Time-frequency and time-scale r epresentations of doubly spread channels

Rickard, Scott Thurston

ProQuest Dissertations and Theses; 2003; ProQuest Dissertations & Theses (PQDT)

pg. na

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct pnnt, colored or poor quality illustrations
and photographs. print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright matenal had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the onginal, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

@

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TIME-FREQUENCY AND TIME-SCALE
REPRESENTATIONS OF DOUBLY SPREAD

CHANNELS

ScoTT RICKARD

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE PROGRAM IN

APPLIED AND COMPUTATIONAL MATHEMATICS

NovEMBER 2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 3101062

Copyright 2003 by
Rickard, Scott Thurston

All rights reserved.

®

UMI

UMI Microform 3101062

Copyright 2003 by ProQuest information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, MI 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



© Copyright by Scott Rickard. 2003.
All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

\We studv the correspondence between time-frequency and time-scale integral op-
erators and determine the mapping between time-scale kernels and time-frequency
kernels. which are both used to model communication channels. Time-scale models.
which have a physical interpretation in wireless communication. are often approx-
imated as time-frequency models for narrowband communication. In determining
this mapping we show that the causal time-scale channel is time-invariant and that
the causal time-forward time-frequency channel is time-invariant. A time-forward
channel is defined as a channel for which the Hardy space and its orthogonal com-
plement are invariant. We derive the form of the equivalent lowpass characterization
of the time-varving time-frequency channel and show that the equivalent lowpass
characterization only exists for time-forward channels. We show that the mapping
between the narrowband channel description based on a time-frequency kernel with
constrained support and the wideband channel description based on a time-scale ker-
nel with constrained support does neot exist for the channels encountered in realistic
time-varyving communication scenarios. In light of this result. we develop a canonical
time-scale channel model for wideband communication analogous to the canonical

time-frequency channel model proposed by Sayeed and Aazhang.

iii
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Chapter 1

Introduction

[t is common to assume that a received communication signal is composed of super-
positions of the transmitted signal. The superpositions arise from reflections of the
signal off scatterers in the environment. In the time-scale channel model. each reflec-
tion is a delayed and time scaled copy of the transmitted signal. The delays arise
from differing path lengths from transmitter to scatterer to receiver. and movement
of the transmitter, scatterer. or receiver cause time dilations or contractions. Thus.

each reflection is of the form.

Faslt) = flla_lx (' ;b) (11)

and the received signal is a summation of the reflections characterized by L£(a,b), the

wideband spreading function!,

y(t) = / L(a.b) \/lmr (£;—b> dadb. (1.2)

In (1.2), we will, for the most part. be interested in £ with support only for a > 0

because this constrains the channel only to contain positive time copies of the trans-

!We will assume that all integrals are over (—>c. x) unless otherwise specified.
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mitted signal. Any a < 0 support results in time-reversed signals in the output. We
assume the speeds of the objects in the environment are such that the rate of change
of path length is less than the speed of propagation of the signal. which prohibits
time-reversal of the transmitted signals. However. in order to better illuminate cer-
tain analyses. we will consider £(a.b) with support for all a (including negative a)
and all b. We will use £, (a.b) to denote wideband channels with support only for
positive a. L£L_(a.b) to denote wideband channels with support only for negative a.
and L(a.b) to denote general wideband channels with no support constraint. In all
cases, we assume L£(0.b) = 0. ¥b in order to avoid the singularity at a = 0.

We call a time-scale channel a wideband channel when the wideband spreading
function has finite support. We expect finite support for L(a.b) due to physical
limitations of signal propagation. The maximum possible rate of change in path
length. which is constrained by the speeds of the objects in the environment, limits
the support of L£L(a.b) to a narrow range around the a = 1 line. Causality and the
propagation loss associated with increasing path length effectively limit the support
of L(a.b) to a finite range in the b direction. The support in the a direction causes a
spreading in scale of the transmitted signal. and the support in the b direction causes
a spreading in time of the transmitted signal: thus the term doubly spread channels.

Many signals and signaling environments satisfy the narrowband condition, an
assumption under which the time dilations or contractions are modeled as Doppler
shifts. Under this assumption, each received reflection of the signal is assumed to be
of the form,

Iog(t) = £(t — 7)* (1.3)

In the narrowband channel model. the received signal is a superposition of time delayed

and frequency shifted copies of the input and the channel is characterized by the

2
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narrowband spreading function S(6. 7).

y(t) = // S(4.7)r(t — 7)e?* % drd6. (1.4)

where S(6.7) has finite support in 8 and 7 due to the physical limitations of the
channel. This is. the signal is spread in frequency and time. When S(8.7) has no
support constraint. (1.4) is a time-frequency description of a time-varyving linear sys-
tem and the transmitted waveform and environment need not satisfy the narrowband
condition.

One of our goals here is to understand which S(8. 7) and £(a.b) produce the same
input-output mapping. regardless as to whether the input is narrowband or not. We
hope that such an analvsis will shed some light on the nature of time-frequency and
time-scale operators and yield a better understanding of time-varying channel models.

Specifically, we define operators

Ns{z}(t) = //S(O.T)I(t — 7)™ drde (1.5)

Welc(t) = //C(a.b) \/}mr (t - b) dadb (1.6)

and we are interested in (S. £) pairs such that

Ns = We. (1.7)

We will be interested specifically in S(8.7) and L(a.b) with supports consistent with
the physical propagation constraints. Indeed. we will see that it is in the limitation of
the support of the characterizations that the mapping reveals the differences between
the time-frequency narrowband and time-scale wideband models. That is. the nar-
rowband and wideband models are not equivalent specifically for the channels which

are typical in mobile communication settings.
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In [SA99] a canonical time-frequency channel characterization was proposed which
was used to define a delav-Doppler RAKE receiver. a two-dimensional extension of the
classic RAKE receiver. which takes advantage of the inherent added channel diversity
associated with time-varving narrowband channels. While the narrowband assump-
tion is satisfied in many wireless communication signal environments. [MMH*02]
points out that many wireless systems are wideband due to the higher data rates
and multiaccess techniques. Thus. we may expect. in light of differences in the nar-
rowband and wideband models. some advantages to the development of a canonical
time-scale channel characterization. The hope is that a delay-dilation RAKE receiver
based on the canonical time-scale channel characterization will leverage the diversity
in wideband signaling environments in the same way that the delav-Doppler RAKE
leverages the diversity in narrowband signaling environments. Such a channel model
and receiver may be particularly useful for ultra-wide bandwidth signaling (impulse

radio) due to the extremely wide transmission signal bandwidth [WS02, CWVMO3].

1.1 Previous work

The approach taken in this thesis is different from the traditional interpretation of the
narrowband characterization as an approximation of the wideband characterization
when applied to narrowband signals. We do not consider the narrowband description
of the channel as an approximation of the wideband channel. but rather look at the
two descriptions without constraining the properties of the input signal. Also. the
focus in this thesis is on the channel model itself, whereas much of the literature
focuses on the ambiguity functions (i.e., energy distributions) derived from the model

(wideband or narrowband) and not the model itself. For example,

e [Kai96, Kai94| discuss the relationship between the wideband and narrowband

ambiguity functions, specifically, how the wideband ambiguity function can be
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approximated by the narrowband ambiguity function for narrowband signals.
[Kai96] generalizes the ambiguity function (and the wideband model) to account
for arbitrary transmitter/scatterer /receiver motion (instead of just constant ve-
locity motion) and then shows the reduction to the standard wideband ambigu-
ity function for constant velocity environments and then the approximation as
the narrowband ambiguity function when further considering narrowband sig-
nals. The focus is on the use of the ambiguity function to link time-frequency

and time-scale analysis.

e [BTA98] discusses extending the wideband model characterized by £(a. b) to one
using a three dimensional kernel L£(a. b.t) and sites [You95] which also considers
such an extension. [BTA98| claims the advantages of L(a.b.t) model over the
narrowband channel described by A(t. 7) are that the L(a.b.t) is valid for longer
time intervals when the channel is changing linearly with time and that the
processing duration in the narrowband model is limited by the bandwidth and
velocities of objects in the environment whereas the processing duration in the
extended wideband model is limited by the bandwidth and accelerations of
the objects in the environment. Accelerations are also a topic of interest in
[Swi69]. which argues that the wideband model is better for environments with
accelerating objects. instead of constraining all objects to have constant radial

velocity as in the narrowband model.

e [Fla88] links the wavelet decomposition of a signal to the short-time Fourier
transform representation. although the focus here is on signal analysis and not

channel models.

e [DF96], [ZF00], and [ZFLO1] introduce a wavelet-based (wireless) channel model.
A comparison of their model to the model derived in this work in Chapter 5 is

a topic of future research.
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o [FSO1]. [CSB92]. [SWD94]. [WYS94]. [SWY97]. [RNFR97]. and [SRH9S8| ex-
plore the wideband spreading function channel description and the use of the
continuous wavelet transform as a maximum likelihood detector. The narrow-
band spreading function description in these works is viewed in the traditional

way. as an approximation of the wideband channel for narrowband signals.

e The properties of the wideband spreading function from a group theoretic per-
spective are investigated in [SP95]. Extensions of this work can be found in

[IPSBB9Sb]. [IPSBB9Sa]. and [IPSBB02].

1.2 Outline of work

e Chapter 2: Narrowband and Wideband Channel Characterizations - presents

background material on time-frequency and time-scale channel models.

— Discuss Bello’s 12 (narrowband) channel characterizations.

- Examine the form of one path delay-Doppler channels for the 12 charac-

terizations and note the simplicity of the S(6. ) representation.

— Display the wideband characterization in time-time and frequency-frequency
noting that positive output frequency components depend only on positive
input frequency components. and negative output frequency components
depend only on negative input frequency components. This frequency
dependence is later used as the defining characteristic for time-forward

channels.

— Show the form of one path delay-dilation wideband channels.

e Chapter 3: Narrowband and Wideband Correspondence - derives and discuses

the mapping between time-frequency and time-scale kernel operators.

6
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— Examine the representation of time-invariant channels for narrowband

(S(8.7) and k3(6.v)) and wideband channel (L(a.b)) characterizations.

— Show that the support of the time-invariant characterizations are the a = 1

line for £(a.b). the 8 = 0 line for S(4. 7). and the § = v line for k3(8.v).

- Discuss splitting the narrowband and wideband characterizations into time-

invariant and time-varying components.

- Discuss the implications of assuming causality for the characterization
functions and show that. the causal wideband channel is time-invariant.

That is. time-varying causal wideband channels do not exist.
~ Determine mapping from L(a.b) to ky. ki, k2. and k.

— Discuss the different mapping of the DC component in the wideband and
narrowband case. Specifically. in the wideband characterization. the only
component that can affect the DC output component is the DC input com-
ponent. Similarly. the DC input component can only affect the DC output
component. This restriction is not present in the narrowband characteri-
zation and in order to map the narrowband channels to wideband channels

we only consider characterizations which satisfy this constraint.

— Show that there exist narrowband channels with no corresponding wide-

band channel.

— Show that the causal time-forward narrowband channel is time-invariant.
That is, time-varving causal time-forward narrowband channels do not

exist.
— Determine mapping from L(a,b) to S(6, 7).
— Determine mapping from S(8,7) to L(a,b).
—~ Examine the form of the one path narrowband and wideband channels
using the correspondence.
7
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— Show the instability of the mapping around the important a = 1 (time-

invariant) line.

e Chapter 4: Characterization of Communication Signals - derive the time-varving

narrowband equivalent lowpass characterization.

— Discuss the standard equivalent lowpass signal/channel characterization.

— Establish a corresponding equivalent lowpass characterization for the time

varying case.

— Show that the equivalent lowpass time-varying characterization exists only

for time-forward channels.

e Chapter 5: Time-Frequency and Time-Scale Canonical Models - develop a gen-
eral technique for the generation of canonical channel models and demonstrate
the application of the technique to time-frequency and time-scale kernel opera-

tors.
— Discuss Sayeed/Aazhang’s time-frequency canonical channel characteriza-
tion which forms the basis for the time-frequency RAKE receiver.

— Propose a generalization of the canonical channel characterization that
allows us to generate canonical channel models based on a pair of projection

operators.

~ Show that the time-frequency canonical channel characterization is based

on the projection operators in time and frequency.

— Propose a time-scale canonical channel characterization based on the pro-

jection operators in time and scale.
e Summary and Future Work
e Appendix: Doppler effect and Time-frequency duality

8
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Chapter 2

Narrowband and Wideband

Channel Characterizations

In this chapter we discuss the time-frequency kernel and time-scale kernel channel
models and look at some simple channels to gain some intuition concerning the char-
acterizations. The time-frequency kernel description is a general time-varying linear
system characterization. However. in a slight abuse of nomenclature. we will refer to
all channels characterizations which can be related to tke channel described by S(6. )
via Fourier transforms and phase factors as narrowband channels. Specifically. in this
chapter, we discuss 12 such equivalent characterizations which were first explored as a
group in [Bel63]. We call these “narrowband” characterizations because when S(4. 7)
has finite support, the characterization is typically used only in narrowband systems.
We will only discuss the support condition constraint on S(8.7) for the narrowband
characterizations when relevant, and, in general. consider the more general case where
there is no such constraint on the support of S(8, 7). Similarly, we will refer to channel
characterizations based on the time-scale kernel, £(a,b) and £(®(a,0) as wideband

characterizations because they are typically used in a wideband setting [SWD94].

9
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2.1 Narrowband Characterizations

The linear time-varyving channel is characterized by the time-varving impulse response
h(t.7) which denotes the response of the channel at time ¢ to an impulse at time ¢t — 7.

The channel input-output relationship is thus.

yl(t) = /h(t.r)r(t - 7)dr (2.1)

Such notation is used in. for example. [BB99. BPS98. Pro84. Tre71. SA99].

