
S

2/e

C

D
A

Chapter 4 Topics

� The Design Process
� A 1-bus Microarchitecture for SRC
� Data Path Implementation

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Data Path Implementation
� Logic Design for the 1-bus SRC
� The Control Unit
� The 2- and 3-bus Processor Designs
� The Machine Reset Process
� Machine Exceptions
Revised February 2010, Tom Noack, UPRM

S

2/e

C

D
A

Abstract and Concrete Register Transfer
Descriptions

� The abstract RTN for SRC in Chapter 2 defines “what,” not
“how”

� A concrete RTN uses a specific set of real registers and buses
to accomplish the effect of an abstract RTN statement
Several concrete RTNs could implement the same ISA

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Several concrete RTNs could implement the same ISA

S

2/e

C

D
A

A Note on the Design Process

� In this chapter presents several SRC designs
� We started in Chap. 2 with an informal description
� In this chapter we will propose several block diagram

architectures to support the abstract RTN, then we will:

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Write concrete RTN steps consistent with the architecture
� Keep track of demands made by concrete RTN on the hardware

� Design data path hardware and identify needed control signals
� Design a control unit to generate control signals

S

2/e

C

D
A

Fig. 4.1 Block Diagram of 1-bus SRC

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

S

2/e

C

D
A

Fig. 4.2 High-Level View of the 1-Bus SRC
Design

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

EA

12

ADD
SUB
AND
OR
SHR
SHRA
SHL
SHC
NOT
NEG
C=B
INC4

S

2/e

C

D
A

Constraints Imposed by the Microarchitecture

� One bus connecting most registers allows
many different RTs, but only one at a time

� Memory address must be copied into MA
by CPU

� Memory data written from or read into MD

31 0

32 32-bit
General

Purpose Registers

R0

R31

32

PC

I R

〈31..0〉

31 0

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� First ALU operand always in A, result goes
to C

� Second ALU operand always comes from
bus

� Information only goes into IR and MA from
bus

� A decoder (not shown) interprets contents of IR
� MA supplies address to memory, not to CPU bus

ALU

A B

C

C

I R

MA

MD

To memory subsystem

A

S

2/e

C

D
A

Abstract and Concrete RTN for SRC add
Instruction

Abstract RTN: (IR ← M[PC]: PC ← PC + 4; instruction_execution);
instruction_execution := (• • •
add (:= op= 12) → R[ra] ← R[rb] + R[rc]:

31 0

32 32-bit
General

Purpose Registers

R0
32

PC

〈31..0〉

31 0

Step RTN

Tbl 4.1 Concrete RTN for add:

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Parts of 2 RTs (IR ← M[PC]: PC ← PC + 4;) done in T0
� Single add RT takes 3 concrete RTs (T3, T4, T5)

ALU

A B

C

R31

C

I R

MA

MD

To memory subsystem

A

Step RTN
T0. MA ← PC: C ← PC + 4;
T1. MD ← M[MA]: PC ← C;
T2. IR ← MD;
T3. A ← R[rb];
T4. C ← A + R[rc];
T5. R[ra] ← C;

IF
IEx.

S

2/e

C

D
A

Concrete RTN Gives Information about Sub-
units

� The ALU must be able to add two 32-bit values
� ALU must also be able to increment B input by 4
� Memory read must use address from MA and return data to

MD

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Two RTs separated by : in the concrete RTN, as in T0 and T1,
are operations at the same clock

� Steps T0, T1, and T2 constitute instruction fetch, and will be
the same for all instructions

� With this implementation, fetch and execute of the add
instruction takes 6 clock cycles

S

2/e

C

D
A

Concrete RTN for Arithmetic Instructions: addi

addi (:= op= 13) → R[ra] ← R[rb] + c2〈16..0〉 {2's comp. sign extend} :

Tbl 4.2 Concrete RTN for addi:

Abstract RTN:

Step RTN

31 0

32 32-bit
General

Purpose Registers

R0
32

PC

〈31..0〉

31 0

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Differs from add only in step T4
� Establishes requirement for sign extend hardware

Step RTN
T0. MA ← PC: C ← PC + 4;
T1. MD ← M[MA]; PC ← C;
T2. IR ← MD;
T3. A ← R[rb];
T4. C ← A + c2〈16..0〉 {sign ext.};
T5. R[ra] ← C; ALU

A B

C

R31

C

I R

MA

MD

To memory subsystem

A

S

2/e

C

D
A

Fig. 4.3 More Complete view of Registers and Buses in 1-bus SRC
Design—Including Some Control Signals

• Concrete RTN lets
us add detail to the
data path

– Instruction register
logic & new paths

– Condition bit flip-flop

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

– Shift count register

Keep this slide in
mind as we discuss
concrete RTN of
instructions.

