Chapler 3 Kirchhoff’s
laws, network equations, and
introduction to network functions

By combining cireuit elements in a proper manner, 8 circuit ¢an be c?in-
structed to represent the behavior of an actual device. Tor example, under
certain conditions, the field coil of a generator can be repre.sent.ed as a com-
bination of B and L elements placed end o end as.shown_m Fig. 371. '.

Referring to the field coil of a generator and its equivalent clI‘CU,l.t si.s
shown in Fig. 3-1, the two terminals a and b represent actual terminals

b Fig. 3-1 Series connection of two elements.

of the field eoil, but the junction between the two elenflents (pm'nt d) doe’s
not correspond to any particular point in the ﬁ'eld 10011. This is not su;-
prising since, accotding to our definitions of the circuit elements, R accoun {;
for the dissipation of energy into heat, and L accounts for the storag;e (;
energy in:the magnetic field, whenever a current flows between terminals

a-b of the actual field coil. In the actual device the “resistance” and tl;g
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“inductance” are not separate “parts,” but in the squivalent circuit we
choose to represent them as such.

The only true similarity between the response of the actual device and
its equivalent cireuit is in the correspondence between their voltage-current
characteristic at the two terminals a-b. What goes on inside the equivalent
circuit may have no counterpart in the actual device. Tor example, as a
result of the flow of current from g to b, a voltage will develop across R
(I'ig. 3-1). . This voltage does not correspond to any voltage which can be
measured in the aetual field coil. On the other hand, voltage and current
at terminals o-b of the field coil and of its equivalent civeuit will be identical.
We may consider the circuit shown in Fig. 8-1 to be a terminal pair a-b
representing the actual device. In such a case the terminals g and b are
called accessible terminals, and the terminal d is called an tnaccessible
terminal. : - .

3-1 Series and parallel connections of elements

Elements connected end to end, such that they carry the same current,
are said to be in series. In Fig. 3-1, B and L are connected in series. 1If
at any instant of time there is a current 12(f) in R, there will also be a
current () such that 7..() = éu(f) = <. This result is arrived at from
the fundamental assumption that in a terminal pair the charges which enter
one terminal must come out from the other terminal. This is ealled the
“assumption of continuity of current.”

Elements connected between a pair of terminals are said to be connected

~In “parallel.” Elements connected in parallel will have the same voliage

aecross them.
The connection of the elements B and ¢ in Fig. 3-2 is an example of
parallel conmection of two elements. In this cireuit the two elements are

Fig. 3-2 Parallel connection of two elements.

placed so that the same voltage will always exist across them. Although
this circuit may correspond to the actual connection of two physical devices,
it may also be the equivalent circuit for many practical devices. In this
circuit terminals a-b may represent the input terminals of an electronié
amplifier. In that case the capacitance ¢ may not be placed in the circuit
intentionally, but may represent the combination of certain unavoidable
features of the electronic device. As another example, the same circuit may,
with respect to the voltage-current characteristic at terminals a-b, represent
the input to & telephone cable.
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The circuit shown in Fig. 3-3¢ is an example of a “‘series-parallel” connec-
tion of circuit elements. The series connection of E and £ is connected in
parallel with C. It is interesting to note that this circuit might represent a
coil of wire.” The resistance and inductance represent the same types of
energy conversion as explained in connection with Fig. 3-1. The capaci-
tance (! would account for the electric-energy storage in the electric field
between the windings of the coil.

The cireuit of Fig. 3-3b is another example of a series-parallel circuit.
Tn this circuit the resistance B, is in series with the parallel combination

a Ry

[l
Oy
k=]
=

c Fig. 3-8 Series-parallel connection of
b (a) (&) elements.

of Ry and €. This circuit, like all the others, may represent the actual
combination of several nearly “pure’” elements or may be the equivalent
eircuit of an actual device or a portion of such a device. (Vigure 3-3b may
represent the input circuit of an oscilloscope probe.)

3-2 Network terminology

The representation of electrical systemsf recquently requires the combination
of many sources and elements connected in a more complicated manner than
the series or parallel arrangement described above. To facilitate discussion
and analysis of networks the special terminology given below is used. .

Nerwork  An interconncetion of circuit elements is termed a network, or
cireuit. A network may contain both active and passive elements or may
consist of passive elements only. In the former case it is termed an active
network, and in the latter case the term passive, or source-free, applies. If
the passive elements in a network are all of the same type, l.e., all resistances
or all inductances or all capacitances, the network is termed a resistive,
inductive, or capacitive network, respectively.

RESPONSES OF A NETwork  The waveform, or function, representing the
current in or voltage across a passive element or a combination of clements,
as well as the voltage across an ideal current source and the current in ideal
voltage sources, is termed a response of a network. Thus all voltage and
current waveforms which are not specified through the ideal sources in a
network are responses of the networl. '

Nopes We shall call a point in the network. common to two or more
clements a node. TFor example, in Fig. 3-4, the points a, b, d, Fog; by k,m,
and n are nodes. e
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..TUNC"I‘IONS We shall call a node common to three or more élements a
junction. In IFig. 3-4 the nodes a, b, d, and m are junctions, whereas the
nodes g, k, &, and # are not junctions, sinee each of them is common to two
elements only.

Branca  We shall call a single element or a series connection of elements
bet\?reen any two junctions a branch. In Fig. 3-4 the following branches
are identified: branch ab, consisting of the current source 7(¢); the resistive
branch ab, consisting of E;; branch ad, consisting of C'y; branch db, consisting

Fig. 3-4 Diagram of a network.

of R? and Ls; branch dm, consisting of v,(f), RBs, L3 and Ry branch mb,
consisting of Cy; branch mnb, consisting of B; and v(f). Note that, in
accordanece with our definition, in Fig. 3-4 km, hkm, and df are not branches
ginee they do not connect two junctions.

PAsSIVE AND ACTIVE BRANCHES If a branch contains no sources, it is
called a passive branch; otherwise it is an active branch. In Tig. 3-4 the
branch mnb is an active branch, and the branch dfb is a passive branch.
The current source 4(¢) in this figure constitutes a branch by itself.

BrANCH CURRENT  A-current flowing in a branch is called a branch current.
I‘he same branch current flows through all the elements in & given branch,
since the elements in a branch are in series.

Loor  We shall call any closed path through the cireuit elements of a net-
work a loop. In Fig. 3-4 the following loops are identified: loop a-b-a,
consisting of B, and 4(t); loop g-d-fub-a, consisting of €'y, Ks, L, and By;
lgop a-b-f-d-a, consisting of (), Le, R, and Cy; loop d-g-h-k-m~n-b-f-d, con-
sisting of v1(), Ry, L3, Ry, Rs, v2(t), Lg, and Ry, The reader may trace a few
more loops as an exercige. I a loop contains one element of a branch, it
will contain all the elements of that branch. In Fig. 3-4 the loop a-b-f-d-a,
which contains Rs, also contains Lz, which with R, forms the branch dfb.
In Fig. 3-4 loop a-b-¢ has two branches, that is, 7(f) and R, ; and loop a-b-f-d-d

_ has three branches, R,, i, and dfb. A branch may be common to more

than two loops. In Fig. 3-4 the branch R, is common to loops a-d-f-b-a,
a-d-g-h-k~m-b-g, and others. ‘
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Mesz  In a given diagram of a network a loop which does. not encircle
or enclose another loop and cannot be divided into other loops is called a
mesh. In Fig. 3-4 the loop m-n-b-m is a mesh, whereas the loop a-d~g-h-k-
m-b-a is not a mesh, since it encloses the loop a-d-f-b-a. A branch may not
be common to more than two meshes. The reasons for defining meshes as
well as loops are discussed in Chap. 11.

3-3 Restrictions on variables of networks: Kirchhoff’s laws

As a result of the interconnection of elements in a network, certain restric-
tions (constrainis) are placed on the currents and voltages associated with
these elements. Tor example, in the series connection of the B and I ele-
ments in Fig. 3-1, the principle of continuity of current requires that tes = das.
In the parallel connection of the R and € elements in Fig. 3-2, the definition
of the voltage requires that the same voltages exist across B and C.  There-
fore, if the current 4. in Fig. 3-1 or the voltage across B in Fig. 3-2 is speci-
fied, the current 4s in Fig. 3-1 or the voltage across C in Fig. 3-2, respectively,
will also be specified. Thus, when we connect elements in series, we place o
restriction on the current through them. When we connect elements in parallel,
a restriction is established on the voltage across them.

The application of the principles of continuity of current and the law of
conservation of energy establishes certain additional restrictions on the cur-
rents and voltages associated with elements in a network. We shall first
state these restrictions and then deduce them from the above principles.
The treatment of circuit problems can be approached by stating these
restrictions as “laws” of circuits. These laws are called, after the physicist
Gustav Robert Kirchhoff (1824-1887), Kirchhoff’s laws, .

Kirchhof’s voltage law At any instant the sum of the voltages around
any loop is identically zero.

As an illustration, we apply this law to the loop a-d-f-b-a in Fig. 3-4:
Ved + 2ay + Vo F V0 = 0 '
Similaxly, for the loop a-d-g-h-k-m-n-b-a, -
Yoz + Vg + Von + Vi Vim + Vmn -+ Uns Ve = O

To state Kirehhoff’s current law in compact form, we shall give two defini-
tions in connection with reference arrows for currents.

