
A Statistical Approach for the Analysis of the Relation Between Low-Level
Performance Information, the Code, and the Environment

Nayda G. Santiago
Michigan State University

ECE Department
2120 Engineering Building

East Lansing, MI 48824, USA
santia11@msu.edu

Diane T. Rover
Iowa State University
Department of ECE
3227 Coover Hall

Ames, IA 50011, USA
drover@iastate.edu

Domingo Rodríguez
Univ. of Puerto Rico at Mayagüez

ECE Department
P. O. Box 9042

Mayagüez, PR 00681-9042, USA
domingo@ece.uprm.edu

Abstract

This paper presents a methodology for aiding a scientific
programmer to evaluate the performance of parallel pro-
grams on advanced architectures. It applies well-defined
design of experiments methods to the identification of re-
lations among different levels in the process of mapping
computational operations to high-performance computing
systems. Statistical analysis is used for studying different
factors that affect the mapping process of scientific comput-
ing algorithms to advanced architectures. In particular, a
case study on the numerical solution of finite element meth-
ods for the analysis of conformal antennas for electromag-
netic radiation applications was used to test the proposed
methodology. The use of statistics for identification of rela-
tionships among factors has formalized the solution of the
problem and this novel approach allows unbiased conclu-
sions about results. Subset selection based on principal
components was used to determine the subset of metrics re-
quired to explain the behavior of the system.

1. Introduction

Performance data analysis is integral to the process of
tuning parallel applications to advanced architectures. The
traditional approach for performance tuning is through the
process of data collection, analysis, and code optimization.
In this approach the application programmer needs to un-
derstand instrumentation, learn the appropriate tools, and
interpret data and its relation to the code, in order to opti-
mize the code or system configuration, accordingly. This is
illustrated in Figure 1. This method is complex and prone
to wrong interpretations [10]. Also, transformations applied
to source code are hard to map to performance data [8].
We propose an alternative method that minimizes ambiguity

when determining which factors to consider during a tuning
process of a parallel application.

High−level Instrumentation
Tools

Programming
Paradigm

Programming
Style System

Configurarion

Computer
Systemcode

Performance
Data

Analysis and
Evaluation

Tools

Knowledge
on

Tools

Programmer

Understand Relations
Between Performance

Data and Code

In−depth
Knowledge on

Computer System

Libraries Algorithm

Languages

Evaluation

Experience

Use
Modify

Figure 1. Analysis flow for tuning an application.

Some tools, such as Paradyn [7], take an automatic ap-
proach to determine whether there is a performance bottle-
neck and where to locate it. Most other tools take a differ-
ent approach in what is called in statistics, exploratory data
analysis (EDA). In this type of analysis, the calculation of
simple statistics and graphical summaries provide the user
an understanding of what information the data is conveying.
No a priori knowledge about the data is used.

Complementary to EDA there is a method called confir-
matory data analysis (CDA) where formal statistics is used
to confirm or reject a hypothesis about the population un-
der study. These methods have been used for a long time
in areas such as biostatistics, economics, pattern recogni-
tion, and operational research. Coffin and Saltzman applied
these traditional techniques to evaluate and compare opti-
mization algorithms used in operational research [2]. This
analysis allowed them to draw statistically sound conclu-
sions about the algorithms. Sun et al. applied design of

experiments and ANOVA to evaluate memory hierarchies
and understand their performance [12].

Certain combinations of factors such as programming
style, language, compiler options, and algorithms will pro-
duce better performance results than others. In this work,
we are presenting a methodology for obtaining information
about how these factors affect performance for a specific
application. This methodology is based on a combination
of confirmatory data analysis statistics and exploratory data
analysis and obtains sound conclusions about the effects of
factors on the performance obtained.

We combined the use of design of experiments, analysis
of variance (ANOVA), correlation, and subset feature selec-
tion, applied to performance data, to explain the behavior
of the system and provide insight to the user on the rela-
tionship between high-level abstractions to low-level per-
formance information. Figure 2 depicts this methodology.
In this paper, we describe the analysis steps in detail. How-
ever, we expect most of the details to be hidden from the
programmer as support for automation is developed and in-
corporated.

High−level

Modify

code

Alternative
Algorithms

Problem Solving Environment

Experimentation

Programmer

Statistical

Instrumentation

Knowledge−Based

Tools

Analysis

Data

System

System

Information

Computer Performance

Suggestion

Figure 2. Proposed application tuning methodology.