S

2/e

C

D
A

Abstract and Concrete RTN for Load and Store

ld (:= op= 1) → R[ra] ← M[disp] :
st (:= op= 3) → M[disp] ← R[ra] :

where
disp〈31..0〉 := ((rb=0) → c2〈16..0〉 {sign ext.} :

(rb≠0) → R[rb] + c2〈16..0〉 {sign extend, 2's comp.}) :

Tbl 4.3

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Step RTN for ld RTN for st
T0-T2 Instruction fetch
T3. A ← (rb=0 → 0: rb≠0 → R[rb]);
T4. C ← A + (16@IR〈16〉#IR〈15..0〉);
T5. MA ← C;
T6. MD ← M[MA]; MD ← R[ra];
T7. R[ra] ← MD; M[MA] ← MD;
Note that steps T1-T4 are the same as for la and addi
Step 5 for addi is R[rb] ← C; and lar uses PC instead of rb in T2

Tbl 4.3

S

2/e

C

D
A

Notes for Load and Store RTN

� Steps T0 through T2 are the same as for add and addi, and for
all instructions

� In addition, steps T3 through T5 are the same for ld and st,

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

In addition, steps T3 through T5 are the same for ld and st,
because they calculate disp

� A way is needed to use 0 for R[rb] when rb=0
� 15 bit sign extension is needed for IR〈16..0〉

� Memory read into MD occurs at T6 of ld
� Write of MD into memory occurs at T7 of st

S

2/e

C

D
A

Concrete RTN for Conditional Branch

br (:= op= 8) → (cond → PC ← R[rb]):
cond := (c3〈2..0〉=0 → 0: never

c3〈2..0〉=1 → 1: always
c3〈2..0〉=2 → R[rc]=0: if register is zero
c3〈2..0〉=3 → R[rc]≠0: if register is nonzero
c3〈2..0〉=4 → R[rc]〈31〉=0: if positive or zero
c3〈2..0〉=5 → R[rc]〈31〉=1): if negative

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

c3〈2..0〉=5 → R[rc]〈31〉=1): if negative

Step Concrete RTN
T0-T2 Instruction fetch
T3. CON ← cond(R[rc]);
T4. CON → PC ← R[rb];

Tbl 4.4

S

2/e

C

D
A

Notes on Conditional Branch RTN

� c3〈2..0〉 are just the low order 3 bits of IR

� cond() is evaluated by a combinational logic circuit having inputs
from R[rc] and c3〈2..0〉

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

from R[rc] and c3〈2..0〉
� The one bit register CON is not accessible to the programmer

and only holds the output of the combinational logic for the
condition

� If the branch succeeds, the program counter is replaced by the
contents of a general reg.

S

2/e

C

D
A

Abstract and Concrete RTN for SRC Shift Right

shr (:= op = 26) → R[ra]〈31..0〉 ← (n @ 0) # R[rb]〈31..n〉 :
n := ((c3〈4..0〉=0) → R[rc]〈4..0〉 : shift count in reg.

(c3〈4..0〉≠0) → c3〈4..0〉): or const. field

Tbl 4.5

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Step Concrete RTN
T0-T2 Instruction fetch
T3. n ← IR〈4..0〉;
T4. (n=0) → (n ← R[rc]〈4..0〉);
Τ5. C ← R[rb];
T6. Shr (:= (n≠0) → (C〈31..0〉 ← 0#C〈31..1〉: n ← n-1; Shr));
T7. R[ra] ← C;

step T6 is repeated n times

Tbl 4.5

S

2/e

C

D
A

Notes on SRC Shift RTN

� In the abstract RTN, n is defined with :=
� In the concrete RTN, it is a physical register
� n not only holds the shift count but is used as a counter in step

T6

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

T6
� Step T6 is repeated n times as shown by the recursion in the

RTN
� The control for such repeated steps will be treated later

S

2/e

C

D
A

Data Path/Control Unit Separation

� Interface between data path and control consists of gate and
strobe signals

� A gate selects one of several values to apply to a common point,
say a bus

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� A strobe changes the values of the flip-flops in a register to
match new inputs

� The type of flip-flop used in regs. has much influence on control
and some on data path
� Latch: simpler hardware, but more complex timing
� Edge triggering: simpler timing, but about 2× hardware

� Using transparent latches can create feedback paths and turn a
synchronous machine into an unstable asynchronous machine

S

2/e

C

D
A

Reminder on Latch and Edge-Triggered
Operation

� Latch output follows input while strobe is high

D

C

D

C

Q

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Q
C

D Q

C

• Edge triggering samples input at edge time

D

C

Q

S

2/e

C

D
A

Fig. 4.4 The SRC Register File and Its Control Signals

� Rout gates selected reg.
onto bus

� Rin strobed selected reg.
from bus

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

BA = Base Address

� BAout differs from Rout by
gating 0 when R[0] is
selected

S

2/e

C

D
A

� I〈21〉 is the sign bit of C1 that must
be extended

Fig. 4.5 Extracting c1, c2, and op from the
Instruction Register

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� I〈16〉 is the sign bit of C2 that must
be extended

