
24 Butterworth Filters

Recommended 
Problems 
P24.1 

Do the following for a fifth-order Butterworth filter with cutoff frequency of 1 kHz 
and transfer function B(s). 

(a) 	Write the expression for the magnitude squared of the frequency response. 

(b) 	 Sketch the locations of the poles of B(s)B(-s). 
(c) 	 Indicate the locations of the poles of B(s), assuming that B(s) represents a 

causal and stable filter. 

(d) 	 Indicate the locations of the poles of B(-s). 

P24.2 

Figure P24.2-1 shows the frequency response of a discrete-time filter. 
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Figure P24.2-1 

(a) 	Determine and sketch the analog frequency response characteristic that 
(assuming no aliasing) will map to the discrete-time frequency response given 
in the figure when the impulse invariance method is used. 

(b) 	 Sketch the analog frequency response that will map to the discrete-time fre­
quency response in Figure P24.2-1 when the bilinear transformation is applied. 

(c) 	 Repeat parts (a) and (b) for the discrete-time frequency response characteristic 
in Figure P24.2-2. 
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Figure P24.2-2 
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P24.3 

Consider the system function 

__1 

He(s) + 

(a) 	Determine the discrete-time transfer function Hd(z) obtained by mapping Hc(s) 
to Hd(z) using the bilinear transformation with T = 2. 

(b) 	 Find the range of the constant a for which H(s) is stable and causal. 

(c) 	 Verify that if H(s) is stable and causal, then H(z) is also stable and causal. 

P24.4 

Consider the following discrete-time filter specifications: 

1 Hd(e")| 0.8 for 0 QQ<­
4, 

0.2 |Hd(ej")| :0 for 3 Q 7r
4 

To design Hd(eju) using the impulse invariance method or the bilinear transfor­
mation, we need first to specify a continuous-time filter B(jw). Assume that we will 
use a Butterworth filter. 

(a) 	Set up the proper equations for the order N and the cutoff frequency we of the 
continuous-time filter B(jw) that will map to Hd(e'n) when the impulse invari­
ance method is used. Set T = 1. 

(b) 	 Set up the proper equations for N and w, of B(jo) when the bilinear transfor­
mation is used. Set T = 1. 

P24.5 

Consider the system in Figure P24.5, which implements a continuous-time filter by 
discrete-time processing. 

Xc(t) -- > C/D x ilOH(eln) ----- l D/C ye?(t) 

Figure P24.5 

The sampling frequency is 15 kHz. The continuous-time filter must satisfy the 
following specifications: 

|Hc(jw)|1 for 01 	 1 0.9 o 5 (27r)3000, 
0.1 IHe(jw)| 1 0 for (27)4500 w < oo 

(a) 	Determine the appropriate specifications for H(ej"), the frequency response of 
the discrete-time filter. 

(b) 	Suppose that to design H(ej"), we use the impulse invariance method. We need 
to introduce a second continuous-time filter, G(jw). Using T = 3 for the value 
of the parameter T in the impulse invariance design procedure, determine the 
filter specifications of G(jw). 
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(c) 	 Suppose that we now use the bilinear transformation to design H(ej). Using 
T = 2 for the value of the parameter T in the bilinear transformation method, 
determine the filter specification of G(jw). 

(d) 	 With either the impulse invariance or bilinear design procedure, is H(eju) or 

H,(jw) dependent in any way on the parameter T? 

Optional 
Problems 
P24.6 

In this problem we consider more closely the design procedure for continuous-time 
Butterworth filters. 

Suppose that we are to design a filter B(jw) such that 

20 logioIB(j2r)I > -1 dB, 
20 logio IB(j3r)I -15 dB 

(a) 	There are two unknown parameters, the order N of B(s) and the cutoff fre­
quency co,. Set up the two simultaneous equations for N and co, and verify that 
N = 5.88 and w, = 7.047 satisfy the equations. 