Section 2 provides an overview of the methodology. In
section 3, the evaluation method is demonstrated in a case
study of an electromagnetics application for conformal an-
tenna design. Sections 4 and 5 show the results and conclu-
sions obtained.

2. Overview of Methodology

This work proposes a methodology for the analysis of
performance data using a combination of CDA, EDA, and
experimentation. EDA is characterized by utilizing no pre-
liminary knowledge about the possible relations of variables
under study and the use of statistics and graphical sum-
maries to understand the information data is conveying. In
CDA, formal statistical methods are used to confirm or re-
ject a hypothesis about the population under study. Exper-
imentation is used to collect unbiased data to confirm or
reject the hypotheses.

There are four steps in the methodology. First, a prelim-
inary problem analysis is done. Here we can visualize in
general what is affecting performance and gather prelimi-
nary information. The second step is to specify the exper-
iment design to collect enough unbiased information to be
analyzed for establishing relationships. The third step is to
collect the data. Finally, the last step is data analysis.

2.1. Preliminary Problem Analysis

A performance problem-solving process starts with the
analysis of the problem specification. Information needs
to be collected about the programmer’s goal and both the
performance problem and the application itself.

Once the application and performance goals are clear,
the next step is to profile the code to identify possible func-
tions to optimize. Analysis continues with the identification
of possible factors affecting performance. These include
environment factors, algorithms to solve those functions to
optimize, and hardware specific factors. Once the factors
are identified, a subset should be selected for the experi-
ment, considering controllability, feasibility, practicability,
and constraints.

2.2. Specification for the Experiment

The second step in the methodology is experiment spec-
ification. The theory of design of experiments allow us to
take an objective approach in the experimentation process
[9]. A well known model of the experimentation process is
shown in Figure 3.

System

...

...

OutputsInputs

execution timecode

input data

... ...

output data

algorithms problem size
Controllable factors

workload OS processes
Uncontrollable factors

Figure 3. Model of an experiment.

Studying all possible factors and levels of these factors
is an intractable problem. A level refers here to the differ-
ent possible values of one factor considered in an experi-
ment. In order to obtain the total number of experimental
runs, it is necessary to calculate all possible assignment of
factors when varying all at a time. Once a decision on the
factors and levels is taken, the next step is to select the ran-
dom order in which the experimental runs will be executed.
Randomization is required to avoid the influence of uncon-
trollable factors in the outcome. We must also have at least
two replicates of the experiment [9].

2

The effect of each factor is obtained through experimen-
tation by the use of a factorial design. In this type of design,
all combinations of all levels of all factors are tested, usu-
ally in a complete random order [5]. For practical consid-
erations, in certain cases a completely random set of runs
might not be easily implemented. A completely random-
ized run would imply that from run to run any factor may
change. For most computer applications, this is impracti-
cal. For example, in our study, changing the problem size
from experimental run to experimental run results in exces-
sive experimentation time and limits our ability to automat-
ically control experimentation. So a split-split-plot design
was used. A split-plot design is a general case of a factorial
design in which randomization is restricted. In this design,
one factor is selected for a treatment. A treatment is a set of
levels of controllable factors administered to an experimen-
tal run. The order in which the treatments will be applied to
this factor is selected at random. Once this is fixed, a second
factor is selected and, given the order for experimental runs
selected for the first factor, randomization is done on the
second factor. This could be repeated successively. When
a third factor follows the same restrictions, this is called a
split-split plot design [9]. A partial randomization of exper-
iments causes a higher experimentation error so split-split
plot is suggested only when a completely randomized de-
sign is not possible for practical reasons.

2.3. Data Collection

The data collection step is the only one determined par-
ticularly by the computer system, language, and tools used.
This is due to the large variation of metrics available for dif-
ferent computer systems and at different levels. One group
working towards standardization of performance metrics is
the APART (Automatic Performance Analysis: Resources
and Tools) group [4, 10]. Their work moves towards the
formalization of the language and methods to present per-
formance information and to identify the requirements for
automatic performance analysis tools. APART workpack-
age 2 presents a set of metrics defined using ASL for de-
termining some performance properties for shared memory,
message passing, and high performance Fortran [4].