Another possible notation for the time-varying impulse response is

o
(1]
St

y(t) =/k0(t.r).r(r)dr. (

with the interpretation that ko(¢.7) is the response of the channel at time t to an
impulse at time 7. This is the formulation used in, for example. [Zad50. Ver98.
MHO2b]. Bello [Bel63] calls ko(t. ) a kernel system function and notes the obvious
correspondence between the two representations. h(t.7) = ko(t.t — 7). Bello [Bel63]
defines four equivalent representations of the time-varying channel represented by
ko(t.7) that map the time or frequency representation of the input into the time or

frequency representation of the output. We define these four kernel functions!.

y(t)=/ko(t~7’)l'(‘f)dr Y (6) =/k1(9. T)z(r)d7 .

y(t)=/k2(t.u)X(u)du Y (9) =/k3(0. V)X (v)dv

Bello [Bel63] points out that the kernel system functions can be transformed into one
another using the Fourier transform. For example, the kernel function that maps the
input time domain to the output time domain (ko(¢, 7)) and the kernel function that

maps the input time domain to the output frequency domain (k;(. 7)) are Fourier

'We use different notation than Bello.

10
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transforms of one another with respect to the first argument. We can summarize the

the relationships between the kernel syvstem functions as follows.

Fi
ko(t. ) = ki (6.7)
'Y [}

For Foer (2.4)

ko(t.v) — k3(h.
2(t.v) F . 3(0.v)

That is.

ko(t.7) = /kg(t.u)e"")’"’du ki(8.7) = /ko(t.r)e"z"edt

kyt.v) = /k;,(().u)e"'""df) ky(8.v) = /kl(o.,-)d'-"-’"d,-

The direction of the Fourier transform between kg and k; (and also between k; and
k;) is opposite to convention: We take the Fourier transform with respect to a “fre-
quency” variable (v) and replace it with a “time” variable (7). This is necessary to
be consistent with the kernel functions as defined in (2.3).

Bello [Bel63] provides the following useful interpretation of the kernel system

functions.
e The response to input §(t — to) is time function ko(t. to) with spectrum k(8. to).
e The response to input e/2*%* is time function k(t.6p) with spectrum k3(8, ;).

and also noted. by simple inspection of (2.3). that k¢ and k; are time-frequency duals
of one another, as are k; and k;. Time-frequency duality is a concept introduced in
Bello [Bel64] and discussed briefly in Appendix B.

Despite the simple input-output interpretations, Bello claimed that the kernel
system functions often lack intuitive physical interpretations. For this reason, Bello

[Bel63] examined eight other system function characterizing the linear time-varying

11
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channel. These eight system functions are (2.1).

y(t) = /h(t.r)r(t — 7)dT7:

its time-frequency dual.

Y(0) = /G(O.u).\'(ﬁ —v)dv:

the three functions obtained by taking the Fourier transform of A(t.7) with respect
to t. 7. and both t and 7: and the three functions obtained by taking the inverse
Fourier transform of G(8.v) with respect to 8. v. and both 8 and v. We define these

eight functions (and list Bello’s names for them).

hit.7) input delay spread function y(t) = /h(t. T)r(t — r)dr (2.6)
S(6.7) delay-Doppler spreading function Si.7) = /h(t. rie”I20dy (2.7)
T(t.v) time-varving transfer function T(t.v) = /h(t.r)e"z”"df (2.8)
H(8.v) output Doppler spread function H(O.u):/ h(t.T)e"22"t9+ V) dedr (2.9)
G(8.v) input Doppler spread function Y(9) =/G(0, v)X(9 - v)dv (2.10)
Vit.v) Doppler-delay spreading function Ve, u):/G(O. v)el279dg (2.11)
M(8.7) frequency dependent modulation function M(8. r):/G(O. v)el™ T dy (2.12)
g(t.7) output delay spread function g(t. r)://G(O. v)ed T 0t eTidedy  (2.13)

These eight characterizations were also considered in [Kai63]. From (2.6) and (2.10).

one can derive the following relationship between the dual characterizations h(¢, )

and G(6.v).
h(t.7) = / G(6. v)e ¥ =127 0-1)4gd, (2.14)
G.v) = // h(t. 7)e 7382 (t=T)qsdr (2.15)
12
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In the current literature. h(t.7) is usually referred to as the time-varying impulse
response. (e.g.. [BB99. BPS98. Pro84. TreTl. SA99]) and the delay-Doppler spreading
function. S(#.7). is known simply as the spreading function (e.g.. [BB99, BPS98.
Pro84. Tre71. SA99. Ver98]). Unfortunately. kg .7) is also commonly referred to as
the time-varving impulse response (e.g.. [Z2ad50. Ver98]). We will refer to ko(t.T) as
the time-varying impulse response kernel to avoid confusion.

The relationships of the eight functions via duality and the Fourier transform are

summarized in the following diagram. Duality is represented by a dotted line.

G(6.v) « Fee V(t.v)
. . .
Fr .;z(t.r) Fi .;(9 7)
F-— (2.16)
M(6.7) Fio g(t.7) Frw
.}(t. v) Fis ;{(0 v)

Using (2.6-2.9). we can derive the following input-output relationships.

y(t) = /h(t.r).r{t - 7)dr y(t) = // S(6.7)e’*™® r(t — 7)dédr

(2.17)
y(t) =/T(t.u)e’2""X(u)du Y(0) = /H(O—-u. v)X(w)dv

13
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and using (2.10-2.13). we can derive the following input-output relationships.

Y (8) = /G(e. )X (0 - v)dv Y(8) = // Vit v)e >0 X (0 — v)dtdv
(2.18)
Y(9) = /‘\[(0.7)8_)2’?9.[(7)(1‘:’ y(t) = /g(t— r.7)r(7)dT

We can relate the eight system functions to the four kernel system functions as follows.

ko(t.7) = h(t.t — ) =g(t—-7.7) (2.19)
k(8.7) = //S(u. tled 2T =0 qudr = M(9. T)e 20 (2.20)
ka(t.v) = T(t.v)el?t = //V(,-.9)ef-’"‘-*><9*"'d,~d9 (2.21)
k3(8.v) = H#-v.v) =G(6.0 - v) (2.22)

S(A.7) and V' (t.v) are distinctive in that their input-output characterizations and
relations to the kernel svstem functions involve double integrals. In fact, it is the
double integral formulation involving S(6.7) in (2.17) with the interpretation that
the output is a superposition of time-delayed and Doppler-shifted copies of the input
that makes S(6.7) an extremely useful characterization. For completeness. we note

the inverse relations.

S@.r) = / / ky(v. t)e =0 g4t (2.23)

V(t.v) = / / ky(7.0)e23 -+ 4rdg (2.24)

Although less commonly used in the literature, k3(6,v) plays a pivotal role in

understanding the narrowband and wideband characterizations. For this reason. and

14
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for later reference. we note the mapping between k3 and S.

ky(8.v) = /5(9 —v.T)e 1TV (2.25)
SH.7y = /k3(9+u.u)ef-’"”du. (2.26)

which can be derived directly from the input-output channel characterizations. In
the kernel svstem formulation of the channel. the outputs could be simply expressed
in term of the kernel functions for inputs that were impulses in time and frequency.

For the above characterizations. these relations are:
e The response to 8(t — to) is h(t.t — to) with spectrum (8. ¢ty)e 7270,
e The response to e?2™* is T(¢t.6y)e??™"% with spectrum H (0 — 0y.6y).

For clarity. we display just the front face of the cube in (2.16). which details
the Fourier transform relationships between the four most commonly used system

functions.

h(t.7) i-o. S(6.7)

fr—-u f?—ou (227)
T(t.v) 2% H@9.v)
2.2 Simple Narrowband Channels

In order to get some intuition concerning the channel characterization functions (both
the four kernel functions (2.3) and the additional eight characterizations (2.6) through
(2.13)). we examine what form the functions take for simple channels.

Consider the channel which is just a delay.

z(t) — [channel] — z(t - 7o)

15
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Figure 2.1: ko(¢t. 7) (left) and h(t.7) (right) for delay by 7, channel.

In the case of the time-varying impulse response kernel. this channel is represented by
ko(t.7) = d(t — 7 — 79). In the case of the time-varving impulse response. this channel
is represented by h(t.7) = (7 — 7). Plots of these two functions are displayed in
Figure 2.1.

One useful attribute of a system function is for a visual inspection of the function
to readily reveal some physical properties of the channel. In the case of Figure 2.1,
we see that. for ko(t. 7). a diagonal delta function line crossing through (0. —79) and
(70.0) arises from a delay of 75. For h(t. 7). a delay of 7y corresponds to a horizontal
delta function line 7o from the origin. A channel with several reflections (i.e.. several
different delays). would thus correspond to a system function with several parallel
delta function lines. When the channel involves both a simple delay and a Doppler
shift. the simple delta function lines for both kq¢(¢t.7) and h(t.7) are modulated by
the Doppler shift. Table 2.1 displays the 12 system functions for the delay and delay-
Doppler channels. The system function with the simplest form is S(4.7) which has
the form of the product of delta functions. From this, we interpret a region of localized
energy in S(0.71) centered at (6. 7o) as arising from an echo path with delay 74 and

Doppler shift 6y; see Figure 2.2.

16
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y(t) = x(t — 7o) | y(t) = £(t — mp)el ™"
ko(t. ) St =7 —179) ot —1 — ‘..O)ej"..’ﬂ?ot
k1(9-7) e—}').rr(‘r+?q)0 6'12"""0“9‘\)@*—-_‘
ky(t.v) e)2TIt="To)v o) It +0) =137 T00
kg(g U) (5(9 -_ U)e-Jlﬂ.’ov (5(0 — - 90)6—)23.'014
h(t. T) (5(T - To) 6(7— —_ ,.0)6123:170
S(0.7) | (1 = 7)d(8) 5(r — 19)8(60 — 6,)
T(t‘l/) e—f.”rmu eJQ?Jole—)‘lfrfou
H(8.v) 6—)2".0"'(5(6) e-J‘IﬂTnud(e — 00)
G(6.v) e 30 5(1) e ITTmO=B015(, _ @)
Vitv) | 6(t—r0)d(v) | eI7™%5(t — 79)é(v — bo)
V(6. 7) ki PESRERCIC R PR PESTS
(](t. T') ()-(t - 7o) ejzﬂ’?nt?no’(t _ T‘))eflfr.'ﬂ(,

Table 2.1: Time-frequency characterization functions for the one path delay and one

path delay-Doppler channels. S(6.7) has a very simple form for the one path delay-
Doppler channel.

.(‘o.?n) .‘Bo.bo)

o a

Figure 2.2: S(6.7) for one path channel with delay 7o and Doppler shift 8 (left):
L(a.b) for one path channel with delay b and time dilation aq (right).
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2.3 Wideband Characterization

Starting from the wideband channel characterization.

ylt) / ( b)dadb (2.28)

we derive the frequency domain to frequency domain mapping.

Y() = // L(a. b)L/__x (t — b) e 77 adbdt (2.29a)
Vlal a

= // Lla.b)y/|alr (t') e 72 598 qadpd’ (2.29b)
- / Lla.h)\/1a]X (af) e 7> dadb (2.29¢)

and defining,.
£%(a.0) = /C(a. h)e =27 dp, (2.30)

we obtain

Y(8) = /c"’ a.0)v/]a|X (a8) da (2.31)

We perform the coordinate transform v = a6 and obtain.

,/ c“’ . dv @ 6#0
/ 93 v (2.32)

0)//\/|?cabdadb . 9=0

When considering £, . v and 6 must have the same sign for £‘f)( 5.6) to be non-zero,

and we can express (2.32) as follows.

' /x\/@ﬁf)(g.O)X(u)du . >0
0

Y@ =< X(0) [[ VialCi(a.b)daddb : 6=0 (2.33)
[ Sle? (Go)xwar - a<o

18
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[yt ="zt =0) [y() = (5]

L(a.b) |d(a—1)d(b—bo) | d(a = ao)5(b— by)
E‘z’(aﬁ) (5((1 - ],)e_-’:'j’b"jr (5((1 — ao)e—)‘h'bné

Table 2.2: Time-scale characterization functions for the one path delay and one path
delay-dilation channels.

Note that positive frequency input components give rise only to positive frequency
output components. and negative frequency input components give rise only to neg-
ative frequency output components. This property of the wideband input-output
mapping will play a large role in understanding the differences between the narrow-
band and wideband channel models. Indeed. [SP95] noted the significance of this
invariance in the difference between time-frequency and time-scale analysis.

Table 2.2 displays the wideband characterization functions for the one path delay
and one path delay-dilation channels. In the narrowband case. S(. ) took the form
of the product of delta functions for the one path delay-Doppler channel: In the
wideband case. the one path delayv-dilation channel has the product of delta functions
formulation. We interpret a region of concentrated energy in L£(a.b) centered at

(ao. bo) as arising from an echo path with delay by and dilation parameter aq.

19
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Chapter 3

Narrowband and Wideband

Correspondence

In this chapter we study the correspondence between the narrowband and wideband
channel models by studying the link between time-frequency and time-scale integral
operators. More specifically. we wish to link the narrowband channel model charac-
terized by the dozen system functions discussed in the previous chapter, one of which

was described by the operator.
Ns{r}(t) = // S(0.7)r(t — r)e’* % drdo (3.1)

to the wideband channel description described by the operator.

We{r}(t) =/ L(a.b) \/II‘I-II (‘;—b> dadb. (3.2)

We are interested in the mapping between S and £ for Ns = W,.

20
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3.1 Time-invariance

Before we look to the general narrowband-wideband correspondence. we consider

time-invariant narrowband and wideband channel characterizations.

3.1.1 Narrowband time-invariance

For time-invariance in the narrowband characterization. for all to.
y(t —tg) = / S(0.7)x(t —to — 7)e??™%drdb. (3.3)

That is. an input delay causes nothing more than an output delay. Shifting the time

argument t — t + ¢,.
y(t) = // S(0.7)r(t — 7)™+ 4240, e, (3.4)
and thus. as (3.4) must be true for all £ € L2(R). for time-invariant S(0.7),
/S(O.r)e12"9'd0 = /S(O.r)e’z"’"“")d(). Yto. (3.5)
Stated in terms of h(t.7) = [ S(6.7)e??*®d4, this is,
h(t,7) = h(t + to, 7). Vt,, (3.6)

and thus h(t.7) is constant for all ¢ for a given 7. Using S(6.7) = [ h(t.7)e=727%d¢,

we see that for time-invariant S(6. 7).

suppS(0.7) = {(8.7): 6 =0.vr}. (3.7)

21
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(3.7) is necessary. but not sufficient for time-invariance. \We have vet to define the
space of valid S(8. 7). For example. if the allowable set of S(6. 7) includes distributions
such as.

