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ABSTRACT OF THE DISSERTATION
Time in Wireless Embedded Systems
by

Thomas Schmid
Doctor of Philosophy in Electrical Engineering
University of California, Los Angeles, 2009

Professor Mani B. Srivastava, Chair

Wireless embedded networks have matured beyond academic research as industry
now considers the advantages of using wireless sensors. With this growth, reliability
and real-time demands increase, thus timing becomes more and more relevant. In
this dissertation, we focus on the development of highly stable, low-power clock
systems for wireless embedded systems. Wireless embedded networks, due to their
wire-free nature, present one of the most extreme power budget design challenges
in the field of electronics. Improvements in timing can reduce the energy required
to operate an embedded network. However, the more accurate a time source is, the
more power it consumes. To comprehensively address the time and power problems
in wireless embedded systems, this dissertation studies the exploitation of dual-crystal
clock architectures to combat effects of temperature induced frequency error and
high power consumption of high-frequency clocks. Combining these architectures
with the inherent communication capabilities of wireless embedded systems, this
dissertation proposes two new technologies; (1) a new time synchronization service
that automatically calibrates a local clock to changes in temperature; (2) a high-low
frequency timer that allows a duty-cycled embedded system to achieve ultra low-power
sleep, while keeping fine granularity time resolution offered only by high power, high

frequency clocks.

XXi
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CHAPTER 1

" Introduction

1.1 A Short History of Keeping Time

Modern society relies on the ubiquitous availability of accurate time. Scheduling
meeting appointments, lunch breaks, office opening/closing hours, or the availability of
certain resources are based on the notion of time. We even teach the youngest members

of our society how to read clocks and understand the concept of time [L1e92].

Time-telling has a long history. Around 3500 BC, the Egyptians relied on the sun
to tell time. Obelisks and sundials were used in order to tell the approximate time of
day. For the longest time, the sun and stars were the only measure of time available to

humans.

The first mechanical time keepers did not appear until 1500 BC. Water clocks, some
of the first mechanical time keepers, relied on a very simple principle. A tiny hole at
the bottom of a big bucket lets water escape from it in a near constant stream of drops.
Markings on the inside of the bucket indicate the passing of time. Priests used these
primitive time keepers at night to schedule the temple rites and sacrifices at the correct

hour.

It was not until 1583 AD that Galileo Galilei discovered that a pendulum period
denotes constant time. This discovery revolutionized the accuracy of time keeping, and

a new generation of clocks and watches was soon to follow.
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At about the same time, 15th Century naval exploration drove time accuracy research.
Finding the latitude of a ship out in the ocean was easily accomplished using a sextant,
by measuring the position of the sun at midday, or the stars at night. However, longitude
is much more difficult. You need a sextant, and the knowledge of accurate time. Several
large accidents with many dead sailors happened back in those days, because captains

miscalculated their position, and thus drove their boats onto reefs.

For that reason, in 1714, the British government established ”The Board of Lon-
gitude”, and offered a prize of £20,000, equivalent to about $4,000,000 today, for the
person who could localize a ship within 30 nautical miles. To achieve such a high accu-
raéy, you needed a clock that could keep time to within 3 seconds per day. Something

not possible with the primitive clocks available thus far.

It wasn’t until 1736, when John Harrison, a self-educated English clockmaker, tested
his marine chronometer “H1” at sea. The H1 successfully calculated the landfall of a
ship, though the British Board of Longitude required a trip to America, in order to get
the full prize money. Harrison didn’t stop after the H1. With each iteration, Harrison
improved the accuracy, and especially the size, of the previous model. However, the
Board of Longitude never accepted his clock as “accurate enough”, and thus never
awarded the prize money to Harrison. As a matter of fact, the Board never awarded
the prize to anyone, before it was dissolved in 1828, when the significant problem of

determining the longitude was considered solved.

Two more radical inventions in the technology of time keeping had a similar effect on
the precision of time. In 1918, Alexander M. Nicholson at Bell Telephone Laboratories
patented the first crystal controlled oscillator, and in 1955, Louis Essen built the first
caesium-133 atom based atomic clock at the National Physical Laboratory in the UK.
Both these developments consisted of huge gains in time accuracy, and we wouldn’t

have the plethora of different devices today without these two achievements.
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Figure 1.1: Basic block diagram of a clock circuit and associated timer hardware.

For a more detailed early history of time, please refer to the excellent book from
Kristen Lippincott, ”The Story of Time” [Lip99] and David Allans "The Science of
Timekeeping” [AAH97].

1.2 Accurate Time in Modern Embedded Systems

Time in embedded systems is usually kept by a specialized sub-system illustrated in
Figure 1.1. A periodic clock signal lies at the core of the system. The clock signal
increments a hardware counter every 1/ f seconds, where f is called the frequency of
the clock signal. Therefore, at any time # since the n-bit counter was reset, the counter
reads c(¢) = |f - t] mod 2". The floor operator | | comes into play due to the digital
nature of the hardware counter. The 1/f rate at which the counter is incremented is
called the resolution. However, high resolution is not useful if the software cannot read
the counter at that speed. Therefore, the smallest increment at which an application
can read the counter is called precision. Finally, the counter is typically set to an
international time calendar, e.g. UTC. The accuracy determines how true the counter

holds to that calendar.

The clock signal is a periodic signal with some nominal frequency f,. Every clock
signal will deviate from its intended nominal frequency for both dynamic (environ-
mental changes, like pressure, temperature, acceleration) and static (imprecision in its

manufacture) reasons. This deviation is termed frequency error (or inversely frequency
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stability) defined as f.(t) = fo — f(#), where f(¢) is the frequency of the clock signal
at time 7. In general, this error is very small and is commonly expressed in a unitless

quantity parts per million (ppm) derived from Equation 1.1.

O~ f
fo

The frequency error of a clock signal changes over time. This change, called

f(t) = 10° (1.1)

frequency drift, can be classified into two categories: short term (seconds to days) and
long term (weeks to years). The observable short term changes are due to changes in
the environment. Rapid acceleration, like in rockets, or changes of temperature and
pressure on the circuit induces frequency change in the order of tens to hundreds of ppm.
Long term changes occur as the clock ages. The physical stress induced on components
over time can change their electrical properties, and thus introduces a frequency error

on the order of a few ppm every year.

Figure 1.2 shows how the stability of a clock source is related to its price. The
x-axis could represent other cost parameters as well, such as power consumption and/or
size without appreciable change. To give a perspective on the values of drift, a 10ppm
clock source would introduce a measurement error of over 5 minutes over a year. A
0.1ppm clock source on the other hand would be off by only about 3 seconds over a

year.

The behavior of the frequency error largely depends on the underlying technology
used to generate the clock signal itself. In general, two components are necessary to
create a clock signal, a resonating element, and a clock driver. The resonating element is
responsible to create an oscillation. The element by itself however does not sustain the
oscillation and a clock drive circuit is necessary to initiate and sustain that oscillation.
More specifically, it provides both feedback (must meet the Barkhausen [HCO04] criteria

with gain > 1, total loop phase > 27) and isolation to the resonator. Although the
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Figure 1.2: Relative Frequency Drift vs Cost of commercially available clock sources.

Data gathered from different vendors in Fall 2007.
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ideal driver varies by oscillator technology, CMOS buffers or inverters are generally
well-suited since they have high input impedance (except w.r.t. the low impedance of

quartz crystals excited into series resonance), high gain, and high bandwidth.

The choice of inverter, buffered or unbuffered, and the number of inverters in the
feedback loop influences the characteristics of the clock signal, its drive strength, and
the total power consumption of the clocking circuit. Often times, the clock driver is
either integrated with the resonating element (usually called an oscillator) or it resides
within the microprocessor. In the first case, the driver will have high drive strength in
order to deliver a high quality clock signal to many different digital components, though
it will consume a lot of power. In the second case, the clock driver is matched to the
internal clock signal network of the microprocessor, and thus is optimized for power
consumption. For example, a clock oscillator from Abracon at 16MHz consumes about
8.0mW while clocking a Texas Instrument MSP430 Microprocessor. This is about 20%
more energy than if we clock the MSP430 directly using a resonating element (Citizen

16MHz crystal) and its internal clock driver, which we measured at 6.1mW.

The frequency error introduced by changes in the clock driver are usually not
significant. It is in large part due to physical changes in the resonating element that the
frequency of the clock signal changes over time. Therefore it is important to know the
different technologies that can be used as resonating elements, since each of them has
different performance characteristics. Table 1.1 summarizes the characteristics of the
most common resonating elements, and the next subsections will briefly introduce each

one of them.

1.2.1 LC/RC Circuits

One of the simplest resonating elements is an LC-circuit, consisting of one inductor

(L) and one capacitor (C). An electric current can resonate between the two elements

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Type Stability Power Cost

LC/RC 1000’s of ppm Low Cents to free
Ring Oscillator 1000’s of ppm Low Cents to free
Crystal 10’s of ppm Low - High 10’s of cents to Dollars

<1ppm if controlled Freq. Dependent

Crystal Oscillator | <lppm to 10’s of ppm | Med - High Dollars to 10’s of Dollars

MEMS Resonator | 10’s to 100’s of ppm High 10’s of Cents to Dollars

Table 1.1: Comparison of different Resonating Elements

1
22VIC®

production cost and can be produced as an integrated circuit on a chip. However, the

at the circuit’s resonant frequency f = LC oscillators offer comparatively low
precision of the value of L and C and the effect of temperature on these values make
this resonating element highly frequency unstable. Frequency errors in the order of
thousands of ppm can be easily observed. LC circuits are now rarely used for modern

digital applications.

A similar circuit can be produced using a resistor (R) and a capacitor (C). Its
advantage over an LC resonator is a cheaper on-chip integration, because an inductor is
large to produce compared to a resistor, and area on a chip costs money. Many modern
microprocessors integrate such RC-type oscillators as a cheap alternative to external
resonators. The Texas Instruments MSP430 families or the Atmel SAM3U are two
such example. Like the LC circuit, the RC circuit uses passive components that are
subject to similar degrees of inaccuracies. Thus, both resonators are only used in digital
circuits where the frequency stability is not critical, like clocking the main CPU. One
advantage of RC oscillators is their fast startup times of only a few useconds. This fast

startup can lead to considerable power savings in duty-cycled systems.
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1.2.2 Ring Oscillator

A ring oscillator is a device consisting of an uneven number of logical NOT gates. Each
NOT gate has a specific transition time. Connecting an uneven number of them into a
loop generates a clock signal with a frequency of # where 7 is the transition time of
one inverter. Thus, the frequency of a ring oscillator can be changed by revising the

number of NOT gates in the circuit.

An advantage of ring oscillators is their very low price. Ring oscillators can even
be synthesized in a FPGA. However, the frequency accuracy of a ring oscillator is
very bad because the transition time of each NOT gate depends heavily on the applied
voltage and temperature of the circuit. Frequency error is typically on the order of
thousands of ppm. While the frequency drift of a ring oscillator is comparable to that
observed in LC/RC circuits, a ring oscillator is typically smaller, cheaper to implement.
for integrated devices, and has a better output signal. Hybrid designs of ring oscillators
and some sort of RC-oscillator can be found in some applications where the actual

frequency isn’t critical and where a cheap oscillator is necessary or desired.

