1. A non-feedback amplifier with voltage gain $A_v = 1,000 \pm 100$ is available. It is necessary to have a voltage-series feedback amplifier whose voltage gain varies by no more than $\pm 0.1\%$.

(a) Find the β of the feedback network. (5 pts)

(b) Determine the gain of the feedback amplifier. (5 pts)

(A) Variability of non-feedback amp = \frac{100}{1000} \times 100\% = 10\%

\[D = \frac{10\%}{0.1\%} = 100 = 1 + \beta A \]

Since $A = 1000$

\[\beta = \frac{A}{1000} = 0.001 \]

(\text{b}) $A_{vf} = \frac{A_v}{D} = \frac{1000}{100} = 10 = A_{vf}$
2. In the amplifier shown below, voltage-shunt feedback is being employed. The active element is an opamp, with open-loop voltage gain \(A_{OL} = 10^6 \), output resistance \(R_{out} = 1k\Omega \), and input resistance is \(R_i = 10k\Omega \).

(a) Find the feedback network's \(\beta \) and the 11 and 22 parameters that correspond to the type of feedback being used. (5 pts)

(b) Find the non-feedback amplifier's gain, input resistance \(R_i \) and output resistance \(R_o \) that should be used to apply feedback theory. (10 pts) (HINT: REPLACE OPAMP BY ITS TWO-PORT NETWORK MODEL)

(c) Use feedback theory to find the feedback amplifier's voltage gain \(A_{af} = \frac{v_{out}}{v_{in}} \), input resistance \(R_i \) and output resistance \(R_o \). (10 pts)

\[V_1 = \frac{1}{10k} \]
\[V_2 = \frac{1}{10k} \]
\[\beta = \frac{1}{100k} \]

HINT:

\[A_{af} = \frac{33.33 \times 10^5}{V/V} \]
Setting the feedback to zero and noting that the required gain is a transresistance,

\[\begin{align*}
\text{Lin} & = \frac{V_i}{100} \\
\text{100} & \quad \text{150k} \\
\text{100} & \quad \text{150k} \\
\text{1} & \quad \text{1k2} \\
\end{align*} \]

\[\begin{align*}
\text{Lin} & = \frac{V_i}{100} \\
\text{qq32} & \quad + \\
\text{qq9l} & \quad \text{qq9l} \\
\text{qq9} & \quad \text{qq9l} \\
\text{qq32} & \quad + \\
\text{qq9l} & \quad \text{qq9l} \\
\end{align*} \]

\[\begin{align*}
R_{in} & = q9.2 \\
R_{out} & = 993.2 \\
\end{align*} \]

\[\begin{align*}
R_{in} & = q9.2 \\
R_{out} & = 993.2 \\
\end{align*} \]

\[\begin{align*}
\text{D} & = 1 + \beta R_m = 1 + (-3.33 \times 10^5)(-9.8 \times 10^5) = 4.26 \\
R_{inf} & = \frac{-9.8 \times 10^5}{4.26} = -2.3 \times 10^5 \Omega \\
\therefore A_{inf} & = \frac{V_{out}}{V_{in}} = \frac{R_{inf}}{R_{in}/100} = -2.3 \times 10^{-4} \\
R_{ip} & = \frac{R_i}{D} = \frac{q9}{4.26} = 23.2 \Omega = R_{ip} \\
R_{of} & = \frac{R_o}{D} = \frac{993}{4.26} = 233.1 \Omega = R_{of} \\
\end{align*} \]
3. A FET non-feedback amplifier has a voltage gain \(A_V = +g_mR_D \). When the amplifier is operating at 25 degrees Celsius (room temperature), the nominal values for \(g_m \) and \(R_D \) are 10mA/V and 10KΩ, respectively. While \(g_m \) drops with increasing temperature at a rate of approximately 0.5% per degree Celsius, the resistance increases at about 10Ω per degree Celsius.

If the following circuit is used to establish voltage-series feedback,

\[
\begin{align*}
\text{determine} & \\
\text{(a) the } \beta \text{ of the feedback network (5 pts)} & \\
\text{(b) the temperature sensitivity of the non-feedback amplifier's voltage gain (5 pts)} & \\
\text{(c) the temperature sensitivity of the feedback amplifier's voltage gain (5 pts)} & \\
\end{align*}
\]

\[
\begin{align*}
(\text{a}) & \\
\beta & = \left. \frac{v_2}{v_1} \right|_{T=25^\circ C} = \frac{100\text{KΩ}}{1\text{KΩ}} = 1 \text{ or } 100 \\

(\text{b}) & \\
S_T^V & = \frac{T}{\Delta T} = \frac{1}{\Delta T} \\
S_T^V & = \frac{25}{100} \left(\frac{99.6 - 100}{26 - 25} \right) = -0.1 = -10\% \\

(\text{c}) & \\
S_T^{AV} & = \frac{S_T^V}{\beta} \\
\Delta V & = 1\times\beta A = 1+\left(\frac{1}{100} \right) (100) = 10.09 \\

S_T^{AV} & = -10\% \\
S_T & = -10\% \\
\end{align*}
\]
4. (BONUS) Draw a schematic diagram of a circuit that approximates the feedback amplifier described in problem 3. (5 pts)

Since $A_u = +g_m R_0$, the amplifier must be a common gate. A possible implementation would be:

```
\[ \text{Vin} \quad \overset{R_s}{\rightarrow} \quad \overset{R_o=10k\Omega}{\rightarrow} \quad \text{Oup} \]
```

\[1M\Omega \quad 1M\Omega \quad 100k\Omega \quad 1 \]