� Sign bits are fanned out from one to
several bits and gated to bus

S

2/e

C

D
A

� MD is loaded
from memory
bus or from
CPU bus

Fig. 4.6 CPU to Memory Interface: MA and MD
Registers

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� MD can drive
CPU bus or
memory bus

S

2/e

C

D
A

Fig. 4.7 The ALU and Its Associated Registers

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

S

2/e

C

D
A

Figure 4.8. A Logic-Level Design for One Bit of
the 1-Bus SRC ALU

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

S

2/e

C

D
A

From Concrete RTN to Control Signals: The
Control Sequence

Step Concrete RTN Control Sequence
T0. MA ← PC: C ← PC+4; PCout, MAin, Inc4, Cin
T1. MD ← M[MA]: PC ← C; Read, Cout, PCin, Wait
T2. IR ← MD; MDout, IRin

Tbl 4.6—The Instruction Fetch

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� The register transfers are the concrete RTN
� The control signals that cause the register transfers make

up the control sequence
� Wait prevents the control from advancing to step T3 until

the memory asserts Done

T2. IR ← MD; MDout, IRin
T3. Instruction_execution

S

2/e

C

D
A

Control Steps, Control Signals, and Timing

� Within a given time step, the order in which control signals are
written is irrelevant
� In step T0, Cin, Inc4, MAin, PCout == PCout, MAin, Inc4, Cin

� The only timing distinction within a step is between gates and
strobes

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

strobes
� The memory read should be started as early as possible to

reduce the wait
� MA must have the right value before being used for the read
� Depending on memory timing, Read could be in T0

S

2/e

C

D
A

Control Sequence for the SRC add Instruction

add (:= op= 12) → R[ra] ← R[rb] + R[rc]:

Step Concrete RTN Control Sequence
T0. MA ← PC: C ← PC+4; PCout, MAin, Inc4, Cin, Read
T1. MD ← M[MA]: PC ← C; Cout, PCin, Wait
T2. IR ← MD; MD , IR

Tbl 4.7 The Add Instruction

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� The translation of a register transfer is (for example)
(concrete RTN) MA ← PC becomes (control RTN) PCout, MAin

� Note the use of Gra, Grb, & Grc to gate the correct 5 bit register
select code to the regs.

� End signals the control to start over at step T0

T2. IR ← MD; MDout, IRin
T3. A ← R[rb]; Grb, Rout, Ain
T4. C ← A + R[rc]; Grc, Rout, ADD, Cin
T5. R[ra] ← C; Cout, Gra, Rin, End

S

2/e

C

D
A

Control Sequence for the SRC addi Instruction

addi (:= op= 13) → R[ra] ← R[rb] + c2〈16..0〉 {2's comp., sign ext.} :

Step Concrete RTN Control Sequence
T0. MA ← PC: C ← PC + 4; PCout, MAin, Inc4, Cin, Read
T1. MD ← M[MA]; PC ← C; C , PC , Wait

Tbl 4.8 The addi Instruction

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� The c2out signal sign extends IR〈16..0〉 and gates it to the
bus

T1. MD ← M[MA]; PC ← C; Cout, PCin, Wait
T2. IR ← MD; MDout, IRin
T3. A ← R[rb]; Grb, Rout, Ain
T4. C ← A + c2〈16..0〉 {sign ext.}; c2out, ADD, Cin
T5. R[ra] ← C; Cout, Gra, Rin, End

S

2/e

C

D
A

Control Sequence for the SRC st Instruction

st (:= op= 3) → M[disp] ← R[ra] :
disp〈31..0〉 := ((rb=0) → c2〈16..0〉 {sign ext.} :

(rb≠0) → R[rb] + c2〈16..0〉 {sign extend, 2's comp.}) :

The st Instruction

Step Concrete RTN Control Sequence

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Note BAout in T3 compared to Rout in T3 of addi

Step Concrete RTN Control Sequence
T0-T2 Instruction fetch Instruction fetch
T3. A ← (rb=0) → 0: rb≠0 → R[rb]; Grb, BAout, Ain
T4. C ← A + c2〈16..0〉 {sign ext.}; c2out, ADD, Cin
T5. MA ← C; Cout, MAin
T6. MD ← R[ra]; Gra, Rout, MDin, Write
T7. M[MA] ← MD; Wait, End

