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ABSTRACT
In recent years, there has been a significant growth in num-
ber, size and power densities of data centers. A significant
part of a data center power consumption is attributed to
the cooling infrastructure, such as air handling units and
chillers. For energy efficient operation and management of
the cooling infrastructure, data centers are beginning to be
extensively instrumented with temperature sensors. How-
ever, it is virtually impossible to manually inspect and ana-
lyze the large volumes of dynamic data generated by these
sensors for presence of anomalous behavior. Furthermore,
threshold-based methods are useful but limited in the kind
of anomalies that can be detected. Thus, in order to im-
prove energy efficiency of data centers, there is a need for
real-time detection of thermal anomalies such that corrective
measures can be promptly taken to remove the inefficiencies
and save power.

In this paper, we propose a hierarchical principal component
analysis (PCA) based methodology for detection of anoma-
lous thermal behavior, and demonstrate it on a large tem-
perature sensor network in a production data center. Specif-
ically, the technique is applied to thermal anomalies that
result from inefficiencies in the airflow pattern in a part of
a data center and normally go undetected since no thresh-
olds are violated. The hierarchical analysis performed on the
temperature sensor data streams also identifies the location
and scope of such anomalous behavior. A prototype of this
technique has been implemented and applied to a tempera-
ture sensor network spanning 75 racks with 10 sensors each
for over a period of 30 days. The results – accuracy: 98.0%,
sensitivity: 87.1%, and specificity: 98.8% – demonstrate the
effectiveness of our methodology in real-time detection of
anomalous thermal behavior in data centers.

1. INTRODUCTION
In recent years, the demand for data centers has seen tremen-
dous growth. Many of the largest data centers in the US
are experiencing a growth of 20% per year and over 40%

of enterprises are refurbishing or building new data centers
to support ongoing business operations and future demand
[12]. However, energy consumption of data centers is a con-
cern. The Environmental Protection Agency (EPA) calcu-
lates that in 2006, 61 billion kilowatt-hour (kWh) was con-
sumed by data centers in the US. This amount accounts for
1.5% of the total electricity consumed costing $4.5 billion
[1]. Moreover, the cooling infrastructure can be responsi-
ble for up to 50% of that consumption [7]. It is estimated
that data center power consumption will increase 4% to 8%
annually and is expected to reach 100 billion kWh by 2011
[13].

Given these trends, monitoring thermal conditions in data
centers and responding rapidly to anomalies assumes great
significance and can help save energy and operational costs.
Until recently data centers were a black box with minimal in-
strumentation in the way of thermal sensing. After their ini-
tial design (where cooling infrastructure was typically over-
provisioned, thus leading to higher operational energy costs),
there was not much monitoring, only required maintenance
after a failure occurred. However, the state-of-the-art data
centers today are extensively instrumented and closely mon-
itored. Indeed, a large data center can easily contain tens
of thousands of sensors which produce a continuous stream
of data. Although these sensors produce a wealth of infor-
mation on the state of a data center, using this information
effectively is a challenge. To detect an anomaly, an adminis-
trator must correlate observed measurements to anomalous
behavior based on past experience. In addition to very spe-
cific domain knowledge required, just the volume of data can
be prohibitive to examine manually. The current industry
trend is towards a lights out data center that is managed
remotely with no manual intervention required.

The monitoring techniques currently deployed in data cen-
ters are typically threshold based, that is, they alarm when
an administrator configured threshold is crossed. These,
however, do not always work well and important anomalies
are missed since many do not manifest as threshold viola-
tions. Also, early detection of anomalies, which allow pre-
emptive measures to be taken, is difficult using only thresh-
old techniques.

Furthermore, when an anomalous sensor reading is observed,
current monitoring systems raise alarms requiring investi-
gation by an administrator. It is nontrivial to determine
if the cause of the anomaly is local or related to a larger,



facility wide outage. For example, a high temperature sen-
sor reading could be caused by any of the following: 1) a
faulty sensor; 2) a rack level anomaly e.g. obstruction of a
cool air vent near a rack; or, 3) a failed computer room air-
conditioning (CRAC) unit affecting a significant portion of
a data center. Automated mechanisms to determine which
of the above has occurred is challenging.