If the head of the reference arrow of a current points toward (or away
from) a node, we say that the current is entering {(or leaving) that node.
If a current 4 enters a node through an element, a current —¢ leaves the

node through that element.
Using these definitions, Kirchhoff’s current law is stated as follows:

Kirchhoff's current law At any instant the algebraic sum of the cur-
‘yents: entering 8 node is identically zero, or at any instant the sum of
the currents leaving a node is identically zero.

. s R
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‘ As an il.lustra,tion of this law, consider the node m in Fig. 3-4, where
g -!— 74 —I— 25 = 0. The reference arcows of the three currents point,towa,rd
fshe Junction m, and therefore 4y, ¢4, and 4 enter this junction, and their sum
15 zero. Af the junction d, 7, and ¢; both leave d, but 4, énters d. If g

e{lters d,_ then —i, leaves d, and the application of Kirchhoff’s currt;,nt Ia.vv.i
gives —iy + 23 + 43 = 0. The latter equation may be written as

?:1=1'2‘|"?:3

which can be i‘nterprelted as: The sum of currents whose reference arrows
enter a node (4 entering d) is equal to the sum of currents whose reference
BITOWS leave that node (4, and 4; leaving d).

Notice that, in the branch dghkm of Fig, 3-4, 7; is the branch current and
flows through all the elements of that branch. Thus

tg = Tgh = Thk = Tem = 13

The equation_ Tdg = z',,_,«. can also be considered an expression of Kirchhoff’s
f:;;i?; Illaomcwl'es;r-lce 'zrdglls f.he current entering node g, and 4, is the current

‘ In discuss'ing the series connection of elements, we referred to the agsump-
t}on of continuity of current. The application of this prineiple to the junc-
tion of elements results in Kirchhoff’s current law. If the sum of the cur-
rents'entering a junction were not equal to the sum of the currents leaving
that junction, there would be an accumulation of charge at that junction
The e_ffect of accumulation of charge is represented by the circuit elemeni;
capacitance, and accumulation of charge at a terminal has no meaning in
terms of the concepts already defined.

Examﬁfe 3-tI Let 4 and ¢, in Fig. 3-6 be given by 4, = 8u(f) and 43 = 3tu(). With
ese two currents specified, we are no longer af liberty t ify ¢ inced ==
it = @+ 3u@). ¥ tospenity f() sinceda(t) =

f"ig. 3-5 Ilustration of Kirchhoff’s current law:
[ 51 +ig = l'oa.

tAt T,lme .t the amount of charge which has entered the junetion e is
f e {©1 + 45) dr, and the amount of charge which has left a is f t s dr.
—

If 3 » ) t |V . ) .
23 # 41 + 4z, charge equal to f_w {ér -+ 42 ~ 43) dr has accumulated at a.

A;&s -rlr_le.ntion_ed ahove, this is contrary to our concept of terminal pairs, and therefore
1T 42 = %5 . '
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3-4 Derivation of Kirchhoff’s voltage law from the current law and
the law of conservation of energy

In Fig. 3-6a a closed path is shown. Let us assume that the termin}?l
pairs sho.wn in this figure are passive (do not include sources) and that the

only source in the path is v(8).

Fig. 3-6 (a) Network consisting of one loop.
{b) A two-mesh network.

At any instant, the power input fo the terminal .pairs f:a~b, b~c.l, tailndrc;;? (;?
Uabtay Vsateas A Pamidm respectively. Smctla Ty = Tbd = m = 1, the
delivery of energy to the passive elements is

Vahats - Dsatva -+ Vambam = 1(ap + Voa + Vam) -
'II‘h'e source delivers energy at the rate @a,, and therefore

't':vam = 'E'(vab + Voa + Udm) g
’ that : )
¥ VYam = Yab + + Vgm = —Vma Eg-‘;i
or Yap + V82 + am + Vma = 0

which is the statement of Kirchhoff’s voltage law for. this 0..11‘(311113.. . .

Most often, when the circuit contains a source in se1'1e§ Wﬂ;lt pa,ssin:V

terminal pairs, it is more convenient to express Kn:chhoff 8 vo'dagef tal.l '
in the form of Eq. (3-1), namely, with the source function on one side o

i i y . (3-2).

equation, rather than in the form of Bq. ( . ‘ ‘ ]

the a.‘;)ove derivation was made in the special case of alnetwmk ?10;_

sisting of one loop. The argument can be extended tohappty trti( a‘r;\lri o

of its gec \ tig. 3-6b a two-mesh network,

k, regardless of its geometry. In I‘lg. 3 . ‘ ) ¢
X:; ;ourgé:e is shown. In conformity with Kirchhoff’s current law, the cur
rent in- branch mb of Fig. 3-6b is 4, + 7. .
1(”11].3;§r the law of conservation of energy the total plowel}ecelved by a,l} EE:
terminal pairs is zero. (This means that at any given instant some o
terminal pairs receive and others deliver energy.) .

. '_'Uab'il + 'vam'il + 'vmb(il + ?’2) — Umnlz — Umtlz = 0

1V + Vmp — V) + 12V — Vmp — V) = 0 (3-2a)
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In the network of Tig. 3-6b the waveform of 7z can be changed without
any change in the waveform of 7. This can be achieved by changing the
elements in the terminal pairs of the network (for example, terminal pairs
m-n, n-b, and m-b). In other words, the only restriction placed by the
network on the waveform of the current is that given by 4w = ¢ + <
This is a restriction on the waveform of 4,;. One of the currents ¢, and
73 ean be specified independently of the other. o '

Returning now to Eq. (3-2a), we note that the form of this equation is

@O 1(8) + 0 = 0 ' (3-2b)

Now, since 71(£) or 4,(!) can be specified arbitrarily, it follows that f1(z) = 0
and f,(f) = 0. To clarify this argument, let us assume that 22(t) = 0 and
11(f) # 0. Thenfi(#) = 0. If, on the other hand, we let #,(¢) = 0 and choose
i5(8) 7 0, then fo(f) = 0. Hence, in Eq. (3-20), 0., + Vb — U = 0, and
Vmb — Umn — Unp = 0, . .

These equations correspond to Kirchhoff’s voltage law for each of the two
meshes g~m-b-a and m-n-b-m.

Although the derivation of Kirchhoff’s voltage law has dealt only with
particular examples (Fig. 3-6 and b), the result is general and can be proved
generally by application of a similar procedure.

3«5 The application of Kirchhoff’s laws

We shall now show how the application of Kirchhoff’s laws leads to integro-
differential or differential equations for network responses. Before gener-
alizing, two examples are appropriate.

Example 3-2  Apply Kirchholl’s voltage law to the cireuit shown in Fig, 3-7, and
show that the equation for £(f) is an integrodifferential equation.

Fig. 3-7. A series R-L-C circuit excited by an ideal

n d voltage source.

Solution Kirchhoff’s voltage law applied to the single-loop circuit of Fig. 8-7 yields the
equation
: Vag + Usa + Vg + the = 0
Or 8iNCe ¥ = vy = —t,

Yoo + Upa + Vian = ¥ ‘ (3_3)

We observe that the three voltage variables v, 94, a0d w4, can all be expressed in

terms of the current ¢ through the voltege-current relations for the L, B, and
C elements; that is,

L 1
vub=Ld—: tpa = Ri vdnma[—m.idr
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Hence, using the above relations in Eq. (3-3),
di o1 fi . @4
' — — idr =v
L 7 + Ri + 6w
Equation (3-4) is the required integrodifferential equation.

E:éample 3-3 Apply Kirchhoff’s current law to the circuit shown in Fig. 3-8, and
deduce the integrodifferential equation for v(f).

Jic fin M |

v(t)i =0 R L

b Fig. 3-8 A parallel R-L-C circuit excited by an
-—i ideal current source.

Solution Kirchhoff’s current laws applied at junction b of Fig. 3-8 yields the equation
ic +ir -+ i — ¢ 7‘-?
or i¢ + tr + in =1 (3'5)

Wa observe that the three current variables i¢, 4r, and iz can all be (‘axprefssedt 1111;
terms of the same voltage v = %4 through the current-voltage relations for

elements C, B, and L; that i8,
1 ¢

o . .1
z‘c=CaE 1R=1—av =7 _nf)df
Hence, using the above relations in Eq. (3-5),
dr 1 1 [: . '.(3-6)
— 4= = vdr =1t
Ca TR TL/-o

Equation (3-6) is the required integrodifierential equation.