} address arithmetic

S

2/e

C

D
A

Fig. 4.9 The Shift Counter

� The concrete RTN for shr relies upon a 5 bit register to hold the
shift count

� It must load, decrement, and have an = 0 test

Bus

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

From Figure 4.3

Decr

Ld

5

n
4〈4..0〉

〈4..0〉

〈31..0〉

n = 0

n: shift count

5-bit down counter

n = Q4..Q0

32

0

n = 0

Decrement Shift count, n

S

2/e

C

D
A

Tbl 4.10 Control Sequence for the SRC shr
Instruction—Looping

Step Concrete RTN Control Sequence
T0-T2 Instruction fetch Instruction fetch
T3. n ← IR〈4..0〉; c1out, Ld
T4. (n=0) → (n ← R[rc]〈4..0〉); n=0 → (Grc, Rout, Ld)
T5. C ← R[rb]; Grb, Rout, C=B, Cin

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Conditional control signals and repeating a control step are new
concepts

T5. C ← R[rb]; Grb, Rout, C=B, Cin
T6. Shr (:= (n≠0) → n≠0 → (Cout, SHR, Cin,

(C〈31..0〉 ← 0#C〈31..1〉: Decr, Goto6)
n ← n-1; Shr));

T7. R[ra] ← C; Cout, Gra, Rin, End

S

2/e

C

D
A

Branching

cond := (c3〈2..0〉=0 → 0:
c3〈2..0〉=1 → 1:
c3〈2..0〉=2 → R[rc]=0:
c3〈2..0〉=3 → R[rc]≠0:
c3〈2..0〉=4 → R[rc]〈31〉=0:
c3〈2..0〉=5 → R[rc]〈31〉=1):

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� This is equivalent to the logic expression

c3〈2..0〉=5 → R[rc]〈31〉=1):

cond = (c3〈2..0〉=1) ∨ (c3〈2..0〉=2)∧(R[rc]=0) ∨
(c3〈2..0〉=3)∧¬(R[rc]=0) ∨ (c3〈2..0〉=4)∧¬R[rc]〈31〉 ∨
(c3〈2..0〉=5)∧R[rc]〈31〉

S

2/e

C

D
A

Fig. 4.10 Computation of the Conditional Value
CON

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� NOR gate does =0 test of R[rc] on bus

S

2/e

C

D
A

Tbl 4.11 Control Sequence for SRC Branch Instruction,
br

Step Concrete RTN Control Sequence
T0-T2 Instruction fetch Instruction fetch
T3. CON ← cond(R[rc]); Grc, R , CON

br (:= op= 8) → (cond → PC ← R[rb]):

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Condition logic is always connected to CON, so R[rc] only needs to
be put on bus in T3

� Only PCin is conditional in T4 since gating R[rb] to bus makes no
difference if it is not used

T3. CON ← cond(R[rc]); Grc, Rout, CONin
T4. CON → PC ← R[rb]; Grb, Rout, CON → PCin, End

S

2/e

C

D
A

Summary of the Design Process

Informal description ⇒ formal RTN description ⇒ block diagram
arch. ⇒ concrete RTN steps ⇒ hardware design of blocks ⇒
control sequences ⇒ control unit and timing

� At each level, more decisions must be made
These decisions refine the design

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� These decisions refine the design
� Also place requirements on hardware still to be designed

� The nice one way process above has circularity
� Decisions at later stages cause changes in earlier ones
� Happens less in a text than in reality because

� Can be fixed on re-reading
� Confusing to first time student

S

2/e

C

D
A

Fig. 4.11 Clocking the Data Path: Register
Transfer Timing

� tR2valid is the
period from begin
of gate signal till
inputs to R2 are
valid

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

valid
� tcomb is delay

through
combinational
logic, such as
ALU or cond logic

S

2/e

C

D
A

Signal Timing on the Data Path

� Several delays occur in getting data from R1 to R2
� Gate delay through the 3-state bus driver—tg
� Worst case propagation delay on bus—tbp

� Delay through any logic, such as ALU—tcomb

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

comb

� Set up time for data to affect state of R2—tsu

� Data can be strobed into R2 after this time
tR2valid = tg + tbp + tcomb + tsu

� Diagram shows strobe signal in the form for a latch. It must be
high for a minimum time—tw

� There is a hold time, th, for data after strobe ends

S

2/e

C

D
A

Effect of Signal Timing on Minimum Clock Cycle

� A total latch propagation delay is the sum
Tl = tsu + tw + th

� All above times are specified for latch
� th may be very small or zero

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

h

� The minimum clock period is determined by finding longest path
from ff output to ff input
� This is usually a path through the ALU
� Conditional signals add a little gate delay

� Using this path, the minimum clock period is
tmin = tg + tbp + tcomb + tl

S

2/e

C

D
A

Latches Versus Edge Triggered or Master Slave
Flip-Flops

� During the high part of a strobe a latch changes its output
� If this output can affect its input, an error can occur
� This can influence even the kind of concrete RTs that can be

written for a data path

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

written for a data path
� If the C register is implemented with latches, then

C ← C + MD; is not legal
Note that this is a feedback path, OK in clocked logic, often
unstable in asynchronous logic

