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A random experiment is an experiment in which it is not
possible to predict the outcome.

Example: Coin toss:

Let n denote the total number of tosses, n, the number of
heads that turn up, and n; the number of tails. Clearly,

g +A17 = A.
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Relative frequency

Dividing both sides by n gives

103 nr _
-+ 1.

The term n,/n is called the relative frequency of the event we
have denoted by H, and similarly for n;/n.

P(event) : after several tosses
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Probability

The first important property of P is that, for an event A,

0 <P <1

That is, the probability of an event is a positive number
bounded by 0 and 1. For the certain event, S,

P(S) = 1.



Conditional Probability

The relative frequency of event A occurring, given that event B
has occurred, is given by

This conditional probability is denoted by P(A/B),
P(A/B) as the probability of A given B.
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Bayes’ theorem

A little manipulation of the preceding results yields the following
important relationships

P(B/A)P(A)
P(B)

P(A/B) =

and

P(AB) = P(A)P(BIA) = P(B)P(A/B).

The second expression may be written as

P(A/B)P(B)
P(A)

P(B/A) =

which is known as Bayes' theorem, so named after the 18th
century mathematician Thomas Bayes.

INEL 5327 Probability Review ECE, UPRM 6



Example: Suppose that we want to extend the expression
PAUB) = P(4) + P(B) — P(4B)
to three variables, A, B, and C. Recalling that AB is the same as

A N B, we replace B by B U Cin the preceding equation to
obtain

PAUBUC)=PA)+PBUC)-PAN[BUCY).
The second term in the right can be written as
PBUC) = P(B)+ P(C) - P(BC).
From the Table discussed earlier, we know that

ANBUC]=UANB)UMUANC)
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SO,

PAN[BUCY =P[ANBJUANCD)
= P(AB U AC)
= P(AB) + P(AC) — P(ABC).
Collecting terms gives us the final result
PAUBUC) =PA)+P(B)+P(C)—P(AB) - P(AC) — P(BC) + P(ABC).
Proceeding in a similar fashion gives
P(ABC) = P(A4)P(B/A)P(C/AB).

The preceding approach can be used to generalize these expressions to N events.
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Statistical Independence

If A and B are statistically independent, then P(B/A) = P(B) and
it follows that

P(A/B) = P(4)
P(B/4) = P(B)

and

P(AB) = P(A)P(B).

It was stated earlier that if sets (events) A and B are mutually
exclusive, then A N B = @ from which it follows that P(AB) =
P(A m B) = 0. As was just shown, the two sets are statistically
independent if P(AB)=P(A)P(B), which we assume to be
nonzero in general. Thus, we conclude that for two events to
be statistically independent, they cannot be mutually
exclusive.
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For three events A, B, and C to be independent, it must be true
that

P(AB) = P(A)P(B)
PAC) = P(A)P(C)
P(BC) = P(B)P(C)

and

P(ABC) = P(A)P(B)P(C).
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In general, for N events to be statistically independent, it must
be true that, for all combinations 1 <i<j<k< ... <N

P(A:A;) = P(A:)P(A;))
P(AiAAR) = P(ADPA)P(AR)

PlA1Ar--AN) = P(A1)P(A2)---P(An).

INEL 5327 Probability Review ECE, UPRM



Example

(a) An experiment consists of throwing a single die twice. The
probability of any of the six faces, 1 through 6, coming up in
either experiment is 1/6. Suppose that we want to find the
probability that a 2 comes up, followed by a 4. These two
events are statistically independent (the second event does not
depend on the outcome of the first). Thus, letting A represent
a2 and B a4,

P(AB) = P(A)P(B) = — x

1
6
We would have arrived at the same result by defining "2
followed by 4" to be a single event, say C. The sample set of
all possible outcomes of two throws of a die is 36. Then,
P(C)=1/36.



Example (Con’t): (b) Consider now an experiment in which we
draw one card from a standard card deck of 52 cards. Let A
denote the event that a king is drawn, B denote the event that
a queen or jack is drawn, and C the event that a diamond-face
card is drawn. A brief review of the previous discussion on
relative frequencies would show that

P(4) = 55

P(B) = 55
and

Py = 13

52



Example (Con’t): Furthermore,

P(AC) = P(ANC) = P(A)P(C) = %
and

P(BC) = P(BNC) = P(B)P(C) = 5—22

Events A and B are mutually exclusive (we are drawing only one
card, so it would be impossible to draw a king and a queen or
jack simultaneously). Thus, it follows from the preceding
discussion that P(AB) = P(A n B) = 0 [and also that P(AB) #
P(A)P(B)].



