
Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 1 / 68

MATLAB
University of Puerto Rico

Domingo Rodŕıguez & Juan Valera

September 9, 2015



Outline
1 Getting Started with MATLAB

The Environment
Basic Operations

2 Introduction to Programming in MATLAB
Variables
Functions
Graphics

3 Linear Algebra with MATLAB
Arrays: Vectors
Arrays: Matrices
Algebra of Linear Transformations

4 Signal Algebra with MATLAB
Discrete Fourier Transform
Signal Filtering

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 2 / 68



MATLAB Technical Language
1 Getting Started with MATLAB

The Environment
Basic Operations

2 Introduction to Programming in MATLAB
Variables
Functions
Graphics

3 Linear Algebra with MATLAB
Arrays: Vectors
Arrays: Matrices
Algebra of Linear Transformations

4 Signal Algebra with MATLAB
Discrete Fourier Transform
Signal Filtering

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 3 / 68



MATLAB - Main Screen User Interface

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 4 / 68



Making Folders

• Use folders to keep your programs organized

• To make a new folder, click the Browse button next to Current
Directory

• Click the Make New Folder button, and change the name of the
folder. Do NOT use spaces in folder names. In the MATLAB
folder, make two new folders: MATLAB

• Highlight the folder you just made and click OK

• The current directory is now the folder you just created

• To see programs outside the current directory, they should be in
the Path. Choose menu option File and select the sub-option
Set Path to add folders to the path

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 5 / 68



MATLAB Basics

• MATLAB can be considered a powerful graphics generator

• MATLAB is a programming language

1 MATLAB is an interpreted language, like Java
2 Commands can be executed line by line or using batch file called

”Scripts”
3 The extension of the ”Scripts” of MATLAB is .m
4 MATLAB has a ”built-in editor” for creating or modifying

”Scripts”

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 6 / 68



How get Help

• MATLAB has a commands called ”help”,”doc”, and ”lookfor”

• To get info on how to use a function:

1 >> help sin

2 Help lists related functions at the bottom and links to the doc

• To get a nicer version of help with examples and easy-to- read
descriptions:

1 >> doc sin

• To search for a function by specifying keywords:

1 >> doc function name

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 7 / 68



Scripts

1 Scrips are:
• collection of commands executed in sequence
• written in the MATLAB editor
• saved as MATLAB files (.m extension)

2 To create an MATLAB file from command-line
• >> edit myScript.m

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 8 / 68



Scripts: Miscellaneous

1 Comment
• Anything following a % is seen as a comment
• The first contiguous comment becomes the script’s help file
• Comment thoroughly to avoid wasting time later

2 All variables created and modified in a script exist in the
workspace even after it has stopped running

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 9 / 68



Scripts: The editor

Example

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 10 / 68



save/clear/load

1 Use save to save variables to a file:
• >> save myFile a b
• saves variables a and b to the file myfile.mat
• myfile.mat file is saved in the current directory
• Default working directory is MATLAB

2 Use clear to remove variables from environment
• >> clear a b
• look at workspace, the variables a and b are gone

3 Use load to load variable bindings into the environment
• >> load myFile
• look at workspace, the variables a and b are back

4 Can do the same for entire environment:
• >> save myenv; clear all; load myenv;

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 11 / 68



MATLAB Technical Language
1 Getting Started with MATLAB

The Environment
Basic Operations

2 Introduction to Programming in MATLAB
Variables
Functions
Graphics

3 Linear Algebra with MATLAB
Arrays: Vectors
Arrays: Matrices
Algebra of Linear Transformations

4 Signal Algebra with MATLAB
Discrete Fourier Transform
Signal Filtering

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 12 / 68



Scalar numbers

1 A variable can be given a value explicitly:
• >> a = 10 (shows up in workspace)

2 Or as a function of explicit values and existing variables:
• >> c = sqrt(a^2 + b^2)

3 To suppress output, end the line with a semicolon
• >> e=exp(1);

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 13 / 68



Scalar Number Operations
Arithmetic operations (+,-,*,/)

Example

>> 7/45

ans =

0.1556

>> (1 - i)*(3 +2*i)

ans =

5.000 - 1.0000i

>> 1/0

ans =

Inf

>> 0/0

ans =

NaN

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 14 / 68



Scalar Number Operations
Exponentiation (ˆ) and Complicated expressions, use parentheses