� If the C register is implemented with master-slave or edge
triggered flip-flops, it is OK

S

2/e

C

D
A

The Control Unit

� The control unit’s job is to generate the control signals in the
proper sequence

� Things the control signals depend on
� The time step Ti

The instruction op code (for steps other than T0, T1, T2)

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� The instruction op code (for steps other than T0, T1, T2)
� Some few data path signals like CON, n=0, etc.
� Some external signals: reset, interrupt, etc. (to be covered)

� The components of the control unit are: a time state
generator, instruction decoder, and combinational logic to
generate control signals

S

2/e

C

D
A

Fig. 4.12 Control Unit Detail with Inputs and
Outputs

.

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

S

2/e

C

D
A

Synthesizing Control Signal Encoder Logic

Step Control Sequence
T0. PCout, MAin, Inc4, Cin, Read

T1. Cout, PCin, Wait

T2. MDout, IRin

add
Step Control Sequence
T3. Grb, Rout, Ain

T4.

addi
Step Control Sequence
T3. Grb, Rout, Ain

T4.

st
Step Control Sequence
T3. Grb, BAout, Ain

T4.

shr
Step Control Sequence
T3. c1out, Ld

T4.

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Design process:
� Comb through the entire set of control sequences.
� Find all occurrences of each control signal.
� Write an equation describing that signal.
Example: Gra = T5·(add + addi) + T6·st + T7·shr + ...

T4. Grc, Rout, ADD, Cin

T5. Cout, Gra, Rin, End

T4. c2out, ADD, Cin

T5. Cout, Gra, Rin, End

T4. c2out, ADD, Cin

T5. Cout, MAin

T6. Gra, Rout, MDin, Write

T7. Wait, End

T4. n=0 →→→→ (Grc, Rout, Ld)

T5. Grb, Rout, C=B

T6. n≠≠≠≠0 →→→→ (Cout, SHR, Cin,

Decr, Goto7)

T7. Cout, Gra, Rin, End

S

2/e

C

D
A

Use of Data Path Conditions in Control Signal
Logic

Step Control Sequence
T0. PCout, MAin, Inc4, Cin, Read

T1. Cout, PCin, Wait

T2. MDout, IRin

add
Step Control Sequence
T3. Grb, Rout, Ain

T4. Grc, R , ADD, C

addi
Step Control Sequence
T3. Grb, Rout, Ain

T4. c2 , ADD, C

st
Step Control Sequence
T3. Grb, BAout, Ain

T4. c2 , ADD, C

shr
Step Control Sequence
T3. c1out, Ld

T4. n=0 →→→→ (Grc,

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Example: Grc = T4·add + T4·(n=0)·shr + ...

T4. Grc, Rout, ADD, Cin

T5. Cout, Gra, Rin, End

T4. c2out, ADD, Cin

T5. Cout, Gra, Rin, End

T4. c2out, ADD, Cin

T5. Cout, MAin

T6. Gra, Rout, MDin, Write

T7. Wait, End

T4. n=0 →→→→ (Grc, Rout, Ld)

T5. Grb, Rout, C=B

T6. n≠≠≠≠0 →→→→ (Cout, SHR, Cin,

Decr, Goto7)

T7. Cout, Gra, Rin, End

S

2/e

C

D
A

Fig. 4.13 Generation of the logic for Cout and Gra

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

S

2/e

C

D
A

Fig. 4.14 Branching in the Control Unit

� 3-state gates allow
6 to be applied to
counter input

� Reset will
synchronously

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

synchronously
reset counter to
step T0

S

2/e

C

D
A

Fig. 4.15 Clocking Logic: Start, Stop, and Memory
Synchronization

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Mck is master clock oscillator

S

2/e

C

D
A

Have Completed One-Bus Design of SRC

� High level architecture block diagram
� Concrete RTN steps
� Hardware design of registers and data path logic
� Revision of concrete RTN steps where needed

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Control sequences
� Register clocking decisions
� Logic equations for control signals
� Time step generator design
� Clock run, stop, and synchronization logic

S

2/e

C

D
A

Other Architectural designs will require a
different RTN

� More data paths allow more things to be done in one step
� Consider a two bus design
� By separating input and output of ALU on different buses, the C

register is eliminated

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

register is eliminated
� Steps can be saved by strobing ALU results directly into their

destinations

S

2/e

C

D
A

Fig. 4.16 The 2-bus Microarchitecture

� Bus A carries data
going into registers

� Bus B carries data
being gated out of
registers

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

registers
� ALU function C=B is

used for all simple
register transfers

S

2/e

C

D
A

Tbl 4.13 Concrete RTN and Control Sequence
for 2-bus SRC add

Step Concrete RTN Control Sequence
T0. MA ← PC; PCout, C=B, MAin, Read
T1. PC ← PC + 4: MD ← M[MA]; PCout, Inc4, PCin, Wait
T2. IR ← MD; MDout, C=B, IRin
T3. A ← R[rb]; Grb, Rout, C=B, Ain