The observations made above necessitate automated, timely
and specific anomaly detection using the available sensor
data streams. In this paper, we propose a hierarchical, prin-
cipal component analysis (PCA) based technique for auto-
mated monitoring of correlations between sensor measure-
ments within a data center. Any change in the correlations
signals anomalous behavior. Correlations across several hi-
erarchical groupings are analyzed to determine the extent of
an anomaly. Furthermore, the sensors most likely responsi-
ble for the anomalous behavior are identified.

We conducted performance evaluation of our methodology
at a large, heterogeneous, state-of-the-art production data
center. For efficient monitoring and control, this facility
has an extensive infrastructure of sensors. The results show
that we can detect anomalies at rack, zone and data center
region levels. For rack level analysis, the results show an
accuracy, sensitivity and specificity of 97.96%, 87.1% and
98.76%, respectively. Threshold based methods are unable
to detect most of these anomalies.

Specifically, in this paper, we make three key contributions.

1. We present a scalable, hierarchical PCA-based data
mining methodology that can be applied to a large
data center sensor network.

2. We introduce a mechanism that allows PCA hidden
variables associated with short-lived and insignificant
trends to be ignored.

3. We demonstrate the effectiveness of our technique by
analyzing sensor data from around 375 temperature
sensors for a period of 30 days in a real life production
data center.

The rest of the paper is organized as follows. In the next
section, we discuss related work. In section 3, we discuss
the hierarchical anomaly detection methodology. The layout
and architecture of the data center where we demonstrate
our techniques is described in section 4. The results are
presented in section 5. Finally, we conclude in section 6.

2. RELATED WORK
Considering the huge potential for cost and energy savings,
mining of streams of environmental data in data centers has
recently received attention. Additionally, local temperature
sensing within a data center for better thermal management
is becoming important [6]. In the past, exploratory data
analysis techniques have been used to evaluate data cen-
ter environmental data [19]. While statistical and Fourier
analysis of air temperature data from rack inlet sensors was
performed, the study did not identify events or anomalies
within a data center.

SPIRIT [17] performs on-line PCA on n data streams by in-
crementally updating the principal components as each data
point arrives. As long as correlations between these streams
continue to hold, the number of hidden variables remains
constant. Change in the number of hidden variables indi-
cates anomalous behavior. While our methodology is based
on SPIRIT, we make it scalable by using hierarchical group-
ings, and add a mechanism to filter out hidden variables
associated with short-lived trends.

InteMon [14] provides a prototype for monitoring data cen-
ter information through use of SPIRIT [17]. It analyzes cor-
relations in real-time and alarms on detecting an anomaly.
While our work is related to InteMon, there are clear differ-
ences. InteMon uses only four temperature sensors, while we
analyze a large sensor network consisting of 375 temperature
sensors. Using a hierarchical approach makes our technique
inherently more scalable. Furthermore, it is only through
rich instrumentation that anomalies that we are interested
in surface.

In recent years, data streams have been the focus of ex-
tensive research. The availability of continuous, real time,
dynamic data in systems such as sensor networks and web
servers, and, the need for real-time monitoring and analy-
sis have been the prime motivations. Traditional database
management systems (DBMS) [11] are not suited to store
or process such high volume data streams due to perfor-
mance and storage limitations. However, data stream man-
agement systems (DSMS) [5] have emerged to address this
need. They aim to provide DBMS like functionalities for
data streams [5, 9, 16].

In addition to DSMS, the other major area of research in
data streams – and the one that is the focus of this paper –
is mining of data streams for discovering patterns and corre-
lations. Numerous research efforts have focused on cluster-
ing and classifying data streams into groups including CluS-
tream [2] and HPStream [3]. Each data stream is passed
through an evaluation function – typically based on distance
measures – which determines the membership of the stream.
Data mining of time series data has been investigated in
many research projects including SPIRIT [17], StatStream
[21]. StatStream uses discrete Fourier transform for com-
puting statistical measures over time series data streams.