During this step, we identify which metrics are measur-
able for the paradigms and systems being used. Specifi-
cally, we identify the instrumentation tools that are avail-
able and the metrics that are measurable at the operating
system, application, and hardware levels. Then from these,
for a given paradigm, we select the APART-recommended
set of metrics. Important metrics suggested by the applica-
tion programmer should also be selected. Once a set of per-
formance metrics is selected, instrumentation is activated to
collect the data. Code is compiled and linked as needed,
and performance data are collected during execution.

2.4. Data Analysis

After data collection, analysis begins, and the metric data
are first formatted to support the statistical techniques. For
one experiment, a matrix format is used. Each element of
the matrix is either an average or absolute metric value. An
average value,

�������
, is computed as the sum of all met-

ric sample values divided by the number of samples, where
the samples of the metric values are taken during execu-
tion time only. For example, page faults per second might
be measured as an average. An absolute value,

� ���	�
, is a

metric whose value is obtained as a total at the end of exe-
cution time only. Total execution time is an example of an
absolute metric. One experiment consists of
 experimental
runs in a predefined random order. This random order de-
termines the precision obtained in the results. Let � denote
the number of performance metrics measured during an ex-
perimental run. Let � denote the experimental run where
�� � �
���� and � is the metric identification number
where

�� � � ������� This results in the following data
format for one experiment:

��� ��
�

�! #"%$'&($*) �! #"%$'&	+,) -,-,- �! #"%$'&/.102+,)�! #"3+4&($*) �! #"3+4&	+,) -,-,- �! #"3+4&/.102+,)
.
.
.

.

.

.
. . .

.

.

.�5 #"76809+4&($�):�5 #"76109+4&	+;)<-,-,-=�! #"76809+4&/.102+,)
>%?
@

where
��ACB �ED/�GF denotes average or absolute metric value

for experimental run � and metric � , and H is either IKJML orICN�O . Each column of this performance data matrix contains
the measurement of one performance metric over a set of
experimental runs and each row contains information about
one experimental run. Several statistical techniques may be
applied to this matrix.

2.4.1. Correlation Matrix.

The correlation coefficient is a measure of the linear as-
sociation between two variables. The correlation matrix
is a two-dimensional array of correlations where all cor-
relation coefficients are organized systematically. A sam-
ple autocorrelation matrix is computed using the formulaP � +6Q0R+MSUT�WV T� S where T�X�Y� �Z� [V and � is a �9\1�
unit vector and [is a row vector containing the means of
the columns of

� �]
 is the number of experiments [11].S denotes a diagonal matrix containing the inverse of the
standard deviation of each metric. The value of each ele-
ment

B_^ Da`bF in the correlation matrix contains the correlation
coefficient between metric

^
and metric `M�

2.4.2. ANOVA.

Analysis of variance (ANOVA) is a statistical procedure for
the analysis of the response of an experiment. We are us-
ing ANOVA to determine whether there is influence of any

3

of the factors on the result obtained for each performance
metric. In ANOVA, the goal is to determine if there is an
effect of different treatments on a population. In hypothesis
testing, the hypothesis assumed to be true is called the null
hypothesis and the contradictory hypothesis is called alter-
nate hypothesis. The null hypothesis tested by ANOVA is
that no factor will influence the solution and that there is
no interaction between any factors. The probability of error
by selecting an alternate hypothesis when the null hypoth-
esis is true is called type I error and is denoted by � (also
called alpha value). Once the alpha level for the test is se-
lected, a set of test statistics are computed and a conclusion
on whether the null hypothesis is probable or not is reached.
In our case, ANOVA at � level

 �
�� will be used to establish
relationships among factors and performance metrics.

2.4.3. Multidimensional Data Analysis.

The multidimensional nature of the output performance
metrics prompts us to identify mechanisms for data reduc-
tion and subset selection. Subset selection refers to the se-
lection of the most independent columns of the matrix to ex-
plain the variability of results. Vélez and Jiménez show that
the number of columns required for subset selection will be
the same number of components that we should retain when
performing principal component analysis (PCA) on the data
to preserve the variability of the multidimensional data [13].

Now the question to answer is how many principal com-
ponents should be retained to account for most of the vari-
ation in the data? There are three commonly used methods
in multivariate analysis:

Scree test [6]. The eigenvalues of the correlation matrix of
the data set are sorted in descendent order and plotted.
The point where the curve flattens is selected as the
cutoff point, and this is the number of principal com-
ponents to select.