The solution of integrodifferential equations such ag E_qs. (3-4) ?—,ﬁd 53-?1)
is the subject of other chapters. Examples 3-2 and 3-3 illustrate the e(f: ;
nique for arriving at the equation relating & response to the Source; :
network and point out several general properties of Kirchhoff-law equation
as follows: :

1 Application of Kirchhoff’s laws to network loops and junctions will
in i rodifferenti tions.
enerally result in mteg10d1ffe1ent1al' equa ‘ -

2 ipplication of the voltage law to series elements 18 nrllost conven.lent!y
done by expressing each element voltage in the series connection in
terms of the common current. ‘ ]

3 Application of the current law to parallel elements is most con‘v;alnl
iently carried out by expressing each element current of the paralle

ination 1 tage.
combination in terms of the common _Vol ' o

4 Different networks can yield integrodifferential equations of thelsm.nz
mathematical form [compare Eqs. (??—4) and (3-6)]. Such analogie
are useful, and are digeussed further in Chap. 4.
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At this point in the development we note that in resistive networks every
voltage-current relationship is algebraic ; hence the applieation of Kirchhoff’s
laws will result in algebraie rather than integrodifferential equabions, Below
we show that inductive and. capacitive networks can also be deseribed by
algebraic equations. Finally, in Sec. 3-10, we show that the use of opera-
tional notation allows the treatment of general networks in algebraic form.

3-6 Resistive, inductive, and capacitive ladder networks

When the passive elements in a network are all of one type, the relation-
ship between response.and the sources can be obtained by algebraic means.
In this section we show how such equilibrium relations can be obtained in

ladder networks. Ladder networks consist alternately of series and parallel
elements as shown in Fig. 3-9. -

Fig. 3-9 Resistive ladder network.

Example 3-¢ In the resistive ladder network of Fig. 3-9, deduce the relationship
between »; and v, between 7, and v, and between 4o and »,.

Solution In Fig. 3-9, a eurrent with a reference arrow has been assigned to every branch.
We now begin at the output v, and apply, in turn, the resistance voltage-ourrent

relationship, the voltage law, and the current law. At each step the variables are
expressed in terms of v,

Thus, from the resistance voltage-current relation,

o= Fg0s  and vy = 204, = 2, ’ (38-7)
Hernce, from the voltage law, _ .
Yan = Vg, + vy = 3o, (3-8)

and from the resistance relation for the 30-ohm resistance,

g = = ‘ 3-9
b 30 3-9)
From the current law,

=g tdh=—"+_— =

— 3-10
10 10 i} ( )

and from the resistance relation for R,
vpa = 104y = 20, (3-11)

From the voltage law,

Uon = tha + tun = Bpy (8-12)
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From the resistance relation for the 15-ohm resistance, The procedure should now be clear singe it is analogous to the resistive oase treated
it = Jthn = v, (3-13) . in Example 3-4. It is left as an excercise for the reader to show that the results are
From the current law, : i = 814 (3.19)
fo =11 442 = 3vs + 2ou = B0y (3-14) ) ;W dny 320
: =g .20
From the resistance relation for Ras, and 2 dt '
Uy = 51:0 = -g-‘m (3-15) dvo
and from the voltage law, _ ‘ i=29—= 3.
‘ 7 (3-21)
Yo = Vg & ¥bn : )
v = Po, + by, = By (3-16) \ ';‘lit; )calcula.tlon of an inductive ladder is left as an exercise for the reader (Prob.
Equation (3-16) is one required result. Sinced, = ¥4/10, the relationship between ’ , - )
¢4 and v, is given by v, = 28104} = 230¢,/3, Finally, from Eq, (3-14), .
b 3-7 Equivalent elements
: vy = 4P
=2 - ; . : .
a0 that 2, = 32 X iy = 1184, o (3-17) . We observe that in. Example 3-4 the voltage-current relationship at the
which is also & required result. ' terminals Of the source is as given by Eq. (3-17),
Example 3-5  In the capacitance network of Fig. 3-10, deduce the relationship between Vo = 1384 }
i3 and 4, 9, and 4, and v, and 1. ‘ s0 that at the source terminal the voltage-current relationship is the same
as if a resistance of 15 ohms were connected. Similarly, in Example 3-5,
1f 4 f
@ It b I .d
| p— | p— +
+ ‘o bt k3 === 7 ———
ao——— C 1
Yy i == 0f ==1f 2f== v, ' : =—L-Cli ao——l—_ :
- _ g {a) : — ==, 11,1
I =0l T I I G € 6
b - . bo——oir— 1 b | y
" M . . , ka1 [
Coo =N r—-—-—
Fig. 3-10 Capacitive ladder network. . _ ' “ ¢ 14 ! — o i _i
. _ . : (b e, e, | = I ==Cp  G=C+C,
| | | | o, P L g 4
Solution The procedure which may be followed is completely anglogous to that used T ST
in the resistive case if cne uses ' a rTo = |
b o, i | l
Qu=f__w?'ad‘r gz =f__w fadr — ! Lel Le=L+L,
| 3
We shall however use voltages and currents as variables and begin with h
a " |
t : ' I
”4=é—f fadr = 3¢s d | L, — 11,1
;wk ] ! . ( ) b I 2 : - Lp—Ll +L—2
”5‘d=ifm”":ﬂdf=’i'qs L————- -
a :_ _____ 1
Hence, from the voltage law, i, = ¥ + vy, OF 1 R, T
]
s [ 3 ' (€) ' Ry — R.=R,tR;
Von = 13 di = Iqs b |
—» [ |
From the capacitaﬁce voltage-current relation, . . g0 o= = do_ === 1
. 1 | I— | |
duw 3, ) | R’ = | SR Lalyl
P L 21 | P = Ra
. %2 F7 418 . bo :_ _____ i b L : R, R R
From the current law, ST E
g =1t + 45 = I (3-18) Fig. 3-11 Equivalent elements.




analysis of electric circuits 58
the relationship at the source terminals is -
, dv,
0 = 2.7 'ag‘

Hence it appears that the effect of the entire ladder at the souree terminals
is the same as if a 2.7-farad capacitance were connected in place of the

ladder.

SERIES AND PARALLEL CONNECTION OF SIMILAR ELEMENTS It .is lef.t as an
exercise for the reader to show that the equivalences shown in Fig. 3‘-1‘1
are valid provided that, in those given by Fig. 3-11¢ and d, the proper ini-
tial conditions exist.

3-8 Voltage division and current division for similar elements

Consider the series connection of the two inductances shownl in F]g 3-12.
(Although we are formally dealing with only two elements in series, the

&2_

Fig. 3-12 Voltage division for series inductances.

‘reader will certainly recognize that each of these two eleme'nts may be the
equivalent element for a combination of elements.) We desire to formulate
the relationship between the voltage across one inductance and the voltage
across both inductances. . ' :

The voltage aeross Ly is, at any instant of time,

di
Ygm = Ly ’&E
and the voltage across L, is
di
Uy = L &

Hence the ratio v,,/#. is equal to the ratio of the inductances,

Vam _ L1 (3-22)
Ymb Ly

In words, when two inductances are connected in series, the voltage across
each inductance is proportional to the value of that inductance.
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Since the equivalent inductance of the two elements in series is

L, = Ly + L,
we may also write
Yam L]_
e T T. -23
Vap L1 + Lg (3 )

Equation (3-23) is the voltage-division formula for inductances. In words,
this formula states that the ratio of the voltage across one inductance in a
series connection of inductances is to the voltage across all the series-con-
nected inductances as the one inductance is to the sum of the inductances.
For the series connection of several resistances, the same statement applies
if the word inductance is replaced by resistance everywhere. This result
s illustrated in Fig. 8-13. The proof is left as an exercise for the reader.

Fig. 3-13 Voliage division across series resistances.

In the case of capacitances, we can show that, if the same current has been
flowing through the series-connected capacitances for all time, the voltages
will divide as the reciprocals of the capacitances, i.e., proportionally to the
elastances, as illustrated in Fig. 3-14. The proof is left an an exercise for the
reader (Prob. 3-15). '

+ C,

& Eam =Cl+ c, Vap
m
C
C 1

= v
2 ’ _mb Ci1+ G, ab Fig. 8-14 Voltage division across series ecapaci-
b

tances,

< +

Consider now the parallel inductances L, and Ly shown in Fig. 3-15. The
current in each inductance is given, for all ¢ > 0, by

u(f)

and ‘ ialt)

, 1
4(0) + I j: Vab dr

72(0) + 1172 ]:'va;, dr

]



ancalysis of electric circuits &0

If we now assume that the ratio 4,(0)/42(0) = La/L [or that both 2,(0) and

25(0) are zero], then

® i) _ L a2
45(8) In o

so that (under the assumed conditions) the current iIll two parallel induct~

anc’é"s divides proportionally to the reciprocals of the inductances.

Fig. 3-15 Current division in parallel
inductances.

Fig. 8-16 Current division in parallel
resistances.

aTli(t)

C, .o L L |0 = i(t)
il(t)=a+—‘c,; it == G 0 C,+C,

J

Fig. 8-17 Currvent division in puarallel capr:lzci-
tances. :

TIn the case of two parallel resistances (as shm‘vn in Fig. .3~16) the cuge)}ft;i;
divides proportionally to the conductances (1*e(_:1proc?ll 1‘:31i‘fnces);§;1ances
i ; ivi p tionally to the cap
-allel capacitances the current divides propor . ne
g: Isailo(ivn iII)I Tig. 3-17. The proof of these statements 18 left as an exercise

for the reader.