S(8.7) = 5 (B)(r — to) (3.8)

where ¢’(8) is the derivative of the delta-function. then the input-output relation is.

y(t) = //«5’(9)(5(,- — to)r(t — 7)e* ™ drdl (3.9a)
- /6’(9)x(t—t0)e-’2"9'd0 (3.9b)
= —/45(9)1(t — to)j2mte’ ¥4 dd (3.9¢)
= —)27tr(t — to) (3.9d)

In moving from (3.9b) to (3.9c) we have used.

/WMﬂmw=—/ﬂwﬂmM=—ﬂmv (3.10)

(3.9d) is not a channel output with a physical interpretation. We assume the channel
produces real-valued output given real-valued input. and this assumption is violated
in (3.9d). Also. the multiplicative factor of ¢t has no physical interpretation in the
transmitter/scatterer/receiver model we are exclusively considering. For these rea-
sons. we will consider S(8. ) which do not include derivatives of delta functions. In

general. using

/&”wVMMO=V4rﬁ”my (3.11)
for
S(8.7) = 8™ (8)8(T — to), (3.12)
22
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we see the input-output relation is

y(t) = (—j27t)"r(t — to). (3.13)

(3.13) does not describe a desired input-output relationship for n > 1 due to the
multiplicative factor of ¢" and the fact that the channel output is imaginary for real-
valued input for odd n. For these reasons. we restrict the space of allowable S(6. 7)
to not include distributions with derivatives (of any order) of delta functions. Note
however. when S(6.7) only contains contributions from € = 0 and does not involve

the derivative (of any order) of a delta function (i.e.. S(8.7) = §(8)Sy(7)).

y(t) // S@#.7)r(t — 7)e?* " d+dh (3.14a)

/SO(T)I(t — 7)dT (3.14b)

we obtain the time-invariant channel characterization. This of course makes sense
as the Doppler shift is introduced as a model of the effect of motion on narrowband
signals. Zero Doppler shift. § = 0. means no motion. which results in time-invariance.
So. the space of allowable S(6.7) should include distributions with delta functions.
but exclude distributions with the derivatives of delta functions or any order !.

For later reference, we determine the support region for the time-invariant com-

ponent of k3(6.v) using (2.25) which we repeat here.
ki(0.v) = /5(9 —v.7)e ¥ dr (3.15)

S(@ — v.7) is time-invariant if its support is on the § — v = 0 line. thus k3(8,v) is

time-invariant if its support is on the 6 = v line.

'One such space is the modulation space M!-*. Modulation spaces were introduced in {Fei83|:
Consult the relevant chapters in {Gro00] for illumination concerning many of the properties of mod-
ulation spaces and their application in many time-frequency analysis problems.
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3.1.2 Wideband time-invariance

Time-invariance in the wideband characterization is defined. for all ¢,.

. } t—»b
ylt —ty) = / Lla.b) ,!__'r ( — t0> dadb.
la

\/ a

Shifting the time argument t — ¢t + ¢,.

_ 1 t+tog—>b
y(t)—//C(a.b)\/I;'r< " —t0> dadb.

which is true when.

t+ty—b t—»b
‘—"—(‘—"—f(;= . Y.
a a

and thus.

(@ — 1)ty = 0.

So. for time-invariant £(a. b).

supp £L(a.b) = {(a.b) : a = 1.Yb}.

(3.16)

(3.18)

(3.19)

(3.20)

If £(a.b) contains derivatives of delta functions. then the channel output will depend

on the derivative of the input signal. As before. this has no physical interpretation,

so we exclude distributions with the derivatives of delta functions from the space of

allowable L(a.b). However, £(a, b) can contain delta functions. For example. consider

the case with contributions only when a =1 (i.e., £(a.b) = é(a — 1)L,(b)).

t—b

y(t) = //E(a. b)—ﬁr( " )dadb
= /Ll(b)l‘(t -~ b)db

24
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| characterization [ time-invariance support condition |
S8.7) supp S(8.7) € {(6.7) : 6§ =0}
L(a.b) supp L(a.b) € {(a.b) : a =1}
ky(0.v) supp k3(6.v) € {(8.v) : 8 = v}

Table 3.1: Support of time-invariant component of S(8.7). L(a.b). k3(8.v).

We obtain the time-invariant channel characterization. This also makes sense as the
time dilation/contraction parameter a models the effect of the increasing/decreasing
path lengths. The a = 1 case is the no motion case which is time-invariant.

We summarize the support conditions for time-invariance for the channel charac-

terization discussed in this section in Table 3.1.

3.1.3 Time-invariant correspondence

As (3.14b) and (3.21b) are true for all r € L*(R). we conclude that time-invariant S

and L have the following form and mapping.

L(a.b) =d(a~1)f(b) — S(8.7) = §(8)f(7). (3.22)

This result could have been anticipated from Table 2.1 as we know that the support
of the simple one path delay channel represented by S(6.7) is always on the § = 0
line

S(8.7) =4(8)d0(7 — 7o) (3.23)

and similarly, from Table 2.2, the support of the simple one path delay channel

represented by L(a.b) is alwavs on the a = 1 line

L(a.b) = 6(a — 1)d(b — 7o) (3.24)

One fact made clear by the derivation of this result is that smooth S(8,7) or
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L(a.b) have no time-invariant components: In order for S(6.7) or L(a.b) to possess
a time-invariant component, they must have impulsive energy along the § = 0 and

a = 1 lines respectively.

3.1.4 Time-invariant/varying split

[t will be useful to separate the time-invariant component from the time-varying com-
ponent in the channel characterizations. We define Sp(7) as the impulsive component
along 8 = 0. if any. of the characterization. and we define S(. 7) as the characteriza-
tion with this impulsive component removed. Considering these two components, we

have the following division of the narrowband characterization.
S(8.7) = 8(8)So(7) + S(.7) (3.25)
We can think of this division as arising from the following split.

S.7) = (1-e +e)S(0.7) (3.26a)

= e S(0.7) + (1 - e™*)S(4.7) (3.26b)

when we let a — oc. Removing the non-impulsive component from S(6.7) for 8 =0
does not affect the action of the operator as the & = 0 line has measure zero.

We can similarly split the wideband characterization.
L(a.b) = d(a— 1)Ly(b) + L(a.b) (3.27)

where the first term é(a — 1)L,(b) captures the impulsive component along a = 1, if

any. and the second term L£(a, b) is the characterization with this impulsive component
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removed. As before. we can think of this division as arising from the following split.

Lla.b) = (1—e @V 4 gmala=1?)piy py (3.28a)

eV L(a.b) + (1 — e~*@=V*) L(a, b) (3.28b)

I

when we let @ — >x. Removing the non-impulsive component from L(a.b) for a = 1
does not affect the action of the operator as the a = 1 line has measure zero.

The mapping of the time-invariant component between S and £ is understood.

So(7) = Ly(7). (3.29)

The mapping of the time-varying component is the main subject of the remainder of
this chapter. To better understand the mapping. we go through the k; representation

of the channel: This plan is depicted in Figure 3.1.

3.1.5 Summary

In summary.

e The time-invariant component of the channel represented by £(a. b) has support

(a=1.b€ (~00.00)).

e The time-invariant component of the channel represented by S(8, 7) has support

(0 =0.7 € (—oc.ox)).

e \We can split the channel into time-invariant and time-varying components.

S(.7) = 6(0)So(r) + S5(8,7) (3.30)
L(a.b) = d&(a—1)Ly(b) + L(a.b) (3.31)
27
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S(6. 1)
RN
time-invariay/ \\ time-varying

t/ \\\
8(8)So(7) S.7)
k'g(g U)
5(a - 1)Ly(b) £(a.b)
\\ e
N
. /
L(a,b)

Figure 3.1: S(0,7) and L(a. b) can be separated into time-invariant and time-varying
components. For the time-invariant component for equivalent channels (Ms = W,),
So(7) = L£,(7). For the time-varying component, we will use the frequency-frequency
kernel k3(,r) as an intermediary to derive the relationship between 3’(0, 7) and
L(a.b), the time-varying components of S(#, 7) and L(a.b).
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e For N5 = W,. the time-invariant component correspondence is

So(7) = Ly(7). (3.32)

3.2 Causality

One common assumption is that the channel is causal. that is. that the output cannot

anticipate the input. Stated formally. an operator O is causal if.
Li(t) = 12(t). V¢t < 7 — O{r }(t) = O{r2}(t). vt < . (3.33)

That is. identical inputs up to time 7 produce identical outputs up to time 7 as well.

This is true. for example. in the case of y(t) = J ko(t. 7)x(7)dr. when.
ko(t.7) = 0.Vt < 7. (3.34)

The causality condition on £(a.b) is worth discussing. and we will now prove that:

Theorem 1.

| The causal time-scale channel is time-invariant. |

Proof. From the wideband characterization.

y(t) = /

looking to the time dependence, we see that the support of £ must satisfy,

( ) dadb, (3.35)

suppC(a.b)C{(a.b) : cg‘;b. we(—oo,oo)} (3.36)

in order to ensure (3.33). Let us first consider (3.36) for t € (to.t;), to < t;. The
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allowable support region in this case is.

, a<0and b< —tha+t,. or
(a.b) : (3.37)
a>0and b> —tqga+tyand b> —ta + ¢,
and is depicted as the crosshatch region in Figure 3.2.

Now we consider this support region as ty — — and as t; — . As tg — —x.

in the a < 0 case. we see that.

b< —tha+ty (3.38a)
bito> —a+1 (to < 0) (3.38b)
a > 1 (to — —x) (3.38¢)

and thus causal £(a.b) are zero for a < 0. For a > 0. we have,

b> —tea+tg (3.39a)
b
0
a< 1 (tg — —x) (3.39¢)
and.
b> —ta+t (3.40a)
b
™ > —a+1 (¢, > 0) (3.40b)
1
a> 1 (¢ — ) (3.40c)

Combining (3.40c) and (3.39c) we obtain a = 1 and reinserting this back into (3.39a)
or (3.40a). we see that b > 0. Thus the allowable support region becomes the half

line a = 1, b > 0. But we have just seen in the previous section that £(a, b) which
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Figure 3.2: The crosshatch region in plot (a) is the region of allowable support for
causal L(a.b) for t € (to,t1). As tp — —>c the line with slope —tq rotates counter-
clockwise about (1.0) and it approaches the line a = 1. The allowable support region
associated with this line is the region below the line for a < 0 and the region above
the line for a > 0; these regions are depicted with negative slope parallel lines. As
t; — oo the line with slope —¢, rotates clockwise about (1,0) and it approaches the
line a = 1. The allowable support associated with this line is the region below the
line for @ < 0 and above the line for a > 0; these regions are depicted with positive
slope parallel lines. As to — —oo and t; — oo. the region of allowable support for
causal L(a.b) becomes the half line a = Bb > 0. shown in the plot (b).
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have support along this line are time-invariant. O

Why does causality result in this strong limitation of the channel? As we have seen.
this limitation arises from the consideration of the infinite past and infinite future
under the constraint of causality. Intuitively. when the channel has a contraction
component. that is. support for some a < 1. the transmitted signal is being received
more quickly than it is being emitted. This is not a problem when considering only
the past: the receiver at a point in the past is simply further behind in time relative to
the transmitter. Causality requires that the receiver is always behind in time relative
to the transmitter. Looking to the future. however. the fact that received waveform
is being received more quickly than it is being emitted means that after some point in
the future. the received signal has not vet been emitted. which violates causality. This
fact is depicted in Figure 3.3. Similarly. if the channel contains a dilation component.
support for some a > 1. the transmitted signal is being received more slowly than it
is being emitted. This is not a problem when considering only the future, the receiver
simply gets further and further behind in time relative to the transmitter. Looking
back in the past. however. this effect is reversed and before some point in the past.
the signal received had not vet been emitted. This is also depicted in Figure 3.3.

This result. while mathematically accurate. is not as limiting as first appears. The
normal time intervals of interest at any given time in the communication scenarios
we are likely to consider are quite small, which limits the region eliminated from the
potential support of L£(a.b) in order for it to be ‘locally’ time-invariant. Also, the
limits on the speeds of the transmitter and receiver and the rapid decay of signal
energy with propagation distance limit the region where £(a.b) could potentially be
non-zero far more than this causality constraint does when considering small time
intervals. Thus. by redefining the time origin for each processing interval. the region
eliminated from consideration will be (for a small interval (¢o.¢;)), essentially just Q2

(a < 0andb>0)and Q4 (a > 0,b < 0) and thus does not limit the channel to be
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0 ;{(L—% ty

&, b

(a)ag <1
by (1= o
y
tx
t}/(l-:b) —bolao
(b) ag > 1

Figure 3.3: Causality for the wideband channel. t, is the time at the receiver and
t; is the time at the transmitter. The lines between ¢, and t,. a depiction of the
mapping t, = '—%”“. are shown for ag < 1 in plot (a) and ag > 1 plot (b). In both
cases. the receiver at time t, = 0 receives the signal sent from the transmitter at
time t, = —by/ag. Lines with positive slope are causal: Lines with negative slope
are anti-causal. For ag < 1. there exists some point in the future, t, = ty = 2.
where the channel becomes anti-causal. For a < 1. there exists some point in the
past. t, =t, = l—'_"?a—n before which the channel was anti-causal.

time-invariant.