Cumulative Percentage of Total Variation [3]. The
eigenvalues of covariance matrix of the data are
computed. Each eigenvalue contributes to a percent-
age of the total variance. Those eigenvalues whose
eigenvectors explain most of the variance are selected.
A threshold of typically � ��� of the total variance is
used.

Eigenvalues greater than 1 [6]. The eigenvalues of the
correlation matrix of the data computed and those
eigenvalues greater than one are selected.

Once the number of metrics needed to explain the vari-
ability of the data is known, a subset selection method is
used to choose important metrics based on a cost function.
We suggest using independence of metrics as the cost func-
tion to explain the variability of the data since it is related

to the amount of information contained in the performance
data matrix. In the subset selection method suggested by
Vélez and Jiménez [13], the criterion of independence be-
tween columns is used as a measure for subset selection.
Those features that are most independent and explain the
highest correlation are selected based on principal compo-
nent analysis and singular value decomposition (SVD).

3. Case study - Conformal Antenna Design

We have selected a case study of an application in the
area of finite elements methods for conformal antenna anal-
ysis. This code implements an iterative solver whose kernel
is a matrix-vector multiply of dense matrices and is repre-
sentative of the types of workload in this area. We used
experimental design techniques to determine how low-level
performance information is affected by the code, problem
size, and compiler options. This section introduces and
demonstrates the methodology in the context of the confor-
mal antenna design case study.

3.1. Preliminary Problem Analysis

The performance objective is to improve the execution
time of the antenna analysis code. The code uses a bi-
conjugate gradient iterative solver to find the solution. The
goal is to parallelize the code and to reduce the execution
time while keeping the memory requirements as low as pos-
sible due to the large matrices involved in the computation.

The original serial code was profiled and, not surpris-
ingly, ��� � of the time was spent in a dense matrix-vector
multiplication routine and other routines were accounting
for 	 � or less of the total execution time each. Therefore,
efforts concentrated in optimizing this dense matrix-vector
multiplication routine. Several different dense matrix-
vector multiplication routines were tested and problem sizes
were changed by modifying the physical specifications of
the antenna.

The experiments were done on a quad-processor Sun En-
terprise 450 Server running Solaris 5.7. This server is a
shared-memory, symmetric multiprocessor system (SMP).
Each processor is an UltraSparc

V �
II running at 400MHz

with 2MB of local, high-speed external cache memory. We
used OpenMP directives for code parallelization with the
Forte Fortran HPC 6 Fortran compiler and Guidef77 3.9
parallelizing compiler.

3.2. Specification for the Experiment

The inputs to our system are the application code and
data. The outputs are the matrices containing the different
metrics to measure performance. Controllable factors in the
experiment are problem size, algorithm, compiler options,

4

and sampling rate of the metrics. Among uncontrollable
factors we consider environment variables and workload.

We investigated a comprehensive set of performance fac-
tors and determined that an observable, controllable and
measurable set includes problem size, dense matrix-vector
multiplication algorithm selection, and compiler options.
The set of factors and levels in this experiment is shown
in Table 1. Since the used compiler generates a different
executable with each permutation of flags, the effect of per-
mutations was also considered.

Table 1. Factors and levels in experiments.
Factors Number of Levels

Problem Size 3
Compiler Options 13
Algorithms 2
Number of repetitions 3
Total number of experimental runs 234

Figure 4 shows a graphical description of a block of our
split-split-plot design. A block refers to a replicate or repe-
tition of the basic experiment. In this figure, a block in the
design is divided into whole plots where the the problem
size (� , � , and) was selected at random. The subplot fac-
tor is the matrix multiplication algorithm (� and �). Then
sub-subplots will contain the compiler options (I - �) that
were tested randomly.

2 1 3

b,l,a,...,h d,c,g,...,b a,i,d,...,c

j,h,e,...,c k,b,g,...,a m,a,e,...,h

B

A B

A

B

A

Figure 4. Example of one block for our split-split
plot design.

Three replicates of the basic experiment were done. The
number of iterations for obtaining the solution of the itera-
tive solver has been fixed to remove the impact of reduced
matrix conditioning.

3.3. Data Collection

The antenna code runs in two modes: model generation
mode and solver mode. The first mode generates the ma-
trices used in the computation and the second mode finds a
solution for the antenna analysis. Running the code under
the model generation mode, matrices for a given problem

size are generated. Then one matrix-vector multiplication
algorithm is selected and 13 experimental runs, each with a
different compiler option, are set up for one batch of runs
using the same problem size. Here the code is running in
solver mode. A crontab file sequentially starts all experi-
mental runs. Instrumentation and application code run si-
multaneously.

