2.3

Informal Description of the Simple RISC Computer, SRC

53

Table 2.4 Example SRC Load and Store Instructions

Instrucion | op | ra | Addressing Mode
1d r1, 32 S i T 32 | R[] « M[32] “Birsct e
1d r22, 24(r4) 1 22 4 24 | R[22] « M[24 + R[4]] Displacement

st r4, 0(r9) 3 4 9 0 MIR[9]] « R[4] Register indirect

T1a r7, 32 5 0 32 | R[7] 32 Immediate

1dr r12, -48 2 12 — | 48 | R[12] « M[PC —48] Relative

lar r3, 0 6 3 ¥ 0 | R[3]«PC Register (!)

Example 2.2 Binary Encoding of an SRC Instruction As an example
of SRC instruction encoding, let us encode the second instruction in Table 2.4, which is 1d
r22, 24(r4). Working from the msb, the encoding will be

op=1 ra=22 rb=4 cl=24
00001 10110 00100 00000000000011000 = 0x0D880018

You should verify this encoding and try several examples for yourself.

2.3.4 ARITHMETIC AND LOGIC INSTRUCTIONS

This class of instructions uses the ALU of the SRC machine to do arithmetic, logical, and
shift operations. We first cover the “l1-operand” instructions not and neg.

1-Operand ALU Instructions

neg ra, rc ;Negate: R[ra] = —R[rc]
not ra, rc ;Not: R[ra] = R[rc]

These format 3 instructions take one register operand and provide one register result. The
instruction neg (op = 15) takes the 2’s complement of the contents of register R[rc] and
stores it in register R[ra]. The not (op = 24) instruction takes the logical (1’s) complement
of the contents of register R[rc] and stores it in register R[ra]. All other fields in the
instruction are unused.

The instructions add (op = 12), sub (op = 14), and (op = 20), and or (op =22)
are 2-operand, 1-result instructions. All must be in the general purpose registers. They are
specified using format 6. Notice that the least significant 12 bits are unused, because the
first 4 fields are sufficient to describe the entire operation.

2-Operand ALU Instructions

add ra, rb, rc ;2’s complement addition: R[ra] = R[rb] + R[rc]
sub ra, rb, rc ;2’s complement subtraction: R[ra] = R[rb] — R[rc]
and ra, rb, rc ;Logical AND: R[ra] = R[rb]AR[rc]

or ra, rb, rc ;Logical OR: R[ra] = R[rb]vR[rc]