As discussed in Appendix A. the wideband model is not truly time-varying, £(a.b)
does not depend on t. It is a snapshot of an environment in which objects are
moving with constant radial velocity. but these velocities are constant for all time
and the channel transformation that occurs when the transmitter and receiver are
collocated cannot be represented using L(a.b). This restriction coupled with infinite
time consideration forces all velocities to be zero. and thus, time-invariance. A more

general characterization would be,

1 t—b
y(t) = ﬂ'P(a, b,t)\/mz:( - )dadb (3.41)

which was proposed in [You95|. who also noted that L£(a.b) is a special case of
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ko(t.7) =0, Yt < 7
h(t.7)=0.¥r <0
SH.7)=0.¥r <0
L(a.b) =0.VY(a.b) except (a =1.b>0) (t€(—2c.x))
a<0and b> —tga+t¢t9. or .
L(a.b) =0. ¥(a.b) : a>0and b< —tga+tgand b < —tja + ¢, (€ (to.ty))
Li(a.b)=0.Y(a.b) : b< —toa+tgorb< —tia+t; (t€ (to.t)))

Table 3.2: Causality constraints for channel characterizations.

real-valued h(t. ) real-valued kq(t, 7) real-valued g(t. 1)
56,7) =85(-6.7) ki(0.7) = ki (-6,7) M@O.7)=M(-6.7)
T(t.v) =T(t. -v) ka(t.v) = kyo(t. —v) V(t.v) = V(L -v)
H(6.v) = H(-6.-v) k3(0.v) =k3(-6,-v) G(0.v) =G(—6.—v)
real-valued L(a.b) L (a.6) = L?(a.-0)

Table 3.3: Real-valued channel implications.

P(a.b. t).
L(a.b) = P(a.b.ty) (3.42)

which emphasizes the wideband characterizations validity only for a snapshot in time.

Incidentally. [You95] also noted we can see the narrowband model as a special case
of P(a.b,t),
h(t.7) = P(a.7.t)é(a - 1). (3.43)

We summarize the constraints resulting in causality for several of the characteri-

zations in Table 3.2.

3.3 Real-valued channels

We will assume the channels have real-valued impulse responses so that real-valued
inputs produce real-valued outputs. We summarize the implications this assumption

has for the channel characterizations in Table 3.3.
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3.4 Wideband to Narrowband

3.4.1 L[ — four narrowband kernels

We first establish the relation from wideband to narrowband. showing that for every

time-scale kernel. there exists a corresponding time-frequency kernel. Starting from

(3.2).
y(t) = //C(a.b) ,1_1: <t — b) dadb (3.44a)
Vlal a
= / VialC(a.t = a7)r(7)dadr (3.44b)
= / VialCla.t = a7)da £(7)d7 (3.44c)
) i‘u?:.’l ~
Therefore.
ko(t.7) = / \/’|;1_|£(a.t —a7)da (3.45)

We remark that when integrating over t. ky derived from £ does not depend on .

That is.

/ko(t.r)dt = // Va|L(a.t — ar)dadt (3.46a)
/ V]alL(a. t)dadt (3.46b)

This aspect of the correspondence shows that the DC component of the output de-
pends only on the DC component of the input and is discussed further in the Remarks
later in this section.

From (3.45). we can derive the relationship between the four kernel system func-
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tions and L.

ko(t.7) = /\/EC(a.t—-ar)da
/\/—[a_iﬁ‘z)(a.O)e"l""oda

ka(t.v) = / 1 L"‘?-l(a.u/a)e)'lxut’nda

Vial

kl(O.T)

ky(0.v) = // ko(t.7)e 72" v dtdr
= ///\/|a|C(a.t—ar)e‘ﬂ”o(ﬂ""dadtdr

= // VI9a|Cla. bje 127 b+amB 2570 o -

— /// \/l(—l[C(G b)(,—).‘m)hl_/l:f(u—ad)da(lbdl_

= // \/mﬁ((l. ble 375 (v — af)dadb
// \/mc(a‘ b)e'l'-’-"""é (g— — a) dadb : 6#0

16|
a(u)// Va|L(a. b)dadb . =0

When considering general £L(a.b). we can simplify (3.48f) to.

JI&lc® (5.6) - 640
ks(6,v) =
5(1/)/ Vla|C(a.b)dadb : 6 =0

(3.47a)
(3.47b)

(3.47¢)

(3.48a)
(3.48b)
(3.48c)
(3.48d)

(3.48e€)

(3.48f)

(3.49)

which can also be derived directly from (2.32) and the definition of k3(6.v). When

L(a.b) has support only for @ > 0. that is £.(a.b). d (¥ — a) will only be non-zero
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when # and v have the same sign. and thus.

ViIsic? (5.6) £>0. 8#0
ky(0.v) = 0 . £<0. 9#£0 (3.50)
J(u)// V]alC.(a.b)dadb - 8 =0

which can also be derived directly from (2.33) and the definition of k3(8.v).

3.4.2 Remarkson L — k;

1. Examining the 8 = 0 case in (3.49). we see that k;(0.v) = 0. Yv # 0. Thus.
the DC component of the output depends only on the DC component of the
input. This is true. in general. for the wideband channel representation. as we

can derive from the input-output wideband characterization.

Oy _ 1 t—b -
}(0)—/y(t)dt = /// \/mﬁ(a.b)x( - )dadbdt (3.51a)
[/ \/Hc(a.b)dadb]/:(t)dt (3.51b)

- [// \/ITlC(a.b)dadb} X(0) (3.51c)

This restriction does not apply in the narrowband characterization. From the
definition of k3(6.v). we see that that the DC component of the output in the

narrowband characterization depends on all frequency components of the input.

Y(0) = / ks(0, ) X (v)dv (3.52a)
- / [ / S(—u.r)e“-’g"”"dr] X(v)dv (3.52b)

The narrowband channel models time contractions and dilations as frequency

shifts, and thus. can shift arbitrary input (non-DC) frequency components
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down;up to DC. as is clear from (3.52a). The input-output shifting in frequency
has a physical realization. For example. a pure tone will shift toward zero fre-
quency for transmitter-receiver pairs moving apart from one another. However,
the shifting of an AC input component to DC output has no physical realization
under the assumption that the magnitude of the rate of transmitter/receiver
path length change is strictly less than the speed of wave propagation. In con-
trast to the narrowband model. the wideband characterization prohibits such
unrealizable mappings. Recalling the frequency-frequency representation of the

wideband channel (2.31).
Y() = /c‘-"m.f))vﬁ.\'(ue)du (3.53)

we see that while input components can be shifted in frequency. as a is strictly
larger than 0. no non-zero frequency component can be shifted to DC. As we are
interested in physically realizable channel characterizations. we should consider

k3 that forbid this. that is,
k3(0.v) =0.Vv # 0. (3.54)

This can be stated equivalently that a necessary condition for k3 and £ to have
the same action. k3 must not have support on the 8 or v axis. except for at the
origin. (6.v) = (0.0). This constraint will be shown to be contained in in a more
general one (see (3.58)) shortly. [t should be pointed out that. as we consider
k3(6,v) which may have impulsive components (i.e.. delta functions), the axis
lines do not have measure zero (as would be the case for function spaces) and

removing them from the characterization does affect the action of the operator.

2. From the treatment of the DC component. we know that.
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There exist k3 (and thus S) with no corresponding L. (3.55)

We have seen that k3 with support on the 8 or v axis (with the exception of the
origin). have no corresponding £. Now we examine the mapping specifically to
L.. In this case. the DC component mapping is but one difference. and here
we characterize all the k3 that have no corresponding £.. We see in (3.50) that
k3(6.v) derived from £ _(a.b) have support in {(8.v) : 6v > 0 or (6.v) = (0.0)}.
This constraint came about as a result of the value of a being limited to (0. o),
which we can see directly from the input-output relationships. In the wideband
case,

Y(0) = /C'Z'(a.())\/l_a—l.\' (af) da. (3.56)

with a > 0. positive input frequencies can affect only positive output frequencies
and negative input frequencies can affect only negative output frequencies. This
constraint is not present in the narrowband case where each output frequency

component can depend on any input frequency component. regardless of sign:
Y(8) = /k3(0.u)_\'(u)du (3.57)

Thus. the k3 that have no corresponding £, are those k3 having some support in
Q2 (6 <0.v>0).Q4(0>0.v<0). or along one of the axis lines (§ =0.v #0

or v = 0.0 # 0). We can state this fact formally.

L(a.b) =0.Va < 0 — k3(6.v) = 0.Vr < 0 except (6.v) = (0,0) (3.58)

This correspondence is displayed in Figure 3.4.

3. But what does the constraint in (3.58) eliminate? Consider a simple one path
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Figure 3.4: If supp £L(a.b) C {(a.b) : a > 0.Vb} then the corresponding k3(6.v) has
support in Ql and Q3 (and (6.v) = (0.0)).
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Figure 3.5: The support of k3(6. v) for the one path delay-dilation channel.

delay-dilation channel, £(a.b) = §(a — ag)d(b — by). The corresponding kj is,

ky(0.v) = / V0ald(a — ao)d(b — by)e 7**§(v — af)dadb (3.59a)
= laole 7™ §(v — agh) (3.59b)

which has support along the line v = aqf. which is depicted in Figure 3.5.

We see that:
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e a¢ > O results in k3(6.v) having support along a line through Q1 and Q3.

and

e ao < 0 results in k3(6.v) having support along a line through Q2 and Q4.

From the wideband characterization. we associate ap > 0 (and thus Q1 and
Q3 of k3) with positive-time copies of the signal. and we associate ag < 0 (and
thus Q2 and Q4 of k3) with time-reversed copies of the signal. although such

an interpretation may only be valid for impulsive channels.

4. From the Fourier transform relation. F{z}(—t) = X(—6). we see why Q2 and

Q4 of k3(6.v) result in time-reversal components of the channel. Considering.
k3(8.v) = 8(8 — 6y)0(v — o). (3.60)

for which the input-output relation is
Y (8) = §(0 - 80) X (). (3.61)

we can interpret the four possible quadrant relations in the following way.

o Q1, when vy > 0 and 6y > 0, the channel is a Doppler shift by 6y — vy,
e Q3, when vy < 0 and 6y < 0, the channel is a Doppler shift by 6y — vy,

e Q2. when vy > 0 and 6y < 0. the channel is a time-reversal and Doppler

shift by 6y + 9. and

e Q4. when vy < 0 and 6y > 0. the channel is a time-reversal and Doppler

shift by 89 + vp.
Using this interpretation. we define the following concepts:

Definition 1 (Time-forward channel). A channel is a time-forward channel

if the support of its k3(6.v) representation is exclusively in Q1 and Q3 (and the
41
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origin):

suppks(8.v) C {(8.v) : Bv >0 or § = v =0} (3.62)

Definition 2 (Time-reversal channel). A channel is a time-reversal channel
if the support of its k3(8.v) representation 1s exclusively in Q2 and Q4 (and the
origin):

suppks(8.v) C {(8.v) : v <0 or § = v =0} (3.63)

Definition 3 (Non-time-forward channel). A channel is a non-time-forward
channel if the support of its ks(6.v) representation contains components in Q2
or Q4.

suppks(@.v)N{(B.v) : Qv <0} #40 (3.64)

Note. using these labels. a time-reversal channel is a special case of a non-time-
forward channel. £, characterizes time-forward channels. and £_ characterizes

time-reversal channels.

[S4]

The support constraint on k3 has implications for the other narrowband char-

acterizations. We derive the implications for S(4.7) and conclude that.

Theorem 2.

[Causal, time-forward narrowband channels must also be time-invan’ant.J

Proof. The mapping from kj; to S is (2.26), which we repeat here,
S@.1) = / k3(0 + v.v)e¥dv. (3.65)

For k; with support only in Q1. Q3. and the origin, let us consider S(8.7) as
a function of 7. For a given 6. say § = 6,. then S(6o, 7) is the inverse Fourier

transform of k3 along the line v = 6 — 6. depicted in Figure 3.6. For time-
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forward S5(6.+)

6 >0. v< —-fgorv>0
supp F{S(ly.T)}(v) T S v - (3.66)
0()<0. U<OO[‘U>()Q

If we also want S(f.7) to be causal. we require (from Table 3.2).

S(#y.7) = 0. ¥7 < 0. (3.67)

2
-

However. as Wiener eloquently stated ([Wie49]. page 37)*:

No [causal] filter can have infinite attenuation in any finite [nonzero]
band. The perfect filter is physically unrealizable by its nature. not
merely because of the paucity of means at our disposal. No instrument
acting solely on the past has a sufficiently sharp discrimination to
separate one [band of frequencies| from another [band of frequencies]

with unfailing accuracy.

This quote is an application of the Paley-\Weiner theorem.

. o 0
h(t) = 0.Vt < 0 and h(t) € L* — / Ii‘-mdﬁ? < 20. (3.68)
e 1462
Using the theorem. we conclude,
S(6y.7) =0. VY0 # 0. (3.69)

which means that the support of S(8.7) is on the § = 0 line, and thus. S(6. 1)

must be time-invariant. |

We will see in Chapter 4 that the constraint that the channel is time-forward

2Paraphrasing by {Sie86)]. see page 176.
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is necessary for channels which have an equivalent lowpass characterization. an
important property for practical implementations of communication receivers.
[s the result that causal. time-forward. time-varying narrowband channels do
not exist is essentially a restatement of the result in Theorem (1) that there
exist no time-varving causal wideband channels? The answer is not clear at

this point and further study is needed.

Often results derived from the Paley-Weiner theorem have little practical im-
portance. The fact that perfect bandstop filters are not physically realizable (a
conclusion drawn from the Paley-Weiner theorem) has limited practical impor-
tance because filters can in fact be designed whose performance is arbitrarily
close to that of an ideal filter: 'Infinite attenuation’ is not necessary. In fact. the
common bandlimited signal assumption itself leads to signals which are neces-
sarily time-infinite. Again. ‘bandlimited’ is not necessary: ‘essentially’ bandlim-
ited will suffice. In these examples. mathematical idealizations lead to extreme
conclusions which. when the idealizations are relaxed. fade away. Perhaps such

is the case here.