3. STREAM MINING OF SENSOR DATA
Mining of sensor data in a data center can provide impor-
tant information for its management including control, op-
timization and fault-tolerance of various devices and pro-
cesses. Early detection of abnormal events such as failure of
a computer room air conditioning (CRAC) unit can be used
to redeploy resources [6] and minimize any potential user
impact. Cooling resources from other CRAC units can be
provided to the affected region. Additionally, if server vir-
tualization techniques are in use, workload can be preemp-
tively migrated to other racks not affected by the failure.
Similarly, identification of an errand temperature sensor by
observing the correlations between the sensors in the same
rack provides valuable information to the data center man-
agement system, allowing it to ignore measurements from
such sensors instead of taking remedial actions.



3.1 Hierarchical Methodology
The goal of our methodology is to analyze sensor data streams
to detect anomalous behavior in a data center. Anomalies
that manifest as broken correlations between sensors are de-
tected. In addition to detecting an anomaly, the level or
scope of the anomaly is also inferred. In the data center
context, this refers to whether the anomalous behavior oc-
curred at a sensor level, a rack level, or in an entire zone of a
data center. An advantage of our approach is that no prior
learning or training is required. Furthermore, by virtue of
being hierarchical, it is very scalable.

The core component of the technique consists of analyzing
sensor measurements organized in hierarchical groupings.
The analysis comprises performing streaming principal com-
ponent analysis (PCA) on each grouping and at each level.
Considering hierarchical groupings provides a deeper insight
into the location and nature of an anomaly. The groupings
exploit correlations that exist between sensors during normal
operation. In this paper, a simple mechanism of grouping
the sensors, based on their physical locality, is used since
the expectation is that closely located temperature sensors
receive similar air flow and hence are likely to show corre-
lated behavior. We verified this by using historic data to
compute correlation coefficients between pairs of sensors in
the same group. Note that in the absence of any domain
knowledge, these correlation coefficients computed over his-
toric data could be used to group the sensors. Further, our
technique is generic and does not depend on the criterion
used for the grouping.

We consider three groupings: 1) Rack level, 2) Zone level,
and 3) Region level. As shown in Figure 1, PCA is con-
ducted in a bottom up fashion starting at the rack level. At
each level, trends in sensor measurements are evaluated to
identify anomalous behavior of the entities comprising that
level. Analysis at a particular level requires trends from the
level below. For example, zone level analysis requires rack
trends and allows rack anomalies to be discovered. Trends
(hidden variables) identified as anomalous at a particular
level are removed from analysis at higher levels. The three
hierarchical levels considered are described below.

Rack Level. This is the lowest level consisting of sensors
located in a rack. The objective of rack level analysis is to
identify anomalous behavior at the scale of a sensor. In-
cremental PCA is separately performed on groups of sen-
sor data streams from each rack. The expectation is that
during normal operation sensors in the same rack are corre-
lated. Ceasing of this correlation indicates an anomaly. In
PCA, this is reflected by a change in the number of hidden
variables. Furthermore, the sensor(s) associated with the
anomalous behavior is (are) also identified as discussed in
the next section.

Zone Level. A zone consists of a group of racks. Zones are
demarcated based on commonality of an attribute related
to the sensor measurements. For example, for temperature
sensors, racks in a row are considered one zone. The objec-
tive of zone level analysis is to identify entire racks within a
zone that show anomalous behavior. Analysis at this level
utilizes the results of the rack level analysis. The trends
(hidden variables) – discovered in the rack level analysis –
of each rack in a zone are analyzed together to determine if

the number of trends remain preserved. An additional trend
indicates anomalous behavior. An example of a rack level
anomaly is an obstruction blocking a cool air vent next to
a rack. This causes the rack sensors to exhibit deviant be-
havior. Note that rack level analysis is unlikely to uncover
this problem, since the blocked vent affects all sensors in the
rack, which are likely to remain correlated.

