High Performance
Computing

Lecture 5: Hardware Issues
Nayda G. Santiago
August 18, 2008

—!

Administrative Detalls

0 Make up class for Monday Aug 11, 2008 class
Thursday, Aug 21, 2008, 5:30pm to 6:30pm, S203

0 We need to schedule additional make up
classes — TODAY!!!

Traveling from Sept 30 to Oct 4, Colorado — 2 lectures
Traveling from Oct 9 to Oct 12, Houston — 1 lecture
Traveling from Oct 20 to Oct 22, Ann Arbor — 2 lectures
Traveling from Oct 27 to Oct 29, Boston — 2 lectures

—!

Units of High Performance Computing

1 Mflop/s 1 Megaflop/s 10 Flop/sec
1 Gflop/s 1 Gigaflop/s 10° Flop/sec
1 Tflop/s 1 Teraflop/s 1012 Flop/sec
1 Pflop/s 1 Petaflop/s 10%° Flop/sec
1 MB 1 Megabyte 10° Bytes
1GB 1 Gigabyte 10° Bytes
1TB 1 Terabyte 1012 Bytes

1PB 1 Petabyte 10%° Bytes

—!

Computer System

Application

Operating
System

\ Compiler
Software Assembler

Instruction Set Architecture
Hardware Processor Memory /0O
\ Datapath and Control
Digital Design
Circuit Design
Transistors

Taken from David Petterson, Intro to Hw/Sw talk

Moore’s Law

0 Gordon Moore
= Co-founder of Intel
= Electronics Magazine
= April 1965
= Number of devices/chip
doubles every 18 months

= The trend has continued for more than half a
century and is not expected to stop for another
decade at least.

—!

Moore’s Law

0 Something doubles every 18 — 24 months
Originally transistors
Performance

0 Moore’s law Is an exponential
0 Has hold true for approx 30 years
0o Empirical

—!

In today’s processors

0 Increase the number of gates and decrease the
cycle time of the processor

Increase transistor density and clock rate ¢~ \V/
'y ’
o HEAT becomes an unmanageable problem!!! “‘ ((!

o Power is proportional to e,
Frequency
Voltage level

O Some Intel Processors: power consumption
100 W

Intel Itanium 2

1.66 GHz 122W
1.6 GHz 122 W
1.5 GHz 107W

Heat — a problem

Today's CPU Architacture:

i

10,000 Sun's Surface .
ey —————==_ '}
|
E Rocket Mozzle
E 1,000 ————

- Muclear Reactor
.i_'-‘ 1m - ?
u.:] Pentium®
ik}
- 8086 Hot Plate
s 107004 8085 —
8008 386
E 286
o . BOB0 486
70 ‘80 ‘00 ‘00 10
N

'ﬁnjuﬁ‘;';lﬁ ;f]“f"-sl:""ﬂ 2004 - Fiat Gelsinger Cube relationship between the cycle time and power.

In order to hold the trend

CLEVER DESIGN TO
IMPROVE PERFORMANCE

e
So how to hold the trend

0 Clever design techniques
= Pipelining
o Prediction
= Out of order execution
= Superscalar
o Multiple functional units

= Memory
o Hierarchical memory design
o Multilevel caches

e
So how to hold the trend

]
= Pipelining
o Prediction

Remember the Pipelining Example?

° Laundry Example

° Ann, Brian, Cathy, Dave
each have one load of clothes 6656
to wash, dry, fold, and put away

° Washer takes 30 minutes '

o

O

° Dryer takes 30 minutes

° “Folder” takes 30 minutes

° “Stasher” takes 30 minutes to put clothes ﬁ
Into drawers

—!

Sequential Laundry
6|PM ! 38 9 10 11 12 1 2AI\/I

5430 393¢ 3939 3d 39 3839 3d 3 3839 39 3

T .
iak Time
(| B @ A

g l@'k.k

Sequential laundry takes 8 hours for 4
loads (Example taken from Patterson & Hennessey book)

Pipelined Laundry: Start work ASAP

6IPM 14 8 9 10 11 12 1 2AM

| | :
3030 30 30 30 30 30 Time

5@ A

& 03 A

& VA
9 &

S
&
d
© Pipelined laundry takes
' 3.5 hours for 4 loads!

x n o -

Pipeline Hazard: Stall

6PM 14 8 9 10 11 12 1 2AM

3030 30 30 30 30 30 Time

aw &?%A
l

ry
PE HA
&
A

~ n o -

55 4

depends on D; stall since folder tied up

HCDQﬁO

—!