1.2.3 Quartz Crystal

Quartz crystals are probably the most common resonating elements in today’s digital
systems. They are cheap and have a very stable frequency. The main working of the
quartz crystal is a piezo-electric effect. Applying a voltage to a quartz crystal causes
the crystal to mechanically deform, and vice-versa, if the quartz crystal is mechanically
deformed then one can measure a voltage. By cutting a quartz crystal at a specific angle
from its blank, very selective resonance frequencies can be obtained. There are many
different ways of cutting these blanks, ranging from AT-cut, the doubly rotated SC-cut,

to Y-cut. Each one of these cuts has specific properties, reacts differently to changes in
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Figure 1.3: Picture of a tuning fork 32kHz crystal commonly found in embedded

systems to keep wall time. They are small, and consume < 15uW.
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the environment, and has different aging characteristics.

The primary causes of aging are mass transfer to or from the resonator’s surfaces
due to absorption or desorption of contamination, changes in the oscillator circuitry,
and atomic level changes in the quartz material. Therefore, in order to achieve low
aging, crystal units must be fabricated and hermetically sealed in an ultra-clean, ultra-
high-vacuum environment. The aging rates of typical commercially available crystal
oscillators range from Sppm-10ppm per year for an inexpensive crystal, to 0.5ppm-
2ppm per year for a temperature-compensated crystal, to 0.05ppm-0.1ppm per year for

a temperature-controlled crystal [Vig92].

The most common low-frequency quartz crystals, up to about 100kHz, are the so
called tuning fork crystals. They are called tuning fork because they have the same
Y-shape and vibrate similar to a musical tuning fork. See Figure 1.3 for an example.
The tuning fork crystal has a quadratic frequency error curve reaction to changes in
temperature that ranges from about -120ppm to 10ppm, reaching the maximum at about
room temperature. These crystals are commonly used in real time clocks to keep wall

time during system sleep, because they consume very little power (< 15uW).

For higher frequencies, AT-cut crystals account for up to 75% of all quartz resonators
made, due to their excellent frequency-temperature (f — T) characteristics. They come
in frequencies ranging from 1MHz up to several hundreds of MHz. The AT-cut crystal
exhibits a cubic frequency error curve reaction to changes in temperature, that ranges

from +100ppm down to +20ppm, depending on the quality.

To produce a quartz resonator, manufacturers cut out a tiny sheet from a quartz
crystal at a specific shear angle. Different angles of cut produce vastly different crystal
characteristics. The AT-cut crystal is cut at a nominal angle of 35°20’. The f — T

characteristics of AT-cut crystals is well studied in the literature and is found to follow

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



AT-cut Temperature vs. Frequency Drift

Figure 1.4: Frequency Drift vs Temperature for two AT-cut crystals. The crystals are

cut at an angle of 35°20’ + 6

a third order polynomial using:
& fstapitiny(T) = A(T = To)* + B(T = To) + C (1.2)

where A,B,C,T, are unique to each device. Interestingly, this is the key observation
behind the compensation techniques detailed in Chapter 2, the value of B is extremely
sensitive to any imprecision in the angle of the cut itself. Figure 1.4 shows how the
f — T characteristics vary for AT-cut crystals sheared with a slightly different angle of
cut. This slight difference could be either deliberate or due to manufacturing variation.
The key idea of Chapter 2 behind improving the stability of the clock source is to exploit

this difference in f — T characteristics for two sources to compensate one of them.

11
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1.2.3.1 Compensation Techniques

Different techniques have been developed to make quartz crystals more stable with
respect to environmental changes. The biggest effect on frequency stability are changes
in temperature. Thus, many compensation techniques reverse this effect by measuring
the temperature, and then tuning the crystal to the right frequency. These types of
crystals are called Temperature Compensated Crystal Oscillators (TCXO), and there
are many possible ways in how to do that [ZZX05]. The most advanced and precise
crystals use a microcontroller and a doubly rotate SC-cut crystal. SC-cut crystals have
the interesting behavior that they can be excited at two different frequencies at the
same time. Since both frequencies have a different temperature stability curve, by
measuring both frequencies in the microcontroller the output frequency can be tuned
without directly measuring the temperature using a thermistor. This type of crystal is
called Microcomputer Compensated Crystal Oscillator (MCXO [BMH89]). The major
limiting factor on the attainable frequency stability of the TCXO or MCXO is hysteresis
[KV90]. The lowest observed stability using the 10MHz/3.3MHz dual-mode MCXO
was 1 part per billion (ppb). However, more typical TCXO’s will have a limit of around
0.1 ppm. TCXOs can often be found in GPS applications, however their prohibitive
high cost of $10 to $100 and the non-negligible power consumption makes them less

appealing to general usage in wireless sensor networks.

Another possibility for temperature compensation is keeping the crystal at a stable
temperature using an oven, instead of measuring the temperature. This type of crystal
is called an Oven Controlled Crystal Oscillator (OCXO), and can achieve a stability
of 1 to 5 ppb. However, that stability comes at a huge cost of energy, which typically
ranges between 1 to 5 Watt. Such a high energy profile is clearly not suited for sensor
networks. OCXOs are usually found in cellular phone basestations, where the high

accuracy is needed for wireless communication purposes.

12
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1.24 MEMS Resonators

One of the latest developments are Microelectromechanical System (MEMS) Res-
onators. The first MEMS resonators were built in 1967 [NNW67], though only recently
became available to the general public. An advantage of the MEMS resonator is the
possibility to directly integrate them into the CMOS process and thus allow a smaller
PCB layout and better integrated systems. However, their power consumption is con-
siderably higher than the power used for regular crystal oscillators. For example, we
measured the power consumption of the SiTime 8002AI 16MHz MEMS Oscillator at
41mW without any digital circuit connected to it. This power consumption is outside of
the realm of wireless sensor networks, though we can expect these power numbers to
fall over the next few years, while MEMS resonators evolve further in research and are

tailored towards low-power applications [RKMOS5].

1.2.5 Other Types of Resonators

There are a multitude of resonating elements that we have not yet discussed. Ceramic
resonators, bulk acoustic wave (BAW) resonators, rubidium oscillator, atomic clocks,
or opto-electronic oscillators can all be used to generate clock signals. These resonating
elements are not a good fit for wireless sensor network applications because of their

bad frequency stability, high price, or prohibitive power consumptions.

Research in resonators is still very active, and maybe someday every embedded
device may contain an atomic clock itself. For Example, the National Institute of
Standards and Technology (NIST) is working on a chip-scale atomic clock [KSS05]. It
still consumes too much power (195 mW) to be a viable solution for sensor networks

though one day this might be low enough to be put in each and every sensor device.

13
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1.3 Contributions

The focus of this dissertation is on the investigation of a key source of timing error —
the local clock (in)stability. Traditionally, this has required the use of expensive clock
sources that are not cost or energy effective in low-end wireless sensor nodes. Besides
developing novel clock sources, we can’t forget about the inherent networked nature of

wireless sensor networks, and thinking about ways of exploiting these aspects.

Our objective is to develop a new timing source for sensor networks using a novel
cross-layer approach. The first contribution of this dissertation is a new way of tem-
perature compensating a crystal oscillator using a technique called Differential Drift.
As we will show in Chapter 2, this algorithm can outperform regular temperature com-
pensated crystal oscillators by exploiting manufacturer variations in crystal oscillators.
However, the Crystal Compensated Crystal based Timer (XCXT) does not exploit any
communication capabilities of a sensor network platform, and thus still has to be factory

calibrated during production.

The second contribution of this dissertation is a thorough investigation of the effects
of temperature on networked time synchronization. In Chapter 3 we show why the
common assumption of static drift during resynchronization intervals doesn’t always
hold true, and that time synchronization performance can drastically be impacted by
the change of environmental temperature. Through the lessons learned from this inves-
tigation, Chapter 3 describes a new time synchronization protocol called Temperature
Compensated Time Synchronization, which exploits the often present on-chip tempera-
ture sensor. With this additional knowledge, a node can elongate its resynchronization

interval, and thus save energy and communication overhead.

The last contribution of this dissertation is the development of hardware architectural

support for ultra low-power and high time-resolution time synchronization. A prototype

14
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implementation of the device showed great promise, pushing wireless embedded time
synchronization into a new dimension of sub-microsecond accuracies, with power
consumptions close to a regular 32kHz tuning fork crystal. We do hope that this device
will augment future sensor network architectures to provide them with unprecedented
high accuracy of time, enabling researchers to improve localization, beam-forming,
distributed logging mechanisms, and other algorithms that rely on the availability of

highly accurate time.
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CHAPTER 2

Dual Crystal Designs for Temperature Induced

Frequency Error Compensation

2.1 Introduction

The single biggest impediment to a node’s battery-powered lifetime is the energy spent
during radio communication, and secondary to that, the time spent in its “awake” (as
opposed to its low-power shutdown “sleep” state). Reduce these times, and lifetime
improves substantially. However, as soon as nodes in the network begin sleeping and
are correspondingly offline, other nodes in the network that are still awake can no
longer use them as a communications hub to route sensor data back to a command-and-
control station (referred to as a “gateway” node). To optimize sleep time and network
performance simultaneously all of the nodes must synchronize their internal clocks and
sleep and wake at the same time (we are aware that this statement is somewhat of a
generality and numerous works on WSN scheduling exist, but our axiom to follow —

that better synchrony yields better lifetime — still holds in these cases).

Commodity time references in WSN’s, and indeed consumer and industrial products
in general, typically consist of a quartz crystal driven by a Colpitts oscillator. This
configuration is popular because it offers substantially better performance than switched
resistive-capacitive networks and ceramic-based mechanical resonators at a moderate

and tolerable marginal cost (see Figure 1.2). However, crystals drift in frequency as
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their temperature changes. A survey of available HC-49S packaged crystals reveals that
the majority of inexpensive parts experience a drift over the commercial temperature
range (-20°C, +70°C) of + 50ppm. With this much deviation, nodes must spend at
least 0.01% of their lifetimes awake [DCS07] in-order to guarantee that when they
transmit, their intended receiver (whose clock has drifted differently) is awake to receive
the broadcast. While this may sound acceptable, consider that a node that wants to
sample water quality once per hour may only require a total of 100ms to wake, take
the measurement, communicate any findings, and return to sleep. This corresponds to
spending as little as 0.0028% of its lifetime awake. Repairing the temperature-imposed

drift in the crystal-based clocks could improve network lifetime more than 3.5 times!

This chapter describes a novel clock system (hardware and software) that is com-
posed of two crystal oscillators running in parallel at each node. It exploits the subtle
manufacturing differences in each crystal that produce different drift-vs.-frequency
behaviors. By measuring this difference it compensates for the drifting clock. In effect,
it uses one crystal to compensate the other. We call this system as a whole the XCXT
(Crystal Compensated Crystal based Timer). The notion of a timer comes from the
subtle difference to regular oscillators or clocks. It provides not a corrected frequency
(like a TCXO would), but rather it provides a corrected timer to a microcontroller.
However, the XCXT architecture could easily be extended such that it provides a stable

1pps signal to an other device, which it already uses internally for corrections.

