
CHEAT SHEET
Every value is an object and every operation is a
message send .

PACKAGE

Java style:
package com.mycompany.mypkg

applies across the entire file scope
Package "scoping" approach: curly brace delimited

package com
{
 package tedneward
 {
 package scala
 {
 package demonstration
 {
 object App
 {
 import java.math.BigInteger
 // just to show nested importing
 def main(args : Array[String]) :
 Unit =
 {
 System.out.println(
 "Howdy, from packaged code!")
 args.foreach((i) =>
 System.out.println("Got " + i))
 }
 }
 }
 }
 }
}

IMPORT

form:
import p._ // imports all members of p
// (this is analogous to import p.* in Java)

import p.x // the member x of p
import p.{x => a} // the member x of p renamed
 // as a
import p.{x, y} // the members x and y of p
import p1.p2.z // the member z of p2,
 // itself member of p1
import p1._, p2._ // is a shorthand for import
 // p1._; import p2._

implicit imports:
 the package java.lang

 the package scala

 and the object scala.Predef

import anywhere inside the client Scala file, not just
at the top of the file, for scoped relevance

VARIABLE

form: var var_name: type = init_value;
var i : int = 0;

default values:
private var somevar: T = _
 // _ is a default value

default value:
 0 for numeric types
 false for the Boolean type
 () for the Unit type
 null for all object types

CONSTANT

prefer val over var
form: val var_name: type = init_value;
val i : int = 0;

STATIC

no static members, use Singleton, see Object

CLASS

Every class inherits from scala.Any
see http://www.scala-lang.org/node/128

2 subclass categories:
 scala.AnyVal
 scala.AnyRef

form: abstract class(pName: PType1,

pName2: PType2...) extends SuperClass

with constructor in the class definition
class Person(name: String, age: int) extends
Mammal {
 // secondary constructor
 def this(name: String) {
 // call the "primary" constructor
 this(name, 1);
 }
 // members here
}

OBJECT

concrete class instance
a singleton
object RunRational extends Application
{
 // members here
}

MIXIN CLASS COMPOSITION

Mixin :
trait RichIterator extends AbsIterator {
 def foreach(f: T => Unit) { while (hasNext)
f(next) }
}

Mixin Class Composition :
Note the keyword "with" used to create a mixin
composition of the parents StringIterator and
RichIterator.
The first parent is called the superclass of Iter,
whereas the second (and every other, if present)
parent is called a mixin.
object StringIteratorTest {
 def main(args: Array[String]) {
 class Iter extends StringIterator(args(0))
 with RichIterator
 val iter = new Iter
 iter foreach println
 }
}

GENERIC CLASS
class Stack[T] {
 // members here
}

Usage:
object GenericsTest extends Application {
 val stack = new Stack[Int]
 // do stuff here
}

note: can also define generic methods

INNER CLASS
class Graph {
 class Node {
 var connectedNodes: List[Node] = Nil
 def connectTo(node: Node) {
 if
(connectedNodes.find(node.equals).isEmpty) {
 connectedNodes = node :: connectedNodes
 }
 }
 }
 // members here
}

usage:
object GraphTest extends Application {
 val g: Graph = new Graph
 val n1: g.Node = g.newNode
 val n2: g.Node = g.newNode
 n1.connectTo(n2) // legal
 val h: Graph = new Graph
 val n3: h.Node = h.newNode
 n1.connectTo(n3) // illegal!
}

note that a node type is prefixed with its outer
instance, can't mix instances

METHODS

Methods are Functional Values and Functions are
Objects
form: def name(pName: PType1, pName2:
PType2...) : RetType

use override to override a method
override def toString() = "" + re + (if (im <
0) "" else "+") + im + "i"

can override as contra/covariant (different return
type)
'=>' separates the function's argument list from its
body
def re = real // method without arguments

OPERATORS

all operators are functions on a class
operators have fixed precedences and
associativities:
(all letters)
|
^
&
< >
= !
:
+ -
/ %
*
(all other special characters)

Operators are usually left-associative, i.e. x + y + z
is interpreted as (x + y) + z,
except operators ending in colon : are treated as
right-associative.

An example is the list-consing operator ::. where,
x :: y :: zs is interpreted as x :: (y ::

zs).

eg.
def + (other: Complex) : Complex = {
 //....
}

infix operator - any single parameter method can
be used :
System exit 0
Thread sleep 10

unary operators - prefix the operator name with
"unary_"
def unary_~ : Rational = new Rational(denom,
numer)

The Scala compiler will try to infer some meaning
out of the "operators" that have some
predetermined meaning, such as the += operator.

ARRAYS

arrays are classes
Array[T]

access as function:
a(i)

MAIN
def main(args: Array[String])

return type is unit

ANNOTATIONS

to come

ASSIGNMENT

=
protected var x = 0

<-
val x <- xs is a generator which produces a

sequence of values

SELECTION

The else must be present and must result in the
same kind of value that the if block does
val filename =
 if (options.contains("configFile"))
 options.get("configFile")
 else
 "default.properties"

ITERATION

prefer recursion over looping

while loop: same as in Java

for loop:
// to is a method in Int that produces a Range
object
for (i <- 1 to 10 if i % 2 == 0) // the left-
arrow means "assignment" in Scala
 System.out.println("Counting " + i)

i <- 1 to 10 is equivalent to:
for (i <- 1.to(10))

i % 2 == 0 is a filter, optional

for (val arg <- args)

maps to args foreach (arg => ...)

More to come...

REFERENCES

The Busy Developers' Guide to Scala series:
• “Don't Get Thrown for a Loop”, IBM

developerWorks
• “Class action”, IBM developerWorks
• “Functional programming for the object

oriented”, IBM developerWorks

Scala Reference Manuals:
• “An Overview of the Scala Programming

Language” (2. Edition, 20 pages), scala-
lang.org

• A Brief Scala Tutorial, scala-lang.org
• “A Tour of Scala”, scala-lang.org

"Scala for Java programmers", A. Sundararajan's
Weblog, blogs.sun.com

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License. To view a
copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/ ; or, (b) send
a letter to Creative Commons, 171 2nd Street, Suite 300, San
Francisco, California, 94105, USA.