6. Causality and time-reversal.
Just because a channel is causal does not mean the channel cannot be a time-

reversal channel. Consider the following channel.

ot+7) t>0
ko(t.T) = (3.70)
0 : otherwise
which has output,
I(—t) t>0
y(t) = (3.71)
0 : otherwise

The channel is causal. but is a time-reversal channel as well.
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Figure 3.6: The crosshatch region is the allowable support region for time-forward
k3(#.v). The inverse Fourier transform along the line v = 8 — 6y vields S(6,. 7).

7. We show in Chapter 1 that (3.58) is also the necessary and sufficient condition

for the existence of a low-pass equivalent representation of the channel.
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3.4.3 L — eight remaining narrowband characterizations

Returning to the mapping from £(a. b) to the narrowband characterizations. starting

from (3.45). the remaining system functions can be related to £(a. b) as follows.

hit.7) = / VialL(a.(1 — a)t + at)da (3.72)
qit.7) = / \/ﬁﬁ(a.t + (1 —a)r)da (3.73)
M@B.r) = /V la] L2 (a.§)e?2 71 =0 dq (3.74)
Tit.v) = / ,1_[.“”((;_ v/a)ed¥ s~ dq (3.75)
Vlal
.
oL (G 0+v) 1 O+v#0
Hf.vy = (3.76)
(v / Vviallla.b)dadb : #+v =0
BHALD (552.9) L B#£0
Go.v) = { & ? (3.77)
6 -v // Via|l(a.b)dadb : 6 =0
Vity) = / L LD (a. v/a)e™dq (3.78)
N
and. taking the Fourier transform of (3.72) with respect to . we obtain.
S(6.7) / VialL(a. (1 = a)t + at)e ?**dadt (3.79)

Note. when L(a.b) is time invariant (i.e., L(a.b) = §(a — 1)L£,(b)). the mapping in
(3.79) results in.
S8.7) = L(7)4(6) (3.80)

which is the time-invariant form of S(6. 7).

To express S(6, 1) directly in terms of L(a.b), we divide the integral into two
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parts. one containing the region around a = 1 the other for all other a.

S58.7) =// (1 — e a=h? 4 e"’“"”:) Via|L(a.(1 — a)t + a7)e " dadt (3.81a)

n— 2C

= lim (//e“’("'”lvlalﬁ(a. (1 — a)t +ar)e ?*®"dadt

+// (1 - e-’“‘“-“’) ValC(a.(1 = a)t +a,—)e-ﬂ*9'dadt) (3.81b)

= L£,(7)4(0) -+-/ \/]a_l[:(a.(l — a)t + ar)e 7> dadt (3.81c¢)

We then perform the coordinate transform b = (1 — a)t + a7 and obtain,

S(6.7) = L,(7)8(8) +// “—-"_Iaallc'(a.b)e'ﬂ*o%dadb

(3.82)

Here. we see the time-invariant/time varving split. From our discussion in Section 3.1.

the first term in (3.82) contains the time-invariant components of the channel, and

thus second term in (3.82) contain the time-varving components.

3.5 Narrowband to Wideband

In the previous section. we characterized the mapping from the wideband represen-

tation to the dozen narrowband representations. The natural question arises,

is £(a.b) in terms of S(A. 7) and the other system functions?

3.5.1 S—LC

We use (3.49). which we repeat here. as a starting point.

VIsle® (5.0 640
ky(0.v) =
5(1/)// Va|L(a.b)dadd : =0
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Note that. for k3(8.v). the 8 # 0 and 8 = 0 cases correspond to the AC and DC
output components of the transfer function. First we consider first the DC (§ = 0)
case.

As discussed in the first remark in Section 3.4.2, in order for there to be a mapping
between k3 and L. the support of k3 cannot contain any points or segments on the
# or v axis except § = v = 0. The (6.v) = (0.0) point controls the DC input to
DC output mapping. The signals that we are interested in. wireless communication
signals. however. have negligible DC energy. Clearly. narrowband signals have their
energy concentrated in a small frequency range surrounding the carrier frequency.
Even impulse radio signals. also known as "ultra-wide bandwidth’ signals, must have

no DC component due to antenna principles{Hus02]. Thus. we assume.

X(0)=0 (3.84)

for our signals of interest. and we ignore the 8 = 0 case. as it has no effect on the
input-output relationship.

Considering the 8 # 0 case.

. — J|Y |2 (Y
ka(0.v) = /|5 (5.9) (3.85)
which becomes (a = %).
LP(a.0) = ﬂz—."’“" af) (3.86)
which is.
/ L(a.b)e 7% = \'Z'akg(e.aa) (3.87)

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and we invert and obtain

16l

N

L(a.b) = — k(0. af)e’ 7% d0 (3.88)

which maps one of the narrowband characterizations to the wideband characterization

under the assumption that the input signal has a negligible DC component.

3.5.2 Remaining narrowband characterizations — [

For $(6.7). ignoring the DC component as before. starting with (3.88) and using

(2.22) to map k3 to H and then (2.16) to map H to S,

Lla.h) = / d k(0. ab)e? >0 (3.89a)

Val
191 -0h .

= —H((1 = a)b.ab)e’*"%d0 (3.89b)

\/|(l'
[0| —-32%xrab _12x6b

= ((1 —a)f.7)e 7" ="dbdr (3.89c¢)

// \/Ia

and finally.

// '9' S((1 — a)f. 7)e?™% a7 qodr (3.90)

To check. we examine (3.90) for time-invariant S(6,7) = 8(8)So(T).

Cla.b) = // i Sl 1 — a)8)e’? =" d4gdr (3.91a)
= 4(1 —a) / Se(r)e??9-"dgdr (3.91b)
= 5(1-a) /s(,(r (3.91¢)
= §(1—a)So(b) (3.91d)

and obtain the time-invariant form of £(a. b).

When we expressed S(6.7) directly in terms of L(a,b), moving from (3.79) to
419
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(3.82). it was natural to split the characterization into time-invariant and time varving
components. A similar split arises when performing a coordinate transform to express

L(a.b) directly in terms of S{f.7). Transforming (1 — a)8 — 6.

iHi S 2xgb=ar
e 5(0. 1) TTdOdr : a #1
L(a.b) = 6(a — 1)So(b) + // Vial(l = a)?
0 a=1

(3.92)
\What are the form of the other system functions? The impulse response functions.
ko(t.7). h(t.7). g(t. 7). can be related starting from (3.88) and using the relations

described by (2.14) and in (2.19).

Lla.b) = / ""‘A(e af)e?* % dg (3.93a)

|6} —J2m6(t—ar—h)

/// ——ky(t. T)e IV ded T dO (3.93b)
\/|a

/// Je~I2mé(t1-a)t+ar—b) 444,49 (3.93¢)
\/la

/// g(t. 7)e 130+ 1-a)7=b) 4+ d9 (3.93d)
\/_

Further simplification of these equations by swapping the order of integration is not

possible in this case as.

/// \'/?lz_lmo(t. 7)|dtdrdd = x (3.94)

Using (3.88) and the relationships between system functions, the remaining six
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svstem functions can be related.

Lla.b) = //ﬁ'7 o1 (8. 7)e?? e dgd - (3.95a)
— // Iol ’)19(b+(n—l)r)d9dr (395b)

vlal
= / 'c(e(l-a)o)eﬂ*“do (3.95¢)

Vla|
= // " )8)e?* 9= dtdg (3.95d)
// |9| §)e 270t dedg (3.95¢)
/ 6)e 30 = q¢do (3.95f)

3.6 Simple Narrowband-Wideband Correspondence

We look to some simple channel models and examine the mappings (3.82) and (3.92).

3.6.1 Wideband (delay-dilation) single path
L(a.b) =d(a — ag)d(b~ by) (3.96)

It follows from (3.82) that.

ol -jametzi
S@.7)={ Ml P G0#l (3.97)
4(0)o(7T — by) : ag =1

and. plugging this into.

y(t) = / S(6. 7)z(t — )2 drde. (3.98)
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we indeed obtain.

1 t — bo
y(t) = \/WI< p” ) (3.99)

We can derive the time-varving impulse response characterization h(t.7) for the

wideband single path channel.

hit.7) = /S((),T)e-"z’o'd() (3.100a)
—“‘/|‘”"Ie‘f-”‘"“5-i%:eﬂ’“<19 (3.100b)
V _ - — (1 —aq)t
— l(10| 5 <b0 ao7 (1 aO) ) (3100C)
|l -~ a()l 1 —ap
= Vlaold(bo — aoT ~ (1 = an)t) (3.100d)

which is also valid when ag = 1. We can compare this result to that of the single
narrowband path (delay by 79. Doppler shift by 6,) channel. h(t.7) = §(7 - 1) el 2%,
The wideband path gives rise to a delta function line with slope "—‘{“—j‘ intersecting the
T-axis at bp/ao: The narrowband path gives rise to a modulated delta function line

parallel to the t-axis intersecting the r-axis at 7.

3.6.2 Narrowband (delay-Doppler) single path

S(0.7) =68(0 —80)8(T - 70) (3.101)
It follows that.
18] 2meeiT=R #1
L(a.b) = { Val(-ap (3.102)
8(80)d(b — 19) ca=1
and. plugging this into,
(t) = / Cla.b)——z (ﬂ) dadb (3.103)
y R " i .
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one path delay only one path delay-Doppler. 89 # 0 one path delay-dilation. ag # 1
S8.7) | 5(6)(r ~ to) 5(6 — 80)8(r — to) Yoo 0 H
{90l 2#9()5;?—:‘1 £
Lia.b) | a~1)5(b~— ty) { Tt 2#1 8(a — a0)s(b — to)
0 : a=1
h(t.T) 8(T — to) 5(7 — tg)el 30 V/120|8((1 — ao)t + agT — to)
k1(8.v) | 4(8 — v)e~I?tov (0 — v — By)e 3 tor V|Gole=7%0§ (1 — aofh)

i

Table 3.4: Time-frequency and time-scale characterization functions for the one path
delay-Doppler and one path delay-dilation channels.
we indeed obtain.

y(t) = r(t — 7o)e? ™™ (3.104)

3.6.3 The narrowband assumption

The form of the channel characterizations for the simple one-path models (including
the time-invariant one path model) are displayed in Table 3.4. Neither (3.97) nor
(3.102) are well-localized despite the fact their corresponding generating characteri-
zations are localized. This is an embodiment of the narrowband assumption. We see
that the time-frequency spreading function description of the one path delay-dilation
channel requires infinite support in time and frequency. Interestingly, the one path
delay-Doppler channel gives require infinite support in time and scale for the corre-
sponding wideband description. However. we also see that this mapping is not stable

around the a = 1 line.

3.7 Main Results and Discussion

The main result of this section is the correspondence,
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Theorem 3.

S(8.+)

/ Vvia|L(a.(1 — a)t + a7)e ?*"%dadt (3.105)

L(a.b) = // id ((1 — a)f. 7)e?2™9=a7) qgd (3.106)
\/la]

Proof. Even though we have already derived (3.105) and (3.106). we check here that

they do indeed invert each other. Plugging (3.106) into (3.105).

5(6.7) ////\/ IB 5((1 —a)ff .7/ )e T maitrar—am 270 4o drd@'d T’ (3.107a)

- // |9'|5( 1 - a)f'. ) ¥ =050/ (1 — q) — 9)dad@'dr’ (3.107b)
= ///3((1 — )l el =g ((1 ~a) - ;) dad@'d+’ (3.107c)
= // S(0.7")23m -0 = g g (3.107d)
= /5(9 e 12m0 =5 2 dr! (3.107e)
= S(6.7) (3.107f)

In moving from (3.107b) to (3.107c). we divided by |6’|. which appears in the first
argument of S. and then integrated over a. Alternatively. proceeding from (3.107b),
we could have divided by |1 — a|. which also appears in the first argument of S. and

then integrated over ¢, in which case.

S8.7) = /// ”'9 ‘ S((1 - a)f.1')e¥Falr=-1")5 (9’ - l—f;) dad@'dr’ (3.108a)

// = 5(0 N2 TR T\ dadr’ (3.108b)
= / |0]S(0.r')e’z’“"“"’dbdr' (3.108c¢)
= /|o|s(o,r')5(o(r-r'))dr' (3.108d)
= S(8.7) (3.108e)

We point out the division by |¢| in the first derivation and |1 - a| (and note 8 later)
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in the second derivation because this division excludes the time-invariant components

from the derivation.

Plugging (3.105) into (3.106).

L(a.b) =//// " \/la Lla' (1 —a')b' + a'r)e 137117210 2276(b=am) 4o da'db’ (3.109a)
via

//// Tal | lfll (o pems2m e 2 (o (Z2F)) G0 a3, 100b)
Vvial a4
/// 9‘ l(ll (1 i ;)(5(9(2; _ l)) 22 YG(b a( ))de ! (3109C)

Vial la’l a
- /// viri V/'l“"cm'. )8 (a - a') @270=2(7)) 4gd ' da’ (3.109d)
= / Lla.7")el 278" 4gd 7 (3.109¢)
= /C(u.f’)d(b - 7hd (3.109f)
= L(a.b) (3.109g)

In the above derivation we have divided by a’ and . The a’ division does not
matter as @’ > 0. however the @ division forces us to only consider the time varying
components. Thus. (3.105) and (3.106) map the time varying components of the
narrowband and wideband channel characterizations to one another. We have seen.
however. that the time-invariant component is also correctly mapped. recall (3.80)

and (3.91a)-(3.91d). therefore. (3.105) and (3.106) map S to L. a

We break up (3.105) and (3.106) into the time-invariant and time-varying compo-

nents and express them as.

