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EiEcTRIC CURRENT  An orderly motion of charges as defined by the (time)
rate of flow of positive charges from the terminal o to the terminal b of a
terminal pair a-b is called the current flowing from a to b and is shown by
the symbol 45(). The order of the subscripts ab indicates that the function
ia(t) is the rate of flow of positive charges from a to b inside the terminal
pair ¢-b. The definition of current implies that, in the terminal pair ¢-b,
ta(t) = —ialf). Thus if, at one instant of time ¢ = 4y, 4a(t) 18 a positive
number, then at that instant positive charges are flowing from « to b
through the terminal pair. If, at an instant ¢ = f3, w(f2) is a negative
number, then at that instant positive charges ave flowing in the terminal
pair, from b to a. We emphagize that the current 7, is associated with the
terminals @-b, although we may have no information about what is the
exact motion of charges inside that particular part of the device which is
represented by the terminal pair.

VorTacE FUNCTION  With the assumpiion made in the foregoing paragraph,
it can be shown that the rate of delivery of energy to a terminal pair can always
be given as the product of the current Zu(f) and ancther function of time
associated with the terminals e and b. This function is called the voltage
between the two terminals of the terminal pair and is indicated by v.(f).
The order of the subscripts ab indicates that the function v,(f) is the
voltage of point ¢ with respect to point b. Thus, if pw() is the rate of

delivery of the energy to the terminal pair a-b, we can always find a function

vap() such that pa(l) = v,(07s(). This equation may be considered to be
the defining equation of the voltage function va(f). Since va(t) and i{E)
are both functions of time and at any given instant of time one may have a
positive value and the other a negative value (resulting, at that instant, in a
negative value of pa}, we have to interpret the significance of the positive
and negative values of pe. If, at a given instant of time, p(f) is a positive
value, by this we understand that energy is being delivered to the terminal
pair g-b at the rate given by the magnitude of pe at that instant. On the
other hand, if p.(£) is negative at another instant of time, by this we under-
stand that the terminal pair is delivering energy to the rest of the circuit
at a rate given by the magnitude of p, at that instant. Consider a terminal
pair a-b. By definition, the rate of the delivery of energy to this terminal
pair at time ¢ is

Par(t) = vas(Dia(t)
and also Poall) = Vba()%0a(t)

Since pra(t) and pa(t) refer to the rate of the delivery of energy to the same
terminal pair, it follows that

| puo(®) = Pral)
and vab(t)?f-ub(t) = vba(t){bﬂ(t)
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Since from the definition of current

#a(l) = —as (1)
it follows that )
a(t} = —va(t)

It can be shown that the methods of circuit analysis may be applied to the
study of other systems such as mechanieal systems. In such cases Zan()
may represent the velocity of a (point) mass a with respect to some reference
(point) b, and v.(¢) may represent the force applied to a (point) mass ¢ in a
reference system designated by b.  In this case also, the product of vies will
be power (work done on ¢ per unit time), but the interpretations of the
variables are different.

I1-6 Idealized lumped circuit elements

In the field problem we discuss the energy ‘density at a given point of space
and compute it in terms of the & and 3¢ variables. In circuit theory we
discuss the rate of delivery of energy to a terminal pair or combination of
terminal pairs and compute it in terms of the voltage functions and the cur-
rents associated with the terminal pairs. In field theory energy stored in a
unit volume of the magnetic field is uH2/2, and ¢E?/2 is the energy stored
in the unit volume of the electric field, K*/p being the rate of transformation
of electromagnetic energy into heat per second per unit volume. The fac-
to1s u, €, and p are the parameters of the medium in which the electric and
magnetic fields exist. We should be able to find analogous parameters for
terminal pairs which would correspond to the permeability, permittivity,
and resistivity of the medium in which the fields exist. The Iatter param-
eters are called distributed parameters of the medium since their value may
change continually from one point to another in the medium. In circuit
theory we are not concerned with values which change from point to point,
but deal'with quantities which are defined in connection with two terminals.
When energy is delivered to a terminal pair a-b at the rate Dab = Vaplab,
the total energy delivered to the terminal pair between time ¢, and {; is

