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Administrative Details
Make up class for  Monday Aug 11, 2008 class

Thursday, Aug 21, 2008, 5:30pm to 6:30pm, S203

We need to schedule additional make up 
classes – TODAY!!!

Traveling from Sept 30 to Oct 4, Colorado – 2 lectures
Traveling from Oct 9 to Oct 12, Houston – 1 lecture
Traveling from Oct 20 to Oct 22, Ann Arbor – 2 lecturesg
Traveling from Oct 27 to Oct 29, Boston – 2 lectures



Units of High Performance Computing
Abb i ti N R tAbbreviation Name Represents

1 Mflop/s 1 Megaflop/s 106 Flop/sec
1 Gflop/s 1 Gigaflop/s 109 Flop/sec
1 Tflop/s 1 Teraflop/s 1012 Flop/sec
1 Pflop/s 1 Petaflop/s 1015 Flop/sec

1 MB 1 Megabyte 106 Bytes1 MB 1 Megabyte 10 Bytes
1 GB 1 Gigabyte 109 Bytes
1 TB 1 Terabyte 1012 Bytes

151 PB 1 Petabyte 1015 Bytes



Computer System
Application

Operating

Instruction Set Architecture

Software Assembler
Compiler

System

Instruction Set Architecture
Hardware Processor Memory I/O

Datapath and Control
Digital Design
Circuit Design
Transistors

Taken from David Petterson, Intro to Hw/Sw talk



Moore’s Law
Gordon Moore

Co-founder of Intel
Electronics Magazine
April 1965
Number of devices/chip 
doubles every 18 months
The trend has continued for more than half a 
century and is not expected to stop for another 
d d ldecade at least.



Moore’s Law
Something doubles every 18 – 24 months

Originally transistors
Performance

Moore’s law is an exponentialp
Has hold true for approx 30 years
EmpiricalEmpirical



In today’s processors
Increase the number of gates and decrease the 
cycle time of the processor

Increase transistor density and clock rate
HEAT becomes an unmanageable problem!!!
Power is proportional to

Frequency
Voltage levelVoltage level

Some Intel Processors: power consumption 
100 W!!!100 W!!!



Intel Itanium 2

Clock Speed Power
1.66 GHz 122W
1.6 GHz 122 W
1.5 GHz 107W



Heat – a problem



CLEVER DESIGN TO
In order to hold the trend

CLEVER DESIGN  TO 
IMPROVE PERFORMANCE



So how to hold the trend
Clever design techniques

Pipelining
Prediction

Out of order execution
Superscalar

Multiple functional units

Memory
Hierarchical memory design
Multilevel caches
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Remember the Pipelining Example?
° Laundry Example° Laundry Example

° Ann, Brian, Cathy, Dave 
each have one load of clothes 

h d f ld d
A B C D

to wash, dry, fold, and put away

° Washer takes 30 minutes

° Dryer takes 30 minutes

° “Folder” takes 30 minutes

° “Stasher” takes 30 minutes to put clothes
into drawers



Sequential Laundry
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Sequential laundry takes 8 hours for 4 
loads (Example taken from Patterson & Hennessey book)
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Pipelined Laundry: Start work ASAPPipelined Laundry: Start work ASAP
12 2 AM6 PM 7 8 9 10 11 1
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Pipelined laundry takes 
3.5 hours for 4 loads!

d
e
r 3.5 hours for 4 loads!



Pipeline Ha ard: StallPipeline Hazard: Stall
12 2 AM6 PM 7 8 9 10 11 1
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A depends on D;  stall since folder tied up



Prediction
There really are three different kinds of 
branches:

Forward conditional branches
based on a run-time condition

Backward conditional branchesBackward conditional branches
The branch is based on some condition, such as branching 
backwards to the beginning of a program loop when a test at the 
end of the loop states the loop sho ld be e ec ted againend of the loop states the loop should be executed again.

Unconditional branches
this includes jumps, procedure calls and returns that have no 
specific condition. 



Static Branch Prediction
Forward branches dominate backward branches by 
about 4 to 1 (whether conditional or not). 

Ab t 60% f th f d diti l b h t kAbout 60% of the forward conditional branches are taken
Approximately 85% of the backward conditional branches 
are taken (because of the prevalence of program loops).( p p g p )

Backward branches will be predicted to be taken, 
since that is the most common case.



Dynamic Branch Prediction
Hardware-based schemes that utilize run-time 
behavior of branches to make dynamic 
predictions:

Information about outcomes of previous occurrences of 
b h d t d i ll di t th t fbranches are used to dynamically predict the outcome of 
the current branch.
Why? Better branch prediction accuracy and thus fewer y p y
branch stalls.
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Out-of-Order Laundry: Don’t WaitOut of Order Laundry: Don t Wait
12 2 AM6 PM 7 8 9 10 11 1
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A depends on D; rest continue; need more 

resources to allow out-of-order
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Superscalar Laundry: Parallel per stagep y p g
12 2 AM6 PM 7 8 9 10 11 1
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More resources, HW match mix of parallel 
tasks?



Superscalar Laundry: Mismatch Mixp y
12 2 AM6 PM 7 8 9 10 11 1
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Task mix underutilizes extra resources

( g g)
D
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The CPU-Memory Gap
The increasing gap between DRAM, disk, and CPU 

speeds.
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Locality
P i i l f L litPrinciple of Locality:

Programs tend to reuse data and instructions near 
those they have used recently or that werethose they have used recently, or that were 
recently referenced themselves.
Temporal locality: Recently referenced items are e po oc y: ece y e e e ced e s e
likely to be referenced in the near future.
Spatial locality: Items with nearby addresses tend 
to be referenced close together in time.



Locality
0sum = 0;

for (i = 0; i < n; i++)
sum += a[i];

return sum;

Locality Example:

• Data
– Reference array elements in succession (stride-1 reference 

pattern): Spatial locality

– Reference sum each iteration:

• Instructions
Temporal locality

– Reference instructions in sequence:
– Cycle through loop repeatedly

Spatial locality

Temporal locality



A Modern Memory HierarchyA Modern Memory Hierarchy
By taking advantage of the principle of locality:

P t th ith h i il bl i th h tPresent the user with as much memory as is available in the cheapest 
technology.
Provide access at the speed offered by the fastest technology.
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