Region Level. This level consists of a number of related
zones. For example, all zones under the influence of a partic-
ular CRAC unit can be considered together. The objective
of analysis at this level is to discovery aberrant zones. The
main trends from each zone – computed in the zone level
analysis – are used to perform incremental PCA. The emer-
gence of additional trends in the results indicates anomalous
behavior.

Although, in this paper, we only use temperature sensors,
sensors measuring other characteristics such as humidity can
also be simultaneously analyzed to detect related anomalies
[20]. Furthermore, even with one kind of sensor, different
criteria for association of sensors can be used. In addition
to physical locality, locality based on data center cooling in-
frastructure or workload/power consumption of servers can
be exploited.

3.1.1 Pre-processing
Before being passed through the PCA algorithm, a data
stream is pre-processed to make it more amenable to PCA
analysis. This consists of two main components. First, high
frequency noise is removed through use of a moving average
filter. Then, the data is normalized such that it has zero
mean and a standard deviation of one, that is,

T ′ = (T − µ)/σ (1)

Although this is trivial to do for historical data, efficiently
computing mean and standard deviation over a sliding win-
dow for streaming data is challenging. While several re-
search efforts [21, 10, 4] have focused on computing statis-
tics for streaming data without having to store an entire
window’s worth of data, we use a simple solution.

Figure 2: Computing sliding window mean for stream-

ing data.

The basic idea is to divide the sliding window into blocks and
statistics related to these blocks are preserved and used to
update statistics over the sliding window. Assume a window
size of w is divided into k blocks of size b, as shown in Figure
2. At the beginning/end of each block, the statistics can be
accurately computed. The sliding window mean at the end
of block p + 1 is given by

µw,p+1 = µw,p −
µb,p−k+1 · b

w
+

µb,p+1 · b
w

(2)
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Figure 1: Our hierarchical PCA methodology applied to data centers with groupings of temperature sensors at three

levels, namely, rack, zone and region.

where µw,p is the sliding window mean at the end of block
p. While in a block, the mean can be estimated by assuming
that the data point moving out of the sliding window is equal
to the average of its block and updating the mean with the
newly arrived point. Standard deviation of streaming data
can be similarly computed. It requires that sum of squares
for each block be also saved.

Since temperatures depend on server workloads, the appro-
priate choice of the window size is governed by the workload
patterns. In our analysis, based on the observed diurnal
workload pattern in the data center, we use a window size
of 24 hours with block size of 15 minutes.

3.1.2 PCA of streaming data
Our methodology to discover trends and anomalous behav-
ior in data center sensor streams involves using principal
component analysis (PCA) [15]. PCA is a generic tech-
nique to reduce the dimensionality of correlated variables
by introducing a new orthogonal basis. These are called the
principal components (PCs). Each PC is successively cho-
sen such that it captures the maximum variance remaining
in the data. Thus, usually the first few PCs are sufficient for
reconstructing the data to a good approximation. Since the
PC directions are orthogonal, they are uncorrelated. Note
that PCA only considers linear dependence; non-linear in-
terdependence between variables is not captured by PCA.
Another assumption is that the data has a normal distri-
bution, a property satisfied by the temperature sensor data
considered in this paper.

At each time tick, a data point (vector containing a mea-
surement from each sensor) is received and transformed from
the original n-dimensional space to the new m-dimensional
space by taking its projection onto the PCs.

ym×1 = Wm×n · xn×1 (3)

where x is the input vector; y is the output vector in the PC
space (the components of y are also called hidden variables);
W is the projection matrix with its ith row containing a unit
vector along the ith PC. A row vector of W is also called

the participation weight vector since its elements determine
the contribution of an input (xi) to a hidden variable (yi).
This is very useful information since it can be used to rank
the contributions of input variables to a particular hidden
variable. The original variables can be reconstructed as fol-
lows:

x̃n×1 = WT
n×m · ym×1 (4)

The reconstruction error is given by ||x− x̃||2.