W(tyts) = ﬁ :E Yaplas df.  Part of this energy will be stored in the electric field

agsociated with the terminal pair; another part will be stored in its magnetic
field; and the rest of the energy will be transformed into heat. This parti-
tion of energy within a terminal pair is shown symbolically in a diagram
called a circuit diagram. Such a diagram consists of interconnected symbols
called circudt elements.! The number of such elements and the manner in
which they are interconnected are determined by the physical properties
of the device or part of the device which the terminal pair represents. Five
element® are necessary to represent the energy-storage and energy-conver-
sion processes in an electrical device. These basic elements describe the

! Bome authors use the term “parameter’’ instead of “element.”
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following processes:

1 Btorage of energy in magnetic form; such energy storage is accounted
for by the element ‘nductance.

2 Storage of energy in electrical form; accounted for by the element
capacifance.

3 Conversion of electromagnetic energy into heat; accounted for by the
element resistance.

4  Transfer of energy from one part of a device to another part through
a magnetic field. The circuit model for this phenomenon is mutual
tnductance.

5 Conversion of other forms of energy into electromagnetic energy for
delivery to parts of a device, or reception of electromagnetic energy
from parts of a device and its transformation into other forms of
energy. Ideal sources are introduced in cireuit analysis to account for
these processes.

In contrast to the *“distributed” parameters of the field theory, these ele-
ments are called idealized lumped circuit elements. The values attributed
to these elements depend on the geometry of the path of the current between
the terminals of the terminal pair, and are eomputed from the dimensions
and field properties (¢, u, p) of the path. The computation of the values of
circuit elements corresponding to a given path of current is not studied in
circuit analysis. Instead, we define circuit elements in terms of energy-
storage and energy-conversion processes which they represent. It should
be noted that this is not the only possible way of defining eircuit elements.
For example, the voltage-current relationship at the terminals of the ele-
ments can be uged to define such elements. Although the computbation of
the values of circuit elementis is based on field theory, it is possible to deter-
mine, by experiment, the values of the elements of a network representing a
device.

1-7 Inductance

In circuit theory, the characteristic of a part of a device (circuit) which
accounts for the storage of energy in a magnetic field associated with that
part is termed the inducfance of that part. The two-terminal element
represented by the symbol shown in Fig. 1-3, whose value is designated by

a

b Fig, 1-3 Graphical symbol for the element inductance.

the letter L, represents an induetance. Quantitatively, inductance L may
be defined by analogy with the field expression for energy density jpH? as
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follows: In Tig. 1-3, if the current in the induetance is 7,5, the energy stored
in the inductance (in the form of magnetic energy) is related to the eurrent
by the eguation

Wy = —gL’L'abz (1-1)

From this definition one can deduce the voltage-current relationship at the
terminals of the inductance as follows: The rate at which energy is deliv-
ered to a terminal pair a-b is given by the power v (f)7w(f). Therefore

. d f1
Yabtah = Et( L’bab)

Since L is defined as independent both of ¢ and of 7,, the result of the differ-

entiation is ‘
. diay .
ﬂa ab = ETR @
blab (L dt ) %ab

Thus, for an inductance L, connected between terminals a-b, the voltage v
is related to the current 4,5 by the basic equation

Vg = L P (1-—-2)

If, from Eq. (1-2), we express the current 7, as a function of the voltage
¥ap, the result reads

. 1
w = F [ Y df + const . (1-3)

The constant can be made explicit if we recognize that the energy stored
in the inductance at time ¢ has been delivered over the period of time for
which v (f) has existed. The current and energy are related by Eq. (1-1),
and it is seen that the value of the current at any time ¢, like the value of
the stored energy, will depend on the past history of the voltage across the
inductance. This is taken care of by writing the integral expression (1-3)
with the lower limit at minus infinity and allowing the integy al to be a fune-
tion of an upper limit t

iw® = 7 [* vate) dr (1-4)

