Memory Circuits Latches and flip-flops

INEL 4207 - Fall 2011

Figure 16.1 (a) Basic latch. (b) The latch with the feedback loop opened. (c) Determining the operating point(s) of the latch.

Fig. 16.4 CMOS implementation of a clocked SR flip-flop. The clock signal is denoted by φ.

-

- 1. Assume Q=0, Q' = 1
- 2. Clock and S go high Fig. 16.4 CMOS in

Fig. 16.4 CMOS implementation of a clocked SR flip-flop. The clock signal is denoted by $\boldsymbol{\varphi}.$

- 3. Q' is pulled down
- 4. Inv Q₃/Q₄ -> reaches transition point (V_{DD}/2)
- 5. Inv Q₃/Q₄ -> regenerative action forces Q₃ into cutoff
- 6. Inv Q_1/Q_2 -> reaches transition point ($V_{DD}/2$)
- 7. Regenerative action keeps Q' low even if S goes low

Example 1

The CMOS SR flip-flop in Fig. 16.4 is fabricated in a 0.18- μ m process for which $\mu_n C_{ox} = 4 \ \mu_p C_{ox} = 300 \ \mu A/V^2$, $V_{tn} = |V_{tp}| = 0.5V$, and $V_{DD} = 1.8V$. The inverters have $(W/L)_n = 0.27 \ \mu m/0.18 \ \mu m$ and $(W/L)_p = 4$ $(W/L)_n$. The four NMOS transistors in the set-reset circuit have equal W/L ratios.

(a) Determine the minimum value required for this ratio to ensure that the flip-flop will switch.

(b) Also, determine the minimum width the set pulse must have for the case in which the W/L ratio of each of the four transistors in the set-reset circuit is selected at twice the minimum value found in (a). Assume that the total capacitance at each of the Q and \overline{Q} nodes and ground is **20fF**.

Figure 16.5 (a) The relevant portion of the flip-flop circuit of Fig. 16.4 for determining the minimum W_L ratios of Q_5 and Q_6 needed to ensure that the flip-flop will switch. (b) The circuit in (a) with Q_5 and Q_6 replaced with their equivalent transistor Q_{eq} , at the point of switching.

Figure 16.5 (a) The relevant portion of the flip-flop circuit of Fig. 16.4 for determining the minimum W_L ratios of Q_5 and Q_6 needed to ensure that the flip-flop will switch. (b) The circuit in (a) with Q_5 and Q_6 replaced with their equivalent transistor Q_{ea} , at the point of switching.

(a) ANSWER: $(W/L)_5 = (W/L)_6 = 0.54$ um/0.18um

Figure 16.6 Determining the time t_{PHL} for $v_{\overline{Q}}$ to fall from V_{DD} to $V_{DD}/2$.

Figure 16.6 Determining the time t_{PHL} for $v_{\overline{Q}}$ to fall from V_{DD} to $V_{DD}/2$.

(b) ANSWER: Add t_{PHL} for Q1-Q2 and t_{PHL} for Q3-Q4. Set $(W/L)_5 = (W/L)_6 = (W/L)_7 = (W/L)_8 = 1.08 \text{ um}/0.18 \text{ um}$.

For Q_1 - Q_2 , use $i_c = i_{D,eq} - i_{D2}$. At t=0, $v_{Q'} = V_{DD}$ and Q_2 is off, Q_{eq} is saturated and $i_c = 760.5uA$. At t=t_{PHL}, $v_{Q'} = V_{DD}/2$ and $i_{D2} = 344.25uA$, $i_{Deq} = 688.5uA$ and $i_c = 344.25uA$. $i_{Cav} = 552.4uA$, $t_{PHL} = 32.6ps$

For Q3-Q4, you can use the formulas from ch. 14 that use a to gat $t_{PLH} = 49.5 ps$.

 $T_{min} = t_{PHL} + t_{PLH}$

Figure 16.7 A simpler CMOS implementation of the clocked SR flip-flop. This circuit is popular as the basic cell in the design of static randomaccess memory (SRAM) chips.

Figure 16.8 A block diagram representation of the D flip-flop.

Figure 16.10 (a) A master–slave D flip-flop. The switches can be, and usually are, implemented with CMOS transmission gates. (b) Waveforms of the two-phase nonoverlapping clock required.