The basic assumption in using PCA for anomalous behav-
ior detection is that during normal operation the number
of PCs remains constant. An increase or decrease in the
number of hidden variables indicates an underlying change
in the number of correlations of the original data and hence
considered anomalous behavior. While our application of
PCA to streaming data is based on SPIRIT [17], we im-
prove scalability by hierarchical processing. We also make
one other enhancement (described further in the next sec-
tion): the criterion for determining the number of hidden
variables is modified such that short-lived and insignificant
trends are ignored. The algorithm incrementally updates
the PCs (matrix W) as each data point arrives. It is effi-
cient with O(mn) complexity in both time and space and is
independent of the total number of data points seen. In our
analysis each sensor measurement is considered a separate
dimension. Thus, n is equal to the number of sensors being
analyzed.

3.1.3 Number of hidden variables
The number of hidden variables depends on the degree of
reconstruction accuracy desired. A common technique to
estimate this number is energy thresholding [17, 15]. Energy
of a variable is defined as the average sum of squares of all
its past values.

E(i)← E(i) + yi
2 i ∈ [1, m] (5)

Energy thresholding operates as follows. The energies of
the reconstructed and original variables are compared. As



long as this ratio is within threshold limits (e.g. 0.95 and
0.98), the number of hidden variables is kept constant. If
it falls below the lower threshold (indicating unacceptably
high reconstruction error), the number of hidden variables
is increased. On the other hand, if it rises above the up-
per threshold (indicating unacceptably low reconstruction
error), the number is decreased.

An issue with energy thresholding is that small changes in
the value of the energy ratio around the threshold values
increases or decreases the number of hidden variables, sig-
naling anomalous behavior. However, these new trends cre-
ated may be short lived and insignificant, likely related to a
transient phenomenon in the original data. In order to fil-
ter out such trends, energy thresholding is enhanced to also
consider the energy contribution of a new hidden variable in
conjunction with the thresholds. A new hidden variable, i,
is considered viable only if it has made a significant contri-
bution to the total energy since it appeared, i.e.,

E(i)a ≥ α · Ea (6)

continues to hold for b time ticks. Here, E(i)a is the con-
tribution of the ith hidden variable since time a; Ea is the
total energy since time a; and, α is the contribution thresh-
old. The parameters α and b can be adjusted based on the
degree of sensitivity desired. For the results described in
section 5, the values of α and b were set at 0.4 and 6, re-
spectively. These values worked well for the temperature
data analyzed.
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Figure 3: Use of enhanced energy thresholding with

PCA analysis removes insignificant trends.

Figure 3 (a) shows temperature measurements from seven
racks, that is, 35 sensors in all. The hidden variables that
result from conducting incremental PCA are shown in Fig-
ure 3 (b). In addition to the main trend, four short-lived
trends (appearing at time 12, 23, 139 and 150) are also seen.
These are caused by transitory disturbances and are not sig-
nificant trends. Although uninteresting, these events are not
distinguished from cases where a major new trend appears
since both are signaled by the appearance of a hidden vari-
able. However, using the mechanism described above, these

insignificant trends are filtered out (shown in Figure 3 (c)).
In all the results described in section 5, this hidden variable
filtering algorithm was used.

3.1.4 Summary of Methodology
The following summarizes the steps involved in analyzing
data at each time tick.

• Pre-process incoming data points: synchronize using
linear interpolation, if needed; normalize and smoothen
using moving averages.

• Perform streaming PCA for each rack; identify sensor
level anomalous behavior, if any, and the associated
sensors.

• Use rack level trends to perform streaming PCA at
zone level; identify racks with anomalous behavior, if
any.

• Use zone level trends to perform streaming PCA at the
region level; identify zones with anomalous behavior,
if any.

4. EXPERIMENTAL TEST BED
We apply our analysis and data stream mining methodol-
ogy to a real life, state-of-the-art data center. In this study,
temperature sensor data from a production data center is
considered. Power consumption on a per rack basis in this
data center ranges from 5 to 20kW. Racks comprise of off-
the-shelf standard or blade servers, storage arrays and net-
work switches. Note that our methodology is generic and
not limited to the data center architecture presented here.