2.1.1 Related Work

Before we describe the software based compensation technique, it is noteworthy to
mention the state-of-the-art in oscillator design. For mid-performance applications, like
GPS receivers, designers prefer to use a temperature compensated crystal oscillator or

TCXO [NB63, NH68b, ZZX05]. The approach followed by a TCXO manufacturer is to
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Frequency Drift versus Temperature for Uncompensated and TCXO

8f [ppm]

Temperature [C]

Uncompensated

Figure 2.1: Frequency Drift vs Temperature for an uncompensated AT-cut quartz crystal

oscillator and temperature compensated crystal oscillator (TCXO).
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characterize each device in the factory to obtain its f — T curve [SCO1]. Then, by using
a custom analog matching circuit [KS96] or a digital tuning circuit with a temperature
sensor [CCD89, LHHO00, LHTOS], the f — T characteristics are corrected by minuscule
frequency adjustments to negate the effects of drift. Figure 2.1 shows the improvement
in the drift performance of a commercially available digital TCXO [Max08] over an
uncompensated oscillator. For high-performance applications, like GSM or CDMA
cell phone basestation towers, designers employ an oven controlled crystal oscillator or
OCXO which has an active mechanism of maintaining the temperature of the crystal
structure, allowing much higher frequency stability over external temperature variations

at the cost of an active heating element.

2.1.2 Novel Approach

The basic idea of Differential Drift (see Section 2.2), i.e., exploiting two components to
compensate its frequency drift for each other, isn’t entirely new. In [Sch] Schodowski
introduces a temperature sensing device using a dual-harmonic-modecrystal (SC cut
crystal). The two harmonics of the SC cut crystal have different temperature behav-
ior. Mixing these two frequencies results in a beat frequency that is proportional to
the temperature. Subsequently, Bloch et al. [BMHS89] develop the Microcontroller
Compensated Crystal Oscillator (MCXO) based on said SC cut crystal. This MCXO
achieves the precision of an Oven Controlled Crystal Oscillator (OCXO) although it
consumes only a fraction of its power (~70mW instead of ~1.5W) since it doesn’t need

an active heating element.

Measuring the temperature using two AT-cut crystals, which is similar to our basic
approach of measuring drift, has been done by Satou et al. [SH93]. Nevertheless, all the
prior work focuses on ways to generate a stable frequency for the purpose of building

accurate oscillators. This research on the other hand does not begin with the sole interest
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Difference of Frequency Drift versus Temperature
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Figure 2.2: Differential Frequency Drift vs Temperature for multiple pairs of differently
AT-cut oscillators. Note that the steeper the slope, the better it is for our compensation

algorithm.

of building a low drift oscillator. Instead, we sought to find a way to provide accurate

time when an application requests it.

The contribution of this chapter are the low-power timer algorithms for wireless
sensor network applications, and a full working prototype that achieves a 5X better
energy performance compared to commercially available systems, with the potential of

higher gains in future hardware iterations.
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2.2 Introducing Differential Drift

In order to explain how the software based compensation technique works, we first
describe the mechanism intuitively. Assume that the system under consideration has
two AT-cut quartz crystal oscillators with slightly different shearing angles. For now,
we pick the crystals with the top and bottom curves from Figure 1.4 representing the
35°21’ cut and the 35°28’ cut. Measuring the “difference of drift” between the two
oscillators (or differential drift) over the entire temperature range and plotting it against
temperature, we obtain Figure 2.2. The reason that Figure 2.2 is almost a straight line is
due to the fact that between the two crystals, it is the B parameter from Equation 1.2
that dominates. Now, if instead we plot the frequency drift of one of the oscillators
against the differential drift, we obtain Figure 2.3, which is similar to the f — T curve
of that oscillator. This leads us to believe that if the system measures the differential
drift at run time, it can estimate the relative drift of one of its oscillators. Using this
information, the system can make a correction to its oscillator when it deviates and thus

gain higher frequency stability.

This approach is analogous to traditional temperature compensation techniques
except that there are two significant advantages to compensating using differential drift.
On the one hand, temperature sensing is itself error-prone, requiring its own calibration
and compensation system to provide an appreciable accuracy in the reading. Further,
temperature sensing displays non-linear dynamic behavior causing hysteresis effects
during temperature variations. On the other hand, the measurement of differential drift
is completely done in digital logic and software, and the accuracy of measurement
can be set arbitrarily high. There are no dynamic behaviors that affect the reading and
the speed of acquiring a reading scales with the speeds of deep sub-micron process
technology. Additionally, the potential saving in hardware and thus production cost is

tremendous since the logic circuitry could directly be integrated into microcontrollers or
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Frequency Drift vs. Difference of Frequency Drift

6C] [ppm]

Figure 2.3: Frequency Drift versus Difference of Frequency Drift for several pairs

of AT-cut oscillators. The larger the full span of Jfi, the better our algorithm can
compensate.
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systems on a chip (SoC) at virtually no additional cost. To put it briefly, using simpler
hardware with smarter algorithms can benefit in lower production cost and performance

advantages, as will be show later on.

2.3 The Crystal Compensated Crystal-Based Timer (XCXT)

The crystal compensated crystal-based timer uses measurements of differential drift
introduced in Section 2.2 to compensate for the frequency deviation of the clock source.
The following illustrates how this is done. Let the frequency of the two oscillators in
the system be denoted as f; and f,. These frequencies deviate due to various factors
from the nominal oscillation frequency of Fy Hz. The relative frequency drift for each
oscillator is given by Equation 1.1. The differential drift, defined in Section 2.2 and
denoted as 012, is given by 6 fi» = 6 fi — 6. To measure the differential drift, observe
that ¢ f1, can be simplified using Equation 1.1 to:

fl—Fo_fz—F0=f1—f2

o =
fi2 e 2 2

2.1)

Thus, measuring differential drift could be implemented by measuring the difference in
frequencies between the oscillators. Measuring frequencies in software is achieved by
counting the number of clock pulses within some fixed time interval and dividing by
that interval. The interval must be large enough so that the 1/f temporal quantization
error does not affect the accuracy of the measurement. On the other hand, the interval
must remain small to ensure short measurement acquisition times and quick response
to dynamic environments. The sampling interval could be derived from a faster clock

source in the system by generating a low frequency sampling signal F.

The frequency correction algorithm is executed in two parts, a one time calibration
phase and a run time compensation phase. The simplest implementation of the algorithm

requires the software to have low level access to a hardware timer and two hardware
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counters. However, it is very likely that this restriction can be relaxed to one counter in

future implementations.

2.3.1 Calibration Phase

In the calibration phase, the system develops an equivalent of the § fi, vs. ¢ f; charac-
teristics by measurement against a known reference of the sampling clock, F,. The
calibration phase is performed for a pair of oscillators at the factory. This is analogous
to the calibration phase performed for TCXOs described earlier, except that the cal-
ibration reference required is simply a stable externally applied sampling clock, F.
The requirement to accurately measure temperatures is eliminated. The calibration
phase requires the use of two free running hardware counters C; and C, that are being
fed from the two oscillators with frequencies f; and f; respectively. The system then
captures the values of both counters at the positive edge of F via an interrupt service
routine and resets them to zero for the next sample. The collection of counter samples is
performed over the largest temperature variation possible, ideally over the entire range
from —40 to +85°C. Let the collection of counter samples, sampled at F, be denoted

as C; and C,.

Define two new quantities 6C; and 6C;; as follows:

Ci

oC; = -1 (2.2)
Fo/F

6Cij - 6C,—6C] (23)

Before the sampling routine exits, the routine computes 6C, 6C, and 6C ), and publishes

it for subsequent storage. This procedure is shown in the pseudo-code in Procedure 2.1.

It will now be shown that 6 f; = 6C; , 6 f, = 6C, and 6 f; = 6C1s, so that a model of

6Cq; vs. 6C is equivalent to a model of differential drift 6 f;, versus frequency drift df;.
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Procedure 2.1 Calibration:On_Fs_Interrupt
C1 « Counterl.value

C2 « Counter2.value
Counterl.reset()
Counter2.reset()

dC1 « [CL/ (Fo/Fy)] - 1
dC2 « [C2/ (Fo/Fy)] -1
dC12 « dC1 - dC2
print dC1, dC2, dC12

The value of the counter in each interval can be given by:
Ci=—+ (2.4)

where f; is the mean frequency of the oscillator over the sampling interval. ¢ f; is given

by Equation 1.1 as:

fi—Fo _ fi
5f = =2 _1 2.5
fi 7o 2 (2.5)
C.-F C.
= 5 _1=—"1_ 2.6
Fy Fo/F (2.6)
= 6C; 2.7

A similar relationship can be shown for 6 f;, and 6C5.

At the end of the calibration phase, the system has collected a set of < 6C,,6C; >
and < 6C1,,0C, > tuples. We found that these tuples fit well to a third order polynomial
function because C; is linearly proportional to the temperature (see Figure 2.2). Thus,

only the values of A, B, C, and D in the following equation are required to be stored:
oCi=A- (5C12)3 +B- (6C12)2 +C-6Cp+D (2.8)

The entire set of tuples can also be stored as a lookup table, subject to memory availabil-

ity. Section 2.3.5 describes how this choice affects the performance of the compensation
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algorithm.

2.3.2 Compensation Phase

The compensation phase performs a continuous frequency correction at run time to
provide a higher stability clock. Instead of stabilizing f; or f; using hardware based
tuning circuits, we focus on regenerating a replica of the stable sampling clock, F; from
the unstable clock sources. It can be shown that the fact that F; is at fairly low frequency
does not affect the accuracy of the clock as long as it captures dynamic variations in the

environment adequately.

The key idea of the compensation algorithm is to estimate the frequency of the
Sampling clock as closely as possible. Thus, at every pulse of this generated clock, we
know that (close to) 1/F seconds of real time has elapsed. This value is accumulated
in a register that then provides the real time at the pulse edge. To timestamp an event or
read time between two pulses, an intermediary correction is required as described in

Section 2.3.3.

If the timer is fed the clock source f; and loaded with a value y, the timer expires
after a time interval y/ f| seconds asserting an interrupt. If the timer reloads itself on
expiry with the same value v, it generates a periodic sampling signal with frequency
denoted as f,. Again, two counters C; and C, are used, fed by the two oscillators

running at frequencies fi and f, respectively.

As shown in the initialization routine in Procedure 2.2, the timer is loaded with a
value y = Fy/F, since this provides the best initial estimate of the sampling signal. On
every timer interrupt, a sampling and compensation routine is executed as shown in

Procedure 2.3.

First, the values of the two counters are captured and the counters reset to zero for
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Procedure 2.2 Compensation:Initialization

y « Fo/F;
RealTime < 0
Timerl.value « y
Timerl.reset()
Counterl.reset()

Counter2.reset()

Procedure 2.3 Compensation:On_Timer_Interrupt

//Read and reset counters

C1’ « Counterl.value
Counterl.reset()

C2’ « Counter2.value
Counter2.reset()

/| Calculate the normalized difference
dC12" « (y - C2') / (Fo/F)
//Calculate the correction term

dCl’ « A -(dC12’)* + B - (dC12'> + C-dC12' + D
v (Fo/Fy) - (1+dC1’)

/Increment the corrected counter
RealTime « RealTime + 1/F
/JUpdate the timer

Timerl.value « y
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the next sample. Note that since Counterl is incremented with the same clock source
as the timer, when the interrupt is asserted, Counterl would have incremented y times,
i.e., C| = v. Then, an estimate of 6C}, is computed using Equation 2.3 as follows:

y -G

oCi, = Fyo/F

(2.9)

This is only an estimate of the original 6C}, since f, is not necessarily equal to F;. Note
that since f, is generated using f;:
== (2.10)
Y
and C} = y. Using the values of A, B, C and D from the calibration phase, 6C} is
computed as:

6C; = A-(6C},)* + B- (6C},)* +C - 6C), + D (2.11)
6C represents an estimate of the mean relative drift of f; with respect to F, over the
sampling period. Compensating for this drift would require retuning the oscillator such
that f; is reduced by an amount —F - §C]. Instead, we compensate by continuously
adjusting the value of y such that f, ~ F as follows:

F
y=( +ac;)7° 2.12)

N

v is then loaded into the timer for the next sampling period. By adjusting the value of y
in this way, we create as close a replica of the reference sampling signal as possible,

accumulating real time epochs in the RealTime register as described below.