It frequently happens that interest is focused on the funetion 7, beginning
at some arbitrary instant of time, usually ¢ = 0. In such cases it is con-
venient to write (1-4) in the form

. 1
w®) =7 [P owd+] [fund @)

Since the first of the integrals in (1-5) has numerical limits, it represents a
number. This number is the value of the current at ¢ = 0. Denotmg this
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value by £(0), we have, for an inductance,
; Y o ‘
fal) = 4a(0) + 1 [} vulr) dr (1-5a)

Equation (1-5a) reads, in words,

Current. in inductance) _ feurrent at + current. due to vab)
( forallt >0 - t=20 from ¢ = 0 on

The value 74(0) is usually called the initial value of the cur%'ent ig. The
reciprocal of inductance is called inverse self-inductance and is represented
by the symbol T' = 1/L. ‘ .

From Fq. (1-2) we observe that the voltage—curr_gn't 1'e1at19nsh1p for an
inductance is linear; that is, it is a firsi-degree differential relationship.- We
note that, if 7, is a function of time represented, for examp_le, by the graph
shown in Fig. 1-44, then v, will be a function of time proportional to the slope

L iub(t) ] vab(n

LIyft

(@) (b)

F.'ig. 1-4 (a) Example of a current waveform ium.
(b) Voltage va across an inductance L when the
current i. has the waveform of (a).

of the i graph as shown in Fig. 1-4b. We note also that the algebraic szgn )
of v depends on the sign of the slope of 4, not on z'.,z,. itselff' for gxample, Zab
is positive at f, whereas v, is negative. In connection with Fig. 1-dq, we
observe that, at ¢ = ¢, the slope of the graph 7, changes abruptly, resulting
in an abrupt change in 2. .

Another interesting observation concerning inductance is thg following:
If we specily in addition to I the current and its slope ‘at: some instant, for
example, ¢ = £, we can caleulate the stored energy in the inductance at that
instant as war(fy) = Llin?(l:) and the voltage vqp at £ ag

Vap(te} = L(dias/lt) 1y,

In contrast, if we specify » or dv/df at some instant, we cannot calculate 4w
at that moment beeause [from Kq. (1-4)] Zw(t1) does "not depend only on
2ap(t1), but also on how v, varied up to the time f;.  This dependence of one
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cireuit variable on the “history” of the other is characteristic of energy-
storing devices. iy :

1.8 Capacitance

In circuit theory, the characteristic of a part of a device which accounts
for storage of energy in an electric field associated with that part is termed.
capacitance of that part. Tt is represented by the symbol shown in Fig. 1-5

aj_
C
bT . Fig. 1-5 Graphical symbol for the element capacitance.

aﬁd quantitatively denoted by the letter . By analogy with the expression
for electric field energy density Le£2, the defining equation for energy stored
in a capacitance owing to a voltage v, is given by the expression

N _wE = -%—C’Uabz (1—6)

The rate bf delivery of energy to a capacitance is given by

. _dwE_ d _]_.. y 2
Yablab = "'&“t_ = a‘ﬁ (2 Cyab)

If €' is independent. of ¢ and of v, then

. iy
Yablap = (O' %;t_b) Yap

Thus, for a capacitance connected between terminals a-b,

dvab

- o = Oy

(1-7)

or in integral form,

1 . 1 e,
Vp = 1% fjw e(7) dr = va(0) 4 o /: o (7) dr (1-8)

where 2.3(0) is the value of the voltage across the terminals of the.capaci-
tance at { = 0. This value is called the initial value of the voltage across
the capacitance. The reciprocal of capacitance is termed elastance and is
denoted by S = 1/C.

We observe that the voltage-current equations for capacitance are ansl-
ogous to those of inductance. Comparison of Eq. (1-7) with (1-2) shows
that voltage and current have exchanged roles. Thus, in a capacitance, the
current depends on the instantaneous rate of change (slope) of the voltage,
whereas the voltage depends on the “history” of the current as indicated by
Eq. (1-8).