4.1 Data Center Infrastructure
These data centers are air-cooled with a raised floor plenum
to distribute cool air, power and networking. Figure 4 de-
picts a typical state-of-the-art data center air-conditioning
environment with under-floor cool air distribution [18]. Com-
puter room air conditioning (CRAC) units cool the exhaust
hot air from the computer racks. Energy consumption in
data center cooling comprises work done to distribute the
cool air to the racks and to extract heat from the hot ex-
haust air. The air movers in the CRAC units pressurize the
plenum with cool air which enters the data center through
vented tiles located on the raised floor close to the inlet of
the racks. Typically the racks are laid out in rows separated
by hot and cold aisles as shown in Figure 4. This separa-
tion is done for thermal efficiency considerations. Air inlets
for all racks face cold aisles while hot air is expelled to hot
aisles.

4.2 Sensor Network and Data Aggregation
Temperature data is collected from sensors, mounted at the
inlet and outlet of racks (see Figure 5). A data center wide
distribution of such temperature sensor networks are de-
ployed on rack-to-rack basis. The placement density of the
sensors is based on the power dissipated per unit area of
a data center. The temperature sensors are mounted on
racks as shown in the figure and provide temperature data
at both air inlet and outlet of the racks. The digital output
from each sensor is accurate to 0.5 C in the range of interest.



Figure 4: A typical raised-floor data center.

Since the sensor is primarily a transistor with compensation
for leakage, no calibration is needed. Ten temperature sen-
sors are attached to each rack, with five at the inlet and the
other five at the outlet. Each rack also contains a base sta-
tion to which all sensors on a rack are connected. The base
station has an Ethernet interface and multicasts the tem-
perature data collected on the data center LAN. In addition
to temperature sensors, data is collected from CRAC units,
Variable fan drive (VFD) units and power distribution units
(PDUs). However, in this paper, only rack inlet temperature
data is considered since it is more critical (as compared to
outlet temperature) in determining the thermal well-being
of the entities in a data center.

Rack Outlet 
Sensors at rear

Rack Inlet Sensors 
at the frontat the front

Figure 5: Sensors mounted at the rack inlet and ex-

haust.

An underlying assumption in the use of PCA on a data set
is that it is normally distributed. Figure 6 shows the cumu-
lative frequency distribution (CFD) of typical instances of
the temperature sensor data taken from the test bed data
center. The standard normal curve is also shown for compar-
ison. In the anomaly-free case, the close agreement between
the normal CFD and the temperature data CFD indicates
that the temperature data is normally distributed with ran-
dom variations. The anomalous data deviates slightly from
the normal curve due to the systemic variation in the tem-
perature values because of the anomaly.

5. RESULTS AND DISCUSSION
As a proof of concept, we have implemented a prototype
of our methodology and applied it to sensor data streams
obtained from a real-life production data center located in
Palo Alto, CA. The servers in this 3000 sq. ft. facility dis-
sipate 350 KW of power. Its architecture is similar to that
described in Section 4. There are 75 racks of computing
equipment, each with 10 temperature sensors, arranged in
rows as shown in Figure 7. Each rack can contain up to
64 blade servers or 42 1U servers. Six CRAC units provide
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Figure 6: Distribution of temperature sensor data.

cooling. Temperature data streams from five sensors located
at the air inlet of each rack, resulting in 375 data streams in
all, are analyzed.

Region Level
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Figure 7: Layout of the test bed data center.
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Figure 8 shows the number of rack anomalies detected on
each day for a 30 day period, from January 1, 2008, to
January 30, 2008. In addition to our methodology (labeled
PCA), also shown are the number of rack anomalies detected
through (1) a threshold method, where an anomaly is flagged
if any temperature sensor in a rack exceeds 30◦C, and (2)
a moving average method, where an anomaly is flagged if a
rack temperature is greater than 5◦C from the moving av-
erage of the previous 24 hours. During this period a major
failure occurred on day 3 when all CRAC units failed due
to unavailability of chilled water, and a similar minor fail-
ure occurred on day 27. These are captured well by the