2.3.3 Corrected Timestamping

In order to use the above technique to estimate real time, a memory register RealT ime
is used to keep track of the accumulated counts. At every sampling interrupt, this

register is incremented by a fixed value 1/F as shown in Procedure 2.3. An accurate
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estimate of the real-time 7 is then given by reading RealT ime and C, and applying an

inter-sampling period correction.

Ci(»

t = RealTime +
ealTime S F.

where C,(¢) is the captured value of the counter at the instant the timestamp is required.

This process is described in Procedure 2.4.

Procedure 2.4 Compensation:On_Get_Time
// Return RealTime’s value and add the corrected

// elapsed time since the last increment
Correction = Counterl.value - (1/F) - (1/gamma)

return RealTime + Correction

2.3.4 Performance Evaluation

To evaluate the effects of implementation choices on performance, four oscillator
architectures are considered: an uncompensated crystal, a commercial TCXO, the
XCXT implementing the cubic fit Equation 2.8, and the XCXT implemented via a
lookup table. Due to the intrinsically low level nature of the compensation technique,
we found it illustrative to evaluate its performance through simulation. The simulator
models the drift characteristics of the oscillators and estimates their performance based
on the implementation of the algorithms described previously. Figure 2.4 illustrates
the f — T characteristics for an oscillator with various schemes of compensation. The
f — T characteristics of the TCXO [Max08] is also plotted to serve as a reference. It is
observed that the stability of the XCXT is significantly better than the uncompensated
version but shows large variations around the Oppm line — an effect examined below.

Note that these characteristics correspond to Fy = 1 MHz and F; = 2 Hz.

The performance of a particular compensation technique is quantified in com-
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Clock Stability versus Temperature for Different Clock Sources

f [ppm]

Temperature [C]

Uncompensated Cubic Fit XCXT -
TCXO -------- Lookup Table XCXT e

Figure 2.4: Frequency Drift versus Temperature characteristics for Uncompensated,

TCXO, Cubic Fit XCXT and Lookup Table XCXT

pensation gain, defined as the ratio of the frequency drift of the oscillator without
compensation to the drift with compensation at a specific temperature. A log plot of
this compensation gain over temperature for the TCXO and XCXT is shown in Figure
2.5. The plot reveals that even though there is large variation between the compensation
schemes, the mean value of gain over all temperatures for both the TCXO and XCXT is
about the same, between 14 and 14.5 dB. The dip in the TCXO curve is a surprising
artifact. We attribute this to an uncharacteristically high stability in the uncompensated

oscillator at 25°C at which the TCXO seems to have a slightly higher frequency drift.
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Compensation Gain versus Temperature for Clock Sources
50 T T T T T

Compensation Gain [dB]

-20 1 i i ; :
Temperature [C]
TCXO Lookup Table XCXT ---------
Cubic Fit XCXT --------

Figure 2.5: Frequency Drift versus Temperature characteristics for Uncompensated,
Temperature Compensated, Cubic Fit based Compensation and Lookup Table based

Compensation
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2.3.5 Model Fitting Effects

During the calibration phase described in Section 2.3.1, the system collects a set of
tuples given by < 6Cy»,6C; > and < 6Cy2,0C, >. The cubic fit XCXT employs a
third order polynomial fit to the tuples to form the relaﬁon given by Equation 2.8. It is
found that the cubic fit fares quite well with root mean square error consistently below

10~ ppm.

Alternatively, the XCXT lookup table implementation compiles the calibration data
in a one-to-one mapping between §C;, and 6C;. Since the values of 6Cy, are quantized
and we have a calibration data point for each possible value of 6C), stored in the table,

no interpolation is required.

A comparison of the cubic fit XCXT and the lookup table XCXT is shown in Figure
2.4, which illustrates the f — T characteristics for Fp = 1 MHz and Fy = 2Hz . Itis
observed that the lookup table characteristics generally follow that of the cubic fit. For
this set of oscillator characteristics and choice of Fy/F;, the lookup table size is only

37 entries which covers all possible values of 6C};.

Figure 2.5 depicts the difference in compensation gain, as defined in Section 2.3.4.
As the 6Cy, and 6C; values are themselves quantized and the calibration data points
cover all values, the mean compensation gain for the lookup table implementation is

slightly higher than that of the cubic fit.

2.3.6 Quantization Effects

Due to the discrete-time nature of the compensation algorithm, quantization errors
are introduced in the measurement of 6C;, and in the adjustment of y. Recall from
Equation 2.3 that 6C, is computed from the captured values of the counters. In each

sampling period, each counter increments by a nominal value of Fy/F;. Therefore,
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Frequency Drift versus Temperature for Fy/F =50* 108

f [ppm]

-30 . L 4 L L
-40 -20 0 20 40 60
Temperature [C]
Uncompensated Cubic Fit XCXT
TCXO --—------ Lookup Table XCXT

Figure 2.6: Frequency Drift versus Temperature characteristics for Clock Source 2

showing minimal effects due to quantization when Fy/F = 50 x 10°

the maximum error in the measurement of §C;, due to both counters is 2F,/F,. This
relation shows that if the F, is made higher or F| is lowered, the performance of the

compensation scheme would improve.

Further, during the compensation phase the value of y that is computed is approxi-
mated to the closest integer value in order to adjust the counter that generates £, . Due
to this quantization, an error is introduced in the value of f,. This in turn affects the
accuracy with which the measurement of 5C, is taken, since the sampling period in
the compensation phase should match 1/F; as closely as possible. It can be shown
that the error in f, due to this is approximated by F2/F. This relation further supports

the intuition that if the nominal frequency was increased or the sampling interval was
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Frequency Drift versus Temperature for FO/FS=50*103

f [ppm]

Temperature [C]

Uncompensated Cubic Fit XCXT
TCXO -------- Lookup Table XCXT

Figure 2.7: Frequency Drift versus Temperature characteristics for Clock Source 2

showing detrimental effects of quantization when Fy/F; = 50 X 10°
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Fy/F, | Cubic Fit Gain (dB) | Lookup Table Gain (dB)
7 o J7; o
5K 0 0 0 0
50K 6.1 5.4 6.1 54
500K | 143 6.3 14.5 6.1
SM 18.5 6.1 25.8 6.6
500M | 18.5 6.8 45.2 6.0

Table 2.1: Quantization Effects on Compensation Gain

increased, it would lead to better stability. This is verified through simulation. Figure
2.6 illustrates the performance when Fy/F is set to 50 X 10° and Figure 2.7 depicts the
case when F,/F, is 50 x 10°. Note that the dynamics of temperature variation pose a
lower limit on the value F'; as it must be ensured that F| is high enough that temperature
variations are not missed. Consequently, the choice of F; = 2 Hz in our evaluation

(described in Section 2.4) is conservative from a performance perspective.

2.3.7 Other Effects

Apart from the effect of choices made within the compensation technique described
above, numerous other areas have been identified that could lead to reduced performance
if not handled properly. With the exception of certain latency issues covered in Section
2.4.3, the detailed effects of these issues will be considered in subsequent research.
Firstly, an error is introduced in the measurement of 6C;, when f, # F. This affects to
which part of the 6 fi» — 6 fi curve 6C}; is being mapped. Secondly, when the span of
6f12 1s small, as in 6 = 6/, 8’ curve in Figure 2.3, the effects of quantization error are

more pronounced.

The third set of errors accrue from the fact that executing the compensation algorithm
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in software results in latencies and some indeterministic jitter due to interrupt handling.

The following latencies all affect the accuracy of the compensated clock:

1. Computational latency in executing the algorithm, which sets an upper bound on

the value of Fyy/F

2. Latency in capturing counters Cy, C; and also latency in adjusting the value of y

in the timer
3. Latency in resetting counters for the next sample

4. Time difference in capturing and resetting counters (i.e., time difference between
first four steps in Procedure 2.3) since they cannot be done concurrently in

software (effect is especially large if the processor clock is lower than Fy)

Finally, the algorithm assumes floating point computation, and only considers temporal
quantization errors. However, if a floating point unit is unavailable and fixed point
computation is required due to resource constraints, additional quantization error will

be introduced.

2.4 Algorithm Evaluation

A testbed simulates the oscillators behavior under different environmental impacts,
in order to evaluate the algorithm on real hardware. The goal of the testbed is to
emulate different oscillator characteristics without the need of rewiring different types
of oscillators for every test, and to remove the need of a temperature chamber, that
would be needed in order to change the oscillators drifts. Furthermore, the testbed
allows us to simulate other impacts on clock drift, such as change in voltage source,

change of oscillator speed itself, etc.
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Figure 2.8: Block diagram of the implementation of the XCXT.

2.4.1 Environment Emulator

Two Agilent 33220A arbitrary waveform generators simulate the oscillators to emu-
late any environment temperature by remotely programming them with a predefined
frequency. Figure 1.4 depicts the frequency drift for different AT-cut crystals. Using
these graphs and choosing two different cuts, one can set the two waveform generators
to two individual frequencies, and thus successfully emulate the impact of a specific

environment temperature on the crystals themselves.

2.4.2 Testbed

Figure 2.8 illustrates a simplified block diagram of the testbed hardware implementation.
The two Agilent waveform generators are connected to the two clock inputs, and emulate

the oscillators themselves. The waveform generators are factory calibrated, and have
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Figure 2.9: Experimental setup with the two Agilent waveform generators, the 2Hz

reference clock, and the MSP430 microcontroller with its two timer units.

a frequency accuracy of 10ppm. They can produce a square wave with a RMS jitter
of 1ns + 100ppm of the period. This is no concern for us since we are running the
frequency generators at approximately 1M Hz. Therefore, the RMS jitter in the period
is in the order of 1.1ns. For the timer hardware, we use the MSP430 microcontroller
that gives us easy to use 16-bit timers, and has enough processing power to do the
compensation phase on the fly. Figure 2.9 illustrates the setup. The waveform generator
sends its output to the oscillator input of the MSP430. The external reference clock
connects to the two timer capture pins of the MSP430’s TimerA and TimerB input
captures. These will be used to calibrate the oscillators. TimerA’s output connects to a

second input capture of TimerB. This will be used for the compensation phase.
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2.4.3 Interrupt Latency Considerations

Interrupts on microcontrollers have the tendency to be serviced with non constant
latency. For that reason, we have to make sure that interrupt latency and interrupt
jitter don’t affect our measurements in our hardware implementation. Therefore, we
make extensive use of the MSP430’s Timer features. Two key features are the timer
capture and the timer output. The timer capture allows us to trigger the reading of the
timer value by an external signal on an input pin. When the input pin transitions from
low to high, the value of the timer is stored in a temporary register and an interrupt
is sent to the microcontroller. The application can then read that register and gets an
accurate reading of when the signal transitioned, regardless of how much latency the

microcontroller takes to service the interrupt.