Example (Con’t): (c) As a final experiment, consider the deck
of 52 cards again, and let A,, A,, A;, and A, represent the
events of drawing an ace in each of four successive draws. If
we replace the card drawn before drawing the next card, then
the events are statistically independent and it follows that

P(A1A4243A44) = P(A1)P(A2)P(A3)P(A4)

- [5;42]4 ~3.5%x 1075,



Example (Con’t): Suppose now that we do not replace the
cards that are drawn. The events then are no longer
statistically independent. With reference to the results in the
previous example, we write

P(A1A2A43A44) = P(A1)P(A24344/41)
= P(A1)P(A2/A1)P(A3AALAL)
= P(A1)P(A2/A1 )P(A3/A142)P(Aa/A14243)

_ 4.3 .2 .1 . i
57 "31 " 50 S a9 ° o/ x 107

Thus we see that not replacing the drawn card reduced our

chances of drawing fours successive aces by a factor of close to

10. This significant difference is perhaps larger than might be
expected from intuition.
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Random Variables

A random variable, x, is a real-valued function defined on the
events of the sample space, S.

In words, for each eventin S, there is a real number that is the

corresponding value of the random variable.

a random variable maps each event in S onto the real line.
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Example: Consider again the experiment of drawing a single
card from a standard deck of 52 cards. Suppose that we define
the following events. A: a heart; B: a spade; C: a club; and D: a
diamond, so that S = {A, B, C, D}. Arandom variable is easily
defined by letting x = 1 represent event A, x = 2 represent
event B, and so on.

consider the experiment of throwing a single die and observing
the value of the up-face. We can define a random variable as
the numerical outcome of the experiment (i.e., 1 through 6),
but there are many other possibilities. For example, a binary
random variable could be defined simply by letting x=0
represent the event that the outcome of throw is an even
number and x = 1 otherwise.



To handle continuous random variables we need some
additional tools.

For example, given a continuous function we know that the
area of the function between two limits a and b is the integral
from a to b of the function.

However, the area at a point is zero because the integral from
say, a to a is zero.

We are dealing with the same concept in the case of
continuous random variables.
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Continuous random variables

Discrete random variables takes discrete values between 0 and
1.

Continuous random variables lies in a specified range. In
particular, we are interested in the probability that the random
variable is less than or equal to (or, similarly, greater than or
equal to) a specified constant a. We write this as

Fla) = P(x < a).

If this function is given for all values of a (i.e., — © < g < ), then
the values of random variable x have been defined. Function Fis
called the cumulative probability distribution function or simply
the cumulative distribution function (cdf) or distribution function
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Cumulative distribution function

Fx(x) = P(X < x).

Cdf F(x) of a random variable.
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Properties of cdf’s

1. F(—o0) = 0

2. F(w0) = 1

3.0 < Flx) <1

4. Flx1) < Flxz) if x1 <x
5.P(x1 <x < x2)=F(x2)—Flxp)
6. F(x™) = F(x),

where x* = x + g, with € being a positive, infinitesimally small
number.
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Pdf properties

The probability density function (pdf) of random variable x is
defined as the derivative of the cdf:

plx) = —dgix) |

The pdf satisfies the following properties:

1. p(x) > 0 for all x
2. jiooop(x)dx =1
3. Flx) = J.f pla)da, where a 1s a dummy variable

4. Px1 <x <x3) = J.xzp(x)dx.
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The preceding concepts are applicable to discrete random
variables. In this case, there is a finite no. of events and
we talk about probabilities, rather than probability
density functions.

Integrals are replaced by summations and, sometimes,
the random variables are subscripted.

For example, in the case of a discrete variable with N
possible values we would denote the probabilities by
P(x), i=1, 2,..., N.



In Sec. 3.3 of the book we used the notation p(r,), k=0,1,..., L- 1,
to denote the histogram of an image with L possible gray levels,
r, k=0,1,.., L-1, where p(r,) is the probability of the kth gray
level (random event) occurring.

The discrete random variables in this case are gray levels.

Uppercase letters (e.g., P) are frequently used to distinguish
between probabilities and probability density functions (e.g., p)
when they are used together in the same discussion.



Random variable transformation

If a random variable x is transformed by a monotonic
transformation function T(x) to produce a new random variable
y, the probability density function of y can be obtained from
knowledge of T(x) and the probability density function of x, as

follows:

dx
dy

where the subscripts on the p's are used to denote the fact
that they are different functions, and the vertical bars signify

the absolute value.

py(y) = px(x)




Expected value

The expected value of a function g(x) of a continuous random
variable is defined as

Eg@)] = [ gtptods

If the random variable is discrete the definition becomes

N
Egte)l—= Zg(xijfg(xi)-
i=1
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The expected value is one of the operations used most frequently
when working with random variables. For example, the expected
value of random variable x is obtained by letting g(x) = x:

Elx] =X =m = Iio xp(x)dx

when x is continuous and

N
Elx]=X =m = le.-P(xi)

i=1

when x is discrete. The expected value of x is equal to its
average (or mean) value, hence the use of the equivalent
notation X and m.
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The variance of a random variable, denoted by 6?2, is obtained
by letting g(x) = x*> which gives

