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Administrative Detalls

0 Make up class for Monday Aug 11, 2008 class
Thursday, Aug 21, 2008, 5:30pm to 6:30pm, S203

0 We need to schedule additional make up
classes — TODAY!!!

Traveling from Sept 30 to Oct 4, Colorado — 2 lectures
Traveling from Oct 9 to Oct 12, Houston — 1 lecture
Traveling from Oct 20 to Oct 22, Ann Arbor — 2 lectures
Traveling from Oct 27 to Oct 29, Boston — 2 lectures
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Units of High Performance Computing

1 Mflop/s 1 Megaflop/s 10 Flop/sec
1 Gflop/s 1 Gigaflop/s 10° Flop/sec
1 Tflop/s 1 Teraflop/s 1012 Flop/sec
1 Pflop/s 1 Petaflop/s 10%° Flop/sec
1 MB 1 Megabyte 10° Bytes
1GB 1 Gigabyte 10° Bytes
1TB 1 Terabyte 1012 Bytes

1PB 1 Petabyte 10%° Bytes
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Computer System

Application

Operating
System

\ Compiler
Software Assembler

Instruction Set Architecture
Hardware Processor Memory /0O
\ Datapath and Control
Digital Design
Circuit Design
Transistors

Taken from David Petterson, Intro to Hw/Sw talk



Moore’s Law

0 Gordon Moore
= Co-founder of Intel
= Electronics Magazine
= April 1965
= Number of devices/chip
doubles every 18 months

= The trend has continued for more than half a
century and is not expected to stop for another
decade at least.
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Moore’s Law

0 Something doubles every 18 — 24 months
Originally transistors
Performance

0 Moore’s law Is an exponential
0 Has hold true for approx 30 years
0o Empirical
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In today’s processors

0 Increase the number of gates and decrease the
cycle time of the processor

Increase transistor density and clock rate ¢~ \V/
'y ’
o HEAT becomes an unmanageable problem!!! “‘ ( (!

o Power is proportional to e,
Frequency
Voltage level

O Some Intel Processors: power consumption
100 W



Intel Itanium 2

1.66 GHz 122W
1.6 GHz 122 W
1.5 GHz 107W



Heat — a problem

Today's CPU Architacture:
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In order to hold the trend

CLEVER DESIGN TO
IMPROVE PERFORMANCE
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So how to hold the trend

0 Clever design techniques
= Pipelining
o Prediction
= Out of order execution
= Superscalar
o Multiple functional units

= Memory
o Hierarchical memory design
o Multilevel caches
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So how to hold the trend

]
= Pipelining
o Prediction




Remember the Pipelining Example?

° Laundry Example

° Ann, Brian, Cathy, Dave
each have one load of clothes 6656
to wash, dry, fold, and put away

° Washer takes 30 minutes '

o

O

° Dryer takes 30 minutes

° “Folder” takes 30 minutes

° “Stasher” takes 30 minutes to put clothes ﬁ
Into drawers
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Sequential Laundry
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Sequential laundry takes 8 hours for 4
loads (Example taken from Patterson & Hennessey book)




Pipelined Laundry: Start work ASAP
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Pipeline Hazard: Stall
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Prediction

0 There really are three different kinds of

branches:

Forward conditional branches
o based on a run-time condition

Backward conditional branches

o The branch is based on some condition, such as branching
backwards to the beginning of a program loop when a test at the
end of the loop states the loop should be executed again.

Unconditional branches

o this includes jumps, procedure calls and returns that have no
specific condition.




—!

Static Branch Prediction

0 Forward branches dominate backward branches by
about 4 to 1 (whether conditional or not).
About 60% of the forward conditional branches are taken

Approximately 85% of the backward conditional branches
are taken (because of the prevalence of program loops).

0 Backward branches will be predicted to be taken,
since that 1s the most common case.
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Dynamic Branch Prediction

O Hardware-based schemes that utilize run-time
behavior of branches to make dynamic

predictions:
Information about outcomes of previous occurrences of
branches are used to dynamically predict the outcome of
the current branch.
Why? Better branch prediction accuracy and thus fewer
branch stalls.
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So how to hold the trend

O

O

m Qut of order execution



Out-of-Order Laundry: Don’t Walt
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So how to hold the trend

O

O

= Superscalar
o Multiple functional units
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Superscalar Laundry: Parallel per stage

6 PM 7 8 9 10 11 12 1 2AM
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More resources, HW match mix of parallel
tasks?
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Superscalar Laundry: Mismatch Mix
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So how to hold the trend

= Memory
o Hierarchical memory design
o Multilevel caches
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The CPU-Memory Gap

O The increasing gap between DRAM, disk, and CPU

speeds.
100,000,000
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—— CPU cycle time
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Locality

0 Principle of Locality:

Programs tend to reuse data and instructions near
those they have used recently, or that were
recently referenced themselves.

Temporal locality: Recently referenced items are
likely to be referenced in the near future.

Spatial locality: Items with nearby addresses tend
to be referenced close together in time.
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Locality

sum = 0;
O Locality Example: for (i = 0; i < n; i++)
sum += af[i];
. Data return sum;

- Reference array elements in succession (stride-1 reference
pattern): spatial locality

- Reference sum each iteration: Temporal locality

- Instructions
- Reference instructions in sequence: Spatial locality
- Cycle through loop repeatedly Temporal locality
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A Modern Memory Hierarchy

0 By taking advantage of the principle of locality:
Present the user with as much memory as is available in the cheapest
technology.

Provide access at the speed offered by the fastest te 0gy.
Processor
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Storage ;
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(10s ms) (10s sec)

Size (bytes): 100s
Ks Ms Gs Ts
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