3.4. Data Analysis

Once we obtained the metrics, they were placed in the
matrix form discussed in section 2.4 and its correlation ma-
trix was computed. The most correlated metrics with exe-
cution time were identified.

Analysis of variance (ANOVA) at � level

 �
�� was done

for each set of metrics obtained. Then the methods dis-
cussed in section 2.4.3 were used to determine how large
the set of important metrics should be. Since each method
may give a different set size, the largest size value was used
to avoid not having enough metrics. The SVD method de-
scribed in [13] was used to obtain the final set of metrics.

4. Results

The results from two different experiments done to test
the proposed methodology are shown in this section.

4.1. Experiment with parallel implementation

In this experiment, our application was parallelized using
OpenMP constructs. Two different algorithms for matrix-
vector multiplication were used with three different com-
piler flags and three different problem sizes. Problem sizes
were varied by changing the physical specifications of the
antennas under study.

Those metrics most correlated with execution time, using
a threshold of correlation higher than

 � � , are shown in ta-
ble 2, where the correlation was negative in all cases. Neg-
ative correlation is interpreted as follows: execution time
increases when the metric value decreases.

Analysis of variance (ANOVA) at significance level
� �
 �
�� was done on these metrics to establish the effect
of factors. Table 3 shows ANOVA results for those metrics
obtained in table 2.

We proceeded to perform a multidimensional analysis
on the data. First we want to obtain the number of met-
rics required for preserving most of the information on the
data. When we used the three different criteria for find-
ing the number of metrics required for keeping most of the
variance, we found that only three metrics were selected.
Analyzing the data in detail, we noticed that principal com-
ponent analysis was very biased towards the data with the
largest values. This is a well known characteristic of PCA

5

Table 2. Metrics with largest correlation with execu-
tion time.

Rank Label Description

1 lwrit/s Accesses of system buffer
cache to write

2 lread/s Accesses of system buffer
cache to read

3 c0t0d0/wps Write per second per disk
4 c0t0d0/util Percentage of disk utilization

per disk
5 disk/s0 Disk operations per second
6 page/mf Minor faults in units per sec-

ond
7 vflt/s Address translation page

faults per second

[3] and can be solved by normalizing the data. We normal-
ized the data using the Euclidean norm and then proceeded
with the analysis.

Figure 5 shows an example of a plot of the eigenvalues of
the correlation matrix to use scree test and the greater-than-
one criteria. Notice the change in the slope of the curve at
five eigenvalues and then at eight eigenvalues. Scree test
might have two or three inflection points in the curve and
this is one of the cases. Notice also that only nine eigenval-
ues are greater than one. Table 4 show how many metrics
should be kept to preserve the variability of the performance
metrics outcome, according to the three methods explained
in section 2.4.3.

Table 5 shows those metrics selected by the method for
this experiment. These metrics describe activity which ex-
perts usually look for when tuning a program: paging ac-
tivity, cpu utilization, memory faults, and virtual memory
statistics.

Table 6 shows ANOVA results for those metrics.

Table 3. ANOVA on the metrics presented in table 2.

Factor Metrics affected by the factors
Size (S) execution time, disk/s0, page/mf, vflt/s
Algorithm (A) execution time, lwrit/s, lread/s, c0t0d0/wps,

c0t0d0/util, disk/s0, page/mf, vflt/s
Compiler
Option (C)

execution time, lwrit/s, lread/s, c0t0d0/wps,
c0t0d0/util, disk/s0, page/mf, vflt/s

0

2

4

6

8

10

12

0 5 10 15 20 25

E
ig

en
va

lu
e

Eigenvalue number

"EigvExp2" using 1:2

Figure 5. Eigenvalues of correlation matrix.

We can notice that cpu context switches is affected by all
three factors.

4.2. Experiment with serial implementation

In this experiment, our application was using the same
basic algorithms as in the previous experiment, but running
serially. Other factors remain the same.

The metrics highest correlated with execution time using
a threshold of correlation higher than 0.9 are shown in Table
7.

Table 8 shows ANOVA for these five metrics.
Using the method presented in [13] and the results from

Table 4, those metrics shown in Table 9 were obtained as
the most relevant ones. These metrics describe buffer and
paging activity, virtual memory statistics, and cpu utiliza-
tion.

