
Pipelining, Instruction 
Level Parallelism and 

Memory in Processors

Advanced Topics
ICOM 4215

Computer Architecture and 
Organization



NOTE: The material for this 
lecture was taken from several 

different sources. They are listed 
in the corresponding sections



Pipelining

From the Hennessy and 
Patterson Book: Computer 

Organization and Design: the 
hardware software interface, 3rd

edition



Overview

� Pipelining is widely used in modern 
processors.

� Pipelining improves system performance in 
terms of throughput.

� Pipelined organization requires sophisticated 
compilation techniques.



Basic Concepts



Making the Execution of 
Programs Faster

� Use faster circuit technology to build the 
processor and the main memory.

� Arrange the hardware so that more than one 
operation can be performed at the same time.

� In the latter way, the number of operations 
performed per second is increased even 
though the elapsed time needed to perform 
any one operation is not changed.



Traditional Pipeline Concept

�Laundry Example
�Ann, Brian, Cathy, Dave 

each have one load of clothes 
to wash, dry, and fold

�Washer takes 30 minutes

�Dryer takes 40 minutes

�“Folder” takes 20 minutes

A B C D



Traditional Pipeline Concept

� Sequential laundry takes 6 
hours for 4 loads

� If they learned pipelining, 
how long would  laundry 
take? 

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

Time



Traditional Pipeline Concept

� Pipelined laundry takes 
3.5 hours for 4 loads 

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T

a

s

k

O

r

d

e

r

Time

30 40 40 40 40 20



Traditional Pipeline Concept
� Pipelining doesn’t help 

latency of single task, it 
helps throughput of entire 
workload

� Pipeline rate limited by 
slowest pipeline stage

� Multiple tasks operating 
simultaneously using 
different resources

� Potential speedup = Number 
pipe stages

� Unbalanced lengths of pipe 
stages reduces speedup

� Time to “fill” pipeline and 
time to “drain” it reduces 
speedup

� Stall for Dependences

A

B

C

D

6 PM 7 8 9

T

a

s

k

O

r

d

e

r

Time

30 40 40 40 40 20



Use the Idea of Pipelining in a 
Computer

F
1

E
1

F
2

E
2

F
3

E
3

I1 I2 I3

(a) Sequential execution

Instruction
fetch
unit

Execution
unit

Interstage buffer
B1

(b) Hardware organization

Time

F1 E1

F2 E2

F3 E3

I1

I2

I3

Instruction

(c) Pipelined execution

Figure 8.1. Basic idea of instruction pipelining.

Clock cycle 1 2 3 4
Time

Fetch + Execution



Use the Idea of Pipelining in a 
Computer

F4I4

F1

F2

F3

I1

I2

I3

D1

D2

D3

D4

E1

E2

E3

E4

W1

W2

W3

W4

Instruction

Figure 8.2. A 4-stage pipeline.

Clock cycle 1 2 3 4 5 6 7

(a) Instruction execution divided into four steps

F : Fetch
instruction

D : Decode
instruction
and fetch
operands

E: Execute
operation

W : Write
results

Interstage buffers

(b) Hardware organization

B1 B2 B3

Time

Fetch + Decode
+ Execution + Write



Ideal Pipelining

Cycle:
Instr:

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

i F D E W

i+1 F D E W

i+2 F D E W

i+3 F D E W

i+4 F D E W

Taken from: Lecture notes based on set created by Mark Hill and John P. Shen
Updated by Mikko Lipasti, ECE/CS 552: Chapter 6: PipeliningECE/CS 552: Chapter 6: Pipelining



Pipeline Performance

� The potential increase in performance 
resulting from pipelining is proportional to the 
number of pipeline stages.

� However, this increase would be achieved 
only if all pipeline stages require the same 
time to complete, and there is no interruption 
throughout program execution.

� Unfortunately, this is not true.



Role of Cache Memory

� Each pipeline stage is expected to complete in one 
clock cycle.
� The clock period should be long enough to let the slowest 

pipeline stage to complete.
� Faster stages can only wait for the slowest one to complete.