Cs -
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3-9 Equilibrium equations

We recall that, in general, any voltage or current which is not generated
by an ideal source can be a network response; thus many responses are
associated with a network. In most practical examples one is not interested
in every response, but only in certain responses, which may constitute the
“output.” Thus the output of a network may be a voltage across several
elements rather than the voltage across & single element. In such a case
the desired response may not oceur as a variable in the Kirchhoff-law equa-
tions (for example, it may be the voltage ve in Fig. 3-18, as discussed below,

Fig. 3-18 A series R-L-C circuit excited by an ideql
voltage source.

in Example 3-6). In other cases it may happen that the application of
Kirchhoff’s laws leads to simultaneous equations for several variables, only
one of which is the desired response variable (BExample 3-7). In either
event one can manipulate the Kirchhoff-law equations to derive an equation
which relales the desired response function fo the source Sunction. Such a
derived equation is termed an equilibrium equation; the remainder of this
chapter deals with efficient formulation of such an equation for series-parallel
circuits; additional general techniques are given in Chaps, 11, 12, and 13.

Example 3-6  In the cireuit of Fig. 3-18 obtain the equilibrium equation relating the
Iesponse vqq to the source v.

Solution From Eq. (3-4),
di 1 rt
— P . L dr = 3-25
Ldt+Rz+Cf__wzd-r v (3-25)
and from Fig. 3-18,

&
ad = L — 3 3-26
Yaa 5 TR (3-26)

Equations (3-25) and (3-26) are simultaneous equations for the variables v,4 and 7.
To climinate 7 from the equations, substitute (3-26) into (3-25).

vaz + % [ idr =0 @3-27)

Now differentiate each term in Kq. (3-27) with respect to ¢ and solve for i

] dv AWag
7 = — = —

\ _ 7 i (3-28)
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Substituting (3-28) in (3-25) yields
d dzvad dv dﬂud _ _
- = — RC o —vaa=v
LC@ ‘LC 0 +Rcdt ' :
: | s Bod —c® | ped (3-29)
o o Lo F RO v = LOG; + ROG,

i 29) i i ilibri tion. We observe that it is not a
Equation (3-29) is the desired equlhbrlu{n equa :
K(ilrchhol‘f—law equation since sums of the individual te:,rms d_c not_ represent voltageg
added up around a loop or currents entering or leaving a junction.

Example 3-7  In the circuit of Fig. 3-19 apply Kirchhofl’s chrent law t_o obtain simul-
taneous equations for v., and v, and obtain the equilibrium equation for ven.

‘ R, b
AAA
|l % i
1 = (j'1 iax RZ = Cz
r n Fig. 3-19 Cireuit for Example 3-7.
Solution Application of Kirchhoff's current law at junction & yields 41+ =1, 0or
doar | 2 ' (3-30)
— {Van — Upn) = 1
Crgy T Con ™ tn
At junction b the result is 25 = 45 + 45, or
bl (3-31)

1 i Ao
T (van — Y6n) = Evbn +.Ce dt

Equations (3-30) and (3-31) are the simultansous differential equations for v
and v, From Eq. (3-31),

R df)bn _
Ban = Yon El; tin + RiCa — _ 3 32')-

Substituting for v., from Eq. (3-32) into (3-30) gives

R\ dvgn Agn _1' dvsn —
h (1 +7§z) gl C1R102W - szbn + Cy i z

dt

or collecting terms,

@ | (Br + R)Ci + RaCydosn | 1 (3-33)

'—'Ubn=‘l:

RCiCe ar + £, a oA

[ - ) . . ) wyw 0 tion_
tion (3-33) is the required equilibrium equa; )
quf this ;oint in the discussion we emphasize that the precet:llng exan}ples f;re
meant only to illustrate the idea of equilibrium equatlf)n. Efﬁm?nt l.'fechmques or
formulating such equations are discussed in the remainder of this chapter.
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3-10 Operational notation

When a circuit consists of several types of passive elements in addition
to sources, the formulation of equilibrium relations is no longer algebraic,
but involves the manipulation of simultaneous integrodifferential equations.
To facilitate such manipulations we use the operalional notation of the cal-
culus. The use of this notation allows the manipulation of integrodifferen-
tial equations in algebraic form. '

We shall denote the operation “differentiate with respect to time” by the
symbol p thus:

p E% sothat  p(f) = g{ (3-34)

The symbol p is termed differential operator. Using this operator, the sec-
ond derivative is written as p(pf) = d2f/dsx. We write pp as p2, exactly
as if p were an algebraic quantity, thus: :
n
Pt = % (3-35)
It can be shown' that simultaneous differential equations can be manipu-
lated in the same way as simultaneous algebraic equations by writing them.
in operational form and then treating p a8 il it were an algebraic entity.
In the same manner that the symbol p is defined to mean differentiation
with respect to time, we define division with p to mean integration with
respect to time. We further define the operation p followed by 1/p or 1/p
followed by p, operating on a function f, to mean
1 1
ppl=p =1 (3-36)
Since integration involves an integration constant, Hq. (3-36) does not apply
unless this constant is set to zero. In general, for inductance and capaci-
tance, respectively, '

tap = 1a(0) + Lib [; Vgp AT or Vap = Ug(0) —|— éﬁ: T dr  (3-37)

we define

()=f1Crdr (3-38)

[

80 that for inductance L,

i = in(0) + o7 -t (3-39)
and for capacitance C,
1,
Yap = vab(O) + pcab Tab (3-40)

It is shown in Chap. 6 that the initial values ¢3(0) or v,4(0) can be repre-

sented by ideal sources and that, as a consequence, the formulation of

input-output (source-response) equations is correctly carried out if the ini-

tial-condition terms in Egs. (3-39) and (3-40) are set to zero. This state-

ment also means that in the formulation of equilibrium equations (and net-
tSee Chap. 8. :
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work functions; see Sec. 3-11) we define o passive network as one consisting
of R, L, and C elements, where the I’s and C's store zero energy at t = 0, so
that the definition of 1/p given by Eq. (3-38) applies. In operational form,
the voltage-current relationships for the elements R, L, and C are therefore

. _ 1
v = Bi v==;oLz'orz'=—r1—v i=p0v0rv=mz (3-41)

: pL

The form of these relationships is algebraic; the operator' pl plays the same
role for inductance that R plays for resistance and 1/pC for eapacitance.
We now illustrate the derivation of equilibrium equations using operational
notation.

We shall derive the equilibrium equations for v.(f) in the resistive circuit
of Fig. 3-20¢ and in the R-L-C circuit of Fig. 3-20b so as to show the simi-
larity of technique when operational notation is used, We observe that
each of the circuits consists of three passive elements in series with an ideal
voltage source. To show the similarity of techmque, we shall work out the
golutions for both circuits side by side.

(b)

Fig. 3-20 (a) A resistive circuit. (b) 4n R-L-C
circuit with the same number of elements as the
circuit of (a).

For both circuits,

Vap + Upa + Van = 0 (3-42)
For the eircuit of Fig. 3-20a: For the cireutdt of Fig. 3-20b:
Vap = Rﬂ‘: Yap — pLz'
Vg = R Upg = R’& f -
1.
van = Rt o ban = E’ﬁ %
Hence Hence )
(Ri+E+R)i=v (pL—I-R-i- )1=
. 1 ;= 1 »
‘TEiFRF+R oL + R + 1/5C
Ve = (B1+ B)¢ vaa = {pl, + R}
R+ R o pL + R 3.43b
Ol ey £ A e 0l IRl /e o V7T A

! For fime-invariant elements the operator pl is identical with t.h_e opera_tor.Lp; that
is, pli = d{L3)/dt = L di/dt = Lpi. This is not frue if L iz & function of time.

— e T T
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Now, in the case-of the resistive circuit, we can arrive at the result Eq
{3-43a) by voltage division:

E;.E“_" Rl"‘R‘
Van Ran Ry —|-R+Rz

The 1esu1t. for the analogous B-L-C circuit [Eq (3-43b)] is seen to be related
to the voltage-division method for resistive circuits as follows: Replace Ry
by pl: and replace B, by 1/pC in Eq. (3-44). This gives

@3 pL + R~
v pL+R+1/pC

Equation (3 45) is seen to be identical with Eq. (3-438).