Similar to the timer capture, the timer output allows an application to toggle an
output pin at a specific time. The application writes the time it wants the pin to be toggled
into a predefined register. When the timer reaches that value, it will automatically toggle
the output pin and send an interrupt back to the application. Both techniques, timer
capture, and timer output, are necessary to achieve a high accuracy in the calibration, as

well as compensation phase.

2.4.4 Limitations

Our testbed has one particular limitation. The MSP430’s Timers are 16-bit units, and
thus one has to take care of timer overflows. Additionally, the input frequency to
the timers, Fy, should be chosen such that overflows don’t happen too often or the
microcontroller will be overloaded with interrupts. At the same time, as discussed in
Section 2.3.6, we want F to be as high as possible to achieve a higher precision. We

opted to set F to IMHz. This will generate a timer overflow interrupt every 65.5ms,
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enough time for the microcontroller to treat the interrupt and do some calculations on
the data. Additionally, we chose F = 2Hz which is slow enough to measure significant
difference between the two clocks, and at the same time not too slow to make data point

collection for the experiments unfeasible.

2.4.5 Calibration

We let the two frequency generators run through the whole temperature range from
-40° to 75° Celsius and generate the according frequencies. At the same time, as
previously described in Section 2.3.1, the reference clock triggers the input capture of
the two microcontrollers at a rate of 2 Hz. At each event, the two microcontrollers store
the values of their timers to generate the calibration graph for 6C, vs. 6C;. Figure
2.10 shows the result of the calibration run. As expected, the measurements show a
quantization effect, and follow a cubic curve. This curve will subsequently be used in

the compensation to achieve a high accuracy clock source.

2.4.6 Compensation

The setup for the compensation phase slightly changes from the calibration setup. Now,
as described in Section 2.3.2, TimerA initiates the sampling of the clocks after y clock
tics of the local clock source. Figure 2.11 illustrates this. The node initiates the sampling
by programming its TimerA unit to toggle the timer output when the timer reaches .
At that time, Timer B captures the value of its counter. The node can then calculate

0C1, and from this the new y.

While correcting for the new 7, the node also keeps track of the global time estimate

by incrementing a third counter by Fy/F; every time it estimates a new 7.
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Figure 2.10: Measured calibration and its cubic curve fit. Note the quantization effect
which comes from measuring frequency difference with digital counters. The effect on

error of this is discussed in Section 2.3.6.
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Figure 2.11: Block diagram of our compensation experiment.
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Figure 2.12: Compensated clock drift over the full temperature range of -40° to 75° Cel-
sius. We also show the drift of the two uncompensated crystals used in the compensation

algorithm.

2.4.7 Experimental Results

We tested our implementation of the compensation phase by subjecting the two nodes
to the frequency drifts happening over the full scale of temperature from -40° to 75°
Celsius. We measured how much the estimated vy diverges from Fy/F;,. Figure 2.12
illustrates this further. We can see that our implementation of the compensated clock
lies within +7ppm of the real frequency Fy, 95% of the time. This is expected since
the Agilent frequency generator sources we use for the clocks themselves have an

inaccuracy of about 10ppm.
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Given our algorithm, we expected the XCXT to have a poor short term (order of
seconds) stability. This happens because y is quantized and thus will jump between
two values back and forth. If 7y is slightly below the value it should be after the fitted
compensation curve, d;, will be smaller in the next iteration, and thus the next y will be
a little bit bigger again. Nevertheless, this should even itself out for medium term (order
‘of tens of seconds) stability. A good measure for clock stability is the Allan Variance

[AAH97] defined as
1
730 = 3| Onet = 30)’] (2.13)

where y, is the normalized average frequency over the sample interval, and 7 is the
length of each sample interval. Figure 2.13 depicts the Allan Variance for two different
runs of our experiment. From this graph we can see that the compensated clock source
indeed does have a worse short term than mid term stability. Over longer terms (order
of minutes to hours) the clock stability gets worse again which indicates that there is
still some drift over these time ranges. This was to be expected since we went through
a huge temperature range. Future long term tests under realistic temperature ranges
obtained from real measurements will show how the compensation techniques works
under these conditions. At the same time, Figure 2.13 shows that the XCXT trades

short term versus long term stability compared to the uncompensated clock source.

A more interesting measurement for application developers is the drift of the local
clock in relation to global time. Figure 2.14 shows this difference for two runs of our
emulator. Again, we changed the temperature from -40° to 75° Celsius and queried
the node in regular intervals for its estimate of the global time. The graph shows the
difference between the node’s estimate and the real global time. After 2 hours, our
compensated clock was 11.5 milliseconds too slow. This represents a mean effective

clock stability of 1.6 ppm.
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Figure 2.13: Frequency stability expressed by the Allan Variance for the compensated
and uncompensated clock. We can see that we trade short term vs. long term stability

by employing our compensation algorithm.
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Figure 2.14: Difference between global time and the estimated time at node 1 over 2.5
hour and a change in temperature from -40° to 75° Celsius. The different phases come
from the inaccuracy introduced by the frequency generators, which not always set the

output frequency to the desired frequency (see Figure 2.12).
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2.5 XCXT Hardware Implementation

After successfully simulating and emulating the differential drift algorithm we contin-
ued and implemented the whole algorithm on the TMote Sky[Mot], a Texas Instrument
MSP430F1611 based sensor network platform. We chose this platform because the
MSP430 has two crystal inputs and two timer units, two of the prerequisites to imple-
ment our algorithm. However, this necessitates the removal of the 32kHz crystal, in

order to make room for a high frequency one.

The implementation is written in C and occupies 3292 bytes. We expect this number
to shrink further as we optimize the code. Additionally, the implementation makes
heavy use of the two timer units and its input capture and timer output capabilities. This
is necessary in order to minimize unpredictable software interrupt latencies that could

introduce large errors in timer measurements.

We subjected the hardware implementation to the same environmental conditions as
used for the calibration phase, and measured it’s capability to self compensate. Figure
2.15 shows the compensation results and compares the uncompensated clock to the
compensated clock output. The achieved mean stability is 0.47ppm and the standard
sample deviation is 0.31ppm over the temperature range of -10°C to 60°C, resulting
in an effective frequency stability at a 95% confidence interval of +1.2ppm. This is
very close to the simulated theoretic accuracy of 0.14ppm standard deviation that we
measured by extracting the drift model of the two 8MHz crystals and using them as an

input to our simulation framework.

The hardware implementation showed us that the concept of Differential Drift not
only works in simulation or emulation, but that we actually can build such a system
in an XCXT and achieve clock stabilities close to what the simulations predicted. It

is now of interest to investigate the power consumption of the XCXT since this is not
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Figure 2.15: Using the LUT from the calibration data, we can successfully compensate

one of the crystals for its temperature drift. Over the full temperature range of -10°C to

60°C we measured a standard deviation of 0.3 1ppm.
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something our simulation framework can predict.

2.5.1 XCXT Power Measurements

When we first measured the average power consumption of the XCXT implementation
at 1.27mW, we were already impressed since we didn’t do any special optimizations to
decrease the power consumption. Additionally it is to note that a commercially available
TCXO that achieves about the same precision already consumes 5mW[Max08]' without
the drive and oscillatory circuitry, which are included in oﬁr measurement. This led us
to investigate which parts of our hardware implementation spend how much energy, in

order to optimize our hardware even further.

2.5.2 Microprocessor Power Consumption

The MSP430 has several low power states. In the second lowest one, LPM3, all the
peripherals, except one timer unit and one clock signal, are turned off. In that state, the
microprocessor consumes as low as 7uA if it uses a standard 32kHz crystal as its timer
input. Unfortunately, we cannot use this low power mode in our XCXT implementation
since we need two active timers and two input clock signals in order to measure the
drift between the two of them. Thus, the lowest possible mode is LPM1, where the
CPU and the internal digitally controlled oscillator (DCO) are turned off, but both timer
units are kept on. The microprocessor wakes up from sleep only if one of the timers
overflows, or the timer unit interrupts the microprocessor to measure the difference
between the two frequencies. At that point, the power consumption sharply rises as
depicted in Figure 2.16. However, the computations are small and thus the length of

active time is very short. As we will show in the next subsection, the average power

The Maxim DS4026 TCXO datasheet also gives numbers for the drive and oscillatory circuit. They
are 3mA and 2mA respectively (typical). This gives a grand total of 21.4mW at 3.3V.
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Figure 2.16: This is a typical current consumption plot of the XCXT. The measurements
were taken at 3V. The spikes represent instances when the microprocessor woke up

because of a timer overflow which has to be treated.
consumption is dominated by the power consumption of the oscillatory circuitry and
timer units that need to keep track of the counters. In Section 2.6.3 we will go deeper

into techniques and algorithm improvements that exploit this fact. But first, let’s look at

the power consumption for one oscillator and its timer unit.
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2.5.3 Oscillator and Timer Power Consumption

Provided with the power measurements from the last section, we can see that most of
the energy of the XCXT is spent while the CPU is off. Thus, it is very important to be
able to attribute that energy to the specific components in order to optimize the XCXT
power efficiency. In a series of experiments we tested the different sub-components
of the microprocessor and the TMote platform. We found that the 8 MHz oscillators
and the according clocking and timer subsystem consumes most of the remaining
power budget at sleep. In order to get a more detailed view, we conducted several
different experiments with different combinations of number of clocks, timing units,

clock dividers, and even timer dividers.

To better understand the different settings we present a quick overview of the basic
clock system of the used MSP430 platform. The MSP430 has three different clock
signals called ACLK, SCLK, and MCLK. Each one of them can be configured to be
clocked from different sources, like the crystal 1 (XT1), crystal 2(XT2), or the internal
DCO. Additionally, each clock signal can use a divider that divides its clock source by
a factor of 1, 2, 4, or 8 respectively. The MCLK is the master clock and drives the CPU.
Thus, this signal cannot be used to feed the two timer units. But either ACLK or SCLK
can be used as a source for each of the timer units. Additionally, each timer has again a
divider that can be set to divide the input signal by 1, 2, 4, or 8. In our configuration,
both XT1 and XT2 are a 8MHz crystal. XT1 is the source for the ACLK clock signal,
and XT2 for SCLK. Additionally, Timer A is fed by ACLK and Timer B by SCLK.
Thus, using the different dividers, different clock speeds can be achieved at the input to

the timers, as well as within the timer.

Using the different divider combinations, and by turning on and off the timer units,
we were able to measure the power consumption of one oscillator using different clock

dividers, as well as the power consumption of the oscillator including a timer unit.
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Figure 2.17: These are the typical current consumptions of the clock and timer sub-
system of the MSP430. The clock source was an 8MHz crystal, and the different
clock speeds were achieved by dividing that signal using an internal clock divider. As
comparison, we also measured the MSP430 power consumption when it uses a 32kHz

crystal, one timer active, CPU turned off.
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Figure 2.17 shows a summary of the result. For each possible clock divider that results
in a 8 MHz, 4 MHz, 2 MHz, and 1 MHz clock signal, we made measurements with the
timer unit disabled, enabled, and enabled with an additional division by 8. Additionally,
we measured the power consumption of the TMote platform when the CPU is at sleep,
and one timer unit is clocked from a 32kHz crystal. This will help us to identify the
impact to the power budget when using a high frequency crystal, instead of a low

frequency one.