Example

>> 3^2

ans =

9

>> ((2.11+3.43)*5)^0.2

ans =

1.9431

>> (3+4*j)^2

ans =

-7.0000 + 24.0000i

>> 3(1+0.7)

3(1+0.7)

Error: Unbalanced or unexpected parenthesis or

bracket.
AIPLaboratory

at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 15 / 68



MATLAB Technical Language
1 Getting Started with MATLAB

The Environment
Basic Operations

2 Introduction to Programming in MATLAB
Variables
Functions
Graphics

3 Linear Algebra with MATLAB
Arrays: Vectors
Arrays: Matrices
Algebra of Linear Transformations

4 Signal Algebra with MATLAB
Discrete Fourier Transform
Signal Filtering

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 16 / 68



Variables and Data Types

1 MATLAB is a weakly typed language
• No need to initialize variables!
• No need explicit declaration of variables!

2 MATLAB supports various types, the most often used are:
• >> 3.14159265 (64-bits double)
• >> ’a’ (16-bits char)

3 Most variables you will deal with will be vectors or matrices of
doubles or chars

4 Other types are also supported: complex, symbolic, 16-bit and 8
bit integers, etc. You will be exposed to all these types through
the homework

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 17 / 68



Creating Variables

1 To create a variable, simply assign a value to a name:
• >> varPI=3.1415927
• >> myIdentityMatrix = [1 0 0;0 1 0;0 0 1]

2 Variables names
• first character must be a LETTER
• after that, any combination of letters, numbers and
• CASE SENSITIVE! (var1 is different from Var1)

3 MATLAB has Built-in variables. Dont use these names!
• i and j can be used to indicate complex numbers
• pi has the value 3.1415926...
• ans stores the last unassigned value (like on a calculator)
• Inf and -Inf are positive and negative infinity
• NaN represents ”Not a Number”

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 18 / 68



MATLAB Technical Language
1 Getting Started with MATLAB

The Environment
Basic Operations

2 Introduction to Programming in MATLAB
Variables
Functions
Graphics

3 Linear Algebra with MATLAB
Arrays: Vectors
Arrays: Matrices
Algebra of Linear Transformations

4 Signal Algebra with MATLAB
Discrete Fourier Transform
Signal Filtering

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 19 / 68



Built-in Functions

1 MATLAB has an enormous library of built-in functions

2 Call using parentheses passing parameter to function
• >> sqrt(2)
• >> log(2), log10(0.23)
• >> cos(pi), atan(1)
• >> exp(-i*pi/4)
• >> round(1.3), floor(4.5), ceil(4.5))
• >> angle(i), abs(1+i)

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 20 / 68



Element-Wise Functions

1 All the functions that work on scalars also work on vectors
• >> t = [3 4 5];
• >> f = exp(t);

is the same as
• >> f = [exp(t(1)) exp(t(2)) exp(t(3))];

2 If in doubt, check a functions help file to see if it handles vectors
element-wise

3 Operators have two modes of operation:
• element-wise (.* ./ .ˆ)
• standard (* / ˆ)

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 21 / 68



User-defined Functions
1 Functions look exactly like scripts, but for ONE difference

Functions must have a function declaration

(1)

2 No need return: MATLAB ”returns” the variables whose names
match those in the function declaration

3 Variable scope: Any variables created within the function but not
returned disappear after the function stops runningAIPLaboratory

at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 22 / 68



Functions: overloading

1 MATLAB functions are generally overloaded
• Can take a variable number of inputs
• Can return a variable number of outputs

2 What would the following commands return:
>> A=zeros(2,4,8); % n-dimensional matrices are OK

>> [x,y,z]=size(A)

>> [m,n]=size(A)

>> D=size(A)

3 You can overload your own functions by having variable input
and output arguments (see varargin, nargin, varargout,

nargout)

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 23 / 68



Using Built-In Functions

1 MATLAB provides a large number of built-in functions. The
following script uses some of them.
% using built-in functions

t = 0:0.01:1; % time vector

x = cos(2 ∗ pi ∗ t / 0.1);