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Note the appearance of Grc to gate the output of the register
rc onto the B bus and Sra to select ra to receive data strobed
from the A bus

� Two register select decoders will be needed
� Transparent latches will be required for MA at step T0

T3. A ← R[rb]; Grb, Rout, C=B, Ain
T4. R[ra] ← A + R[rc]; Grc, Rout, ADD, Sra, Rin, End

S

2/e

C

D
A

Performance and Design

%Speedup =
T1 − bus − T 2 − bus

T 2 − bus
× 100

Where

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Where

T = Exec' n.Time = IC × CPI × τ

S

2/e

C

D
A

Speedup Due To Going to 2 Buses

•Assume for now that IC and t don’t change in going from 1 bus to 2 buses
•Naively assume that CPI goes from 8 to 7 clocks.

%Speedup = T 1 − bus − T 2 − bus

T 2 − bus
× 100

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

= IC × 8 × τ − IC × 7 × τ
IC × 7 × τ

× 100 = 8 − 7
7

× 100 = 14%

Class Problem:
How will this speedup change if clock period of 2-bus machine is increased by 10%?

S

2/e

C

D
A

3-bus Architecture Shortens Sequences Even More

� A 3-bus architecture allows both operand inputs and the output
of the ALU to be connected to buses

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

of the ALU to be connected to buses
� Both the C output register and the A input register are eliminated
� Careful connection of register inputs and outputs can allow

multiple RTs in a step

S

2/e

C

D
A

Fig. 4.17 The 3-Bus SRC Design

� A-bus is ALU operand
1, B-bus is ALU
operand 2, and C-bus
is ALU output

� Note MA input

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Note MA input
connected to the B-
bus

S

2/e

C

D
A

Tbl 4.15 SRC add Instruction for the
3-bus Microarchitecture

Step Concrete RTN Control Sequence
T0. MA ← PC: PC ← PC + 4: PCout, MAin, Inc4, PCin,

MD ← M[MA]; Read, Wait
T1. IR ← MD; MDout, C=B, IRin
T2. R[ra] ← R[rb] + R[rc]; GArc, RAout, GBrb, RBout,

ADD, Sra, Rin, End

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Note the use of 3 register selection signals in step T2: GArc,
GBrb, and Sra

� In step T0, PC moves to MA over bus B and goes through the
ALU Inc4 operation to reach PC again by way of bus C

� PC must be edge triggered or master-slave (prevents feedback path)

� Once more MA must be a transparent latch (to be available before
the next clock cycle; MA must be current when Read is issued)

ADD, Sra, Rin, End

S

2/e

C

D
A

Performance and Design

� How does going to three buses affect performance?
� Assume average CPI goes from 8 to 4, while τ increases by 10%:

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

%Speedup = IC × 8 × τ − IC × 4 × 1.1τ
IC × 4 × 1.1τ

× 100 = 8− 4.4

4.4
× 100 = 82%

S

2/e

C

D
A

Resets and Interrupts

� Reset prepares the machine for restarting or recovery
� “hard” reset sets the machine to a known initial state, as at power-on
� “soft” reset preserves the machine state as much as possible to

facilitate debugging

Interrupt or exception handling must preserve enough machine

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Interrupt or exception handling must preserve enough machine
state to allow program continuation without disturbance

� Interrupts come from external events and are normally
asynchronous (can occur anytime in the instruction, but processor
handles them only between instructions)

� Exceptions come from causes inside the processor and sometimes
do not permit program resumption

� Reset, interrupt, and exception handling have many common
aspects

S

2/e

C

D
A

Processor Reset Function

� Reset actions
� sets program counter to point to a location usually in ROM
� Hard reset initializes all registers and condition codes
� Soft reset resets only PC and as little as possible

The control step counter is reset, ready to begin a new instruction

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� The control step counter is reset, ready to begin a new instruction
� Exception and interrupt handling are disabled, so initialization code is

not interrupted

� Bootroms are normally present; their code
� Perform processor self-test (called POST)
� Detects and initializes those external devices needed for booting an

operating system
� Sets up interrupt vectors to initial values
� Loads and transfers control to an operating system

S

2/e

C

D
A

SRC Reset Capability

� We specify both a hard and soft reset for SRC
� The Strt signal will do a hard reset

� It is effective only when machine is stopped
� It resets the PC to zero

It resets all 32 general registers to zero

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� It resets all 32 general registers to zero

� The Soft Reset signal is effective when the machine is running
� It sets PC to zero
� It restarts instruction fetch
� It clears the Reset signal

