare, contrast, categorize, derive, model.
PaSCoR \ldots from Space

SYNTHESIS

- Ability to put parts together into a whole.
- Creative behavior is stress.
- Verb to use: Create, invent, predict, construct, design, imagine, improve, produce, propose...
EVALUATION

- Ability to judge the value of the material for a given purpose.
- The highest level of intellectual activity.
- Verb to use: judge, select, decide, critique, justify, verify, debate, assess, recommend, argue.
PaSCoR … from Space

SKILLS

• The Graduating SMET Profile
 – Team work
 – Problem solving
 – Communication
PaSCoR … from Space

ABET 2000 a-k competencies

a. ability to apply knowledge of math, science & engineering
b. ability to design & conduct experiments, analyze data
c. ability to design a system component or process
d. ability to function on multi-disciplinary teams
e. ability to identify, solve & formulate engineering problems
f. understanding of professional & ethical responsibilities
g. ability to communicate effectively
h. understand the impact of engineering solutions in a global & societal context
i. life-long learning
j. knowledge of contemporary issues
k. ability to use techniques, skills & engineering tools necessary for engineering practice
Example of Student Outcomes

- Clearly defines a need/problem and analyzes the situation
- Clearly establishes goals & objectives for product/process & defines a work-plan
- Timely follows a work-plan
- Accurately demonstrates knowledge from his/her area of expertise, & integrates other areas
- Communicates ideas clearly, both in written reports & oral presentations
- Facilitates effective interpersonal/inter-team relationships
PaSCoR … from Space

Course Development Steps

- **Step 1**: Establish Rationale
 - Course title (page 1)
 - General description (page 1)
 - Identify topics to be covered (page 2, column 1)
 - Establish:
 - class size
 - faculty/student ratio
 - role of instructor
PaSCoR ... from Space

Steps...

• Step 2: Define General Objectives and Student Learning Outcomes (Instructional Objectives) (page 1):
 • Student Outcomes
 – What do you expect students to learn?
 – What do you expect students will be able to do with what they learn?
 • Determine what specific skills & competencies will be developed in the students
 – Bloom’s taxonomy
 – ABET 2000 a-k skills & competencies
 – recommended by constituents
 » industry
 » Other (See PR-AMP Skills for the Millenium)
PaSCoR ... from Space

Steps...

• Remember to consider all cognitive levels
 – All PaSCoR courses/modules must include the development of (at least) the following:
 ➢ diversity
 ➢ team work
 ➢ global awareness
 ➢ ethics
 ➢ communication
PaSCoR … from Space

How do students learn?

- Learning Style Model, Felder 1988
 - Perception - Sensory, Intuitive
 - Input Modality - Visual, Verbal
 - Organization - Inductive, Deductive
 - Processing - Active, Reflexive
 - Understanding - Sequential, Global
PaSCoR Student Profile

PaSCoR Student Learning Styles (Felder, 1988)

- **PERCEPTION**
 - sensory
 - intuitive

- **INPUT MODALITY**
 - visual
 - verbal

- **PROCESSING**
 - active
 - reflective

- **UNDERSTANDING**
 - sequential
 - global

FRESHMEN

UPPER LEVEL
Teaching/Learning Strategies

• Are relative to the course objectives.
• Establish relevance and applications for all course material.
• Should balance concrete information (facts, observation) and abstract concepts (model, theory).
• Should use a variety of delivery modes (e.g., use pictures, schematics and graphs, videotapes, demonstrations, hands-on) to address most of learning styles.
PaSCoR ... from Space

Teaching/Learning Strategies

• Use numbers, not just algebraic variables.
• Give time to think.
• Use cooperative learning (small group exercises)
• Use computer-assisted instruction.
• Assign open-ended problems for analysis and synthesis.
PaSCoR from Space

Traditional and Non-traditional Teaching/Learning Strategies

- Lectures
- In-class demonstrations
- Laboratory experiences
- Consultations
- Field trips to industry
- Oral presentations
- Written reports
- Working in teams
PaSCoR … from Space

Teaching/learning Strategies

Suggested by Wankat

TEACHING AND LEARNING ACTIVITIES (Harb et al., 1991; McCarthy, 1987; Svinicki and Dixon, 1987)