It is necessary now to emphasize the difference between Eq. (3-44) and
Eq. (3-45). Equation (3-44) represents the solution of the problem: TFind
the response v,4 in terms of the source .  In the resistive circuit the solution
is that v, is the fraction (R, 4+ R)/(R;+ R + R3) of ». On the other
hand, Eq. (3-45) does not, glve Uae HUIMerically in telms of », but 1a,t.her we
have the equation

(3-44)

(3-45)

v pl + R
“ T pL + R F 1/pC°

which, upon clearing the fraction, is seen to be

(3-46)

(pL + R+ i) v = (pL + R)v

or, replacing p by d/dt and 1/p by the 1nteg1al operation, we obtain the
integrodifferential equation

dvﬂd + Ko Pad + C,[ Vag dr = L + Ry (3‘47@)
Differentiating both sides of this equation, we have
- d Vad d'ﬂad 1 .
dt2 + R + C ad - dtz + R (3'4:71))

which is identical with Eq. (3-29) as derived without the use of operational
notation. The differentiation involved in going from Tq. (3-47a) to Eq.
(3-47b) is identical with the “multiplication’” with p of the numerator and
denominator of the fraction in Bq. (3-46). Such multiplieation (by Cp)
results in

RCp + LOp®
RCp + LCOp*+ 1

This equation is interpreted as stating
(£Cp + LCP* + 1pau(®) = (RCp + LCp?*)u(t) (3-48b)

which again is identical with Eq. (3-47b).
In summary, we conclude that the operational voltage-current relation-
ships for inductance and capacitance, v = pLi and ¢ = pC, respectively,

vaa(t) = »(f) (3-48a)
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allow the manipulation of integrodifferential relationships in algebraic form.
1t 1s important to remember that the manipulations of integrodifferential rela-
tionships in algebraic form resull in o (differential) equilibrium equation which
must be solved to oblain the response in terms of the source. In confrast, the
analogous manipulations for the resistive network [as in the derivation of
Eq. (3-430)] result in the numerical relationship between response and
source. :

3-11 Introduction to operational network function

In Eq. (3-43a) the response u,s of the resistive network of Fig, 3-20a is
related to the source » by the formula

py = L ERE

“ " Ri+E+ER _
s0 that response v.q is related to the source by the fraction (B, + B)/(E: +
R + R,). In Eq. (3-48a) the analogous fraction (LCp? + RCp)/(LCp* +
RCp 4 1) relates the response v, of the R-L-C circuit of Fig. 3-20b to
the source v(t). As deseribed above, this fraction is a differential operator
since Eq. (3-47) must always be interpreted as the differential equation
(3-47b) [or its integrodifferential version (3-47a)]. The fraction (LCp® +
RCp)/(LCp* + RCp + 1) may be considered a function of the (operator) p.
When such a function of the operator p relales a response funclion in a nelwork
to o source function, the function of p ts termed operational network funciion.
Denoting, in general, an operational network function by H(p), we can
write formally

Response function = [H(p)] source function

In the example of Fig. 3-20b the operational network function H {») which
relates the response v.4 to the source »(f) is given by

_ LCp*+ RCp
H{p) = 1002 £ ROp + 1

We can regard the resistive network as a special case where H is independent
of p and is an algebraic, rather than a differential, operator.

vaa = [H(p)]

Example 3-8 1In the circuit of Fig. 3-21, find the network funetions which relate
%4, Yony a0d ¥4 to the source current 1.

l'2 ':31 £y 80
l',, 1:11 2% == 2f Ih

n n

Fig.3-21 Ladder network analyzed in Example 3-8,
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Solution As in resistive ladder networks, we begin with the relationship between 4,

and vy,:
(8 + 3]7)?:1 = Usn i'l = ! Upn (3'49)
8 + 3p
2.3 = 2?”5»
Henge, gince 72 = 43 + 4y,
, 1
2z = | 2; —
2 ( » + 3+ 3?)) Yon
_Sp*+16p +1 ’
— 8 + 3 hn
Further, g
var = (2p + 4}z
_ (2p +4)(6p° + 16p + 1)
84+3p _
_ 12p® + 56p% + 66p + 4
813 Vin (3-50)
Since
Van = Yo + Upn
we have Vop = 1207 -+ 86p" + 66p + 4 +1])9
3 8 +3p bn
- 12p® 4 Bép? 4 69p 4 12
8+ 3p v
Finally,
. Pan  12p% + 56p? - 69p 4+ 12
9 =— = Vin
2 16 + 6p
80 that G =42 -+ 41
_ (6p= +16p +1 12p® + 56p® -+ 69p + 12
8 +3p 16 + 6p o
. 12p% - 68p* +'101p - 14
16 - 6p o
or v = 16 + 6p

14 + 101p + 68p2 + 1258 ™
From Eq. (3-49),

) . |
T 14 + 101p + 68pF + 12p°

and from Eq. (3-50),
8 + 132p + 112p* 4 24p? _
14 + 101p + 68p® + 12p%

80 that the required network functions are H;, H,, and H,, where

Yoy =

2

14 - 101p + 68p* + 12p3

8 + 132p + 112p° - 24p3

14 + 101p + 68p® + 12p
16 - 6p

14 + 101p + 68p? + 12p?

14 = [Hi(p))s Hi(p) =

?ﬂb = [Hu(p)]is HG(P) =

and e = [Hy(p)lie Hyp) =
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- We recall again that the above results correspond to the differential equations

i, &, die e
i2 dta + 68 dts + 101 ‘E + 14’&4 = 2%
A% % dvay . iy d?, dti,
—= w = Bi + 132+ 112 —2 24—
12 it + 68 an + 101 at + 14va 8, + 13 7 + 112 s 424 e
davbn dzybn ] d”bn . . d'f:a
12 e + 68 i +.101 & -+ 149, = 164, + 6 i

3-12 Driving point and transfer functions: immittance and gain

The operational voltage-current relations at the terminals of a terminal-
pair network are often of special interest. A network function which relates
5 voliage source to a current response, or vice-versa, is termed operational
immitlence.! When the voltage and current in question are those at the
terminals of a terminal-pair nétwork, the term operational driving-point
immittance is used. When the source and response are nof associated with
the same pair of terminals, the network function is termed a transfer function.
Thus, in Fig. 3-22a, the network function which relates the source at m-b to

Passive
elements

_ Fig. 3-22 {(a) The network functions that relate
Y OF i1 10 vy is a transfer function. (b) Driving-
point immittance relates v and i,

the response at -b is a transfer function. This is in contrast to the situation
described by Fig. 3-22b, where the source and response are associated with
the same terminal pair a-b, and the combination of passive, initially unener-
gized elements which form the terminal pair a-b can be described by a
driving-point immittanee. If, in Fig. 3-22b, the source is a current source,
the response v is written, symbolically,

v = [Z(p}le (8-61)
where Z(p) is termed operational driving-point impedance. When 9(t) is the
source, the response is ¢(t), and one writes

W =¥YEk  YE = z—(% (3-51a)

where Y(p) 4s termed operational driving-point admitiance.

1 Immittance is a synthetic word meaning either impedance or admittance.
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Tor the three basic elements R, L, and €, we have

v = Ri v=pLi = ia
Hence pC
For a resistance: Z==R VYV =@ = J
. B . ]
For an inductance: = _ 1 .
nee Z plL Y = oL (3-52)

For a capacitance: Z = _ = p0

P ce G Y = pC

Since Fq. (3-51) is analogous to v = Ri and Eq. (3-51a) is analogous to

Fig. 3-23 (a) Volitage division for operational im-
pedances. (b) Current division for operational
admittances,

1= G’u,. we conclude that operational impedances in series add and admit-
tances in pgr?.llel add. Bimilarly, we can derive the operational voltage and
current-division formulas by analogy: In the series circuit of Fig. 3-23a,

Z1(p)
" " 70 + Za 'Y 3-53
and in Fig, 3-23b, Z,(p) + Z:(p) (3-53)
. Yl )
#21(t) = _—(?)_"_ (3_54)

AOEDEON

GAIN.FUNCTIONS A transfer function may be an impedance or admittance
function. For example, in Tig. 3-22¢, the network function which relates
the response 71(t) to the source v(f) is a transfer admittance. If a transfer
fupqtlon relates a voltage (current) response to a voltage (current) source
it is referred to as a voltage (current) gain function. The reader may easib;
show that, in Fig. 3-24, 7,() = }i(f). In this expression the network func-

74
VMV
i R 108 260 60 ]i,-%i _ o
Fig. 3-24 Current gain in a resistive
network. o .
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tion } relates the current response 4:(¢) to the gource 7(¢) and is therefore a
current gain! function. Similarly, in Eq. (3-53), the transfer function
Z:1(p)/[Z:1{p) + Z:(p}] is a voltage gain funetion relating the voltage response
() to the voltage source v(?).

We note that, in general, the reciprocal of a driving-point immittance ig
also a driving-point immittance, but the reciprocal of a transfer f unction has
no significance as a network function.

Example 3-9  In the circuit of Fig. 3-25 derive the network funetion relating v to v by
operational voltage division.

Fig. 3-25 Circuit for Example 3-9.

Solution From voltage division
_ an(?) v
Zan(?)
we formulate Zs, and Zan.  The admittance Yy, is given by

1 1 4 »CR,
Yilp) = 5+ 9C = ==

151

Since the driving-point impedance Zn i« the reciprocal of the driving-point admit-
tance Y., we have ‘ .

Re
Zwlp) = 1 pRcC
Since
Zos(p) = B -+ pL
E¢
Zan(p) = Za(p) + Zonlp) = Br + 2L +7 T pEaC ..
_ p*RcLC + p(RLReC + L)+ Rt + Re
N 1+ pReC
Hence
Bo = Hip)

v = - v
P ReLC + p(RrRoC + L} -+ Bi + Re

which is the desired result. Note that in the abeve expression H(p) is a transfer
(voltage-gain) function, and in contrast with the relationship Zin =1/ Y5 used
above, the reciprocal of transfer function H(p) is not a transfer function of the

network.