� Since main memory is very slow compared to the 
execution, if each instruction needs to be fetched 
from main memory, pipeline is almost useless.

� Fortunately, we have cache.
(We’ll talk about memory in a moment)



Pipelining Idealisms

� Uniform subcomputations
� Can pipeline into stages with equal delay

� Identical computations
� Can fill pipeline with identical work

� Independent computations
� No relationships between work units

� Are these practical?
� No, but can get close enough to get significant speedup

Taken from: Lecture notes based on set created by Mark Hill and John P. Shen
Updated by Mikko Lipasti, ECE/CS 552: Chapter 6: PipeliningECE/CS 552: Chapter 6: Pipelining



Pipeline Performance

F1

F2

F3

I1

I2

I3

E1

E2

E3

D1

D2

D3

W1

W2

W3

Instruction

F4 D4I4

Clock cycle 1 2 3 4 5 6 7 8 9

Figure 8.3. Effect of an execution operation taking more than one clock cycle.

E4

F5I5 D5

Time

E5

W4

Figure 8.3 Effect of an execution operation taking more than one clock cycle



Pipeline Performance

� The previous pipeline is said to have been stalled for two clock
cycles.

� Any condition that causes a pipeline to stall is called a hazard.
� Data hazard – any condition in which either the source or the 

destination operands of an instruction are not available at the 
time expected in the pipeline. So some operation has to be 
delayed, and the pipeline stalls.

� Instruction (control) hazard – a delay in the availability of an 
instruction causes the pipeline to stall.

� Structural hazard – the situation when two instructions require 
the use of a given hardware resource at the same time.



Pipeline Performance

F1

F2

F3

I1

I2

I3

D1

D2

D3

E1

E2

E3

W1

W2

W3

Instruction

Figure 8.4. Pipeline stall caused by a cache miss in F2.

1 2 3 4 5 6 7 8 9Clock cycle

(a) Instruction execution steps in successive clock cycles

1 2 3 4 5 6 7 8Clock cycle

Stage

F: Fetch

D: Decode

E: Execute

W: Write

F1 F2 F3

D1 D2 D3idle idle idle

E1 E2 E3idle idle idle

W1 W2idle idle idle

(b) Function performed by each processor stage in successive clock cycles

9

W3

F2 F2 F2

Time

Time

Idle periods –
stalls (bubbles)

Instruction 
hazard



Pipeline Performance

F1

F2

F3

I1

I2 (Load)

I3

E1

M2

D1

D2

D3

W1

W2

Instruction

F4I4

Clock cycle 1 2 3 4 5 6 7

Figure 8.5. Effect of a Load instruction on pipeline timing.

F5I5 D5

Time

E2

E3 W3

E4D4

Load  X(R1), R2Structural 
hazard



Pipeline Performance

� Again, pipelining does not result in individual 
instructions being executed faster; rather, it is the 
throughput that increases.

� Throughput is measured by the rate at which 
instruction execution is completed.

� Pipeline stall causes degradation in pipeline 
performance.

� We need to identify all hazards that may cause the 
pipeline to stall and to find ways to minimize their 
impact.



Program Data Dependences

� True dependence (RAW)
� j cannot execute until i 

produces its result
� Anti-dependence (WAR)

� j cannot write its result until i 
has read its sources

� Output dependence 
(WAW)
� j cannot write its result until i 

has written its result

φ≠∩ )()( jRdiWr

φ≠∩ )()( jWriRd

φ≠∩ )()( jWriWr

Taken from: Lecture notes based on set created by Mark Hill and John P. Shen
Updated by Mikko Lipasti, ECE/CS 552: Chapter 6: PipeliningECE/CS 552: Chapter 6: Pipelining



Data Hazards
� We must ensure that the results obtained when instructions are 

executed in a pipelined processor are identical to those obtained 
when the same instructions are executed sequentially.

� Hazard occurs
A ← 3 + A
B ← 4 × A

� No hazard
A ← 5 × C
B ← 20 + C

� When two operations depend on each other, they must be 
executed sequentially in the correct order.