(b) 	Since N is not an integer, we must choose N to be the next higher integer. We 
can now pick whether to meet exactly the stopband specification and exceed the 
passband specification or vice versa. Find w, such that the passband specifica­
tion is met exactly, and verify that the stopband specification is exceeded. 

(c) 	 What would happen if we picked N = 5? 

P24.7 

We want to design a discrete-time lowpass filter with a passband magnitude char­
acteristic that is constant to within 0.75 dB for frequencies below 0 = 0. 2613x and 
that has a stopband attenuation of at least 20 dB for frequencies between Q = 
0.4018x and r. Determine the poles of the lowest-order Butterworth continuous-
time transfer function that, when mapped to a discrete-time filter using the bilinear 
transformation with T = 1, will meet the specifications. If possible, exceed the stop-
band specifications. Indicate also how you would proceed to obtain the transfer 
function of the discrete-time filter. 

P24.8 

Suppose that we want to design a discrete-time filter using the impulse invariance 
method. The filter specifications are given by 

1 l|Hd(e0 )I a, 0 s 0 ! 0. 2 r, 
b Hd(e")| 0, 0.3r ! Q - r 

Using T = 3, we obtain the corresponding filter specifications for the associated 
continuous-time filter Hb(s): 

3 |Hb(jo)I 3a, 0 : o 5 0.27r/3, 

3b |Hb(jo)I - 0 0.3r/3 5 w < oo 
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P24.9


Assume that a filter H,(s) satisfies the specifications exactly; thus, 

H(O.2) =3a, H,(03) -3b
3 	 3 

The designed discrete-time filter is given by 

H(e")Hu = 	 -1 E Go H, j (11 _2 k)
3 k- _Go 3 3 

Study the case of T = 2. 

(a) For T = 2, give the filter specifications for the associated continuous-time filter 
I(s). 

(b) Verify that the continuous-time filter given by 

He(s) = 
2 -H( 2s ­
3 H 3) 

satisfies part (a) exactly. 

(c) Substitute 11,(s) from part (b) to solve for H(eja) and verify that H(ei") = 
H(eju). Thus, the value of T does not affect the final discrete-time filter designed. 

As mentioned in Section 10.8.3 of the text, the bilinear transformation map from the 
s plane to the z plane can be interpreted as arising from the use of the trapezoidal
rule in numerically integrating differential equations. 

(a) Consider a continuous-time system for which the differential equation is 

dy(t)dt)
dt 

= x(t) 	 (P24.9-1) 

or, equivalently, 

y(t) - x(r) dr 	 (P24.9-2) 

Determine the system function H(s) for this continuous-time system. 

In numerical analysis the procedure known as the trapezoidal rule for inte­
gration proceeds by approximating the continuous-time function as a set of con­
tiguous trapezoids, as illustrated in Figure P24.9(a), and then adding their areas 
to compute the total integral. The areaA of an individual trapezoid, with dimen­
sions shown in Figure P24.9(b), is 

A = (b + a) h 
2 



Butterworth Filters / Problems 
P24-5 

(b) 	What is the area An in the trapezoidal approximation between x[(n - 1)T] and 
x(nT)? 

(c) 	 From eq. (P24.9-2), y(nT) denotes the area under x(t) up to time t = nT. Let 
y[n] denote the approximation to y(nT) obtained using the trapezoidal rule for 
integration, that is, 

Q[n] = L A 
k=-0 

Show that 

9[n] = y[n - 1] + An 

(d) 	 With -V[n] defined as &[n] = x(nT), show that the trapezoidal rule approxima­
tion to eq. (P24.9-2) becomes 

9[n] = P[n - 1] + {2[n - 11 + t[n]} (P24.9-3) 

(e) 	 Determine the system function corresponding to the difference equation in part 
(d). Demonstrate, in particular, that it is the same as would be obtained by 
applying the bilinear transformation to the continuous-time system function 
corresponding to eq. (P24.9-1). 
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