1 Loss function would be a more appropriate term in this case. In general, however,
gain functions are differential operators, and not numbers, and distinction between gain

and loss is not relevant.
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3«13 Introduction to the solution of equilibrium equations

The. foregoing discussior} and examples illusfrate procedures for the for-
%u]a‘;m]!]l of ne:]‘:vork functions or the corresponding equilibrium eq'ua,tions
e shall now discuss some of the general properties of su i .
ot ‘ properties o suqh functions and

ForM oF EQUILIBRIUM BQUATION  The equilibrium equation which relates
8 response function to source functions in a linear network shows how a
certain lme.ar combination of response function with its derivatives is related
to another linear combination of the source Junction(s) with its (their) dertvatives
Thus, for example, in the circuit of Fig. 3-20b, from HEq. (3-47b), we have;
that the linear combination of the response »,; with its deriva.tive,s,

(J_Cjt:o2 + Bp —é) Vg

is equal to
(Lp* + Rp

vErhlch isseen to be a .Iir‘1ea,r combination of the source function and its deriva-

tn.fes. In Chap. 1% it is shown that this general form always arises ; without

going through details of the proof, we may anticipate this result from the fact

that ?J]l voltz.zges and c1.1rrents in the network are linearly related by algebraic

or differential operations, The reader can verify the form for all the

preced.mg examples. Before proceeding, however, we present an example
involving more than one source funection.

Example 3-10  In the cirouit of Fig. 3-26 establish th ilibri i
e e equilibrium equation relati
response v(l} to the source functions (f), v.{), and u(t). Auation relating the

~ 4 e
+ 131 i +
""_C) ' "21§%9 T2t 5|10 1i= v
h n

Fig. 3-26 Circuit with three source functions
used in Example 3-10.

Solution  Bince 75 = v3/1 and {5 = pvs, we héwe, from: the current law,

= (1 4 piu,
and

= + (L4 2} + p)os
~ty + (9> + §p + oy

) 't
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But

Yn = tyg + V2
= —u + Gp* + 3o + 2

" and .
1:2 = 20,’,; ’ia = 2‘.191?(” ig + 1:3 = (2 + 219)1)],1

and also

| —i iy 4y ki

—i 4 @ 42— + Gp? + 20 A+ 2l + 1+ pios
—i — (2 - 2p)w + (p* + 4p* + 8p + Sve

ey = (1 4 2p) ’ :
o = (—(—{_ +p;’;;)i — (4p* + 6p + 20 + (2p* + 9p°® + 20p® 1 18p + S0,

i

Inn

so that

Uy -+ Vsn
—f(l +12p)i — (dp* + 6p + 3w + @p* + 9p® + A0 4 &P + D

I

Ymn

Since vms = ¢4, we have, finally,
(2pt + 9p® + 02 + Pp + T2 = va + (1 + 2p)i + (4p* + 6p + e, {3-55)

We observe that the left side of Eq. (3-55) is a linear combination of % wit.h'?ts
derivatives and the right side is a linear combination of the source functions with

their derivatives.

TorM OF NETWORK FUNCTION A network function which relates a selelcted
network response variable (such as v, of the foregoipg example) to‘ a single
source function (such as v, in the example) can be written as fhe ratio of two
polynomials in p. Thus, in general,

H{p) = % ' (3-56)

where both N(p) and D(p) are polynomials in p, that is,
Np)=bot+bp+ - 4 bapm

D(p) = as+ ap + ' + axp®, so that -
bap 4 - - +bhip+be
H(p)=aupn+... Fap + a0

The above observation follows directly from t.he nature of thg equilibrium
equation. Denoting a response by »() and a source by (D), -

D{p)y(t) = linear combination of response function y wi.th its_deri:va,tives
N(p)z(f) = linear combination of source function = with its derivatives
Since

D(p)y(t) = N()a()

v = 5 a0
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as stated above,

Foreing vunerion  In the equation

D@ = [N@)]x()

the terms [N(p)la(f) describe how the source function z influences the
response y, Thus if, as in Eq. (3-55), we assume v, = 0, ¢ = 0,2 = v, and
¥ = vy, we have the equation '

@p* + 9p® + 48p* + %Pp + Thoe = (4p2 + 6p + 3)ns

where the terms (4p® + 6p + 3)us describe the relative weights with which
v and its first two derivatives influence »,. This lincar combination of the
source function with its derivatives is termed a Joreing function of the equi-
librium equation. Thus, in general, the sum of ‘terms in an equilibrium
equation which represent linear combination of the source functions with
their derivatives is termed the forcing function of the equilibrium equation,
Denoting the forcing function by f(£), we have, for example, in Eq. (3-55),

2p* + 99° + 49° + 3p + Tos = [0 (3-570)
where, for the response #,(f) of the network of Fig. 3-28, ,
fO® = v -+ (1 + 2p)i + (4p* 4 6p + 3)n, (3-57b)

We note that 4f the source functions are all identically zero, the forcing function
must be zero. In passing, it is pointed out that the converse of the above
is not true. If in Eq. (3-57b) v, = 0 and » = 0 but ¢ # 0, we can still have
f(t) = 0if 4(t) = Ae~?, where A is any constant. If f(z) = 0 when all the
source functions are not zero, a resonance is said to exist {Chap. 10).

Superposition 1If a forcing function J(®) consists of, or can be repre-
sented as, a sum of forcing functions, the response to J(t} can be repre-
sented as the sum of the responses to the components of f. Thatis, if

(@t ap+ - -+ + apMou(t) = fult) + () = £O)
and if (@otap+ - + anp™za(t) = fo(t)
and @ +ap+ - -+ apoalt) = 50
then since P16 | BD*Vs = WPtV | V)

(G.o -+ ap+ -+ aup”)(vza - ?)26) = f(t)

and the response is the sum v, = vy, + g

PARTICULAR AND COMPLEMENTARY SOLUTIONS = The ensuing sections and
chapters deal with the development of efficient techniques for the solution
of equilibrium equations. The remaining discussion in this section is
intended to be a general introduction to this subject.

Since in the equation

(as +.alp + ap?+ A+ aapt)e(t) = f('z)" . (3-58)



analysis of electric circuits 74

one can always interpret f(f) as the sum f(f) + 0, the solution of Eq. (3-58),
if it is to be complete, must include the solution of the homogeneous
equation

(ao +'G113 R anpﬂ)”l(t) =0
Since we associate zero forcing funetion with source-free networks, we term
the solution of the homogeneous equation the source-free component of the
response and often use the subscript f to denote this component. Thus, for

R=100

(b)

Fig. 3-27 ({(a) An R-L circuit with o seurce.
(b) Source-free circuit for (a).

example, the equilibrium equation for the current of Fig. 3-27a is
2%+ 100 = 70 (3-59)
In this equation #(¢) has as a component the solution 4; = Ke®, where
diy .
2 “&'t— + 10’&; =0

which is the solution to the source-free cireuit of Fig. 3-27b. We note fur-
ther that Eq. (3-59) has a solution 4, = 7, which is the current in the cireuit
of Fig. 3-27¢ when the time variations of ¢; = Ke~® have died out as ¢
approaches infinity. Furthermore, the linear combination

i=7+ Ke™ B

satisfies BEq. (3-59). In the theory of differential equations, the solution
i = T is referred to as a particular solution of Eq. (3-59). In circuit anal-
ysis, this term is referred to as response due to the source, We note that
i =7 + lde™™ is also a particular solution, whereas ¢ = 7 + Ke™ with K
an unspecified (arbitrary) constant represents the tolality of solutions. Gen-
eralization of the concepts illustrated in the above example leads to the
following mathematical definitions: '

Particular solution: Any solution of the inhomogeneous equation.
Complementary solution: The general solution of the homogeneous

equation.
General solution, or “‘totality of solutions”: A linear combination of the

particular and complementary solutions.
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In network theory there are two particular solutions of special interest, the
component of the response due to the source and the complete response. ,

’l_‘he ({omponent of the response due to the source is that particular solution
Whl(.hh, independently of initial condsitions, vanishes when the forcing function
vanishes. Thus, in the equation

di .
2&;""‘ 10z = 70

1{2‘}}13 S(])—;lultlio? t = 7 = 4, is the component of the response due to the source
e shall often distinguish this part of the response by the subscri .
in ¢, or [Z()]. or [#(H)]s. Y ot 5 23

'COMPL.ETE RESPONSE OF A NETWORK ~ We recall that, in the absence of an
1mp1__1151ve voltage source in series with an inductance, the current through
the inductance must be a continuous function of time. Therefore for the
example of Fig. 3-27, the value of K in the solution i) =7+ Ke,—“ must
be evaluated so that the current (in the inductance) is continuous. Thus, if
we are given 7(07) = I, it follows that ' ’

§0%) = §(0°) = To =7+ Ke® =7 + K
and ) =7+ Ty — T)e™

The above expression for #(f) has the following properties:

1 It sat?sﬁes the equilibrium equation of the circuit given in Eq. (3-59).
2 It satisfies the specified initial condition 2(0F) = I,

A. soh.ition of an equilibrium equation which satisfies the above two condi-
t1ons is referred to as'a complete response.