� Actions are described in instruction_interpretation

S

2/e

C

D
A

Abstract RTN for SRC Reset and Start

Processor State
Strt: Start signal
Rst: External reset signal

instruction_interpretation := (

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

instruction_interpretation := (
¬Run∧Strt → (Run ← 1: PC, R[0..31] ← 0);

Run∧¬Rst → (IR ← M[PC]: PC ← PC + 4;
instruction_execution):

Run∧Rst → (Rst ← 0: PC ← 0); instruction_interpretation):

strt initializes and starts the processor if not already running.
If already running it has no effect

rst takes effect only if the processor is running; it clears rst and PC,
then does instruction_interpretation, not instruction_execution

S

2/e

C

D
A

Resetting in the Middle of Instruction Execution

� The abstract RTN implies that reset takes effect after the current
instruction is done

� To describe reset during an instruction, we must go from
abstract to concrete RTN

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

• Questions for discussion:

• Why might we want to reset in the middle of an instruction?

• How would we reset in the middle of an instruction?

S

2/e

C

D
A

Tbl 4.17 Concrete RTN Describing Reset
During add Instruction Execution

Step Concrete RTN
T0 ¬Reset → (MA ← PC: C ← PC + 4):

Reset → (Reset ← 0: PC ← 0: T ←0):
T1 ¬Reset → (MD ← M[MA]: P ← C):

Reset → (Reset ← 0: PC ← 0: T ← 0):
¬ → ←

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

T2 ¬Reset → (IR ← MD):
Reset → (Reset ← 0: PC ← 0: T ← 0):

T3 ¬Reset → (A ← R[rb]):
Reset → (Reset ← 0: PC ← 0: T ← 0):

T4 ¬Reset → (C ← A + R[rc]):
Reset → (Reset ← 0: PC ← 0: T ← 0):

T5 ¬Reset → (R[ra] ← C):
Reset → (Reset ← 0: PC ← 0: T ← 0):

This version of instruction execution allows reset to
occur at any clock pulse

S

2/e

C

D
A

Control Sequences Including the Reset
Function

Step Control Sequence
T0. ¬Reset → (PCout, MAin, Inc4, Cin, Read):

Reset → (ClrPC, ClrR, Goto0):
T1 ¬Reset → (Cout, PCin, Wait):

Reset → (ClrPC, ClrR, Goto0):

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� ClrPC clears the program counter to all zeros, and ClrR
clears the one bit Reset flip-flop

� Because the same reset actions are in every step of every
instruction, their control signals are independent of time
step or op code

Reset → (ClrPC, ClrR, Goto0):
• • •

S

2/e

C

D
A

General Comments on Exceptions

� An exception is an event that causes a change in the
program specified flow of control

� Because normal program execution is interrupted, they are
often called interrupts
We will use exception for the general term and use interrupt

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� We will use exception for the general term and use interrupt
for an exception caused by an external event, such as an I/O
device condition

� The usage is not standard. Other books use these words
with other distinctions, or none

S

2/e

C

D
A

Combined Hardware/Software Response to an
Exception

� The system must control the type of exceptions it will process at
any given time

� The state of the running program is saved when an allowed
exception occurs
Control is transferred to the correct software routine, or

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Control is transferred to the correct software routine, or
“handler” for this exception

� This exception, and others of less or equal importance are
disallowed during the handler

� The state of the interrupted program is restored at the end of
execution of the handler

S

2/e

C

D
A

Hardware Required to Support Exceptions

� To determine relative importance, a priority number is
associated with every exception

� Hardware must save and change the PC, since without it no
program execution is possible

� Hardware must disable the current exception lest is interrupt

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Hardware must disable the current exception lest is interrupt
the handler before it can start

� Address of the handler is called the exception vector and is a
hardware function of the exception type

� Exceptions must access a save area for PC and other
hardware saved items
� Choices are special registers or a hardware stack

S

2/e

C

D
A

New Instructions Needed to Support Exceptions

� An instruction executed at the end of the handler must
reverse the state changes done by hardware when the
exception occurred

� There must be instructions to control what exceptions are
allowed

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

allowed
� The simplest of these enable or disable all exceptions

� If processor state is stored in special registers on an
exception, instructions are needed to save and restore
these registers

S

2/e

C

D
A

Kinds of Exceptions

� System reset
� Exceptions associated with memory access

� Machine check exceptions
� Data access exceptions

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� Instruction access exceptions
� Alignment exceptions

� Program exceptions
� Miscellaneous hardware exceptions
� Trace and debugging exceptions
� Non-maskable exceptions
� External exceptions—interrupts

S

2/e

C

D
A

An Interrupt Facility for SRC

� The exception mechanism for SRC handles external interrupts
� There are no priorities, but only a simple enable and disable

mechanism
� The PC and information about the source of the interrupt are

stored in special registers

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

stored in special registers
� Any other state saving is done by software

� The interrupt source supplies 8 bits that are used to generate
the interrupt vector