From the obtained measurements, we can establish some general and intuitive rules:

1. The higher a clock divider, the less power the clocking subsystem consumes.
2. Enabling a timer unit adds a considerable power overhead at high speeds.

3. Dividing at the timer unit is less efficient than dividing the clock signal ahead of

the timer.

4. A high frequency clock system has a considerable impact on the power budget

and should thus be avoided if high granularity time is not needed.

Using these simple rules, we can come up with new algorithms and techniques to
improve the power efficiency of the XCXT and make it into a Smart Timer Unit. In
the next section, we will analyze some of these possibilities and show how they can be
implemented on our current prototype. But before that, let’s look again at the power
consumption we measured for our XCXT prototype. We measured the consumption
while running the compensation phase, where the two clock sources run at 1 MHz each,
at 1.27mW. From our other measurements we know that one crystal with a divider by
8 and a timer unit consumes 191 uW. Thus, the two crystals with their timers alone
consume a total of 1.15mW at 3V. This confirms our suspicion that the crystals, and
not our compensation algorithm or the microprocessor, account for the majority of the

power consumption of the XCXT.
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2.6 Discussion

2.6.1 Crystal Compensated Crystal Oscillator
(XCXO0)

One major difference between the XCXT and a regular TCXO is that it doesn’t provide
a corrected crystal, but a corrected counter. A future idea is to use a similar technique as
applied in the XCXT and tune the crystals to the correct frequency. This would have the
advantage that the compensated crystal could be used directly in digital circuits without
counters. Figure 2.18 illustrates a block diagram of such a crystal. It still exploits two
crystals and their difference, but instead of adapting the value of a counter, it directly
tunes the crystal through a tuning circuit. However, the formulas and exact working of
such a crystal compensated crystal oscillator (XCXO) have to be worked out and we

leave it for future study.

2.6.2 Cost - Performance Comparison

In this section, we will discuss the expected bill of material (BOM) for an implementa-
tion of a XCXT/XCXO, and compare it to similar devices, mainly TCXO’s. First, we
need to estimate the BOM of a TCXO. [NH68a] mentions that 40-50 % of the cost of a
TCXO go into calibration of the device. Thus, the pure BOM of a TCXO, given the
data from Figure 1.2 lies between $2.50-$14 for an accuracy ranging between 8-1ppm.
For an XCXT, we need two crystal oscillators ($0.40/unit) and an additional unit that
can do the compensation. For a prototype, we estimate that the whole algorithm could
fit in hardware onto less than 100,000 gates. An appropriate FPGA would be the Xilinx
Spartan-3E XC3S100E FPGA that cost $2/unit?. Thus, a prototype costs around $3

which is well in the lower range of comparable TCXO’s cost. Nevertheless, one could

ZPrice for 500,000 units November 2007
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Figure 2.18: Block diagram of an ideal hardware base Crystal Compensated Crystal
Oscillator (XCXO).
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imagine that the whole circuit would be an additional peripheral on a microcontroller
or system on chips (SoC), where the increase in number of gates, and thus cost and
complexity, would be negligible. In such a scenario, a XCXT with a precision of <5ppm

comes at the cost of <$1, since it is just one additional crystal.

2.6.3 The Smart Timer Unit

As we showed in the Section 2.5.1, the oscillator circuitry, high speed crystals, and
the timer unit consume most of the power of the XCXT. Thus, duty cycling one of
the two crystals of the XCXT seems to be an efficient method in order to cut down
on the energy consumption. Indeed, it is not necessary to have both timers on all
the time. For example, if the XCXT experiences a constant environment temperature,
the measured drift is always the same and doesn’t add any new information for the
compensation phase. This is similar in the event where the environment temperature
changes only slowly. By this, we mean where the environment doesn’t change more
than +1°C per minute. In such an environment, the second crystal could be turned off
for 58 seconds. Then, the crystal is turned on for 2 seconds. The first second is there
to let the crystal stabilize itself. In general, this should not take more than a couple of
tens of milliseconds. In the second second we perform the drift measurement and thus
compensate for any change in temperature. At the same time, we saved approximately

48% of the total power, since one of the crystals is turned off most of the time.

A second improvement can be done by using one slow crystal, like a standard
low frequency 32kHz crystal as it is found on many real time clocks and embedded
systems, and one high frequency one, like the ones we use in the XCXT. The advantage
in a duty-cycled system is evident, since the 32 kHz crystal can be used to bridge
the time while the node is asleep, and doesn’t use a high granularity clock. Once the

microprocessor wakes up, the fast clock is turned on and provides a high granularity
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Figure 2.19: This is the timeline of the smart timer unit. We can find the phase of the
slower timer (red, dashed) since the time instance ¢, by counting the number of ticks of

the fast clock (blue, solid)

clock source to measure precise time. At the same time, the two crystals compensate
each others drift using the differential drift algorithms. The problem is that the current
XCXT algorithm does not work in such a scenario since it is based on the fact that
both crystals have the same speed and thus time resolution (minus their drift, which
we calculate in the algorithm). Nevertheless, we developed a technique that extends
the XCXT algorithm and allows the usage of a slow and a fast crystal. We will now
explain the basics behind the extension, although we cannot provide a prototype yet,
since there are still some technical problems left we need to solve. We will mention

them at the end of this section.

The main idea behind the extension is to interpolate the slow frequency and measure

its phase by using the high frequency clock signal. Figure 2.19 illustrates this concept.
~The blue line (solid) represents the fast clock signal, and the red line (dashed) is the
slower clock. Let’s assume that the sampling interval is f;, timer A uses the slow clock
signal, timer B the fast, and the two timers are started at the exact same time. At the

sampling time #; we read both timer values as C,(t,) = C4o and Cp(t,) = Cpo. Now, in
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order to find the phase of the timer A we wait until timer A’s clock signal rises again.
Let’s call this time t;. We know that C4(#;) = Cao + 1 and Cp(t;) = Cpo + L6t; - f3]
where the floor operator comes from the digital nature of the timers. Thus, we can

calculate the phase of timer A as

S/ fa — (Cp(t;) — Cp(ty)) _ - Lot - fz]
I8l fa Il fa

This phase information can now be used to calculate the drift between the two crystals

$a(Cp) =

that source the timer A and B, and the same differential drift algorithm as for the XCXT

can be applied.

There are still some technical problems left that need to be solved, in order to

implement the smart timer unit in hardware:

e Commercially available 32kHz crystals are all tuning-fork based. A tuning-fork
crystal has a quadratic temperature vs. frequency drift curve. Combining this with
a cubic curve from a high frequency AT-cut crystal does not yield a calibration
function and can thus not be used for calibration, i.e., there is no unique mapping

from Ci, — C).

e The time between the high frequency timer interrupts, and the time the slow
timer signal rises (6 in Figure 2.19) can be very short. We will see if the timer
hardware is fast enough to rearm the input capture of the fast timer such that an
earlier result doesn’t get overwritten. A possible solution is to use multiple timer

capture registers.

Chapter 5 explores the STU further and provides an actual implementation of an STU
in an FPGA.
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2.7 Summary

This chapter described the XCXT, a new way of compensating a pair of crystals and thus
achieved a +1.2ppm precision over a temperature range of -10 to 60°C. The XCXT can
achieve this precision while using only 1.27mW. Benchmarking the XCXT to pinpoint
the components that consume most of the energy reveals that the two 8MHz crystals and
their timer units consume more than 90% of the XCXT’s power budget. Therefore, two
different ways on improving the algorithm to minimize the crystals power consumption
are one, to simply duty cycle one of the crystals and gaining 48% power efficiency, and
two to use two crystals, one fast, and one slow. The fast crystal can be used if high
granularity time is needed, and the slow while the system is in sleep. Still, both crystals
are used to compensate each other’s drift and thus provide a highly stable timer unit.
We will explore the later possibility further in Chapter 5 of this dissertation, with a

slightly different motivation.

Even though the XCXT improves clock stability, power efficiency, and reduces cost,
it still relies on a factory calibration (up to 40% of the end cost), and does not exploit
any of the sensor networks inherent communication capabilities. In the next chapter, we
will first explore the effects on temperature on networked time synchronization, before

we refine the XCXT principle to use communication.
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CHAPTER 3

The Effect of Temperature on Time Synchronization

3.1 Introduction

Networks of embedded sensing devices have achieved a level of maturity that allows
them to delve into areas that were dominated by wired solutions. Early research
platforms demonstrated the feasibility of constructing low power wireless embedded
sensors using readily available hardware. Recently emerging industrial applications
of embedded sensing devices have begun to demand increased system performance
and greater system reliability. These requirements are leading new systems away from

original hardware decisions and towards more customized solutions.

Sensor network research has formally examined these emerging pressures and
helped formalize guidelines for application specific hardware designs [DTJ08]. For
example modern distributed sensor devices now select from a diverse range of radios
each optimized for a specific domain. Foliage dense environments may necessitate a
platform using the 433MHz CC1000 radio [HPCO08], while other deployments may
require the higher bandwidth provided by a CC2420 [PSCO05] or even WiFi radio.
Similarly, a diverse selection of processors are used in different application domains
ranging from the low-power MSP430 to powerful ARM class processors [PSCOS,
DTJOS].

Just as specific applications have required a refinement of radio and processor

selection, upcoming sensor network applications involved with control, measurement,
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and automation will require a range of timing solutions that are not currently supported.
In these domains the robustness of local clock systems and time synchronization

protocols is critical.

Current state of the art time synchronization protocols in sensor networks [MKS04,
SKLO06] achieve an accuracy between 1 to 10 microseconds. This level of accuracy suf-
fices for many environmental monitoring applications and acoustic localization systems
(e.g. a sniper localization system [SML04]). However, many systems from the wired
network community already need significantly more accuracy for control and measure-
ment! The Precision Time Protocol, IEEE 1588 [Eid06] was developed for accuracies
below 100 nanoseconds and was standardized in 2002! because NTP [Mil91], the de
facto standard to synchronize computers over the Internet, did not provide enough
accuracy. There is currently no implementation available for IEEE 1588 over wireless
channels and only preliminary studies have been conducted on the feasibility of such a
protocol [CEPO7]. Problems occur because uncertainties are introduced by the wireless
channel. Deep fading, interference, unpredicted latencies due to the broadcast nature
of a wireless channel, and higher bit error rates than in wired networks all complicate

synchronization efforts.

To achieve the required accuracy, any IEEE 1588 implementation will require
resynchronization almost every second, due to clock uncertainties, to remain within
specification and even more frequently for accuracies beyond the baseline. An im-
plementation of IEEE 1588 in sensor networks would face an additional issue due to
these frequent resynchronization periods — power consumption. In sensor networks,
where energy is scarce and communication is the largest component of the energy
budget, these frequent communication exchanges are clearly infeasible. As a matter of

fact, the power consumption of high accuracy time synchronization protocols in sensor

IThe latest revision is from 2008, which addressed several performance enhancements.
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networks has largely been ignored. While minimizing for the number of transmitted
messages does optimize the power consumption, the local clock power consumption
of the underlying clock systems is as important, and becomes even more dominant the

lower the duty cycle of the system.