S@.7) = L£,(7)5(0) + //“ —al c e~ dadb (3.110)
// ——_—QS(o.r)eﬂ"’"n;—":"dodf a#l
L(a.b) = &(a—1)So(b) + Vlal(l - a) (3.111)

0 :a=1

which emphasizes the instability inherent in the mapping around the important a = 1
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case. The channels of interest have support close to and including the a = 1 line.
But we see here that precisely in this region the time-varying component mapping
is not stable. We conclude that the time-frequency kernel channel description and
the time-scale kernel channel description models are not-equivalent precisely for the
channels that we are interested in modeling. Thus. there may be performance gains
associated with developing a model based on the time-scale description. as it is based

on a physical interpretation of the channel.
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Chapter 4

Characterization of

Communication Signals

In this chapter. we show the standard derivation for the equivalent lowpass time-
invariant channel characterization. and then we consider the time-varying equivalent
lowpass characterization. The result is somewhat surprising in that the low pass

equivalent characterization only exists if the channel is time-forward.

4.1 Time-invariant case

This section contains material found in most general signal processing textbooks and
roughly follows the relevant section in [Pro84].

A signal r(t) can be represented in the frequency domain as,
X(9) = /:(z)e-ﬂ’“’dt. (4.1)
which can be represented in terms of the amplitude (|.X (8)|) and phase (¢(9)) of z(t),
X(6) = |X(8)|e*® (4.2)
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If x(t) is real (which we assume to be true).
X(8) = X(-4). (4.3)

So. for real-valued signals. the positive and negative frequencies contain redundant
information. Thus. an equivalent characterization of real-valued r(t). called the an-

alytic signal (introduced in [Gabd6]). is.
X.(6) =2u()X (). (4.4)
where «(6) is the unit step function. In the time domain. X () can be expressed.
ro(t) = FH{X_ ()} = r(t) + jF(t). (4.5)

where. I is the Hilbert transform of r(¢).

B(t) = F HH(9)X(9)} (4.6)
where,
-j) : 6>0
H(8) = 0 : =0 (4.7)
J : 8<0

The modulus of the analytic signal. |z, (t)]. is called the envelope of r(t). We can shift
X+ (0) in down in frequency so that it is centered on # = 0 and define the equivalent

lowpass signal.

Xi(0) = X, (60+6.) =2u(@ +6.)X(0 +6.) (4.8)
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where 8. is the carrier frequency for bandpass signals!. In the time domain.

Ii(t) = r (t)e 7370t (4.9)

The equivalent lowpass signal. also known as the complex envelope. can be expressed

in terms of the inphase (r,(¢)) and quadrature (r,(t)) components.

Ii(t) = r,(t) + jr,(t) (4.10)

Using (4.35) and (1.9). we see that.

I(t) + JE(t) = 27 (o (1) + (). (4.11)

Examining the real and imaginary parts. we can see the direct relationship between

r(t) and the inphase/quadrature components.

z(t) = r,(t)cos(270.t) — r,(t)sin(2=6.t) (4.12)
I(t) = r,(t)sin(276.t) + r,(t)cos(276.t) (4.13)

Clearly from (4.11).
z(t) = Re{(z.(t) + jry(t))e’* %}, (4.14)

and. using (4.10). we see that.

z(t) = Re{r,(t)e?™*} (4.15)

'While it is customary to choose 8, to be the carrier frequency. all of the results in this section still
apply for arbitrary . > 0. Indeed. we can also shift real signals which were not originally bandpass
assuming they have a negligible DC component. If the signal is lowpass, then it is reasonable
(although not necessary) to choose 6. to be half the highest frequency. One advantage of choosing
6. to be the carrier frequency (or half the highest frequency for lowpass signals), is that then the
direct application of the Sampling Theorem results in the smallest (i.e.. most efficient) sampling rate
capable of characterizing the signal.
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In the frequency domain. this relationship can be expressed.

] —

X(0) = z[Xi(=0—6.) + X1(6 - 6,)) (1.16)

~

i

Now we consider the characterization of the channel. We consider here the time-
invariant linear channel; In the next section we discuss the extension to the time-

varying case. The input-output relationship in the time invariant case is described

bv.
y(t) = /h(t —~ 7)r(r)dr (4.17)
We assume h(t) is real. and thus. H(8) = H(—8). and so we define the lowpass
channel,
H#) : >0
H(6-6.) = (4.18)
0 : <0

which we can state equivalently.

Hi(6) = u(0+ 6. )H(6 + 6.) (4.19)

It follows from h(t) being real-valued that.

H(=8) : 6<0

Hi(-0 -86.) = ) (4.20)
0 : >0
and thus,
H(@) = Hi(-0-6.)+ H(6-8.) (4.21)
h(t) = hi(t)e 720 4 hy(t)el?0<t (4.22)
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and thus.

h(t) = 2Re{h(t)e?> %"} (4.23)

We can write (4.17) in the frequency domain and expand using (4.16) and (4.21).

Y(8) = H(#)X(9) (4.24a)
E 5[(}1,(—0 ~0.) + Hi( = 6.))(Xi(=8 — 8,) + Xi(8 — 6.))] (4.24b)
= %[H,( 6 —0)X[(~0 = 0,) + H(8 = 8)X,(0 — 6.)] (4.24c)

In moving from (4.24b) to (1.24c). we used the fact that.

Hi(6 - ) \z( 6-6.)=0. 7T (4.25)
=0 .rogo T
and
H(( ) \,(0 0 ) Yv (4.26)
=0 |f0>0 =0 lf <0
which is true by definition. because.
X =0 : 6<-6. (4.27)
and
H@)=0 : 6<-6.. (4.28)
Defining.
Yi(0) = Hi(6)X,(0) (4.29)
we obtain from (4.24c).
Y(6) = 5(Ti(=0 — ) + ¥i(6 0] (430
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from which we see.

y(t) = Re{y(t)e?*™%*} (4.31)

In summary. we can analvze the linear time-invariant system.
Y () = H(AIX(4) (4.32)
by looking to the equivalent lowpass characterization.
Yi(6) = Hi(6).X,(9). (14.33)

which has the advantages of being carrier frequency independent and efficient to

represent (from a sampling perspective).

4.2 Time-varying case

We wish to establish a similar result for the time-varyving case. Our goal is to express

this input-output relationship.

Y(9) = /k3(9.u).\'(u)du. (4.34)
for the equivalent lowpass Y; and .\ signals.

() =/k§(9. v) X (v)dv. (4.35)

What is the form of k{(6.v)? The result is perhaps surprising in that such an equiva-
lent characterization is possible only when k3(6.v) is a time-forward channel. Previ-
ously, we saw the time-forward constraint arise from the consideration only of positive

scale (a > 0) in the wideband channel model. In the time-invariant case, the channel
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was automatically time-forward due to time-invariance. We discuss these points in

Section 4.3.

Theorem 4. For a time-frequency channel to have an equivalent lowpass character-

1zatwon., it must be time-forward.

Proof. From the definition of ;.

Y0 = Y =0 —0.) -Yuh - 0. (4.36a)

ol = 1] =

[/k’,f -0 - 8. X(vidv ~ /kgu) - 9,..1/)_\'1(11)(11/} (4.36b)
= /kf,( -8 -0..vulv - 6.)X(v + 8. )dv + /k_‘ﬂt) —-0..viu(v + 6. X (v ~6.,)dv (4.36¢)

= /kf,l -8 0. viuv +-0.)Xi-v - 8. )dv ~ /ké(ﬂ —-0..viu(v +0.)X(v +6.)dv (4.36d)

=z /kf;( A -8..v -0 ) u)yXi-vidv - /k%(ﬂ -8..v -0 )ulrX(vidy (4.36e)

= (k-0 = 0. —v — 0. )ul —v) ~ kY0 — 0.0 - 8. )u(v)] X(v)dv (4.36f)
3 3

and we obtain.

k3(8.v) = ki(-6 — 0. —v — 8 )ul—v) + kY0 - B..v — 6. )u(v) (4.37)

From (4.35) and the fact that Y7(0) = 0. ¥ < —6.. we conclude that.

Ki(8.v) = 0. v < 0. (4.38)
g and thus.
KM(-0-6..-v—-6.) : v<0.6<0
k3(8.v) = K@ —-6.v-6) : v>0.0>0 (4.39)
0 : otherwise
So k3(8.v) can only be non-zero in Q1 and Q3. a
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Figure 4.1: For k3(6.v) to have an equivalent lowpass characterization. it can only be
non-zero zero in Q1 and Q3. This corresponds to £(a.b) only being non-zero in Q1
and Q4: which can be interpreted as enforcing no time-reversals.

Note that, k3(f.v) = k3(—8. —v). as it should because by definition of the lowpass
signals we have forced r(t) and y(t) to be real-valued functions.

Note that from (4.35). K4(6. v) is never evaluated for v < —6,. and thus we have the
freedom to define &4(0. v) as we please for v < —6.. Choosing k4(6.v) = 0. Yv < —6.

allows us to define.

K(8.v) = u(@ + 0. )u(v + 0. )k3(6 + 6. v + 6.) (4.40)

4.3 Remarks

The equivalent lowpass characterization exists only for k3(6.v) = 0. Vv < 0. That
is. k3(8.v) must be zero in Q2 and Q4. We have seen this constraint before as
arising from the support constraint on £,. see (3.58). and used it as the defining
characteristic for time-forward channels.

In the time-invariant case. this constraint did not arise in the derivation of the

equivalent lowpass characterization because the constraint must be satisfied due to
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time-invariance. That is. the time-invariant characterization.

y(t) = /h(t — 71)r(7)dr (4.41)
has
ko(t.7) = h(t — 1) (-1.42)
and thus. in this case.
ky(8.v) = //h(t — 7)e IV qtd 7 (4.43a)
= H(6)o(v - 9) (4.43b)

which lives on the v = # line. and thus clearly satisfies k3(8.v) = 0. v < 0. Thus

the time-invariant channel is a time-forward channel.
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Chapter 5

Time-Frequency and Time-Scale

Canonical Models

5.1 Canonical Time-Frequency Model

\We begin with the derivation of the canonical model associated with the standard
RAKE receiver. The classic expression of the sampling theorem for a signal X (v)

with support (=17/2.117/2) is

B = ny\ sin (7 (¢ = &))
r(t) = Zr(w) o %‘; . (5.1)

n=-23

We can obtain an alternative formulation of the sampling theorem by defining, g(t) =

r(a —t). which satisfies

_ = n sin (n” ( ))
g(t) = n;xg(w) AW (= %) (5.2)
and thus,
sin (71V (t &)
r{a—-t)= 2 ( TR ) W ( _) (5.3)
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With (a.t) — (¢t.7). we obtain [Tre71].

He-7) = i I(t_i‘)sin’(ﬂl'l'(r—?))' 5.4

Following [Tre7l1]. substituting (5.4) into the time-varying impulse response channel

characterization (2.1). we obtain.

ylt) = /h(t.r)r(t - 7)dr (5.5a)
= ny sin (70 (7 = &)) .
- /h(z.r)n;: (z - 1T') ey P d (5.5b)
= sin (#W (7 — %)) .
= nzz_xr(t——‘—-) {/h(t.,) = (T-i% ds (5.5¢)
R n ;
= n;x; (t _ ﬁ—') ha(t) (5.5d)
Li={Tm /W)

Il
N
N
o~
|
-
c—l ~
SN’
>
3
—_—
o
S
O
an
4]
N

where the approximation is made based on the assumption that the channel is causal
and has finite multipath spread. T,,. That is. h(t.7) = 0.¥7 < 0.7 > T,,. Under this
assumption, the approximation (5.5e) corresponds to h,(t) for which the mainlobe
of the sinc function overlaps with the support of the time-varying impulse response.
The tapped-delay line in (5.5e) forms the basis for the classic RAKE receiver. where
each of the h,(t) are (usually) assumed to be independent.

Now. we move to the Time-Frequency RAKE which was originally derived in
[SA99]. Alternative, but similar models are explored in [GT98. TV00. MB02]. The
path we take in this derivation is essentially the same as that in [SA99]. We look at

only the (0.T) portion of the received waveform. that is. y(t)1, 1 (t). Starting from
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(5.5c). we insert the (0.7T) portion assumption and obtain

(t - _r_:_ 0.7 ( [/h smc (T - -ll)) dr] (5.6a)
I (z - %) U h(t. ™)1, (t)sinc (u' (,- - %)) dr] (5.6b)

Now we expand the h(t. 7)10.7,(t) term as a Fourier series.

y(O)lom(t)=

x T
h(t.7)lo1)(t) = Z % [[; h(t'. 7)6‘12”""/7‘(1!'} e 27kt T (5.7a)
k=-~x
x l ~ )
= > T [/ h(t 7)1 (t")e 737k ’Tdt]e’"“T (5.7b)

M«

% [/ S(#.7)Tsinc ((—;—, - 9) T) c""k‘”‘d()] el 2Tkt T (5.7¢)

(5.7¢) if valid for t € (0. 7).

Plugging (5.7c) into (5.6b) we obtain.

y(t) = g gx;( )eﬂ"“”S(T %) (5.8)

where,
S(8.7) / S(¢,7")sinc ((1 — 7') W) sinc ((8 — &) T) e "~ Td¢dr’  (5.9)

(5.8) is valid for the (0.T) received portion of bandlimited signals.

Under the path scatterer interpretation we assume that the channel introduces a
maximum delay spread of T,, and maximum Doppler spread of By. that is. S(8,7)
has support in (—By.Bg) x (0,7T,,). In the smoothed version of S(6.7) in (5.9).
if we consider only the terms in (5.8) where the mainlobe of the smoothing kernel
(which has size (—1/T,1/T)-by-(—1/W,1/W)) overlaps with the support of S(6. ).
we need only sumover n =0,.... N where N = [WT,,] and k = -K...., K where
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K = [TB;]. We thus obtain the canonical representation of the time-frequency

channel model.

WTm™  TBg4,

w= Y X (- e Ts(F

n=0 k=-'TH;

:2|:J

) (5.10)

5.2 Restatement

The double sum time-frequency channel formulation (5.8) was obtained by assuming.
e the input signal is bandpass with bandwidth V", and
e the output signal is analyvzed only over a time interval of length T.

With these assumptions in mind. we define the following two projection operators.
Prr(t)=lwun(t)r(t) (5.11)

and.

Qur(t) =F Yl w 2w yw)F{r(t)}Hw)}. (5.12)

and using the following two operators. translation operator.