� Another example:
Mul  R2, R3, R4
Add  R5, R4, R6



Control Dependences

� Conditional branches
� Branch must execute to determine which 

instruction to fetch next
� A conditional branch instruction introduces the 

added hazard caused by the dependency of the 
branch condition on the result of a preceding 
instruction.

� The decision to branch cannot be made until the 
execution of that instruction has been completed.

� Branch instructions represent about 20% of the 
dynamic instruction count of most programs.

Taken from: Lecture notes based on set created by Mark Hill and John P. Shen
Updated by Mikko Lipasti, ECE/CS 552: Chapter 6: PipeliningECE/CS 552: Chapter 6: Pipelining



Resolution of Pipeline Hazards

� Pipeline hazards
� Potential violations of program dependences
� Must ensure program dependences are not violated

� Hazard resolution
� Static: compiler/programmer guarantees correctness
� Dynamic: hardware performs checks at runtime

� Pipeline interlock
� Hardware mechanism for dynamic hazard resolution
� Must detect and enforce dependences at runtime

Taken from: Lecture notes based on set created by Mark Hill and John P. Shen
Updated by Mikko Lipasti, ECE/CS 552: Chapter 6: PipeliningECE/CS 552: Chapter 6: Pipelining



Instruction Level 
Parallelism

Taken from 

Soner Onder
Michigan Technological University, 

Houghton MI and Notes from Hennessy and 
Patterson’s book

http://www.eecs.berkeley.edu/~pattrsn



27

Instruction Level Parallelism

� Instruction-Level Parallelism (ILP): overlap the 
execution of instructions to improve 
performance

� 2 approaches to exploit ILP:
1) Rely on hardware to help discover and exploit the 

parallelism dynamically, and
2) Rely on software technology to find parallelism, 

statically at compile-time



Forms of parallelism

� Process-level
� How do we exploit it? What are the 

challenges?

� Thread-level
� How do we exploit it? What are the 

challenges?

� Loop-level
� What is really loop level parallelism? 

What percentage of a program’s time 
is spent inside loops?

� Instruction-level
� Lowest level

Coarse grain

Fine Grain

H
um

an
 i
nt
er
ve
nt
io
n?



Instruction-level parallelism 
(ILP)

� Briefly, ability to execute more than one instruction 
simultaneously.

� In order to achieve this goal, we should not have 
dependencies among instructions which are 
executing in parallel:
- H/W terminology Data hazards

(I.e. RAW WAR WAW)
- S/W terminology Data dependencies

Name & true dependencies



Dependencies

Do you remember the hazards they may lead to?

Output dependence

Anti-dependence

True dependence

Name dependencies

Data

Control



Increasing ILP

� Techniques
� Loop unrolling
� Static Branch Prediction

� Compiler

� Dynamic Branch Prediction
� At runtime

� Dynamic Scheduling – Tomasulo’s Algorithm
� Register renaming



Memory Hierarchy 

The following sources are used for preparing the slides on memory: 

� Lecture 14 from the course Computer architecture ECE 201 by Professor Mike 
Schulte.

� Lecture 4 from William Stallings, Computer Organization and Architecture, 
Prentice Hall; 6th edition, July 15, 2002.

� Lecture 6 from the course Systems Architectures II by Professors Jeremy R. 
Johnson and Anatole D. Ruslanov 

� Some of figures are from Computer Organization and Design: The 
Hardware/Software Approach, Third Edition, by David Patterson and John 
Hennessy, are copyrighted material (COPYRIGHT 2004 MORGAN 
KAUFMANN PUBLISHERS, INC. ALL RIGHTS RESERVED).