3-14 Response due to constant sources

In 1:.he example of the circuit of Fig, 3-27a we noted that the equilibrium
equation for 4(f) is

. di
102 4+ 2 pria 70 {3-59)
and the complete response for 4(0) = I, is
W) =do+ i =7+ (Tp—T)e™ (3-60)

In the above solutior.l the term 4, = 7 is obtained by reasoning that since
the source (70 volts) is constant, the response due to the source, 4,, will also
be constant, and dé./dt = 0. Substituting zero for the term di/dt in Eq.

(3".586“)’ we have 104, = 70. We now observe that Eq. (3-59) may be
written :

?(t) = ——-—-’570 (3-61)
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Substitution of di/dt = 0 (for constant source) in Eq. (3-69) is equivalent
to setting p equal to zero in Eq. (3-61). This resultsin~

. 1

1y = “10““‘“_'_1_ zp pn(}?o =7

We now generalize the result of this example by stating that, if the source
+ = X,in a network is constant (time-invariant) and a response y(f) is given

by
y(8) = [H(p)=(®) = [H(p)]Xo

then the component of the response due to the constant source is given as
P | '
yn—'Ya—H(O)XU_ lfm?fg

As an example for the cireuit of Fig. 3-26, the responge v:(f) due to sources s, v, and 7 is
given by Kq. (3-55). Using network-function symbolism, this equation may he rewritten

v2{t) = Halpva + Holp)vs + Hi(p)i - (3-62)
Designating D{p) by
Dip) = 2p% + 9p® + 20.5p? + 10.5p + 7 (3-63)
from Eq. (3-55) we have
1 dp* +6p + 3 1+2p,
) =—=va v+ 3-64
O =pm T dw " T D @64

If the sources s, v, and 4 are constant, say, 9. = Ve = 70 volts, o, = Vs = 14 volts,
i = I = 21 amp, then, in accordance with the above discussion the component of responge

due to these constant sources is
ve, = Ha{0a + Hy(0)ey + H (0}
Replacing p with zero in expressions for If o(p), Hy(p), and H(p), we have
e = L1 X 70 + & X 14 4 4 X 21 = 19 volts

The foregoing procedure for caleulation of response due to constant
sources, illustrated by this example, is based on the theory of differential
equations where it is known that a particular golution of an inhomogeneous
linear differential equation with constant coefficients can generally be con-

structed as a linear combination of the forcing function with all its derivatives.
When the forcing function f(2) is constant, Fy, the equation

(0™ + Gogp™t 4+ -+ a1p + aohp(l) = Fo
is seen to have as solution the constant
o(t) =V = -

provided that ae ## 0. This statement is verified by direct substitution.
In a network with a constant source v;() = V3, if the forcing function is

given as N(p)vi(t), we have

f& = Go+bp+ -+ + bap™va(t)
= boV] = Fn
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and the response due to the source » (denoted by the subseript ¢) is given by

Vg = Vy = ﬁ' vV,
. a[]
As mentioned above, if in
H(p) _ bO + blp + N _|_ bmpm
o+ ap 4+ -+ anpt

we geb p ='O, H(0) = by/ay, and
b ‘
Vs = 53 Vi=HOV: a0

As mer_ltioned before, replacement of p with zero, when the source is con-
stant, is due to the fact that all derivatives of constants are zero. In the
above discussion it is assumed that ap 5¢ 0. When a0 = 0 and ¢, £ 0, one
may define pv = y and solve for the constant dv/dt = Fo/ay. ,

3-15 'Response due to exponential sources: the special role of expo-
nential functions in linear analysis o

rl.‘he Eaxp(.)nential function is unique in that it is the only function whose
derivative is proportional to itself. Thus, if
v f) = Ke
‘ pf(t) = sKe* = sf(t) . (3-65)
Equatw@ (3-65), pfl = sf, should not be read as p = s. Rather, i states that,
t.uhen . fis e‘a:ponentzal, the operation of differentiation with respect to time is
identical with multiplication by s. :

. Below we show that,! if the source in a network is exponential and of th
orm ' '

z(f) = X,e%t . {3-66)
wher(? the subseript g refers to “generator” and both ¥, and s, are constants,
then if the response y(¢) is related to this source by H(p),

y(t) = H(p)z(t) = H(p) X e%*
it follows™that the response due to the source is
¥:{f) = H(s,) X et T
. ()Xo s 0
or example, if in the circuit of Fig. 3-26 the s ) = Wt = - =
{a constant source), and () = 0, then from souee wll) = Voot = 20678 ) = 70
n() = Ha(p)va + Hylp)oy + H(p)i
and the corresponding expressions for H,, Iy, and H given in Eq. (3-64), we hé,ve
Ug(t), = Ha(O)v.] + Hz,(sg)f)b + 0
- 1
2pé + 0p* + 20.5p* + 19.5p + 7 lp=0 7
n 4p% 4 69p + 3
. 4
2p* - 9p® + 20.8p% + 19.5p + 7 lp=2,= -2
=4 X770+ T X 20e7% = 10 + 142

! With cerfain exceptional cases discussed in Chap. 8.

X 20e%
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In this result we note that such a constant source ¥, = 70 may be considered to be
exponential with s, = 0; that is,
70 = 700

The case of response due fo @ conslant source 18 o special cuse of the response due to expo-
nential sources.

To show that the procedure used above is general, we noi';e tbat, when a
source v;({) has the form »,(f) = V%!, the forcing function is given by

F& = NP1 = (o + bip + bap® + - - - + bap™)0()
But since pv; = 8,01, for exponential vy,

f(t) = (bo + blsg + b2sg’2 + D + bmsgm)vlesﬂt
= N(sg)Vle’a‘ ) .
so that f) = Frent Iy = N{s}V3

Thus, for example, if (2p? + 8p + 58)v, = (4p + T)e*, then
fO =4 X (—4) 4+ T = —%% ¥

If

D{p)oy = (@0 + ap + aap® + - - - + aap™Ivg = Fret  (3-67)
. Tuti
is to have a solution R 5659
then D(pyvy = (a0 + aap + -+ + - aap™) Vaetet = F et
but PP Voett = g bV ge%
so that (3-68) is a solution of (3-67) if

D(s) Vet = (ag + @18y + a15,2 + + - © 4 ausy™) Vet = F et
or if D(s,)Vs = Iy
which is possible wherever D(s,} # 0 by letting
F,
= = #= ()
V=g PO

We now recall from the relations above that if v, = Vg%,
F] = N(Sg) Vl
N(s,) '
80 that Vz = %&:) V] = IZI(S‘;)V1

Thus, in general, if
55(0) = H(p)u:(d)

and when v,(f) is the exponential source funetion,
n(l) = Vet

and if 1/{H(s,)] #¢ 0, then! the response due to the source will be propor-
tional to the source, and the proportionality constant will be the network

! This is the exceptional case mentioned above.
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function with the operator p replaced by the number s,:
va = H(s)Vied  D(s) 0
[The special case D(s,) = 0 is treated in Chap. 8.]
Thus, for example, if

(2p® + 8p + 58)p, = {dp + Ty~
_ ip + 7
T 2p* +8p 4 58°

Yoy —d4t

and the response component due to the source is

_ () (—4) +7 o
f)a‘a—ZXlﬁ -I—S(-—4) +58l | J— ‘B_BB_B 4

PROBLEMS

3-1 A 10-chm resistance is conneeted in series with g 2-henry inductance., Current
in this combination is given by ¢ (&} = 2t. Calculate (a) the magnitude of voltage
across the combination at ¢ = 0 and at ¢ = 1; {b) the energy transferred to the
geries combination in the time interval = 0 to ¢ —= 1.

3-2 In the series R-L-C cireuit shown in Fig. 3-7, let ® = 2 ohms, I. = 2 henrys, and
C = } farad, Caleulate and sketch van(t) if () () = 2ut); (B} i() = 2tu(t);
{€) i) = e~#u(f). The capacitance is initially uncharged.

3-3 In the parallel R-I-C cireuit shown in Fig, 3-8,let R = 1 ohm, L = 1 henry, and
€ =1 farad. Calculate and sketch €0t} if (@) v(t) = u(ty; @) »(® = 3tu(t); ()
1) = (2 + 3u®); (d) e %u{f). The inductance carries zero current at ¢ = 0.

34 (e) In the circuit of Fig, P3-4, apply Kirchhoff’s current law at junction b, using
v ag the variable, and obtain the differontial equation that relates v to »,, Héni:
Note that iw = (2. — v)/12. (b) Sketeh the waveform of v, if v is given by (1)
v =u{®); (2) v = tult); ) v = (1 + Oult); (4) e~213; (5) My (1),

a - b

K 49

1 =+
|
i
L
—

n Fig. P3-4

3-5  In the cireuit of Fig. P3-5: (a) Express 4z in terma of 41.  (b) Express ¢ in terms
of 41. (¢) Express vy in terms of 2. {d) Find the integrodifferential equation
that relates i, to v. (¢) Find the waveform of v if nu(t) = 2tu).

e 20 1h

v 2t==liy, 1=}

n Fig. P3-5
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3-6 (a) In the cirouit of Fig, P3-6, apply Kirchhoff's voltage law on loop a-b-n-o a.nfi
obtain the differential equation that relates ¢ to 4, Hint: Express tllle. cl_l%'rer}t in
the 4-ohm resistance in terms of 7 and 4,. (b} Find the waveform of 4, if ¢ is given
by ()4 = (2 + Bu@®); 2) 1 = e™%; 3) ¢ = e *ult); (@) (¥ — Du@).

a b
3h ‘
is se 203

n Fig. P3-6

ireui i K irechhoff’s current law at junction
8-7 {(a) In the circuit of Fig. P3-7 show by use of ISn'c
@ that ¢ = 49, + 8vs — Tow. (b} Show that ¢ = 20, + 2dv/dl.  (¢) Use the
results of parts ¢ and b to find the differential equation that relates va to the
gources v and va.