% cos processes each of the entries in

% vector t to get the corresponding value in x

% plotting the function x

figure(1) % numbers the figure

plot(t, x) % interpolated continuous plot

xlabel(’t (sec)’) % label of x-axis

ylabel(’x(t)’) % label of y-axis

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 24 / 68



MATLAB Technical Language
1 Getting Started with MATLAB

The Environment
Basic Operations

2 Introduction to Programming in MATLAB
Variables
Functions
Graphics

3 Linear Algebra with MATLAB
Arrays: Vectors
Arrays: Matrices
Algebra of Linear Transformations

4 Signal Algebra with MATLAB
Discrete Fourier Transform
Signal Filtering

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 25 / 68



Plot Parameters
1 Keeping the variables in memory
y = sin(2 ∗ pi ∗ t.^2 / .1); % notice the dot in ^

% t was defined before

sound(1000 ∗ y, 10000) % to listen to the sinusoid

figure(2) % numbering of the figure

plot(t(1:100),x(1:100),’k’,t(1:100),y(1:100),’r’)

% plotting x and y on same plot

(2)
AIPLaboratory

at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 26 / 68



Visualization Previous Example

(3)

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 27 / 68



Saving and Loading Data

1 In many situations you would like to either save some data or
load some data. The following is one way to do it. Suppose you
want to build and save a table of sine values for angles between 0
and 360 degrees in intervals of 3 degrees. This can be done as
follows:
>> x = 0:3:360;

>> y = sin(x ∗ pi/180); % argument in radians

>> xy = [x’ y’]; % vector with 2 columns

2 Lets now save these values in a file ”sine.mat”:
>> save sine.mat xy

3 we use the function load to recover the table ”sine”
>> clear

>> load sine

>> whos

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 28 / 68



MATLAB Technical Language
1 Getting Started with MATLAB

The Environment
Basic Operations

2 Introduction to Programming in MATLAB
Variables
Functions
Graphics

3 Linear Algebra with MATLAB
Arrays: Vectors
Arrays: Matrices
Algebra of Linear Transformations

4 Signal Algebra with MATLAB
Discrete Fourier Transform
Signal Filtering

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 29 / 68



Vectors

1 A vector can be ”row vector” or ”column vector”

2 Row vector: comma or space separated values between brackets
• >> row vector1 = [1 5 6 7.12]
• >> row vector2 = [2,5,-4.33,9]

3 In command window:
• >> row vector1 = [1 5 6 7.12]

row vector1 =

1.0000 2.0000 6.0000 7.1200

4 In workspace
• Name Size Bytes Class

row vector1 1x4 32 double array

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 30 / 68



Vectors

1 Now we see ”column vectors”

2 Column vector: semicolon separated values between brackets
• >> column vector1 = [1;5;6;7.12]
• >> column vector2 = [2;5;-4.33;9]

3 In command window:
• >> column vector1 = [1;5;6;7.12]

column vector1 =

1.0000

2.0000

6.0000

7.1200

4 In workspace
• Name Size Bytes Class

column vector1 4x1 32 double array

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 31 / 68



Vector Indexing

1 MATLAB indexing starts with 1, not 0

2 >> a(n) returns the nth element
>> a = [4 7 3 9]

>> a(1) return 4

>> a(2) return 7

>> a(3) return 3

>> a(4) return 9

3 The index argument can be a vector. In this case, each element
is looked up individually, and returned as a vector of the same
size as the index vector.
>> a(2:3) return [7 3]
>> a(1:end-1) return [4 7 3]

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 32 / 68



Examples

1 >> x=linspace(0,4*pi,25);

>> y=sin(x);

2 Plot values against their index:
>> plot(y);

(4)

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 33 / 68



Examples

1 >> x=linspace(0,4*pi,25);

>> y=sin(x);

2 Usually we want to plot y versus x:
>> plot(x,y);

(5)

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 34 / 68



Train Signals
1 MATLAB provides some data files for experimentation and you

only need to load them. The following ’’train.mat’’ is the
recording of a train whistle, sampled at the rate of Fs
samples/sec, which accompanies the sampled signal y(n)
>> clear all

>> load train

>> sound(y, Fs)

>> plot(y)

(6)
AIPLaboratory

at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 35 / 68



Saving a Signal as WAV files

1 >> load train

>> audiowrite(’y.wav’,y,44100) % Save y as y.wav

2 44100 represents the frequency of sampling

3 Other formats are supported:
• FLAC
• MP4
• OGG

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 36 / 68



Loading a Signal from WAV files

1 >> clear

>> [y,FS]=audioread(’y.wav’) % Load y.wav in y

2 FS represents the frequency of sampling

3 Partial loading is supported:
• >> [Y, FS]=audioread(FILENAME, [START END])
• START and END represent the initial and final samples