Table 10 shows ANOVA results for these metrics.

4.3. Discussion

Results have led to several interesting findings. Those
metrics with highest correlation with execution time will
allow us to look for possible places where to improve the
code. These are not necessarily the same metrics which will

Table 4. Number of features to select.
Test Experiment

with parallel
implementation

Experiment
with serial
implementation

Scree test. 8 6
Cumulative percent-
age (95%).

9 7

Greater than 1. 9 6
Max. of the three
methods.

9 7

6

Table 5. Metrics with highest information content.

Item Name Description
1 memory/free Usage of virtual and real memory. Free

size of the free list (Kbytes).
2 pflt/s Page faults from protection errors per

second (illegal access to page).
3 page/re Paging activity in units per second. Page

reclaims.
4 c0t1d0/wps Writes per second per disk.
5 %wio Portion of time running idle with some

process waiting for block I/O.
6 page/sr Paging activity in units per second.

Pages scanned by click algorithm.
7 page/pi Paging activity in units per second.

Kilobytes paged in.
8 page/po Paging activity in units per second.

Kilobytes paged out.
9 faults/cs Trap/Interrupt rates per seccond. CPU

context switches.

Table 6. ANOVA on the metrics shown in table 5.
Factor Metrics affected by the factors
Size (S) faults/cs
Algorithm (A) faults/cs
Compiler Option (C) memory/free, page/po, faults/cs

Table 7. Metrics with largest correlation with execu-
tion time.

Rank Label Description

1 c0t0d0/wps Writes per second per disk
2 disk/s0 Disk operations per second
3 lwrit/s Accesses of system buffer cache

to write
4 c0t0d0/util Percentage of dik utilization per

disk
5 lread/s Accesses of system buffer cache

to read

retain the largest amount of information about the status of
the system. We have to take into account that information
is inversely proportional to probability of occurrence and
those metrics which are highly correlated carry less infor-
mation than non-correlated metrics.

Those metrics highly correlated with execution time are

Table 8. ANOVA on the metrics presented in table 7.

Factor Metrics affected by the factors
Size (S) None
Algorithm (A) lwrit/s, c0t0d0/util, lread/s
Compiler Option (C) lwrit/s, c0t0d0/util, lread/s

Table 9. Metrics with highest information content.

Item Name Description
1 atch/s Page faults per second that are satisfied

by reclaiming a page currently in mem-
ory (attaches per second).

2 pflt/s Page faults from protection errors per
second (illegal access to page).

3 bread/s Reads per second of data to system
buffers from disk.

4 memory/free Usage of virtual and real memory. Free
size of the free list (Kbytes).

5 pgin/s Page-in requests per second.
6 cpu/wt Report the percentage of time the system

has spent waiting for I/O.
7 execution time Total execution time.

Table 10. ANOVA on the metrics selected by SVD.

Factor Metrics affected by the factors
Size (S) execution time
Algorithm (A) cpu/wt, execution time
Compiler Option
(C)

atch/s, memory/free, cpu/wt, execution
time.

very similar for both experiments, specially those related to
buffer activity, I/O, disk operation. This might be caused
by the nature of our application which is very demanding in
terms of I/O and memory access. Buffer activity, I/O, and
paging activity are the activities most correlated with execu-
tion time. But this buffer cache activity is related to disk ac-
cess directly since the buffer cache under Solaris 5.7 is used
to cache inode, indirect block, and cylinder group related
disk I/O only [1]. Analysis of means of this variable shows
that algorithm B for matrix-vector multiplication causes a
much lower buffer activity for read and for write than al-
gorithm A. Algorithm A refers to a matrix-vector multipli-
cation algorithm where we tried to minimize thread interac-
tion in OpenMP by making the loops as independent as pos-
sible. Algorithm B modifies algorithm A by splitting loops

7

into smaller ones by removing the if condition showing in
algorithm A. This splits the matrix by opposite diagonal el-
ements. Compiler options one and three have much smaller
buffer activity than other compiler options. An analysis of
means on execution time showed that compiler options one
and three also resulted in the longest execution times.

One analysis that we completed after looking at the re-
sults was to select a subset of the data to analyze effects
caused by the compiler options. We divided the data in two
mutually exclusive sets, one with the -fast flag and one
without it. The statistical analysis shows that no significant
difference exists between all compiler options without the -
fast flag and also no significant difference exists between
all compiler options with the -fast flag in terms of the ef-
fect on execution time. This is shown in Table 11. When we
studied the effects of permutations on the compiler options
flags we found that they cause no significant effect on the
outcome.

