
1.1
Discrete-Time
Fourier Transform

The discrete-time Fourier transform has essentially the same properties as
the continuous-time Fourier transform, and these properties play parallel
roles in continuous time and discrete time. As with the continuous-time Four
ier transform, the discrete-time Fourier transform is a complex-valued func-
tion whether or not the sequence is real-valued. Furthermore, as we stressed
in Lecture 10, the discrete-time Fourier transform is always a periodic func-
tion of fl. If x(n) is real, then the Fourier transform is corjugate symmetric,
which implies that the real part and the magnitude are both even functions
and the imaginary part and phase are both odd functions. Thus for real-valued
signals the Fourier transform need only be specified for positive frequencies
because of the conjugate symmetry. Whether or not a sequence is real, speci-
fication of the Fourier transform over a frequency range of 27r specifies it en-
tirely. For a real-valued sequence, specification over the frequency range
from, for example, 0 to a is sufficient because of conjugate symmetry.

The time-shifting property together with the linearity property plays a
key role in using the Fourier transform to determine the response of systems
characterized by linear constant-coefficient difference equations. As with
continuous time, the convolution property and the modulation property are of
particular significance. As a consequence of the convolution property, which
states that the Fourier transform of the convolution of two sequences is the
product of their Fourier transforms, a linear, time-it variant system is repre-
sented in the frequency domain by its frequency response. This representa-
tion corresponds to the scale factors applied at each frequency to the Fourier
transform of the input. Once again, the convolution property can be thought
of as a direct consequence of the fact that the Fourier transform decomposes
a signal into a linear combination of complex exponentials each of which is an
eigenfunction of a linear, time-invariant system. The frequency response then
corresponds to the eigenvalues. The concept of filtering for discrete-time sig-
nals is a direct consequence of the convolution property.

The modulation property in discrete time is also very similar to that in
continuous time, the principal analytical difference being that in discrete time
the Fourier transform of a product of sequences is the periodic convolution
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rather than the aperiodic convolution of the individual Fourier transforms.
The modulation property for discrete-time signals and systems is also very
useful in the context of communications. While many communications sys-
tems have historically been continuous-time systems, an increasing number
of communications systems rely on discrete-time modulation techniques. Of-
ten in digital transmission systems, for example, it is necessary to convert
from one type of modulation system to another, a process referred to as trans-
modulation, and efficient implementation relies on the modulation property
for discrete-time signals. As we discuss in this lecture, another important ap-
plication of the modulation property is the use of modulation to effect a high-
pass filter with a lowpass filter or vice versa.

This lecture concludes our discussion of the basic mathematics of Four-
ier series and Fourier transforms; we turn our attention in the next several
lectures to the concepts of filtering, modulation, and sampling. We conclude
this lecture with a summary of the basic Fourier representations that we have
developed in the past five lectures, including identifying the various dualities.
The continuous-time Fourier series is the representation of a periodic con-
tinuous function by an aperiodic discrete sequence, specifically the sequence
of Fourier series coefficients. Thus, for continuous-time periodic signals
there is an inherent asymmetry and lack of duality between the two domains.
In contrast, the continuous-time Fourier transform has a strong duality be-
tween the time and frequency domains and in fact the Fourier transform of
the Fourier transform gets us back to the original signal, time-reversed. In
discrete time the situation is the opposite. The Fourier series represents a pe-
riodic time-domain sequence by a periodic sequence of Fourier series coeffi-
cients. On the other hand, the discrete-time Fourier transform is a representa-
tion of a discrete-time aperiodic sequence by a continuous periodic function,
its Fourier transform. Also, as we discuss, a strong duality exists between the
continuous-time Fourier series and the discrete-time Fourier transform.
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DISCRETE-TIME FOURIER TRANSFORM
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PROPERTIES OF THE FOURIER TRANSFORM
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Example illustrating
the periodicity and
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CONVOLUTION PROPERTY
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TRANSPARENCY
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Frequency response of
an ideal lowpass filter
and an ideal highpass
filter.
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MODULATION PROPERTY
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TRANSPARENCY
11.13
The use of modulation
to implement highpass
filtering with a
lowpass filter.
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