moving average and threshold methods. The PCA method
does not appear to do well for such large scale anomalies
where temperature of sensors remain correlated while in-
creasing. However, many anomalies manifest with no vio-
lation of temperature thresholds and are thus particularly
hard to detect. Several of these can be detected through the
PCA method since they result in uncorrelated behavior be-
tween sensors. These anomalies indicate inefficient airflow
in the data center and result in higher power consumption.
The cause of airflow inefficiencies could be related to mis-
configuration of equipment, or increased recirculation of hot
air. However, automatic determination of the cause of a
particular anomaly is beyond the scope of the current work.
Anomaly detection allows an operator to investigate further
and if required take corrective measures to fix airflow ineffi-
ciencies, thus, saving power. Note that the threshold-based
and PCA-based methods compliment each other.

In order to validate the performance of the PCA method,
a thermal sciences expert visually inspected the daily rack
temperature plots for the 30 days and identified racks that
seemed to exhibit abnormal behavior. Each of the 75 racks,
for each of the 30 days, were marked as anomalous or nor-
mal. These labeled samples were then compared with the
results obtained using PCA. The resulting confusion matrix
is shown in Table 1. In all, there are 2250 day-long sam-
ples (75 racks over 30 days). In the table, Positive indicates
presence of an anomaly while Negative indicates its absence.
135 anomalous and 2069 normal samples are correctly clas-
sified. There are 26 false positive samples while 20 are false
negatives. There are 155 anomalies in all (about 7%). Since
the anomaly rate is relatively low, the total accuracy, that
is, proportion of correctly classified samples, of 97.96%, al-
though high, is not very significant. The sensitivity, which
measures the true positive rate, and the specificity, which
measures the true negative rate, are better indicators of the
performance. As shown in Table 2, these are 87.1% and
98.76%, respectively. The precision of the PCA method,
that is, the proportion of true positives out of the total num-
ber of positives, is 83.85%.

PCA Method
Positive Negative Total

Actual Positive 135 20 155
Negative 26 2069 2095

Total 161 2089 2250

Table 1: Results from the PCA method as com-
pared to the actual positive (anomalous) and neg-
ative (normal) results, as provided by the domain
(thermal sciences) expert.

Measure Value(%)

Accuracy 97.96
Sensitivity 87.1
Specificity 98.76
Precision 83.85

Table 2: Summary of the performance of the PCA
method.

In the following sections, we present some qualitative results

from the 30 day run and show how the hierarchical analysis
allows the source and scope of an anomaly to be identified.

5.1 Rack Level Analysis
Figure 9 (a) shows the temperature measurements from five
sensors located on the same rack (A1). Each time tick cor-
responds to about 1 minute. The key point to note is that
although the temperature varies in the rack, the five sensors
follow the same trend. This trend is captured by a single hid-
den variable obtained by conducting PCA (shown in Figure
9(b)). This also shows the usefulness of hidden variables in
summarizing trends.
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Figure 9: (a) Rack temperature data; (b) One hidden

variable is able to capture all five temperature sensors.
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Figure 10: Analysis of Uncorrelated Rack Temperature

Data.

Five temperature measurements from a different rack (Bext4),
during the same period of time, are shown in Figure 10(a).
After conducting PCA, we discover two trends (Figure 10(b)).
The larger trend is similar to the one seen for the previous
rack (A1); however, an additional trend starting at time
tick 38 is also seen. The largest contributor to this new
trend – as determined from the weight vector – is sensor 5



(T5). Although the fact – that T5 shows deviant behavior
– is quite apparent from the temperature plot, the ability
to identify this behavior and the particular sensor involved
autonomously in a data center with thousands to tens of
thousands of sensors is a big advantage. Furthermore, in
this case, the new trend is detected before (at time tick 38)
it becomes visually obvious from the temperature plot (be-
tween time ticks 50 and 100). This is an extremely useful
input to a data center monitoring and control system which
can perform further analysis to determine the root cause, or
take other preemptive actions. Note that since the deviant
sensor shows temperatures that are within the normal oper-
ation range, a threshold based mechanism will be unable to
detect this behavior.