Prediction

0 There really are three different kinds of

branches:

Forward conditional branches
o based on a run-time condition

Backward conditional branches

o The branch is based on some condition, such as branching
backwards to the beginning of a program loop when a test at the
end of the loop states the loop should be executed again.

Unconditional branches

o this includes jumps, procedure calls and returns that have no
specific condition.

—!

Static Branch Prediction

0 Forward branches dominate backward branches by
about 4 to 1 (whether conditional or not).
About 60% of the forward conditional branches are taken

Approximately 85% of the backward conditional branches
are taken (because of the prevalence of program loops).

0 Backward branches will be predicted to be taken,
since that 1s the most common case.

—!

Dynamic Branch Prediction

O Hardware-based schemes that utilize run-time
behavior of branches to make dynamic

predictions:
Information about outcomes of previous occurrences of
branches are used to dynamically predict the outcome of
the current branch.
Why? Better branch prediction accuracy and thus fewer
branch stalls.

e
So how to hold the trend

O

O

m Qut of order execution

Out-of-Order Laundry: Don’t Walt

6IPM 14 8 9 10 11 12 1 2AM

| | :
3030 30 30 30 30 30 Time

B @5 oot &

& BN
T %A
& =
-A
2 ot

A depends on D; rest continue; need more
resources to allow out-of-order

~ n o -

HCDQﬁO

e
So how to hold the trend

O

O

= Superscalar
o Multiple functional units

-1
Superscalar Laundry: Parallel per stage

6 PM 7 8 9 10 11 12 1 2AM

1 .
3030 303030 Time

T
a @ ._‘ : (light clothing)

S (dark clothing)

k g éi (very dirty clothing)

O (light clothing)

r @ A (dark clothing)

d as YA o
e A (very dirty clothing)
I+

More resources, HW match mix of parallel
tasks?

NN
Superscalar Laundry: Mismatch Mix

6IPM 14 8 9 10 11 12 1 2AM

| | :
303030 30303030 Time

K (light clothing)

§° A
'A

~ 0 o9 -
@3

(light clothing)
(dark clothing)

ez

—1CDQ—10

®
'C
O

ékk (light clothing)

"ask mix underutilizes extra resources

e
So how to hold the trend

= Memory
o Hierarchical memory design
o Multilevel caches

_—
The CPU-Memory Gap

O The increasing gap between DRAM, disk, and CPU

speeds.
100,000,000
10,000,000 .—’\’\. Y
1,000,000
100,000 —o— Disk seek time
@ 10,000 —=— DRAM access time

—A— SRAM access time

1,000 :
—— CPU cycle time
100
10
1 \‘%.

1980 1985 1990 1995 2000

year

—!
Locality

0 Principle of Locality:

Programs tend to reuse data and instructions near
those they have used recently, or that were
recently referenced themselves.

Temporal locality: Recently referenced items are
likely to be referenced in the near future.

Spatial locality: Items with nearby addresses tend
to be referenced close together in time.

e —————————————
Locality

sum = 0;
O Locality Example: for (i = 0; i < n; i++)
sum += af[i];
. Data return sum;

- Reference array elements in succession (stride-1 reference
pattern): spatial locality

- Reference sum each iteration: Temporal locality

- Instructions
- Reference instructions in sequence: Spatial locality
- Cycle through loop repeatedly Temporal locality

—!
A Modern Memory Hierarchy

0 By taking advantage of the principle of locality:
Present the user with as much memory as is available in the cheapest
technology.

Provide access at the speed offered by the fastest te 0gy.
Processor
Control Tertiary
/ Secondary Storage
Storage ;
Second Main (Disk) (Disk/Tape)
py) ®) Level Memory
Datapath | & g (:% Cache (DRAM)
2 2= (SRAM)
a ©
a4 1 @ L.
_— — |
\
Speed (ns): 1s 10s 100s 10,000,000s 10,000,000,000s
(10s ms) (10s sec)

Size (bytes): 100s
Ks Ms Gs Ts

—!

References

0o Book: Computer Architecture: A Quantitative Approach, Fourth Edition,
by John L. Hennessy and David A. Patterson, 2006.

0o Book: The Sourcebook of Parallel Computing by Jack Dongarra, lan
Foster, Geoffrey C. Fox, and William Gropp, 2002.

o Dr. MAREK ANDRZEJ PERKOWSKI lecture for CS 252, Portland State
University.

o Dr. John Kubiatowicz lecture for CS252, Berkeley University.

0o Dr. Roberto Lopez lecture for ECE 684 lecture, New Jersey Institute of
Technology.