T.x(t)=x(t — 7). (5.13)
and modulation operator.
M, r(t) = r(t)e’>™", (5.14)
we can rewrite (3.8) as.
PrNsQuw = Zcrn_nPT‘\[;{lj.;l‘, Qw (5.15)
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m n

where the cmn = S (T- #-)- Restating the channel operator in this setting. we can
ask the question. what general properties of the operators allow us to express the
channel operator as a double summation of transformed input waveforms. In the
next section. we determine properties of the operators used in the expansion that are
sufficient conditions for the existence of such an expansion. Qur goal is to develop
an analogous time-scale canonical channel model. That is. in Section 5.5 we propose
projections P and @ such that.

PW.Q = Z cmnPDTT™Q (5.16)

ag “ to
m.n

for some choice of dilation and translation spacing parameters (ag and tq). where ¢

depend on L. and D is the dilation operator.

D,r(t)=

5.3 Generalization

For the statement of the general theorem. we require the following definition.

Definition 4 (paired-up operators). P and U are paired-up operators with gen-

erator eg iff.
1. P 1s an orthogonal projection in L*(R)

2. U is unitary in L*(R)

4. 3eo € RanP s.t.{U™eo : m € Z} is an orthonormal basis for Ran P
Using two different pairs of paired-up operators, the following theorem gives a
sufficient condition for the type of channel expansion described by [SA99].
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Theorem 5. If (P.U") and (Q.\") are both paired-up operators with generator ele-

ments eq and fo respectively. H 1s a bounded operator. and 3¢, such that

D emn (VT fo U o) = (HVE fy Uteo) . 7k (5.18)
then.
PHQ =P (Z c,,,,,,U"‘V") Q (5.19)

Proof. First we expand out PQ using the orthonormal basis and unitary properties

of the paired-up operators,

P =Y (-.Umen) [ eo (5.20)
and

Q=Y (V) V" Sy (5.21)
we derive,

PQr = ) (Qr.Ume)U™eo (5.22a)
=¥ <Z (. V" fo) V" fo. U"‘e0> Umeo (5.22b)
= D (z.V"fo) (V" fo.Ueq) Ueo. (5.22¢)
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We use this to determine.

P (Z Cyn,nL"m‘-'"> Qr

Y CmalmPQV L

= Z Cm.n(/"n (Z <‘vlf0 L"kt‘o) (V"I. Vlf()> Lf'kfo)
k.l

m.n

= Y cnn (V0. Ueo) (2. V"V fo) U U*eq

m.n.k.l

= > (Z Crmn (V77" fo U'-"'eo>) (£. V" fo) Ueq

u.s m.n

(5.23a)

(5.23b)

(5.23¢)

(5.23d)

where the commuting property of paired-up operators was used in (5.23a). (5.22c)

was used in moving from (5.23a) to (5.23b). and the unitary property of " was used

in moving from (5.23b) to (5.23c). Now. looking to the LHS of (5.19). we use expand

using the orthonormal basis and obtain.

PHQ:r = Y (HQzr.U’eo)U’e

s

z <H (Z (x. V™ fo) V"fo) . U’€o> U’eq

L

= Z (£. V" fo) (HV" fo.U%eq) Ueq

= D) hus(2.Vfo) Ueo
Given H, we tixen compute,
hus= (HV™ fo. U’eq)
which we use to solve,

Zc‘m.n (‘/"H’ufo, bvs-me()) = hu,.v Yu.s
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(5.24a)

(5.24b)
(5.24c)

(5.24d)

(5.25)

(5.26)



for c;n.n- These ¢, satisfy (5.19). 4

5.3.1 Solving the coefficient equation

We now discuss the form of the solution to (5.18). We define

ars= (V¥ fo.Uleg) (5.27)
and define
Crmun =Cn.-m (528)

which allows us to express (5.18) as.

hu,s = Z Cm.n <"’"-uf0- L’s—m()()) (529&)
= Y (VT o U e bnm (5.29b)
= (a * é)u“‘ (529C)

where
(axé),, = Z Au—k.s—1Ckg = Z Ak 1Cuk sl (5.30)
k.l k.l

Expressing h. a, and ¢ in the Z-transform domain,

Alz1.22) =Y 2 da =) 25 (VEfio.Ule) (5.31)
k.l

H(z,2) =3, 255k = Z ¥y (HV* fo.Uleo) (5.32)
k.l

C(z1.72) = oy =izbény (5.33)

we can write (5.29¢) as.

H=AC (5.34)
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and solve for C
_ H(z. =

In terms of c,, ». this is.

- H(z 22)) -
Cmn=2"" ( (5.36
Az 22) n.—m )
where
! 1
ZTHNF(z1. ) = / (191/ dfye 1T Nme 120N B (13701 p12702) (5.37)
0 0
We can express (5.36) as a convolution of coefficients by defining
A&7 1) = : (5.38)
y : - A(er2m0 612’97) e
and
1 1
= / dé, / de 2T memIAT0N | (2370 I2T02) (5.39)
0 0
and we can obtain the ¢,, , using
(5.40)

Cmn =Cn.-m = (d * h)n.—m

We will use (5.40) to determine the coeflicients in practice.

5.4 Revisiting time-frequency
The example we have seen so far of the application of this theorem had.
® (P.U.eo) = (Pr.M,, 7‘7-,1[0.1-1(t))
* (Q.V. fo) = (Qw.Ty,. VWsinc(Wt))
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for the operator H = N5 of the form.
Hrit) = // S6. e r(t — 7)dadr. (5.41)

Modulation and translation operators were a natural fit with our channel description.
5. which describes the channel as a (continuous) summation of time and frequency
shifts of the input signal.

The plan of attack to calculate the coefficients c,, , is to:

1. calculate a,,

V]

. ) Y
USe A, to obtain (22701 22702)
3. use A(e?¥™ 22792 tg obtain dmo,

4. calculate hy,

U

use am.n and hgy to obtain ¢y, via (5.40)

And we begin,

Amn = (VM fo.Umq) (5.42a)

- /sinc (W (t — ‘L"‘_)) eI En ‘/\/‘; Lio.y(t)dt (5.42b)

W (T oene .
-T—/ e 7" Tsinc(1W't — m)dt (5.42c)
0

1
(—_— \% IVT/ e ' sinc (W Tt - m)dt) (5.42d)
0
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For 6,.6, € [0.1].

.’1(6"2’6‘.(_’)2’92) —= Z am'nej2381mej‘2r.0;n

m.n

(5.43a)

/HT T « nt Y
= > \/—T—/ e 7 Fsinc(Wt — m)e? ¥ mel 2% dt (5.43b)
m.n 0

(Z (Jg’"”"-"’;') =Zl5(9_) — % +n) = TZ St — TO’.’ - Tn))

n n

= Z VvV I Tsinct HT().’ _ "l)ej_’xmdl

(sinc(r) =/ 6"2”‘(1*')

1
/”.T/' (J.’:_;H’T@;v § EJZﬂ’mtgl—..‘l dw'
'% _m

>

o Voloe

i

"

S 810 ==
\/ﬁ(d'_’r“”ﬁhﬂz . 9‘ E (0.
\/‘_“TY—-GJZRH'T(& -1)8; : 9; € (%

e [T

N , 1 (,—127“'7-0132 . 61 € (0.

.4((’12’0‘.6“]2’02) — -
VIWT | -22awT0-162 . 8, € (%

—

Q-

Substituting (5.44) into (5.39).

(5.143c)

(5.43d)

(5.43e)

(5.43f)

(5.43g)

(5.44)

1
X 1 1 ] _ _ B . ! _ _ .
Amn = _ d02 d91e )238\me )236;-ne J27WT8,6, + d016 12n01me~]2303ne 122WT(6,-1)8
vWT Jo 0 !

(5.45a)
1 1  12elan e—]ﬂ(‘mi»“‘TGz) | . e—)'2ﬂ'(m+‘VT9:) _ e—]'.r(mf'-W'TB-g)
s e [-me TWTey T e WG (5-45b)
1 —ix(m+WTo2) _ _gx(m+WTEhy)
= 1 / d@ye-12702n € _ e (5.45¢)
vWT Jo —j2x(m + WT6,)
1
- \/%_T / d6ye =17 sinc(WT0, + m) (5.45d)
1]

6
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her = Y Fh (HV fo. Uleq) (5.46a)
k.1

///s r)el 2oy [fo](t—r)d@dre"’z’;"%lloﬂ(t))dt (5.46b)

W
= ‘/T/// dfdrdt Lo (£)e??™ O~ Psine(W't — k — Wr)S(8.7)  (5.46¢)

Cmn = (@ wh)n m =Zan-k.-m-lhk., (547)

I

T
T/ dfre= 737020 =MD n (W T8Oy + n — k) /// d0drdte’2"(9—‘;"sinc(W't -k-Wr)S.7)
0

(5.48)

= //d()d S8.7) / / d6, ‘1""”'-"""'“sinc(H'T()g +n-— k,)ch"T'(e";"sinc(“"Tt -k -Wr)
~ _

(5.49)

7
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1 1
E = [ dt/ d6; D" [ D 290 ) sinc(WTO, + n — k)sinc(WTt — k — Wr)e? Tt0er2m0am
0 0 & 1
6(0:!)
(5.50a)
1
= / dt Z sinc(WTt + n — k)sine(W Tt — k — 1 7)e 27t (TO+m) (5.50b)
0
k
i ! 3
= (J.‘?!!Toovn) (J‘:ﬁ!x(“’T{*—n—k) 278 2(WTet—k-Wr) o ) g
/(: dtg/;% : L ¢ dsdso (5.50c¢)
1 i 1
— / HlxtiT@om)dt/z z e—JQRk(slysq)e)2ﬂs|l“'Tt+n) : 9’21’2(“’7.2_“’”(18[(132 (5 SOd)
0 -§ _k B -5 -
6(3;32)
1 1
— / (Jl?fl'rg‘m)dt/-z e—)2,'!.-(“'Tu»nyej".’.'rs(H'T(—H'f)ds (5 50@)
0 -3
b ,
= / I 3TUTO~m) Gpsine(n + Wr) (5.50f)
0
™ TO-migine(TO + m)sinc(n + Wr) (5.50g)
(5.50h)
And we obtain.
o = / S(8. 7)™ T+ sine(T9 + m)sinc(n + Wr)dodr (5.51)

which are precisely the coefficients derived in [SA99].
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5.5 Time-scale canonical model

We now develop the time-scale canonical characterization. For other possible exten-
sions to time-scale, see the approach in [DF96]. [ZF00]. and {ZFL01] using wavelet

packet modulation.

5.5.1 The scale projection

We use the following projection operator in scale space.

— -1 . oo 4 - -
P =1 (llo_‘nx_m] 30) U, (5.52)
where.
Uy=(F=F)U (5.53)
where,
I = X
vy ED Y (5.54)
I 4Y2
for.
Ii(t) = egr(e') o(t) = eér(—-e') (5.55)
(t) = LJ: (Int).t >0 zx(¢t) = 1 ra(ln(—t)).t <0 5.56
\/E 1 . It' 2 . ( . )
and,
vt - T ! (z1(In(t))1 + 1(In(=¢))1 ) (5.57a)
1 - = —= I {(0.3) 2 - (-.0) ¥
l X, Vit

ﬁx;(ln(t)) : t>0 o
N Szmalin(-t) : t<0 '

where, r. 1,15, X,. X2 € L%
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5.5.2 The scale generator

v . C et . . R 1 1
Using the characteristic function in scale space (£2;.Q;). Q, = [—m. llnm] .y =

@. leads to the gencrator.

) S In't| .
ro(t) = T Rsine (ln'm) s t>0
0 : t<0O

It can be shown that (P.U.eq) = (U} (1;0 L 0) U). D,,.€o) are paired-up.

+ln ag

5.5.3 Time-scale paired-up operators

For the time-scale model. we use the following paired-up operators.
o (P.U.eo) = (U} (1[0”;‘; £ 0) Uy D, €o(t) from (5.58))
o (Q.V.fo) = Q1. Tip. Jusine(£))
to

to decompose the wideband channel corresponding to the operator H = W, of the

Hr(t) = // Lla.b)——r <' - b) dadb (5.59)
Vial a

into a discrete double summation.

form.

PWLQ =) cm PDLTQ. (5.60)

5.5.4 The coefficients

Following the same plan of attack.
1. calculate am,

2. use @, to obtain A(e??*% e127%)
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3. use A(e?*7% €22792) 1 obtain dm
4. calculate h

5. use a,,, and hgy to obtain ¢, , via (5.40)

1 t
Admna = (Tr,)_f(). Dm,(’()) = /fo(t - mto)—ge() (a—n) dt (561&)
0

ag

\/ / —-—smc (- - m) sinc (ln 1l - n) dt (5.61b)
f() ln [0 15) lna()

A0,.0,) = Zamnaz"’*"'ef-’"’w (5.62a)
= dt 2"'01"' '.’-O—m ltl
= ‘/tolnao/ Ze’ sinc (— m)] I:Ze’ (lnao —n)

(5.62b)

0

1
3 ez / Per(5-")dy  (5.63a)
_1

2

t
Z 2" Msinc (t_ - m)

1
— 2 ej?ﬂut—o' Z e_]'lfrm(..:—ol) dw (5-63b)

Nl

m

LN >

zm 6(.‘—01 —m)

For01 026[ ‘;‘ %].