% = E[x*] = j.io x2p(x)dx

for continuous random variables and

N
c° = E[x?] = foP(xi)
i=1

for discrete variables.
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Of particular importance is the variance of random variables
that have been normalized by subtracting their mean. In this
case, the variance is

0% = El(x-m)*] = | (c—m)*p(x)dx
and -

2 —

(JC m) Z(xz )2P(xi)

for continuous and discrete random variables, respectively. The
square root of the variance is called the standard deviation,
and is denoted by G.
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nth central moment of a continuous random variable

glx) = (x—m)":

pn = ElGe=m)"] = [ (e =m)"plx)dx

N
Ha = El(x—m)"] = > (x; —m)"P(x;)
i=1

for discrete variables, where we assume that n > 0. Clearly, p,=1,
1,=0, and w,=c*. The term central when referring to moments
indicates that the mean of the random variables has been
subtracted out.

The moments defined above in which the mean is not subtracted
out sometimes are called moments about the origin.
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In image processing, moments are used for a variety of purposes,
including histogram processing, segmentation, and description.

In general, moments are used to characterize the probability
density function of a random variable.

The second, third, and fourth central moments are intimately
related to the shape of the probability density function of a
random variable.

The second central moment (the centralized variance) is a
measure of spread of values of a random variable about its mean
value,

the third central moment is a measure of skewness (bias to the
left or right) of the values of x about the mean value, and the
fourth moment is a relative measure of flatness. In general,
knowing all the moments of a density specifies that density.



Example: Consider an experiment consisting of repeatedly firing
a rifle at a target, and suppose that we wish to characterize the
behavior of bullet impacts on the target in terms of whether we
are shooting high or low.. We divide the target into an upper and
lower region by passing a horizontal line through the bull's-eye.
The events of interest are the vertical distances from the center
of an impact hole to the horizontal line just described. Distances
above the line are considered positive and distances below the
line are considered negative. The distance is zero when a bullet
hits the line.



In this case, we define a random variable directly as the value of
the distances in our sample set. Computing the mean of the
random variable indicates whether, on average, we are shooting
high or low. If the mean is zero, we know that the average of our
shots are on the line. However, the mean does not tell us how far
our shots deviated from the horizontal. The variance (or standard
deviation) will give us an idea of the spread of the shots. A small
variance indicates a tight grouping (with respect to the mean, and
in the vertical position); a large variance indicates the opposite.
Finally, a third moment of zero would tell us that the spread of
the shots is symmetric about the mean value, a positive third
moment would indicate a high bias, and a negative third moment
would tell us that we are shooting low more than we are shooting
high with respect to the mean location.



Gaussian probability density function

A random variable is called Gaussian if it has a probability
density of the form

| o~ (x-m)*o?

plx) = —

where m and o are as defined in the previous section. The
term normal also is used to refer to the Gaussian density.

A plot and properties of this density function are given in
Section 5.2.2 of the book.
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The cumulative distribution function corresponding to the
Gaussian density is

Flx) = .r:o px)dx

_ | Ix e—(x—m)zf(rzdx_
2r G Y™

which, as before, we interpret as the probability that the
random variable lies between minus infinite and an arbitrary
value x. This integral has no known closed-form solution, and it
must be solved by numerical or other approximation methods.
Extensive tables exist for the Gaussian cdf.
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Several random variables

In general, we consider in this section the case of n random
variables, which we denote by x;, x,,..., X, (the use of n here is
not related to our use of the same symbol to denote the nth
moment of a random variable).



It is convenient to use vector notation when dealing with several
random variables. Thus, we represent a vector random variable
X as

X1

X2

Xn

Then, for example, the cumulative distribution function
introduced earlier becomes

Fla) = Flai,as, ...,a,)

= P{x1 <ai,x2 <az,....xn < any
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the cdf of a random variable vector often is written simply as
F(x).

As in the single variable case, the probability density function of
a random variable vector is defined in terms of derivatives of
the cdf; that is,

p(x) = p(x1,x2,....Xn)
8”F(JC1,JC2, ,JCH)
axlaxZ“-axn '
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The expected value of a function of x is defined basically as
before:

Elg(x)] =E[g(x1 X2, oo Xp)]

.[.[ Ig(xl X2, ..., X0 )p(X1,X2, ..., Xn)dx1dx2dxp.

—00 —00
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Cases dealing with expectation operations involving pairs of
elements of x are particularly important. For example, the
joint moment (about the origin) of order kq between

variables x; and x;

Neg(i.)) = Elxix?] = I I xixdp(xi,x;)db ;.