5.2 Zone Level Analysis
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Figure 11: Zonal Analysis of Rack Temperature Data.

At this level, a group of racks, organized as a zone, is an-
alyzed with the objective of detecting anomalous behavior
in an entire rack. Figure 11(a) shows the raw temperatures
of six racks (D1 through D6). These racks, comprising a
zone, are located in the same aisle. The main trends (hid-
den variables) for the six racks, computed during rack level
analysis, is shown in Figure 11(b). These six variables, each
representing one rack, are passed through another round of
PCA. The results, shown in Figure 11(c), indicate two hid-
den variables. The smaller trend can be traced to racks D1
and D2. The larger one represents the other racks. Note
that in Figure 11(b) trend D5 is essentially the same as D3,
D4 and D6 (inverting D5 will result in a close approximation
of the others). The results indicate that racks D1 and D2
show anomalous behavior as compared to the other racks in
the zone. Another observation (from Figure 11 (c)) is that
the anomalous behavior is intermittent as on two occasions
the second hidden variable disappears. Although deviant
behavior can be identified, the cause of the deviance cannot
be inferred though this analysis.

5.3 Region Level Analysis
At the region level, trends from multiple zones are analyzed
together to detect the existence of zone-wide anomalous be-
havior. Note that an anomaly impacting an entire zone may
not be detected at the zone level analysis, since the zone may

continue to show correlated behavior. However, conducting
PCA on multiple zones, that show correlated behavior dur-
ing normal operation, can facilitate identification of entire
zones that exhibit anomalous behavior.
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Figure 12: Hidden Variable plots from rack level anal-

ysis for zones A, E, F and G.

Figure 12 shows the hidden variables of racks, obtained from
rack level analysis, for four different zones (Zones A, E, F
and G). Each zone consists of seven racks in a single aisle and
each rack is summarized by one hidden variable. Zone level
trends for the four zones are plotted in Figure 13 (a). Note
that each zone can be represented by one hidden variable
implying that within each of these zones the temperature
behavior is highly correlated.

PCA is performed on the four zone level hidden variables
and the results are plotted in Figure 13 (b). Two distinct
trends can be seen. Trend T1 strongly corresponds to Zone
A (as determined from the participation weight vector) while
trend T2 is associated with the remaining zones, namely, E,
F and G. The implication is that while the behavior of zones
E, F and G remains correlated, zone A shows anomalous
behavior. Note that this is obvious from the rack level hid-
den variables (Figure 12) where racks A1 through A7 show
markedly different behavior than the other racks. The key
advantage is that this distinction can be autonomously de-
duced without human involvement. From knowledge of the
data center during this time period, it is known that the
settings at a CRAC unit next to zone A racks were being
manually changed. Due to their location, Racks E, F and G
were not impacted by this event. The region level analysis
is aimed at detection of such larger scale anomalies.

6. CONCLUSIONS
Timely and specific discovery of anomalous behavior is vital
for efficient and cost-effective management of state-of-the-
art data centers hosting tens of thousands of servers. Con-
sidering the large volumes of sensor data continuously being
produced, automated mechanisms for discovering anomalies
and trends are indispensable. In this paper, we used incre-
mental PCA on data streams generated by a large temper-
ature sensor network in a data center. This allowed hard-
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Figure 13: Zonal and Region level Analysis.

to-detect anomalous behavior resulting from airflow ineffi-
ciencies in a data center to be detected and then potentially
fixed to save energy. A hierarchical methodology, that is
inherently scalable and allows the scope of an anomaly to
be determined, was proposed. Furthermore, an enhanced
mechanism to detect new hidden variables — that filters
short-lived and insignificant trends — was presented. Our
methodology was deployed in a production data center and
we presented results from 30 continuous days of operation
involving 75 racks and 375 sensors. The results validate the
performance of our methodology, with the accuracy, sen-
sitivity, and specificity being 97.96%, 87.1% and 98.76%,
respectively.
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