<table>
<thead>
<tr>
<th>Diverger (1)</th>
<th>Assimilator (2)</th>
<th>Converger (3)</th>
<th>Accomodator (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation</td>
<td>Information and Facts</td>
<td>Try it</td>
<td>Do it themselves</td>
</tr>
<tr>
<td>“War stories”</td>
<td>Lecture</td>
<td>Homework problems</td>
<td>Self-select projects</td>
</tr>
<tr>
<td>Brainstorming</td>
<td>Reading</td>
<td>Laboratory</td>
<td>Design</td>
</tr>
<tr>
<td>Observation:</td>
<td>Instructor or TV demonstration</td>
<td>Simulations</td>
<td>Open-ended problems</td>
</tr>
<tr>
<td>Field trips, “on street”, Logs, Journals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Role Playing</td>
<td>Patterns</td>
<td>CAI</td>
<td>Write problems</td>
</tr>
<tr>
<td>Discussion</td>
<td>Organizing</td>
<td>Problem solving</td>
<td>Field trips</td>
</tr>
<tr>
<td>Questioning</td>
<td>Objective tests</td>
<td>Short answer</td>
<td>Work experience</td>
</tr>
<tr>
<td>Visualization</td>
<td>Library Work</td>
<td>Report</td>
<td>Simulations</td>
</tr>
<tr>
<td></td>
<td>Problem-solving examples</td>
<td>Demonstrations</td>
<td>Teach yourself</td>
</tr>
<tr>
<td></td>
<td>Seminars</td>
<td>Experiment</td>
<td>Teach someone else</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinker</td>
<td>Think tank</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Record</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Make things work</td>
<td></td>
</tr>
</tbody>
</table>

Steps...

• **Step 3**: Design Teaching/Learning Strategies (page 2)

 • What classroom/lab activities & strategies will be necessary for students to learn the desired concepts?

 • What classroom (or otherwise) activities & strategies will be necessary for students to develop desired skills & competencies?

 • Examples:

 – lectures, labs, demos, field trips, professionals in the classroom, working in teams, coop learning, oral presentations, written reports, etc. (See *Wankat*)
How to Evaluate Student Performance?

• Depends on Course goals/objectives

• Tools
 – Traditional & Non-traditional
 • exams, quizzes, homework,
 • oral reports
 • written reports
 • team experiences

• Assessment Tools Examples
PaSCoR ... from Space

Steps...

- **Step 4: Develop Criteria/Tools to Assess Student Performance/Outcomes (page 3)**
 - specific criteria
 - how will you know if students have learned concepts and developed skills?
 - traditional tools (tests, quizzes, homework)
 - non-traditional assessment tools/instruments
PaSCoR ... from Space

Steps...

• Step 5: Determine Special Contacts Needed
 – Laboratory Facilities
 • LARSIP (Pieter VanDerMeer, ext. 3510, email: pvander@ece.uprm.edu)
 • LARSIP AS Extension (L. Olivieri, ext., 2092, email: l_olivieri@rumac.upr.clu.edu)
 – Industry collaboration
 – Other
PaSCoR … *from Space*

Steps…

• **Step 6:** Pilot test & assessment
 – All course materials & assessment tools ready
 • Word/Power Point format & in electronic means (to be posted on PaSCoR web-site)

• **Step 7:** Re-engineer & Report
<table>
<thead>
<tr>
<th>Courses (credits)/Semester</th>
<th>98-99</th>
<th>99-00</th>
<th>00-01</th>
<th>01-02</th>
<th>02-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE: INEL 5995 Introduction to Remote Sensing</td>
<td>3</td>
<td>1st</td>
<td>X (50 students)</td>
<td>2nd</td>
<td>1st</td>
</tr>
<tr>
<td>Dr. Ramón Vásquez</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE: Introduction to GIS</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Ramón Vásquez</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGR: AGRO xxxx Application of RS/GIS in Agricultural Sciences</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Luis Olivieri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE: INEL 53xx Image Processing</td>
<td>3</td>
<td>X (7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Hamed Parsiani</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE: INEL 5995 Pattern Recognition</td>
<td>3</td>
<td>X (15 students) seminar</td>
<td>X (17 students) course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Luis Jimenez</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course web page: http://ece.uprm.edu/~jimenez</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECE: INEL xxxx Signal Systems (required course for Pattern Recognition)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Luis Jimenez, Dr. Domingo Rodriguez, Dr. Miguel Vélez, Dr. Shawn Hunt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEO: GEOL 3105 Images of Earth (submitted & approved)</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dr. Pamela Jansma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEO: GEOL 4060 Geodesy in Earth Sciences (institutionalized)</td>
<td>4</td>
<td>X (10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Pamela Jansma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEO: GEOL xxxx Field Verification</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Pamela Jansma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH: MATH 4xxx Topics in the Mathematics of Remote Sensing</td>
<td>3</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Dr. Robert Acar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4xxx Scientific Visualization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Robert Acar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH: MATH 4xxx Scientific Visualization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Robert Acar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PaSCoR ... from Space