—00 —G0
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When working with any two random variables (any two
elements of x) it is common practice to simplify the notation by

using x and y to denote the random variables. In this case the
joint moment just defined becomes

Nig = E[xky‘i’] = I I xky‘?p(x,y)dxdy.

—00 —o0

It is easy to see that 1, is the kth moment of x and n, is the
gth moment of y, as defined earlier.
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The moment n,, = E[xy] is called the correlation of x and y. As
we will see in Chapter 4, correlation is an important concept in
image processing. In fact, it is important in most areas of signal
processing, where typically it is given a special symbol, such as

R,y

Ry =nn = Elxy] = I I xyp(x.,y)dxdy.

—00 —o0
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If the condition

Ry = E [x]E]y]

holds, then the two random variables are said to be uncorrelated.
From our earlier discussion, we know that if x and y are

statistically independent, then p(x, y) = p(x)p(y), in which case we
write

Ry = [ xpoydx [ ypo)dy = ELxJEl]

Thus, we see that if two random variables are statistically
independent then they are also uncorrelated. The converse of
this statement is not true in general.

INEL 5327 Probability Review ECE, UPRM 44



The joint central moment of order kg involving random
variables x and y is defined as

Hig = E[(x —my) (v —my)4]

= | [ = mok—my)ap(e.y)day

—Go0 —o0

where m, = E[x] and m, = E[y] are the means of x and y, as
defined earlier. We note that

poo = E[(x—my)?]| and |po2 = E[(y —my)?]

are the variances of x and y, respectively.
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The moment p,

p11 = E[(x —my)(y —my)]

= | [ @=mow—mypte.y)dsdy

—0D —00

is called the covariance of x and y. As in the case of
correlation, the covariance is an important concept, usually
given a special symbol such as C,,.
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By direct expansion of the terms inside the expected value
brackets, and recalling the m, = E[x] and m,, = E[y], it is
straightforward to show that

Cuw = Elxy] —myElx] —mEly]+ momy
= Elxy] - Elx]E]y]
= Ry — Elx]EV].

From our discussion on correlation, we see that the covariance is
zero if the random variables are either uncorrelated or

statistically independent.

This is an important result worth remembering.
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If we divide the covariance by the square root of the product of
the variances we obtain

111
JH20H02

Cay

OxOy

o s o) )

¥

'}/:

The quantity vy is called the correlation coefficient of random
variables x and y. It can be shown thatyisintherange-1<y<1
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Multivariate Gaussian density

As an illustration of a probability density function of more than
one random variable, we consider the multivariate Gaussian
probability density function, defined as

| e—%[(x—m)TC_l(x—m)]
(2ﬁ)n/2|c | 1/2

p(x) =

where n is the dimensionality (number of components) of the
random vector x, C is the covariance matrix (to be defined
below), |C]| is the determinant of matrix C, m is the mean
vector (also to be defined below) and T indicates transposition
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The mean vector is defined as

Elxy]

and the covariance matrix is defined as

INEL 5327 Probability Review
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The element of C are the covariances of the elements of x, such
that

cij = Cyx, = E[(x; —m;)(x; —m;)]

where, for example, x; is the ith component of x and m; is the
ith component of m.
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Covariance matrices are real and symmetric.

The elements along the main diagonal of C are the variances of
the elements x, such that ¢;= c, *.

When all the elements of x are uncorrelated or statistically
independent, ¢;=0, and the covariance matrix becomes a
diagonal matrix.

If all the variances are equal, then the covariance matrix becomes

proportional to the identity matrix, with the constant of
proportionality being the variance of the elements of x.
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Example: Consider the following bivariate (n = 2) Gaussian
probability density function

_ | —L[(x-m)’C7'(x—m) |

p(X) (27)"2|C| 12 €’

with B B
m = "
)
and

C - C11 C12
Co1 C22
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where, because Cis known to be symmetric, ¢,, = ¢,;.
A schematic diagram of this density is shown in Part (a) of the
following figure.

Part (b) is a horizontal slice of Part (a)

The main directions of data spread are in the directions of the
eigenvectors of C. Furthermore, if the variables are uncorrelated
or statistically independent, the covariance matrix will be
diagonal and the eigenvectors will be in the same direction as the
coordinate axes x, and x, (and the ellipse shown would be
oriented along the x, - and x,-axis).

If, the variances along the main diagonal are equal, the density
would be symmetrical in all directions (in the form of a bell) and
Part (b) would be a circle. Note in Parts (a) and (b) that the
density is centered at the mean values (m,,m,).



Multivariate Gaussian density

Pl Xy 3 Xy

bl

(b)




Linear transformation of random
variables

A linear transformation of a vector x to produce a vectory is of
the form y = Ax. Of particular importance in our work is the

case when the rows of A are the eigenvectors of the covariance
matrix.

Because Cis real and symmetric, it is always possible to find n
orthonormal eigenvectors from which to form A.