� The Five Classic Components of a Computer
� Memory is usually implemented as:

� Dynamic Random Access Memory (DRAM) - for main memory
� Static Random Access Memory (SRAM) - for cache

The Big Picture

Control

Datapath

Memory

Processor

Input

Output



Memory Hierarchy

CPU

Level n

Level 2

Level 1

Levels in the

memory hierarchy

Increasing distance 

from the CPU in 


access time 

Size of the memory at each level

Processor

Data are transferred

Memory technology Typical access time $ per GB in 2004
SRAM 0.5–5  ns $4000–$10,000

DRAM 50–70 ns $100–$200

Magnetic disk 5,000,000–20,000,000 ns $0.50–$2



� SRAM:
� Value is stored  on a pair of inverting gates
� Very fast but takes up more space than DRAM (4 

to 6 transistors)

� DRAM:
� Value is stored as a charge on capacitor (must be 

refreshed)
� Very small but slower than SRAM (factor of 5 to 

10)

Memory



Memory Hierarchy: How Does it Work?

� Temporal Locality (Locality in Time):
=> Keep most recently accessed data items closer to the 

processor

� Spatial Locality (Locality in Space):
=> Move blocks consists of contiguous words to the upper 

levels 

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y



Memory Hierarchy: Terminology
� Hit: data appears in some block in the upper level (example: 

Block X) 
� Hit Rate: the fraction of memory access found in the upper level
� Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

� Miss: data needs to be retrieve from a block in the lower level 
(Block Y)
� Miss Rate = 1 - (Hit Rate)
� Miss Penalty: Time to replace a block in the upper level  + 

Time to deliver the block the processor

� Hit Time << Miss Penalty
Lower Level

MemoryUpper Level
Memory

To Processor

From Processor
Blk X

Blk Y



Memory Hierarchy of a Modern Computer System
� By taking advantage of the principle of locality:

� Present the user with as much memory as is available in the 
cheapest technology.

� Provide access at the speed offered by the fastest technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

hip
C

ache

1s 10,000,000s  
(10s ms)

Speed (ns): 10s 100s

100s GsSize (bytes): Ks Ms

Tertiary
Storage
(Tape)

10,000,000,000s  
(10s sec)

Ts



General Principles of Memory

� Locality
� Temporal Locality: referenced memory is likely to be referenced 

again soon (e.g. code within a loop)
� Spatial Locality: memory close to referenced memory is likely to 

be  referenced soon (e.g., data in a sequentially access array)

� Locality + smaller HW is faster = memory hierarchy
� Levels: each smaller, faster, more expensive/byte than level 

below
� Inclusive: data found in upper level also found in the lower level



Cache

� Small amount of fast memory
� Sits between normal main memory and CPU
� May be located on CPU chip or module



Cache operation - overview

� CPU requests contents of memory location
� Check cache for this data
� If present, get from cache (fast)
� If not present, read required block from main 

memory to cache
� Then deliver from cache to CPU
� Cache includes tags to identify which block of 

main memory is in each cache slot



Cache Design

� Size
� Mapping Function
� Replacement Algorithm
� Write Policy
� Block Size
� Number of Caches



Relationship of Caches and Pipeline

W
B
 D
at
a

A
d
d
e
r

I
F
/I
D

A
L
U

M
em

ory

R
eg F

ile

M
U
X

D
ata

M
em

ory

M
U
X

Sign
Extend

Zero? M
E
M
/W

B

E
X
/M

E
M

4

A
d
d
e
r

Next 
SEQ PC

RD RD RD

Next PC

A
d
d
ress

RS1

RS2

Imm

M
U
X

I
D
/E
X

I-$ D-$

Memory



Cache/memory structure 



Block Placement

� Direct Mapped: Each block has only one 
place that it can appear in the cache. 

� Fully associative: Each block can be placed 
anywhere in the cache.

� Set associative:  Each block can be placed in 
a restricted set of places in the cache.
� If there are n blocks in a set, the cache placement 

is called n-way set associative



� Mapping:  memory mapped to one location in 
cache:

(Block address) mod (Number of blocks in cache)

� Number of blocks is typically a power of two, i.e.,
cache location obtained from low-order bits of 
address.

Example: Direct Mapped Cache

0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1

00
0

C a c h e

M e m o r y

0
01

0
1

0

01
1

1
00

1
01

1
10

1
1

1



Summary

� Pipelines
� Increase throughput of instructions
� May have stalls

� ILP
� Exploit multiple units and pipeline
� Avoid dependencies

� Memory Hierarchy and cache
� Support ILP and pipelines


