Chapter 9 B

Algorithm

Efficiency and

Sorting

Bubble Sort

- **Bubble sort**
 - **Strategy**
 - Compare adjacent elements and exchange them if they are out of order
 - Comparing the first two elements, the second and third elements, and so on, will move the largest (or smallest) elements to the end of the array
 - Repeating this process will eventually sort the array into ascending (or descending) order

Figure 9.5

The first two passes of a bubble sort of an array of five integers: a) pass 1; b) pass 2

Bubble Sort

- **Analysis**
 - Worst case: $O(n^2)$
 - Best case: $O(n)$

Insertion Sort

- **Insertion sort**
 - **Strategy**
 - Partition the array into two regions: sorted and unsorted
 - Take each item from the unsorted region and insert it into its correct order in the sorted region

Figure 9.6

An insertion sort partitions the array into two regions

Insertion Sort

Initial array:

<table>
<thead>
<tr>
<th>29</th>
<th>10</th>
<th>14</th>
<th>37</th>
<th>13</th>
</tr>
</thead>
</table>

Copy 10

\rightarrow

<table>
<thead>
<tr>
<th>29</th>
<th>10</th>
<th>14</th>
<th>37</th>
<th>13</th>
</tr>
</thead>
</table>

Shift 29

<table>
<thead>
<tr>
<th>10</th>
<th>29</th>
<th>14</th>
<th>37</th>
<th>13</th>
</tr>
</thead>
</table>

Insert 10; copy 14

<table>
<thead>
<tr>
<th>10</th>
<th>29</th>
<th>14</th>
<th>37</th>
<th>13</th>
</tr>
</thead>
</table>

Shift 29

<table>
<thead>
<tr>
<th>10</th>
<th>29</th>
<th>14</th>
<th>37</th>
<th>13</th>
</tr>
</thead>
</table>

Insert 14; copy 37; insert 37 on top of itself

<table>
<thead>
<tr>
<th>10</th>
<th>29</th>
<th>14</th>
<th>37</th>
<th>13</th>
</tr>
</thead>
</table>

Copy 13

<table>
<thead>
<tr>
<th>10</th>
<th>29</th>
<th>14</th>
<th>37</th>
<th>13</th>
</tr>
</thead>
</table>

Shift 37, 29, 14

<table>
<thead>
<tr>
<th>10</th>
<th>14</th>
<th>29</th>
<th>37</th>
<th>13</th>
</tr>
</thead>
</table>

Insert 13

Sorted array:

<table>
<thead>
<tr>
<th>10</th>
<th>14</th>
<th>29</th>
<th>37</th>
<th>13</th>
</tr>
</thead>
</table>

Figure 9.7

An insertion sort of an array of five integers.
Insertion Sort

- Analysis
 - Worst case: O(n^2)
 - For small arrays
 - Insertion sort is appropriate due to its simplicity
 - For large arrays
 - Insertion sort is prohibitively inefficient

Mergesort

- Important divide-and-conquer sorting algorithms
 - Mergesort
 - Quicksort
 - Mergesort
 - A recursive sorting algorithm
 - Gives the same performance, regardless of the initial order of the array items
 - Strategy
 - Divide an array into halves
 - Sort each half
 - Merge the sorted halves into one sorted array

Mergesort

- Analysis
 - Worst case: O(n * log_2 n)
 - Average case: O(n * log_2 n)
 - Advantage
 - It is an extremely efficient algorithm with respect to time
 - Drawback
 - It requires a second array as large as the original array

Quicksort

- Quicksort
 - A divide-and-conquer algorithm
 - Strategy
 - Partition an array into items that are less than the pivot and those that are greater than or equal to the pivot
 - Sort the left section
 - Sort the right section

Figure 9.8
A mergesort with an auxiliary temporary array

Figure 9.9
A mergesort of an array of six integers

Figure 9.12
A partition about a pivot
Quicksort

- Using an invariant to develop a partition algorithm
 - Invariant for the partition algorithm
 The items in region S_1 are all less than the pivot, and those in S_2 are all greater than or equal to the pivot.

 ![Partition Algorithm Invariant](image)

- Analysis
 - Worst case
 - quicksort is $O(n^2)$ when the array is already sorted and the smallest item is chosen as the pivot.

 ![Worst-case Partitioning](image)

- Average case
 - quicksort is $O(n \log n)$ when S_1 and S_2 contain the same or nearly the same number of items arranged at random.

 ![Average-case Partitioning](image)

- Analysis
 - quicksort is usually extremely fast in practice.
 - Even if the worst case occurs, quicksort's performance is acceptable for moderately large arrays.

Radix Sort

- Radix sort
 - Treats each data element as a character string.
 - Strategy
 - Repeatedly organize the data into groups according to the i^{th} character in each element.

- Analysis
 - Radix sort is $O(n)$.
Summary

- Order-of-magnitude analysis and Big O notation measure an algorithm’s time requirement as a function of the problem size by using a growth-rate function
- To compare the inherent efficiency of algorithms
 – Examine their growth-rate functions when the problems are large
 – Consider only significant differences in growth-rate functions

Summary

- Worst-case and average-case analyses
 – Worst-case analysis considers the maximum amount of work an algorithm will require on a problem of a given size
 – Average-case analysis considers the expected amount of work that an algorithm will require on a problem of a given size
- Order-of-magnitude analysis can be used to choose an implementation for an abstract data type
- Selection sort, bubble sort, and insertion sort are all $O(n^2)$ algorithms
- Quicksort and mergesort are two very efficient sorting algorithms

A Comparison of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Worst case</th>
<th>Average case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection sort</td>
<td>n^2</td>
<td>n^2</td>
</tr>
<tr>
<td>Bubble sort</td>
<td>n^2</td>
<td>n^2</td>
</tr>
<tr>
<td>Insertion sort</td>
<td>n^2</td>
<td>n^2</td>
</tr>
<tr>
<td>Mergesort</td>
<td>$n \cdot \log n$</td>
<td>$n \cdot \log n$</td>
</tr>
<tr>
<td>Quicksort</td>
<td>n^2</td>
<td>$n \cdot \log n$</td>
</tr>
<tr>
<td>Radix sort</td>
<td>n</td>
<td>$n \cdot \log n$</td>
</tr>
<tr>
<td>Treesort</td>
<td>n^2</td>
<td>$n \cdot \log n$</td>
</tr>
<tr>
<td>Heapsort</td>
<td>$n \cdot \log n$</td>
<td>$n \cdot \log n$</td>
</tr>
</tbody>
</table>

Figure 9.22
Approximate growth rates of time required for eight sorting algorithms