4 Extensions .flac,.mp3,.mp4,.ogg,.m4a are supported

5 audioread and audiowrite commands leave obsolete wavread

and wavwrite commands

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 37 / 68



MATLAB Technical Language
1 Getting Started with MATLAB

The Environment
Basic Operations

2 Introduction to Programming in MATLAB
Variables
Functions
Graphics

3 Linear Algebra with MATLAB
Arrays: Vectors
Arrays: Matrices
Algebra of Linear Transformations

4 Signal Algebra with MATLAB
Discrete Fourier Transform
Signal Filtering

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 38 / 68



Basics on Matrices
1 Element by element:

• >> a = [1 2 3;4 5 6]

a =

[
1 2 3
4 5 6

]
2 By concatenating vectors or matrices (dimension matters)

• >> a = [1 2]
• >> b = [3 4]
• >> c = [5;6]
• >> d = [a;b]

d =

[
1 2
3 4

]
• >> e = [d c]

e =

[
1 2 5
3 4 6

]
AIPLaboratory

at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 39 / 68



Transpose

1 The transpose operators turns a column vector into a row vector
and vice versa

• >> a = [2 5 7 1-i]
• >> transpose(a)
• >> a’
• >> a.’

2 The ’ gives the Hermitian-transpose, i.e. transposes and
conjugates all complex numbers

3 For vectors of real numbers transpose() and ’ give same result

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 40 / 68



Automatic Initialization

1 Initialize a vector of ones, zeros, or random numbers
• >> A=ones(1,10)

row vector with 10 elements, all 1
• >> B=zeros(23,1)

column vector with 23 elements, all 0
• >> C=rand(10,45)

Matrix 10x45 with 450 elements (uniform [0,1])
• >> D=nan(1,69)

row vector of NaNs (useful for representing uninitialized variables)

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 41 / 68



Automatic Initialization

1 To initialize a linear vector of values use linspace

• >> a=linspace(0,10,5)

starts at 0, ends at 10 (inclusive), 5 values
• >> b=0:2:10

starts at 0, increments by 2, and ends at or before 10
increment can be decimal or negative

• >> c=1:5

if increment isnt specified, default is 1
• To initialize logarithmically spaced values use logspace

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 42 / 68



Matrix Indexing

• Matrices can be indexed in two ways:
• using subscripts (row and column)
• using linear indices (as if matrix is a vector)

• Subscripts:
>> A = [7 3;6 1]

>> A(1,1) return 7
>> A(1,2) return 3
>> A(2,1) return 6
>> A(2,2) return 1

• Linear indices:
>> A(1) return 7
>> A(2) return 6
>> A(3) return 3
>> A(4) return 1

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 43 / 68



Advanced Indexing

1 >> A = [1 2 3 4;5 6 7 8;9 10 11 12;13 14 15 16]

A =


1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16


• >> B = A(1:2,2:3) % return [2 3;6 7]

B =

[
2 3
6 7

]
• >> C = A([1 4 3],[2 4]) % return [2 4;14 16;10 12]

C =

 2 4
14 16
10 12


• >> D = A(2,:) % return [5 6 7 8]

D =
[

5 6 7 8
]

2 >> A(:,1) = [-1;-2;-3;-4] % Replace the column 1

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 44 / 68



Advanced Indexing

1 MATLAB contains functions to help you find desired values
within a vector or matrix

• >> vec = [5 3 1 9 7]

2 To get the minimum value and its index:
• >> [Val,Ind] = min(vec); % Val = 1, Ind = 3

3 To find any the indices of specific values or ranges
• >> ind = find(vec == 9); % ind = 4
• >> ind = find(vec > 2 & vec <= 7); % ind = [1 2 5]

4 To convert between subscripts and indices, use ind2sub, and
sub2ind. Look up help to see how to use them.

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 45 / 68



MATLAB Technical Language
1 Getting Started with MATLAB

The Environment
Basic Operations

2 Introduction to Programming in MATLAB
Variables
Functions
Graphics

3 Linear Algebra with MATLAB
Arrays: Vectors
Arrays: Matrices
Algebra of Linear Transformations

4 Signal Algebra with MATLAB
Discrete Fourier Transform
Signal Filtering

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 46 / 68



Linear Transformation

Let x ∈ RN
, y ∈ RM

Definition: Linear Transformation:

G : RN → RM

x 7→ y = G{x}

Matrix-Vector Operation:

y =


y1

y2
...
y
M

 = G .x =


g1,1x1 g1,2x2 . . . g1,NxN
g2,1x1 g2,2x2 . . . g2,NxN

...
...