<table>
<thead>
<tr>
<th>Courses (credits)/Semester</th>
<th>98-99</th>
<th>99-00</th>
<th>00-01</th>
<th>01-02</th>
<th>02-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
<td>1st</td>
<td>2nd</td>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>UNIV 101 Freshman Year Experience (no-credit) Dr. Rosa Buxeda</td>
<td>N/C</td>
<td>X (x students)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>GEO: Geology 3047 Introductory Laboratory (2 RS/GIS Courses) Dr. Allen Smith, Dr. Pamela Jansma</td>
<td>3</td>
<td>X (25)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>GEO: Geology 4048 Geological Applications of Remote Sensing Dr. Pamela Jansma</td>
<td>4</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AGR: CFIT 3005 Crop Production (1-hour lecture) Dr. Luis Olivieri</td>
<td>4</td>
<td>X (200 students)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AGR: AGRO 4018 Soil Fertility (Laboratory experience in the use of GIS in soil fertility) Dr. Luis Olivieri</td>
<td>3</td>
<td></td>
<td>X (25 students)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AGR: AGRO 4025 Seminar (1-hour conference on applications of RS/GIS in agriculture) Dr. Luis Olivieri</td>
<td>1</td>
<td>X (25 students)</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AGR: AGRO 4037 Soil Chemistry (1-hour laboratory experience) Dr. Luis Olivieri</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH: Math 4061 Numerical Analysis (Chapter on Discrete Fourier Transform which is used in signal processing) Dr. Robert Acar, Dr. XY</td>
<td>3</td>
<td>X (~30)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH: ESMA 3101 and ESMA 4001 Applied Statistical Analysis I&II (Laboratory or Course being developed), Dr. XY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10/16/00

[Image: NASA Logo] [Image: UPR Logo]
Resources

PASCoR Team Addresses

<table>
<thead>
<tr>
<th>NAME</th>
<th>DEPARTMENT</th>
<th>TELEPHONE</th>
<th>FAX</th>
<th>EMAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Acar</td>
<td>Math</td>
<td>X 3732</td>
<td></td>
<td>acar@cs.upr.clu.edu</td>
</tr>
<tr>
<td>Jorge I. Vélez</td>
<td>Business Adm.</td>
<td>265-6380</td>
<td></td>
<td>jvelez@ece.uprm.edu</td>
</tr>
<tr>
<td>Pieter van der Meer</td>
<td>LARSIP</td>
<td>X 3753, 3780</td>
<td>831-7564</td>
<td>pvander@ece.uprm.edu</td>
</tr>
<tr>
<td>Hamed Parsiani</td>
<td>INEL</td>
<td>X 3653</td>
<td></td>
<td>parsiani@ece.uprm.edu</td>
</tr>
<tr>
<td>Pamela Jansma</td>
<td>Geology</td>
<td>X 3579</td>
<td>265-3845</td>
<td>pam@geology.uprm.edu</td>
</tr>
<tr>
<td>Luis Olivieri</td>
<td>Agronomy</td>
<td>X 2092</td>
<td>833-7765</td>
<td>l.olivieri@rumac.upr.clu.edu</td>
</tr>
<tr>
<td>Rosa Buxeda</td>
<td>Biology</td>
<td>X 2174 Casa 832-5786</td>
<td>265-3837, 265-1225</td>
<td>r_buxeda@rumac.upr.clu.edu</td>
</tr>
<tr>
<td>Ramón Vásquez</td>
<td>INEL</td>
<td>X 2402</td>
<td>CID: 831-2060</td>
<td>Reve@ece.uprm.edu</td>
</tr>
<tr>
<td>Luis Jiménez</td>
<td>INEL</td>
<td>X 3248 Celular 510-3481</td>
<td></td>
<td>Jimenez@ece.uprm.edu</td>
</tr>
<tr>
<td>Josefita González</td>
<td>Eng. Academic Affairs office</td>
<td>X 3826</td>
<td></td>
<td>jgonzalez@engdean.upr.clu.edu</td>
</tr>
<tr>
<td>Lueny Morell</td>
<td>RCSE/AMP</td>
<td>X 3763</td>
<td>832-4680</td>
<td>Lueny@ece.uprm.edu</td>
</tr>
</tbody>
</table>
PaSCoR … from Space

Resources

• PaSCoR course syllabus template
• Sample IQ 4016 syllabus
• Description of Bloom’s Major Categories
• “Objectively Speaking”, paper, R.M. Felder
• Some assessment tools