Oscillators

INEL 4202
If the loop gain $L = A(\omega)\beta(\omega)$ is real and larger than one at a frequency ω_0, the circuit will produce a sinusoidal output voltage with frequency ω_0.
\[
\frac{v_f}{v_i} = A(\omega_0)\beta(\omega_0) = M(\omega_0)\angle\phi(\omega_0) = +1
\]

This means that the magnitude \(M(\omega_0)\) must be unity and the phase angle \(\angle\phi(\omega_0) = 0^\circ\).

Strategy:

- find loop gain \(L = A(\omega)\beta(\omega)\)
- find frequency \(\omega_0\) at which the loop gain is real; the imaginary part is zero
- determine the amplifier gain required to make the loop gain larger than 1
- the criterion must be satisfied at a single, well defined \(\omega_0\)
- the amplifier gain \(A\) will depend on the input impedance of the feedback network. unless the amplifier’s output impedance is zero (i.e. op amps)
Phase-shift oscillator
Wein-Bridge Oscillator
LC Oscillators: Colpitts Oscillator

Colpitts Oscillator

Equivalent Circuit
Hartley Oscillator