A

t

=

Fig. P3-7

3.8 In Fig. P3-6 replace the 4-ohm resistance by a 4-henry inductance and show that
7di/dt + 2 = 4di/di. R o o . 5
ireul i = = hms, B3 = ohms, By = B =
3.9 , In the cireuit of Fig. P3-9, let By = Ky '5 o R
e 10 ohms, and replace R, ané R, with open circuit (Re,y — ). Caleulate (z) the
ratio #/4,; (b) the ratio van/%; (¢) the ratio Von/Tsr

Fig. P3-9

3.10 In the circuit of Fig. P3-0 it is known that it} = I =2 when 4, = I, = 15.
Find (2} if 4, is given by (a) 4. = 3t; (b) 4 = 10 cos &i. - ,1
‘eireui i i istance of the seven ele-
3-I11 In the'circuit of Fig. P3-9 prove that thoe equivalent resistance of
ments at the source terminals is less than R, and greater than Iq1Ra/(Ry -+ Ra).
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3-12 In the capacitive ladder network shown in Fig. P3-12: (a) Calculate v/v,.
{b) Obtain the relationship between ¢ and v,, o

15¢ p  Ll2f
i It
Ll ! ¥

=
+ [

”o() 0.2f == D4f== U

n Fig, P3-12

3-13 In the inductive ladder eircuit shown in Fig. P3-13, caloulate {a) v2/ve; (b) van/vo;
(c) the relationship between #, and 1.

1
A LT
— + ‘
+ H
Uy 2h 2h 1hE vy
n n ’ - Fig. P3-13

3% In the resistive ladder circuit shown in Fig, P3-14, obtain s formula relating the
7 sources vy, vp, and <¢ 0 va.

29 aQ Ys

AN g A + O-—— 7

Fig, P3-14

3-15 (a) Prove the relationships indicated in Fig. 3-11, (&) Prove the voltage-
division formula for series resistance and for series capacitance indicated in Figs.
3-13 and 3-14, respectively. (¢) Prove the current-divigion formulas for parallel
resistances and capacitances indicated in Figs. 3-16 and 3-17, respectively,

3-16 Calculate the equivalent inductance L,, of Tig. P3-16 if I = 4 henry, Ly =
henry, and L. i variable. Calculate also the largest and smallest value L can
have as L is varied. '

Fig. P3-16
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3-17 1In the circuit of Fig. P3-16, let I, = 0 and set #1(0) = 2(0) = 0. The source
waveform is the sawtooth pulse #(t) = u(Du(l — ). Tt is specified that neither
21 nor 4 may exceed 8 amp, Calculate the largest allowable value of T and the
maximum allowable value of 4if [,, = 4L; = L henry.

3-18 The equivalent resistance of two resistances in series is 10 ohms. * When the two :
resistances are placed in parallel, the equivalent resistance is 2.4 ohms. Calculate Ci=1uf

the values of the resistances. . 500 v

3=24 In the cireuit shown in Fig. P3-24, the voltage vaiue indicated below each capaci-

tance value specifies the highest 'missi
permissible voltage across th i
Calculate the maximum permissible value of Yap. ¢ ® oapacitenee.

3-19 The equivalent capacitance of two capacitances in series is 10 uf. When the same i
capacitances are connected in parallel, the equivalent capacitance is 50 uf.  Calou- == %0:" E#f
late the values of the individual eapacitances.
3-20 In the two circuits shown in Fig. P3-20 the same current I, flows for the same | . Fig. P3-24

-~ voltage Vo It is also known that the ratio I,/7, is the same in both cireuits.
Calculate B, and .

3-25 In the cireuit of Fig. P3-25, caloulate V.. o

59

'+__
I
8-
i
o
)

_-'- =31 | ==11
. Fig. P3-25

3-26 In the circuit of Fig, P3-26, calculate I'if () R = 3 chms; (bj It = 1.5 chma.

Fig. P3-20

3-21 , In the circuit shown in Fig. P3-21, vay = 50 mv when 9., = 150 volts. Caloulate L o ﬂ e I te
-~ R (voltmeter “multiplier’). . - ST Ty —
e { sg .
R 1000 Fig. P3-26

a d b Fig. P3-21

3-22  In the circuit shown in Fig., P3-22, I, = 100 pa when I = 5 amp. Csleulate E

~" (ammeter “shunt’”).
10082
—]>- —>=I
o—= .
o
R Fig. P3-22
Fig, P3-27

3-23. (@) Two uncharged capacitances C; and ' are connected in series. Tf Oy = 2 pf

7 and €4is adjustable from 0.01 to 0.1 gf, caleulate the maximum and the minimum

values of the capacitance of the series combination. () Caleulate the maximum

and minimum values of the equivalent capacitance if the two capacitances are
placed 1n parallel. :

3-28 In the circuit of Fig. P3-27, let B = 1 ohm and calculate the fati(; v.,;./b.

3-29 In the circuit of Fig._ P3-27, let R = 1 ohm and place a short cireuit (zcro resist-
ANce) betw.een terminals a-b. Caleulate the current iu the short cireuit I, if

R
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3-30 _In the circuit of Fig, P3-30, van/v, = § and wn/ve = 3. Find B, and R,,

%,

50 4
AN
-
t
Rz
+ ,
() 43200 2t
R,
r Fig. P3-30

3-31 In the cireuit of Fig. P3-30, 41,/7 = £ and /v = £, Find By and R,

3-32 If f{t} = (2p* -+ 4p* + 3p + D), find f() for (&) g0 =™ () glt) = teF;
() et + tet; (d) 22 + 44,

3-33 Show that, if f() is a foroing function for a response, then Kf(l) is also a forcing
function if K = const.

3-34 In the circuit of Fig. P3-34, show that (@) 7, = @p 4 2)vs; (D) ven = (Ap® + 6p +
B2y (6) 4o = (4p* + 6p% + 5p + 2)we; (@) w. = (Bp® + 16p® - 16p + Tu;
(e) the driving-point impedanece Z..m(p)is given by Zon(p) = (8p? + 16p2 4 16p
7)/(4p® 4 6p* + Bp + 2).

Fig. P3-34

3-353 In the circuif of Fig, P3-35: {g) Show that the differential equation that relates
the response v; to the source function v, is (p*R3C* 4 519“1'.%’6'z + G?RC + 1‘)111 =
2. - {b) Use the result of part ¢ to deduce the differential equation relating v
to v, if each resistance R is replaced by inductance L.

_—s p *~  Fig. P3-35

i
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3-37 In the cireuit of Fig. P3-37, obtain the equilibrium equations relafing iz and v

to the source funetion 4,.

b Fig. P3-37

3-38 In the cireuit of Fig. 3-25,let ¢ = 1 farad, L = 2 henrys, R = 1 ohm, and Rp =

4 ohm, Obtain the equilibrium equation that relates vap to v,

3-39 In the circuit of Fig, P3-39, obtain the equilibrium equation that relates v, to

7)0(0 < a <1):

R == . R{l-a)

R a b !
R
) aR
C

T Fig. P3-39

3-40

3-41

3-42

3-43

344

3-45

In the circuit of Fig. P3-34 (whose driving-point impedance is as given in Prob.
3-34e), find the forcing functions for the response 24(t) if (2} v.(8) = 1; (b) () =
8(er volt) = 1 4 ¢ + 4% (d) wlt) = e (e) V() = 72,

For the circuit of Fig. P3-37, let B, = LR, = 1 and C; = 4C, = 1 and use the
result to find the foreing funetion for the reaponse vz if the source furiction is given
by (@) 4, = 12; (B) 4. = 12¢; (¢} 4, = He~¥.

In the cirewit of Prob. 3-88, find the foreing function for the response #1(f) for the
cases (¢) v() = 5 -4 5¢; (B) vt} = e (c) 0(f) = e~t12,

Find the component of the response v, due to 2 constant source of valuew, = V, =
10 in the cireunit of (¢} Fig. P3-34; (b) Fig. P3-35; (¢} Fig. P3-39.

Find the component of the response due to the source v = %(d) = 10e~% in the
circuit of (@) Fig., P3-34 with », a8 the reaponse; (b) Fig. P3-35 with v, as the
responge and RC = 2; {c) Prob. 3-38 with v, as the responae.

In & certain circuit the response vy is related to the gource function v, by the
v = (Go 4 2)/(p + B)e. Find the component of the response due to the source
(@) o = 10; (B) v, = Ba~4; {c) v, = 10e=4; (d) 9, = 105744, .
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