3.1.1 Contribution

An understanding of the intrinsic interactions between the scattered local clocks and
their cumulative effect on network-wide performance is incumbent upon anyone using
wireless embedded sensors in time sensitive applications. This chapter carries the
readers through a detailed look at the interactions between clocks, power, and synchro-
nization on low power embedded devices. The main contribution of this work is the
formal introduction of temperature into the time synchronization error, and how they
are linked to each other. With this formalization, we show that the error can be divided
into two regions, and that the intersection of these two regions is the optimal operation

point for a time synchronization protocol.

3.2 Understanding Power Consumption in Duty-Cycled Devices

To motivate the subsequent exploration into the interactions between clocks and power
consumption, we present a brief case study on duty cycled systems. Duty cycling has
become a critical technique to minimize the power consumption in wireless embedded
sensing devices. The intuition behind this is clear. Keep hardware in a low power
sleep state except during the infrequent instances when the hardware is needed. In
many environments this allows even the processor to be put into a low power state
for extended periods of time while only an external clock tracks time to trigger a later

wakeup.
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Recent work has identified clock stability as a limiting factor for duty cycling in
networks of devices using scheduled communication. When duty cycling in scheduled
communication systems it is important that the communicating nodes wake up at the
correct time so that they can communicate. Less stable clocks require nodes to more
frequently resynchronize to account for clock frequency error. For example, Dutta
showed in [DCS07] that the lower bound of a clock with a stability of +50ppm is a
duty cycle of 0.01% for a scheduled communication MAC protocol. Thus, more stable
clocks or better synchronization techniques are necessary in order to improve the duty

cycling capabilities of embedded systems.

It thus appears, at'first glance, that high stability clocks will reduce power consump-
tion by improving duty cycling of these devices. With our interest in high resolution
timers and work developing a smart timer unit, we looked to apply our work to increase
duty cycling on sensor devices and thus decrease power. Our formalization of this

problem revealed an unexpected surprise.

Currently available high stability clocks do not reduce power consumption of duty
cycled embedded sensing systems due to the increased power consumption of the clock.
This section presents this formalization for a scheduled, and a polled MAC protocol,
alongside a precise numerical analysis for a concrete case comparing a standard 32kHz

crystal oscillator clock to a potential high frequency stability 8 M Hz clock.

3.2.1 Clock Stability and Duty Cycling

There are two major MAC communication modes, scheduled, and unscheduled. In
scheduled networks, such as TDMA MAC protocols, each node gets assigned a specific
time when it is allowed to transmit, or receive. Thus, precise timing is indispensable or
the messages would start to collide, or nodes would miss messages intended to them.

The later case, unscheduled MAC protocols like B-MAC, don’t establish any schedule
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and assure through long preambles that the receiving party will be able to receive a
message. This makes the protocol much simpler, by putting the burden of assuring
connectivity to the transmitter, and was shown to be very effective in low load networks.
An improvement on this simple system is WiseMAC, where the nodes learn the wakeup
schedules of their neighbors, and thus only start transmitting when the neighbor is about
to wake up. The following subsections will describe a formalized analysis of the impact
of clock error on the duty-cycle and average power consumption of these two MAC

protocol classes.

3.2.1.1 Scheduled Communication

The MAC protocol is one of the main components that enables duty-cycling in net-
worked systems, i.e., networked nodes need to wake up at the same time in order to
communicate with each other. SCP-MAC [YSHO6] is considered to be the current state
of the art for sensor networks and achieves a duty cycle as low as 0.1%. In [YSHO06],
Ye et al. give a theoretical analysis of the SCP-MAC protocol performance based on
a standard 30ppm crystal oscillator. Using the same methods and code generously
provided by the authors of [YS08], we studied what the improvements are given a better
clock system. Figure 3.1 illustrates the improvement if we go from a 30ppm clock
source to 1ppm. We can see that we have a 30% to 50% improvement in duty-cycling,
which results in a 30% to 50% improvement in battery lifetime. There is only one
drawback in this analysis. Since the duty-cycled node already consumes only 67uW? in
the worst case, an improvement of 50% means a gain of about 30uW. Therefore, the
improved clock system cannot use more than 30uW or else the gain in energy would be

nullified.

2Power consumption of a TI MSP430 and a ChipCon CC2420 radio chip as found on the TMote Sky
platform[Mot]
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SCP-MAC Duty-Cycling for Different Clock Stabilities

Achieved Duty-Cycling [%]

10 20 40 80 160 320
Message Interval [s]

w/o piggybacking 30ppm —— w/o piggybacking Ippm -+

w/ piggybacking 30ppm w/ piggybacking 1ppm -

Figure 3.1: Duty-Cycling performance of SCP-MAC using different clock source
stabilities. Note that with a 1ppm clock source, the difference between piggybacking

the sync messages on regular data messages or not virtually disappears.
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This short analysis of SCP-MAC shows that the clock system plays an important role
in duty cycled systems. Great care has to be given to its design, or else its possibilities of
saving power are easily offset by an increased standby power consumption of the more
accurate clock system. Additionally, as we showed in Section 2.5.1, if high accuracy and
high granularity clocks are needed for a specific application, like localization systems
or time synchronization between nodes, the standby power consumption of such clocks

significantly increases and cannot be ignored if the nodes need to be duty cycled.

3.2.1.2 Polled Communication

In the following formalization, we assume a MAC protocol similar to WiseMAC
[EDO04], where a node learns the wakeup schedule of its neighboring nodes. However,
it is still not establishing a time schedule, as in a TDMA protocol, and thus the node

has to incorporate guard bands to assure connectivity.

We are interested in the average power consumption of two systems, M and N, using
different clocks. We assume both systems have the same sleep power consumption P;
and active power consumption P,. Each node has a local clock source with frequency
stability s and sy (in Hz/Hz) that consume power P y and Py, respectively. Addi-
tionally, we assume that both platforms have the same duty cycle ratio DC between
sleep (T';) and active time (7,). However, in order to communicate with their peers,
both systems include a guard time that is proportional to their local clock source’s
frequency stability T,x = 2 - T - sx, where sy is the system’s local clock frequency
stability. This guard time allows the nodes to compensate for the drift in their clock
frequency while asleep by starting the communication process early enough to ensure
that both nodes are awake when the active period starts. The guard time is set by the
communication period, which, in this case, is the sleep period since we assume nodes

will resynchronize when they are awake. Note that communication in this case comes
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for free, since it implicitly happens whenever a message gets transmitted from M to N,

or vice-versa.

The average power consumption of this system is simply the sum of the power
consumed in sleep mode and the power consumed in awake mode, normalized by the

total time the system is on:

_ Ts'(Ps+PcX)+(TgX+Ta)'(Pa+PcX)

Py
T,+T,+ Tox

(3.1)

where the subscripted X is either M or N. Let us also assume that, without loss of
generality, N is a more stable clock such that s, > sy and consequently Py < P.y. In

order for system N to be more efficient than system M we have to show that

PM?PN¢ (3'2)
and thus
Ts'(Ps+PcM)+(TgM+Ta)'(Pa+PcM)>
Ts+Ta+TgM
Ts'(Ps+PcN)+(TgN+Ta)'(Pa+PcN) (33)
To+T,+ Ty ) )

Quartz crystals are commonly used in embedded systems, are inexpensive, and are
a representative clocking mechanism. For comparison, we now assume that the clock
of system M is a quartz crystal. These crystals consume very little power, and thus
Pcy ~ 0. This assumption is justified by our precise numerical analysis presented in
Section 3.2.1.3. Using the assumption that Py ~ 0, Equation 3.3 can be simplified to

2- T2+ (Pa=Py) - (sy - sw)

PCN < )
(Ts - (L +253) + T)(Ts - (1 + 25y5) + T,)

(3.4

where Ty and Ty are replaced by their respective definitions. By definition, the duty
cycle of the system is DC = T,/(T, + T,). Since clock stability is fairly low (usually

measured in ppm) with sy, sy << 1, the relation can be further simplified to

Py <2-[1=DCT - (Py = Py) - (sy = sw). (3.5)
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This relation shows that for system N to be more energy efficient than system M,
its clock power consumption cannot exceed a threshold dependent on the duty cycle,
the difference in active and sleep power consumption, and the difference in their clock
stability. If we further assume that DC << 1, P, — 0, and s, >> sy a final simple
relation is reached:

Pny<2-P,-sy. (3.6)

This reveals that for system N to be more energy efficient than system M, the
clock system used in system N must use less power than the active power consumption
multiplied by twice the precision of system M’s clock stability. For example, if we
assume that P, = 1W, sy, = 50ppm, and sy = 1ppm (in order to satisfy sp; >> sy) then
Py < 100puW. We are currently unaware of any commercially available technology
that can achieve a clock stability of 1ppm with a power budget of less than 100uW. The
closest available clock is the MAXIM DS32BC35 that is an RTC with integrated 32kHz
TCXO, consuming about 600uW for a stability of +3.5ppm. In research, low-power,
and high stability clocks have been presented [AOV97], however none of them are

readily available despite the more than 10 years of their existence.

3.2.1.3 Adding Time Precision

The formalization provided above disregarded clock resolution that prevents arbitrary
sleep periods due to the discretization of time by the clock ticks. Clock resolution can
be easily added into our formalization. The only term that changes are the guard bands.
Now the device must wake up 1/ fx seconds earlier in order to guarantee that the node

is awake at the correct time. Thus, the guard bands become Ty =2 - T - sx + 1/ fx.

Our formalization also made a number of assumptions to simplify the resulting
inequality presented in Equation 3.5 that must be verified. We add time precision

to Equation 3.3 and numerically solve the equation to verify our formalization. We
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use the same parameters as in the last example, representing a typical wireless sensor
network platform: P, = 1W, sy, = 50ppm, and sy = 1ppm. We further add DC = 0.01,
P, = 5uW, P,y = 10uW, fiy = 32.768kHz, and fy = 8MHz. Numerically solving
Equation 3.3 extended with clock guard bands taking into account clock resolution
reveals the inequality P,y < 106.9uW. This is nearly identical to the result from
our formalization. We conclude that for guard band reduction, there is no incentive

to increase the clock resolution beyond the very common 32kHz tuning fork crystal

clocks.

3.3 Clock-Characteristic Impacts on Resynchronization Rate

An isolated clock cannot improve or correct its accuracy by itself. However, a net-
work of clocks with communication capabilities, can use other clocks to verify their
accuracies, and possibly increase there stability. Many time synchronization protocols,
like [MKS04, GGS05, EGE02], showed that high time synchrony can be achieved by a
group of nodes. The general approach is to estimate the current frequency error between
the nodes using message time stamping, and different estimation techniques. One
common assumption of these protocols is that the temperature, and thus the frequency

error, is constant over the time intervals these synchronization protocols operate on.