Table 11. ANOVA studying the effect of the -fast
flag. Main effects: S - Problem Size, A - Algorithm,
and C - Compiler Options. Yes means there is an ef-
fect and No that there is no effect.

Parallel experiment Serial experiment
Flag S A C S A C

No fast Yes Yes No Yes No No
Only fast Yes Yes No Yes Yes No

When we analyzed the same application with the serial
code, we found that paging activity, buffer activity, and cpu
utilization contain the most relevant information on the sta-
tus of the system.

5. Conclusions

A methodology based on an unified view of performance
analysis, statistics, and multidimensional data analysis has
been presented. We have used a powerful statistical tool to
identify correlations between low-level performance infor-
mation and high-level code abstractions. We are interested
in calling other researcher’s attention in applying these tech-
niques to their applications and platforms. The informa-
tion collected about algorithms or compiler options will
aid the application programmer in making decisions about
their code. This approach will complement traditional ex-
ploratory data analysis.

Future work will include the use of additional techniques
for feature selection and the design of a knowledge based
system for providing feedback to the programmer. We will

also begin a study on cluster architectures [14], using our
methodology to evaluate communication characteristics of
large-scale scientific applications.

6. Acknowledgments

This work was supported by the following grants: NSF
EIA-9700732, NSF ACI-9624149, and NSF EIA-9977071.
Special thanks to Leo Kempel and the Electromagnetics
Laboratory at Michigan State University for providing the
application code and to Vijay S. Kesavan for his assistance.

References

[1] A. Cockcroft and R. Pettit. Sun Performance and Tuning:
Java and the Internet. Sun Microsystems Press, 2nd edition,
1998.

[2] M. Coffin and M. J. Saltzman. Statistical analysis of com-
putational tests of algorithms and heuristics. INFORMS J.
Comput., 12(1):24 – 44, Winter 2000.

[3] W. R. Dillon and M. Goldstein. Multivariate Analysis:
Methods and Applications. John Wiley, 1984.

[4] T. Fahringer, M. Gerndt, B. Mohr, F. Wolf, G. Riley, and J. L.
Täff. Knowledge specification for automatic performance
analysis APART. Technical Report FZJ-ZAM-IB-2001-08,
Cent. Inst. for Appl. Math., Res. Centre Jülich, Aug. 2001.

[5] R. Jain. The Art of Computer Systems Performance Analy-
sis: Techniques for experimental design, measurement, sim-
ulation, and modeling. John Wiley & Sons, Inc., 1991.

[6] I. T. Jolliffe. Principal Component Analysis. Springer-
Verlag, Inc., 1986.

[7] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic, K. Kunchitha-
padam, and T. Newhall. The paradyn parallel performance
measurement tool. Computer, 28(11):37 – 46, Nov. 1995.

[8] B. Mohr, A. D. Malony, S. Shende, and F. Wolf. Design and
prototype of a performance tool interface for OpenMP. In
Proc. 2nd LACSI Symposium, Oct. 2001.

[9] D. C. Montgomery. Design and Analysis of Experiments.
John Wiley & Sons, Inc., 1997.

[10] G. D. Riley and J. R. Gurd. Requirement for automatic per-
formance analysis APART. Technical Report FZJ-ZAM-IB-
9919, Cent. Inst. for Appl. Math., Res. Centre Jülich, Nov.
1999.

[11] A. Ruiz and P. E. L. de Teruel. Nonlinear kernel-based
statistical pattern analysis. IEEE Trans. Neural Networks,
12(1):16 – 32, Jan. 2001.

[12] X.-H. Sun, D. He, K. W. Cameron, and Y. Luo. Adaptive
multivariate regression for advanced memory system evalu-
ation: Application and experience. Performance and Evalu-
ation: An International Journal, 45(1):1 – 18, 2001.

[13] M. Vélez-Reyes and L. O. Jiménez. Subset selection anal-
ysis for the reduction of hyperspectral imagery. In Proc.
IGARRS ’98, pages 1577 – 1581 Vol. 3, 1998.

[14] J. S. Vetter and F. Mueller. Communication characteristics of
large-scale scientific applications for contemporary cluster
architectures. In Proc. IPDPS 2002, Apr. 2002.

8