. . .
...

gM,1x1 gM,2x2 . . . gM,NxN




x1

x2
...
x
N


AIPLaboratory

at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 47 / 68



Linear Transformation: System of Equations

y1 = g1,1x1 + g1,2x2 + . . .+ g1,NxN
y2 = g2,1x1 + g2,2x2 + . . .+ g2,NxN
...
yM = gM,1x1 + gM,2x2 + . . .+ gM,NxN

MATLAB Code: M = N = 4
>>G=[1 4 3 2;2 1 4 3; 3 2 1 4; 4 3 2 1]

G =

1 4 3 2

2 1 4 3

3 2 1 4

4 3 2 1

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 48 / 68



Linear Transf.: Matrix-Vector Operation

>>G=[1 4 3 2;2 1 4 3; 3 2 1 4; 4 3 2 1]

G =

1 4 3 2

2 1 4 3

3 2 1 4

4 3 2 1

>>x=[1;1;1;1];
>>y=G*x

y =

10

10

10

10

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 49 / 68



Linear Transformation: Matrix Composition

>> G=[1 4 3 2;2 1 4 3;3 2 1 4;4 3 2 1];

>> H=[2 0 0 0;0 2 0 0;0 0 2 0;0 0 0 2];

>> z=H*y;% y = G*x

>> T=H*G;% Matrix Composition

>> w=T*x;%(H*G)*x=H*(G*x)

>> z==w

ans =

1

1

1

1

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 50 / 68



MATLAB Technical Language
1 Getting Started with MATLAB

The Environment
Basic Operations

2 Introduction to Programming in MATLAB
Variables
Functions
Graphics

3 Linear Algebra with MATLAB
Arrays: Vectors
Arrays: Matrices
Algebra of Linear Transformations

4 Signal Algebra with MATLAB
Discrete Fourier Transform
Signal Filtering

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 51 / 68



Finite Discrete Signal Filtering

Discrete Fourier Transform (DFT):

• It is an algorithm for the numeric computation of the Fourier
Transform of a finite discrete signal.

• Let xp ∈ CN
.

Fourier Transform of xp:
x̂p = F{xp},

(x̂p) [k] = x̂p[k] = (F{xp}) [k] =
N−1∑
n=0

xp[n]W
k.n

N
, k ∈ Z

N

W
N

= e
−j 2π

N , j =
√
−1

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 52 / 68



Finite Discrete Signal Filtering
Matrix-Vector DFT Computation

x̂ = F
N
.x ,

F
N

=


1 1 1 . . . 1

1 W
N

W
2

N
. . . W

N−1

N

1 W
2

N
W

4

N
. . . W

2(N−1)

N
...

...
...

. . .
...

1 W
N−1

N
W

2(N−1)

N
. . . W

(N−1)(N−1)

N


X = (x̂)

∨
= F

−1

N
x̂ =

1

N
F
∗

N
.x̂

The symbol ”*” denotes complex conjugation
MATLAB Code:
>> FN=dftmtx(4) % Fourier Matrix of 4th Order

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 53 / 68



Finite Discrete Signal Filtering

Fast Fourier Transform (FFT):

• It is an algorithm for the efficient computation of the DFT.

• MATLAB Code:

> x hat=fft(x) % x̂ = F{x}

> x=ifft(x hat) % x = F−1{x̂}

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 54 / 68



Discrete Signal Filtering
Books on the FFT

(7)

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 55 / 68



MATLAB Technical Language
1 Getting Started with MATLAB

The Environment
Basic Operations

2 Introduction to Programming in MATLAB
Variables
Functions
Graphics

3 Linear Algebra with MATLAB
Arrays: Vectors
Arrays: Matrices
Algebra of Linear Transformations

4 Signal Algebra with MATLAB
Discrete Fourier Transform
Signal Filtering

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 56 / 68



Finite Discrete Signal Filtering

1 It deals with algorithm treatment of finite signals in order to
extract information relevant to a user.

2 The algorithm takes the form of a cyclic convolution operation
between the signal to be processed, and the signal containing the
filtering attributes, the impulse response signal.

3 ”Digital Filters” is the discipline that deals with the analysis,
design, and implementation of impulse response signals.

