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Continuous-Time
Second-Order Systems

The properties of the Laplace transform make it particularly useful in analyz-
ing LTI systems that are represented by linear constant-coefficient differen-
tial equations. Specifically, applying the Laplace transform to a differential
equation converts it to an algebraic equation relating the Laplace transform of
the system output to the product of the Laplace transform of the system input
and the Laplace transform of the system impulse response, referred to as the
system function. The system function is readily obtained by inspection of the
differential equation, and the system impulse response can be obtained by
evaluating the inverse Laplace transform of the system function. Alternative-
ly, the response for any other input can be evaluated by first multiplying the
Laplace transform of the input by the system function and then applying the
inverse Laplace transform.

Two particularly important classes of systems described by linear con-
stant-coefficient differential equations are first-order and second-order sys-
tems. In implementing higher-order systems, it is very common to use first-
and second-order systems as building blocks. Much of this lecture focuses on
using the Laplace transform to describe the behavior of these building blocks.

First-order systems are represented by a single pole in the s-plane, and
second-order systems by a pair of poles. There may or may not also be zeros
in the transfer function, depending on whether there are derivative terms on
the right-hand side of the differential equation. From the differential equation,
the system function can be written directly. If we assume that the systems are
causal, so that the impulse response is right-sided, then the ROC of the system
function is implicitly specified to be to the right of the rightmost pole in the
s-plane.

For second-order systems, the poles may be either on the real axis in the
s-plane or off the real axis as a complex conjugate pair, depending on the spe-
cific relationship between the coefficients. When both poles are real-valued,
the system is often referred to as overdamped, and when they occur as a com-
plex-conjugate pair the system is referred to as underdamped. In the time do-
main, the underdamped case corresponds to an oscillatory impulse response
with an exponential damping. The time constant of the damping is related to

21-1



Signals and Systems
21-2

the real part of the pole locations, and the oscillatory behavior is associated
with the imaginary part. As the poles move closer to the jw-axis the damping
decreases, and as the poles move parallel to the jo-axis the oscillatory behav-
ior changes in frequency.

Many of the properties of the frequency response of a system can be in-
ferred from inspection of the pole-zero pattern of the system function. Since
the Laplace transform reduces to the Fourier transform for s = jo, the behav-
ior of the system function on the jw-axis corresponds to the system frequency
response. By considering the behavior of the associated vectors in the s-
plane, we can infer the behavior of the frequency response for underdamped
second-order systems. In particular, the frequency response tends to have a
peak for the underdamped case, and as the poles move closer to the jo-axis
this peak becomes increasingly sharp. The frequency location of this peak or
resonance is closely associated with the frequency of oscillation of the im-
pulse response, and the width of the peak is closely associated with the damp-
ing of the oscillations.

Since higher-order transfer functions can always be decomposed into a
product or sum of first-order and second-order transfer functions, these are
important building blocks for more general systems. One illustration of this is
the use of second-order systems in speech synthesis. The use of second-order
underdamped systems to simulate the resonances of the vocal tract for gener-
ating synthesized speech is discussed and illustrated in this lecture.

Suggested Reading
Section 9.5, Properties of the Laplace Transform, pages 596603

Section 9.7, Analysis and Characterization of LTI Systems Using the Laplace
Transform, pages 604-611

Section 4.12, First-Order and Second-Order Systems, pages 240-250

Section 9.4, Geometric Evaluation of the Fourier Transform from the Pole-
Zero Plot, pages 590-595
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SECOND-ORDER SYSTEM

@ 2
TRANSPARENCY _ n
21.1 H(s) = - 2
System function for a $€ + 28w,s t w,
second-order system.
wnz
H(s) = m—————
(s-¢cq) (s-c;)
Cq = -fw, + w, M §2—1
— Vel
cy = -§w, - w, V¢ -1
- *
For{<1, ¢4 = ¢,
\ e o /
Im Im
TRANSPARENCY
21.2
Pole-zero pattern _+ 0<t<t £>1
associated with g
an underdamped Rl W,
(left) and with an N A
overdamped (right) ! AN wV1-¢
second-order system. : AN
\
} \ /// 2wn\/§2_——1_
| \, s cos8 ={
Il o/\\ // X 1 X
~fw, Re - “faw, A Re
X




Continuous-Time Second-Order Systems

21-5

TRANSPARENCY
21.3

Determination of the
frequency response of
a second-order system
from the pole-zero

Re pattern.

2
Wn

H(s)=

(5‘01 ) (s- C1*)

AN

TRANSPARENCY
214
Frequency response

H{w)| for an underdamped
w second-order system.




Signals and Systems

21-6
/ SECOND-ORDER SYSTEM
w 2
TRANSPARENCY - n
21.5 H(s) = = T 2 .2
System function for a S § o)nS Wy
second-order system.
[Transparency 21.1
repeated] w 2
n
H(s) =

(s-cq) (s-c;)
c; = -fw, * wn\/§2—1
c, = -§w, - w, V2 -1

For{ <1, ¢ = ¢

- tw, *iw, V1-¢2

.
4

hit)/w
TRANSPARENCY " § =01
21.6 ¢t =0.2
Impulse response for Tr

an underdamped
second-order system.

N




Continuous-Time Second-Order Systems

21-7
MARKERBOARD
21.2 (b)
Second ~If~r) . Cqsg“dt
HEsY= H(HH) -+ H ()
pavallel
Hs)=H,(6) + Hy(s)t -«
DEMONSTRATION
21.1
Vowel synthesizer
demonstrating the use
of second-order
continuous-time filters
in speech synthesis.




Signals and Systems

MARKERBOARD
21.2(c)

SE(O\\& - Order

Sjsﬂw\._
iz dytd
duW® |5 s T+ Wa Yt
dt

%
WOa

H(s) =

S‘ +2 5954 k\"{

O,
i

e
o

]
L)

X(t)

11111

DEMONSTRATION
21.2

The Texas
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