3 eoimsine (Z‘_ - m) = % (5.64a)
o (V]
i In |t} 276, 2Ll
2xé2n —_ 762 to
;e-’ sinc (El_To - n) = ¢ (5.64b)
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AB.0) = ) — dt ”*("“*"*ﬁ%) (5.65a)
t()lnao 0
~ Vi (10/ ———— T (5.65b)
0
_ \/t L ,;-J T [Tk ey, (5.65¢)
0} 0 0
: 1
o = S eTIThmen i 49,d6, 5.66
. /g/_le ¢ A(8,.6,) 7 (5.66a)
% —)"'lhm —)‘*Oan
= t()\/ln(l()/ / d()l({()) ') ; (566b)
x —:"J-'?h”o(,}).rgl,dt
h., = (HT, fo. D} e€a) (5.67a)

b
= VialL(a.b) —= (T, fi (——) dadb e ( )dt 5.67b
/(/ ( \/l { o) . )ai‘)"' "\aj (5:670)
/ dz//idba( b) ——sin (‘"" S S (5.67¢)
= 3/2 da a. s c o —-u — inc 7C
vinae /[t lnao

1 > o1 t—b Int
= —— bL(a.b —si - i - 5.
m/da/d L(a )/0 dt \/ismc( pre u) sinc (lnao s) (5.67d)
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Crmn = Zfl-n—k.m—lhk.z (5.68a)

k1
oy £7 RS =270y —n k) o~ 270 (m 1)
= § v’to/ / d6,d6,-2 — . (5.68b)
[ T e

* o1 t—b Int
bLia.b t —si — — k) si —1 5.
/da/d Lla }/0 d \/Zsmc( pre )smc (lnao ) (5.68c)
% x F - )2”& _)2?917\ —JQ?G;m
= // (ludbC((z.b)/ / d()xng/ dt\/t‘j fo ¢ €
-41J- 0

e

re R 9 )
v/ Vit f()x PN j2r0ir gy
ot t—b ool . Int
Z 20k ( _ k) Z(_J.’,.o:lsmc < - 1) (5.68d)
k (l[(} . ln ag
;2,:%;39 13';:

. nag

i

B i ~ T J-"f:hn _)‘.’.79‘(::"0'\) )2302([1"—'—m)
2 2 t t 3oy n a,
- // dadbl(a.b) / / 46,46, / Aty 70 n S < . 45.68¢)
- - 0 )

i % A4 j()x 7_§‘)2’1§§56127\'0‘de
% 5 N W "
= //dadbC(a.b)/ Y 40,d6ytl T T 20 (v ) g -s2veem | (5.656)
1 1
I B}

! o2 t
xt'i*ﬂ’_‘"'"“oeﬂ’o‘ﬁdt

D = 0

n . (5.69a)
[= FTIIANEES op2m0ir
G NP S SRS S S 3
_atg fy (atg) 2T Rag T3 TR0 @120 (5.69b)
— o J.
I FTITTRG er2meyrdr
Lajoe 22
= (atg) TR (5.69¢)

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1

1
2 Lyjom? - R a 2w 22
Cmna = / d(ldbC(a,b)/z ’ d01d92t3+1 naoe"'"ol(" ﬂ'o)e—"‘”&"m(at())% 357 fnag(5.70a)

1 /-1
3 2

1 1
- //dadbC(a.b) [/2 do,eﬂ"’*("“%)] [ 2deg(at;-;)%‘”m%e‘”"”'"] (5.70b)

1 1
2 2

i 2 lmal:v_m
= / dadbL(a. b)sinc (n - i—) Vato ‘ dfre’” %(mg‘ )

ato

1
2

= / dadbLl(a. b)\/atesinc <n - ,%) sinc (ln(ata) _ m)

alg lnao

The canonical time-scale model is then.

n t — nba™
-3 ()

m,n

for the c,n o defined in (5.70d).
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Chapter 6

Summary and Future Work

6.1 Summary

We have considered the mapping between time-frequency integral kernels and time-
scale integral kernels. Both of these kernel operators are often used to model time-
varying communication channels. \We determined the time-invariant correspondence
between the two kernels. and determined the general mapping between the time-
frequency and time-scale operators by separating out the time-invariant component
and relating the remaining time-varying component. In the determination of the
time-varying component mapping, we came to the surprising conclusion that causal-
itv. when considering infinite time. forces the time-scale channel description to be
time-invariant. That is, causal time-varying time-scale channels do not exist. In
practice, when considering simaller time intervals, this was not seen to be much of a
limitation. We also showed a similar result for time-forward time-frequency kernel
channels, which are channels whose negative and positive frequencies do not interact.
The result was that causal time-varying time-frequency channels do not exist. Or.
stated alternatively, causal time-varying time-frequency channels must also be time-

invariant. We also proved that in order for a time-frequency kernel channel to have
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an equivalent lowpass characterization. it must be time-forward. Further study is re-
quired for the interpretation and practical implications of these results. The mapping
between the time-frequency integral kernels and time-scale integral kernels was shown
not to be stable precisely in the region of interest for the channels we are encounter
in practical wireless settings. Saveed and Aazhang have developed a canonical time-
frequency representation of the doubly spread channel which has proved useful for
the exploitation of the diversity of such channels. We developed a generalization of
this canonical model and showed their time-frequency canonical model as an appli-
cation of this generalization. which was also applied in a time-scale setting to derive
a time-scale canonical description of the channel. We hope that further study of this
time-scale description will vield similar benefits for wideband signals that Saveed and

Aazhang demonstrated in the narrowband setting.

6.2 Future Work

There are manv items to consider for the continuation of the work presented here:

1. Develop the delay-dilation RAKE receiver based on the time-scale canonical

channel model.

2. Examine a simple communication scenario where the delay-dilation RAKE
yvields performance gains over the delay-Doppler RAKE and conventional re-

ceivers.

3. Repeat the information theoretic analysis for the delay-dilation RAKE receiver

similar to that which was done for delay-Doppler RAKE receiver [SA99].

4. Consider specifically ultra-wideband communication and the time-scale canon-

ical channel model.
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o

9.

10.

11.

. Explore the results of Sayeed/Aazhang on multipath-Doppler diversity and re-

peat the analysis for the multipath-multiscale diversity arising in the wideband

channel.

Develop a canonical time-scale multiantenna wideband channel model similar

to that proposed in [Say02] (and [ECS*98]).

- Rather than just time-frequency or just time-scale. how about a non-unique

representation such as time-frequency-scale. s there anything to be gained

(more efficient utilization of diversity)?
Examine further the mapping between S(6.7) and L(a.b).

Determine how the support criteria on the spreading function relates to limits

on the acceleration/velocity and the duration of the valid processing interval.

Determine the practical implications of the causal time-forward narrowband

channel being time-invariant.

Is there a corresponding underspread/overspread theory (see: [MHO02b. MH02a)

for the time-scale canonical model?
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Appendix

A The Doppler effect

A.1 Classic treatment

Consider a source. £(t) located at the origin moving to the right with velocity v.: The

position of the source is described by,
p:(t) = vt (A.1)

Consider a receiver. y(t) located initially at a distance do from the origin along the
positive x-axis moving to the right with velocity v,: The position of the receiver is
described by,

py(t) = vyt + do (A.2)

We define 7 to be the time delay such that the source signal traveling with speed
co emitted at time t — 7 reaches the receiver at time t. Clearly, the distance that
the signal travels must equal the difference between the current receiver position and

position of the source 7 seconds ago. This can be described.

ot = [py(t) = pa(t — 7)] (A.3)
= eyt +do— ealt - 7)] (A4)
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Solving for 7.

(vy — v )t +dy

Case 1:  py(t)>p(t—7). 7 = - (A.9)
Co — Ur
- )t —d
Case 2: p,(t)<p(t—-7). 7 =( vy + ) °. (A.6)
Co + Uy

Substituting these back into the case definitions. we obtain (assuming |v.| < co).

(o =)t + dg

N o — Uy '

(—vy + v )t —dg
co + g '

Case 1:  p,(t) > p(t). 7

Case 2:  p,(t) < plt). v =

The input output mapping is.

y(t) = (t—-r7) (A.9)
(_._“Q_.
r(—x) - pult) > pe()
= e (A.10)

t"‘r;,bv

I WF,—,FX'Q : py(t) < pz(t)

levy cg

where the change in Doppler effect from contraction to expansion occurs when the
transmitter and receiver are collocated (p,(t) = p.(t)).

In the above derivation we ignored relativistic considerations, which is reasonable
assuming that. |v;| < c. |vy| < c. and co < ¢, where c is the speed of light. Note the
lack of symmetry with v, and —v,. That is. the effect of r moving toward stationary
y with speed v is different than the effect of y moving toward stationary r with speed
r. We see in the next section that this is not the case when co = ¢. That is, when
the speed of signal propagation is the speed of light, it is impossible to for either z
or y to determine whether r is moving toward stationary y or y is moving toward
stationary r. Also note that v, = v and v; = —v do not shift the frequency by the

same amount; This difference will remain true even when ¢ = c.
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Figure A.1: Space-time diagram for the derivation of the Doppler effect.

A.2 Relativistic treatment

For electromagnetic waves. ¢, = c¢. the speed of light, and we must account for

relativistic effects that we ignored in the derivation of (A.10). Consider the same

setup as before. which is now depicted in the space-time diagram in Figure A.1. We

have.

04: ¢t =5Xd
Uy

oc. t =5d
Co

BD: t =S(d-do)
L'y
C

AD:  t =Sd+b
Co

(A.11)
(A.12)

(A.13)

(A.14)

where b is vet to be determined. Without loss of generality. we define [, = | and we

are interested in [, /l, = 1/l; which is the time dilation factor.

For simplicity. we consider here only the case where r is located to the left of y. The

complementing case can be determined by swapping the signs on the velocities and

the original separation distance. as was the case in the non-relativistic result. Using

(A.11) and distance as measured in Minkowski space for the space-time diagram (for
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example. see Chapter 14 in [KK73]).

ty—di =1 (A.15)

we determine the location of point -1,

r (o
11.t4) = i, A.16
(( 4 -\) (\/Cl — vg v,'cz — l'g) ( )

Now we can determine the t-intercept in (A.14).

The intersection of AD and BD vields.

% 4 dy cdy + be
(do.tD)z(C 0 Qo Xo (A.18)

— % -7
1 P Co Uy

Intersecting OC and BD.

d
(de.te) = ( Codo _cdo ) (A.19)
Co — Uy Co— Uy
Then the length from C to D is.
l, = V(tp—-tc)? - (dp—dc)? (A.20)
2
b
- \/( (C" “/C) (A.21)
co— Uy -0
= —_— — 2
T v,/co 1 - (vy/c) (A.22)
1— & f1=-(2)?
= o . . (A.23)
1-3 V1I-(%)?
91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The first term in (A.23) is the same as the scale factor in (A.10). the second term is

the relativistic correction.

\When ¢ = ¢p.
I - -1+ 2
5, = TEio & (A.24)
and defining v = 1_‘;_;_:1,.
o floe o 1o (A.25)
TVir+r \/1—2 o
-
the input-output relation takes the form.
t
ylt) =r — — (A.26)
o /1_1.2/(.2
Noting that y(t.) = £(0). we solve for d,. and obtain,
b~ R
y(t) = r | — /o) (A.27)

1-v2 ;’cz

Unlike in (A.10), we see that the Doppler effect electromagnetic transmission depends
only on the relative velocity of transmitter and receiver and not on the individual

velocities.

A.3 Approximation

Despite the different forms of the Doppler shift for source moving toward receiver,
receiver moving toward source, and taking into account relativistic effects, we now
show that all three of these scenarios have approximately the same scaling factor. We
consider the following three cases where the transmitter and receiver are approaching

one another with speed vg: (A.10) with v, = v¢ and v, = 0. (A.10) with v; = 0 and
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vy, = —to. and (A.25) with v = vo.

-2 —1-w (A.28)
Co 2
1 - Uy o
=1-—m 2y A29
l+l::f " (l‘o) ( )
l“m 11'0 )
cQ 21_51 —_ ) - ... .'\O
T o +2(CO) (A.30)

As 2 < Lin general. if we ignore second and higher order terms. we see that all

’ H 1 A3
three have time scaling factor equal to 1 — 2.

B Time-Frequency Duality
Bello defines time-frequency dual functions as follows.
Definition 5 (Time-frequency dual functions).

o The direct dual of r(t) 1s X(0) = [ r(t)e737dt.

o The reflection dual of X(0) s r(t) = fX(G)eﬂ"”d().

The interpretation of an function argument as a “time” or “frequency” variable
is arbitrary with respect to duality. A function of time. say z(t). still has a reflection
dual. namely X(—6). The reflection dual of a time function was used in (2.4) to stay
consistent with the definitions in (2.3).

Time-frequency dual operators relate inputs and outputs that are dual functions.
For this definition, it is useful to consider the interpretation that inputs and out-
puts are functions of either time and frequency. For example. the integral operator
associated with kg(t. 7) in (2.3) is an operator which is interpreted as mapping a time-
domain function to another time-domain function. Indeed, the four kernel functions

each have a unique interpretation mapping from either the time or frequency domain
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into either the time or frequency domain. We define the general kernel operator as

Lir = f k(a..3)xr(.3)d.3. One set of dual characterizations. for example. is then.

Yy =L+ Fy=LFr (B.1)

as one maps time-to-time, the other frequency-to-frequency. and both have identical
integral kernel formulations. We use £, to denote an integral kernel operator that
maps time-to-time (such as L,). Similarly. we use Lsf. Lyp. and Ly to denote
integral kernel operators that map from frequency-to-frequency. time-to-frequency,
and frequency-to-time. respectively. Clearly. £i can be used to represent all four
types. the only difference is in the interpretation of the inputs and outputs. We

define time-frequency dual operators:

Definition 6 (Time-frequency dual operators).

o The dual of operator Ly ts Lip = FLWF ™!

e The dual of operator Lyp 1s Loo = F 1Ly F
o The dual of operator Lf is Lpo = F Loy F!
e The dual of operator Ly, is Loy = FLpF

From the definition, it is clear,
e L, and FL,F ! are time-frequency dual operators. and
e Ly and F~ 1L, F~! are time-frequency dual operators.

Using this definition. we can derive L2, the dual operator of Ly,. as follows.

CP = FCi, F™! (B.2)
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Fli, F'r = /e":”"o [/ ko(t.7) [/ r(u)eﬂ"”du] dr] d¢ (B.3a)

/ [// ko(t. T)eﬂ’(’"""’)dtdz’] r(v)dv (B.3b)

Defining.

kPo.v) = // ko(t. 7)e?2 V=9 dedr (B.4)

we see that.
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