� It also supplies a 16 bit code carrying information about the
cause of the interrupt

S

2/e

C

D
A

SRC Processor State Associated with Interrupts

Processor interrupt mechanism
ireq: interrupt request signal
iack: interrupt acknowledge signal
IE: one bit interrupt enable flag
IPC〈31..0〉: storage for PC saved upon interrupt

From Dev.→
To Dev. →
Internal →
to CPU →

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

IPC〈31..0〉: storage for PC saved upon interrupt
II〈15..0〉: info. on source of last interrupt
Isrc_info〈15..0〉: information from interrupt source
Isrc_vect〈7..0〉: type code from interrupt source
Ivect〈31..0〉:= 20@0#Isrc_vect〈7..0〉#4@0:

0000Isrc_vect〈7..0〉000 . . . 0
31 0341112

Ivect〈31..0〉

to CPU →
“ →

From Dev.→
From Dev →
Internal →

S

2/e

C

D
A

SRC Instruction Interpretation Modified for
Interrupts

instruction_interpretation :=
(¬Run∧Strt → Run ← 1:
Run∧¬(ireq∧IE) → (IR ← M[PC]: PC ← PC + 4; instruction_execution):
Run∧(ireq∧IE) → (IPC ← PC〈31..0〉:

II〈15..0〉 ← Isrc_info〈15..0〉: iack ← 1:
IE ← 0: PC ← Ivect〈31..0〉; iack ← 0);

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

IE ← 0: PC ← Ivect〈31..0〉; iack ← 0);
instruction_interpretation);

� If interrupts are enabled, PC and interrupt info. are stored in IPC
and II, respectively
� With multiple requests, external priority circuit (discussed in later

chapter) determines which vector & info. are returned

� Interrupts are disabled
� The acknowledge signal is pulsed

S

2/e

C

D
A

SRC Instructions to Support Interrupts

Return from interrupt instruction
rfi (:= op = 29) → (PC ← IPC: IE ← 1):

Save and restore interrupt state
svi (:= op = 16) → (R[ra]〈15..0〉 ← II〈15..0〉: R[rb] ← IPC〈31..0〉):
ri (:= op = 17) → (II〈15..0〉 ← R[ra]〈15..0〉 : IPC〈31..0〉 ← R[rb]):

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

ri (:= op = 17) → (II〈15..0〉 ← R[ra]〈15..0〉 : IPC〈31..0〉 ← R[rb]):

Enable and disable interrupt system
een (:= op = 10) → (IE ← 1):
edi (:= op = 11) → (IE ← 0):

� The 2 rfi actions are indivisible, can’t een & branch

S

2/e

C

D
A

Concrete RTN for SRC Instruction Fetch with
Interrupts

Step ¬(ireq∧IE) Concrete RTN (ireq∧IE)
T0. (¬(ireq∧IE) → ((ireq∧IE) → (IPC ← PC: II ← Isrc_info:

MA ← PC: C ← PC+4): IE ← 0: PC← 20@0#Isrc_vect〈7..0〉#0000:
Iack←1);

T1. MD ← M[MA] : PC ← C; Iack ← 0: End;
T2. IR ← MD;

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� PC could be transferred to IPC over the bus
� II and IPC probably have separate inputs for the externally supplied

values
� Iack is pulsed, described as ←1; ←0, which is easier as a control

signal than in RTN

T2. IR ← MD;

S

2/e

C

D
A

Exceptions During Instruction Execution

� Some exceptions occur in the middle of instructions
� Some CISCs have very long instructions, like string move
� Some exception conditions prevent instruction completion, like

uninstalled memory

To handle this sort of exception, the CPU must make special

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

� To handle this sort of exception, the CPU must make special
provision for restarting
� Partially completed actions must be reversed so the instruction can

be re-executed after exception handling
� Information about the internal CPU state must be saved so that the

instruction can resume where it left off

� We will see that this problem is acute with pipeline designs—
always in middle of instructions.

S

2/e

C

D
A

Recap of the Design Process: the Main Topic of
Chap. 4

Informal description

formal RTN description

block diagram architecture

Chapter 2

SRC

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

block diagram architecture

concrete RTN steps

hardware design of blocks

Control sequences

control unit and timing

Chapter 4

S

2/e

C

D
A

Chapter 4 Summary

� Chapter 4 has done a non pipelined data path, and a hardwired
controller design for SRC

� The concepts of data path block diagrams, concrete RTN,
control sequences, control logic equations, step counter control,
and clocking have been introduced

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

and clocking have been introduced
� The effect of different data path architectures on the concrete

RTN was briefly explored
� We have begun to make simple, quantitative estimates of the

impact of hardware design on performance
� Hard and soft resets were designed
� A simple exception mechanism was supplied for SRC