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 57 / 68



Discrete Signal Filtering
Books on Digital Filters

(8)

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 58 / 68



Finite Discrete Signal Filtering
Cyclic Convolution of two Signals:

• Given:

1 Input Signal xp ∈ C
2 Impulse Response Signal hp ∈ C

• Compute:

1 Output Signal yp ∈ C

2 yp[n] =
N−1∑
k=0

xp[k].hp[〈n − k〉
N

] for n ∈ Z
N

• MATLAB Code:

1 > xp=[1;7;3;-5]; % A column vector xp

2 > hp=[1;1;-1;2]; % A column vector hp

3 > yp=cconv(xp,hp); % Cyclic Convolution

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 59 / 68



Signal Algebra: Binary Operation
Cyclic Convolution: ~

N

~
N

: CN × CN → CN

(xp, hp) 7→ yp = xp ~N
hp,

yp[n] =
N−1∑
k=0

xp[k].hp[〈n − k〉
N

] for n ∈ Z
N

yp[n] =
N−1∑
k=0

hp[k].xp[〈n − k〉
N

] for n ∈ Z
N

yp = xp ~N
hp = hp ~N

xp

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 60 / 68



Signal Algebra: Unary Operation
Signal Filtering Thp
Thp : CN × CN → CN

(xp, yp) 7→ yp = Thp{xp},

For a fixed hp ∈ C
N

we can redefine Thp as follows:

Thp : CN → CN

xp 7→ yp = Thp{xp},

yp[n] =
N−1∑
k=0

xp[k].hp[〈n − k〉
N

] for n ∈ Z
N

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 61 / 68



Signal Algebra: Binary Operation
Hadamard Product: �

N

�
N

: CN × CN → CN

(x̂p, ĥp) 7→ ŷp = x̂p �N
ĥp,

ŷp =
N−1∑
n=0

x̂p[n].ĥp[n]

ŷp = Dĥp
.xp

Dĥp
, diag{ĥp} =


ĥp[0] 0 . . . 0

0 ĥp[1] . . . 0
...

...
. . .

...

0 0 . . . ĥp[N − 1]


AIPLaboratory

at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 62 / 68



Cyclic Convolution Theorems

Let yp = xp ~N
hp ; xp, hp, yp ∈ CN

ŷp = F{yp} ; ŷp ∈ CN

1 Time-Domain Convolution Theorem:

̂xp ~N
hp = x̂p �N

ĥp

2 Frequency-Domain Convolution Theorem:

̂xp �N
hp =

1

N

(
x̂p ~N

ĥp
)

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 63 / 68



Finite Discrete Signal Filtering

Input Signal: xp ∈ CN

Impulse Response Filter Signal: hp ∈ CN

Filtered Output Signal: yp ∈ CN

Matrix-Vector Filtering Operation:

yp = hp ~N
xp = H

N
.xp

H
N

=


hp[0] hp[N − 1] . . . hp[1]
hp[1] hp[0] . . . hp[2]

...
...

. . .
...

hp[N − 1] hp[N − 2] . . . hp[0]


AIPLaboratory

at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 64 / 68



Efficient Signal Filtering

F{yp} = F{hp ~N
xp} = F{hp} �N

F{xp} = ĥp �N
x̂p

yp = F−1{ŷp} = F−1{ĥp �N
x̂p} = F−1{Dĥp

.x̂p}

yp = F−1{Dĥp
. (F{xp})}

yp = F
−1

N
.Dĥp

.F
N
.xp =

1

N

(
F ∗

N
Dĥp

F
N

)
.xp

If F
N

(
F
−1

N

)
is computed in an efficient manner; then, we have an

efficient signal filtering procedure.

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 65 / 68



Physical Filtering vs. Mathematical Filtering

(9)
AIPLaboratory

at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 66 / 68



Spectral Signal Filtering

(10)
AIPLaboratory

at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 67 / 68



Sources

Main Information Source

MIT OpenCourseWare
http://ocw.mit.edu

AIPLaboratory
at R&D Center

Domingo Rodŕıguez & Juan Valera (UPR) AIPLAB September 9, 2015 68 / 68


	Getting Started with MATLAB
	The Environment
	Basic Operations

	Introduction to Programming in MATLAB
	Variables
	Functions
	Graphics

	Linear Algebra with MATLAB
	Arrays: Vectors
	Arrays: Matrices
	Algebra of Linear Transformations

	Signal Algebra with MATLAB
	Discrete Fourier Transform
	Signal Filtering