The remainder of this chapter investigates the impact of temperature on the fre-
quency error, and shows that depending on the system clock characteristics, frequency
error can become a problem, especially if one wants to increase the sleep periods
between resynchronization points to minimize energy consumption. The following
analysis sheds light onto the decision of how often a time synchronization protocol has

to resynchronize in order to stay within a specific time synchronization error.
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3.3.1 Temperature Effects on Frequency Error

The biggest contributor to frequency change is the change in environmental temperature.
The temperature dependent frequency can be expressed using the nominal frequency f;

as
J@O =0 +6@0) - fo, (3.7

where 6(¢) is the frequency error over time and can be expressed as 6(f) = g(k()). Here,
g() is a function defined by the resonating element?, and «(¢) is the temperature over

time. Given this new definition, the counter on a system reads at any time ¢ since the

c(r) = { j(; f (T)dTJ=[f0‘(t+ fo g(K(T))dT)J (3.8)

3.3.2 Time Synchronization Error

counter was reset

We assume a simple two way time synchronization protocol, like IEEE 1588, for our
error analysis. More precisely, we consider a two node network, where one node is
the master, and the second node is the slave. We further assume that the master clock
has perfect time, and that the slave node tries to synchronize to the master node’s time
reference. The counter on the master node will read co(f) = | fy - t + @], where ¢ is a
random phase offset between [0, 1). To make the analysis simpler, we assume that there

are no timestamping errors. We will relax this assumption later on.

The master and slave node regularly exchange time synchronization messages that
contain precise timestamping information. Using these timestamps, the slave node can
accurately estimate the current offset between its local clock and the master clock. The
slave node estimates its current frequency error using the two last offset measurements

exchanged with the master node. Assuming that these two messages were T seconds

3For an AT-Cut crystal, g() is a cubic curve, or for a tuning fork crystal, g() is a quadratic curve.
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apart, the slave node can estimate the local frequency error with

5 =keTymm)_1=PFT+ﬁdﬂﬂﬂﬂMﬂ
€7 Co(=T) - co(0) o-T + 9]

Using this frequency error estimate, the synchronization error between ¢ = 0 and the

- 1. (3.9)

next time synchronization interval at t = T is

gol) = () - 8q - c) - colt)
|50 T+ fo [5 stxrar]

co(T)

c(t) —

—1{-c(®) —co(®)

o T+ fo [ stecear]

= 20 - o)

- c(t) — co(D). (3.10)

3.3.2.1 Bounding the Time Synchronization Error

There is no closed form solution for Equation 3.10 due to the non-linearity of the floor
operator and the unpredictability of the temperature. However, we can find bounds on

the maximum of the time synchronization error.

The fractional part function is defined as
{x} =x—|x] 3.11)

for all x, 0 < {x} < 1. Thus, we can write the floor operator as | x| = x—{x}. Substituting
the fractional parts with the variable v, and expanding the counter values c(¢) to their

definition, the resynchronization error from Equation 3.10 becomes

go(t) =
2- (fof"'foj; gk(1))dt — v3)

T+ fo [ g@)dr = v, ,
B f0T+<p+V2 .(f0t+f0£ g(K(T))dT—V3)

= (foT + ¢ = v2). (3.12)
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Worst Case Time Synchronization Error
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Figure 3.2: Worst case time synchronization error for four different clock speeds. The
two low frequency clocks are tuning fork crystals with a maximum frequency error of
120 ppm, and the high frequency clocks are AT-cut crystals with a maximum frequency

error of +50 ppm.
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We can now bound the time synchronization error

IA

max (go(1))
max (2 (fot + fo fo g(k(T))dr — V3))

(ST + £ [ gem)dr - vy ,
i mm[ fHT +¢o+, (ol +fo fo gk(r))dr - v3))

—min (/T + ¢ —vy) (3.13)

go(®)

IA

By definition, we know that min(v,) = 0, and max(v,) = 1. Additionally, we can

bound the integral over the temperature dependent frequency error by

min ( j(; t gk(T))dt] = t-Omin (3.14)
max ( f(; t glk(Ndr| = t-Omax (3.15)
min ( jj glk(mdr| = T -6min (3.16)
max ( fi gk(m)dr| = T - Omax (3.17)

where 6min and Jmay are the minimum and maximum temperature dependent frequency
error of the employed clock circuit. Putting it all together, we find that the maximum

time synchronization error is bounded by

(FoT (1 + Sin) = 1)°
HT +1

got=T) <2fT - (1 + Omax) — - (T -1) (3.18)

Figure 3.2 illustrates the worst case synchronization accuracy for a given time
interval between synchronization messages. We can see that there are two different

erTor regions:

1. The synchronization error is dominated by quantization error

2. The synchronization error is dominated by temperature induced frequency drift
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In region one, we assume that the frequency error 6 = 0, and thus the synchronization

error simplifies to

(foT - 1)
< - —(foT - 1). .1
go(T) £ 2T AT+ 1 (fo ) (3.19)
We can now calculate the limit and find
Tlim go(T) = 4. (3.20)

In the second region, where the frequency drift overshadows the quantization errors,

the synchronization error reduces to

(ﬁ)T(l + 6min))2
ST ~ LT

2£0T - (1 + 6max) = foT - (1 + 6in))” = foT
= T+ (2+ 20ma = 1 = (1 + 6i)?)

go(T) £ 2T - (1 + Opmax) —

ﬁ)T : (Zémax - 26mm - 6;2mn) (321)

To achieve an optimum between small time synchronization error, and low message
exchange rate, a time synchronization protocol has to operate exactly at the border of
these two regions. We can find this point by equating Equation 3.20 with equation
3.21 and solving for T. Thus, the optimum resynchronization rate assuming worst case

synchronization errors is

4

T" =
ﬁ) ' (26max = 26min — 5I2mn)

(3.22)

3.3.2.2 Introducing Time Stamping Errors

Timestamping error affects the precision with which a node estimates its current fre-

quency error d(f) and we can model it as

c(-T)—c(0)+n B
co(=T) - c(0) + 7

60(0) = (3.23)
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where 7 is the timestamping error. Propagating this change, we find that the maximum

synchronization error can be expressed as

(oT (1 + bmin) — 1 -
foT+1+n

D KT+ 6mim) - 1) = (BT = 1)
(3.24)

egt=T) L 2fT - (1 + 6pnax) —

The effect of this change on the graph is a raised error in region (1). However, over
longer synchronization intervals, these timestamping errors become negligible, and thus

the approximation for the second region does not change.

3.3.3 A More Realistic Bound on the Time Synchronization Error

Our approximations made in Equations 3.15 to 3.17 are very conservative due to the
worst case modeling of temperature induced frequency error. It is highly unlikely that in
a real system, a clock would experience these extreme conditions consecutively within
two time synchronization intervals. For most embedded systems that are not used in
extreme environments, like rockets, the temperature changes gradually and thus we can
find a tighter bound for the time synchronization error by analyzing actual temperature

traces.

Assume that we are given a temperature trace of the environment where our embed-
ded system is located. We can scan this temperature trace and search for the biggest
change in frequency error in a window of 27'. Marking the minimum of this frequency
error with 6y, and the maximum with 6,,,x We can reevaluate Equation 3.18 and get a

more realistic bound on the maximum time synchronization error.

We collected three different temperature traces for three different environments. The
three traces are each 7 days long, and have a time resolution of 5 seconds. We collected
the data in a A/C controlled not sun exposed, a sun exposed not AC controlled, and a

shaded not A/C controlled indoors area. Figure 3.3 shows the result for each of these
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Figure 3.3: This graph shows the effect of using the maximum drift change calculated
from a temperature traces on the maximum synchronization error. In general, the
smaller the temperature changes, the better the synchronization accuracy for longer

resynchronization intervals.
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Theory vs. Simulation, No Sun Exposure
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Figure 3.4: This graph compares the theoretical upper bound to the 95% confidence

interval found through simulating a time synchronization protocol.

temperature traces and the estimated maximum time synchronization error bound. We
can conclude that the more variation there is in the change of temperature, the worse
the expected time synchronization error bound becomes. However, we can still see a
clear cut between the two regions where (1) the quantization error dominates, and (2)

where the temperature induced frequency drift dominates.

3.3.4 Verification Through Simulation

There are many different sensor network simulators, each providing a different set of

features and tools. However, none of the existing sensor network simulators captures
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the change in frequency error that occurs due to changes in local temperature. At best,
some simulators model different static clock frequency offsets [Bou07, VXS07], but
these offsets are static over the time of a simulation, and are thus not useful for our

experiments.

We decided to enhance Castalia [Bou07] with a revised clock model, that takes
as input a temperature trace file and adapts the clock’s frequency error at runtime. In
addition, we added a realistic timestamping mechanism that models the timestamping
errors found on the CC2420 radio chip used in many sensor network platforms. We

implemented FTSP in Castalia to simulate a simple time synchronization protocol.

To verify our theoretical analysis, we run several simulations with changing resyn-
chronization intervals. Figure 3.4 shows the 95% confidence intervals for the measured
maximum time synchronization error, and compares the result from theory and simu-
lation for two different clock speeds. The simulations verify that our bounds on the
temperature induced frequency drifts are indeed upper bounds, and that in simulation

the time synchronization errors are much smaller than the bounds themselves.

3.4 Bringing it All Together: Synchronization, Duty-Cycling, and

Power

We discussed the notion and need of duty cycling in section 3.2.1.2, and we have now
the tools to add to that analysis the impact of time synchronization on duty cycled

systems. More precisely, we introduced the need for guard bands and defined them as
Tox =2-T,- sy, (3.25)

where T is the sleep time, and sx the node’s clock stability. Using the worst case time

synchronization error from the last section, we can redefine the guard band for a node
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Node Power Consumption for Duty-Cycled System
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Figure 3.5: This graphs shows the average power consumption for different synchro-
nization techniques in a duty cycled system. With ideal clocks, no overhead is required,
and thus a minimum power consumption is achieved. We only show the sun exposed

data set because it is a worst case for the three temperature traces we collected.

with time synchronization as

T,=2- 5. (3.26)

This bound guarantees that a node that wakes up within 7, can communicate with its

neighbors, even if it experiences the worst case synchronization error.

Given the guard band of a duty cycled system without time synchronization, and one
with time synchronization, we can calculate their power consumption using Equation

3.1. Figure 3.5 depicts this comparison using the same system parameters as was used
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in Section 3.2.1.3. In addition, Figure 3.5 shows the ideal case power consumption

where the guard band 7, = 0.

It is not surprising that in the theoretical worst case synchronization error calcula-
tions, a system without time synchronization fares better than one with time synchro-
nization. The cause of this is that in the worst case, the frequency error estimation for
d¢ can introduce twice as much error as without time synchronization. However, in
reality the occurrence of such an error is highly unlikely. Thus, using the more realistic
time synchronization error bounds developed in Section 3.3.3 already shows that using

time synchronization can greatly improve the power efficiency of a duty cycled system.

This analysis ignores the power overhead that a time synchronization protocol
introduces. Unfortunately, this overhead is poorly studied and we can only speculate
on how much this overhead would be in a real system. In general, if a system needs
less than 10ms accuracy, then we showed that a time synchronization interval of up
to 1000s is sufficient to guarantee such accuracies. In most systems, this interval is
much larger than the communication interval necessary to transmit sensor data from the
nodes to a fusion center, and we can assume that the overhead of time synchronization
in these scenarios is minimal. However, if high accuracy is needed, the synchronization
intervals have to be on the order of tens of seconds. In these cases, time synchronization
could be piggy-backed on regular data messages, only introducing a small message

overhead on the order of a timestamp.

3.5 Summary

The theoretical analysis and validation through simulation presented in this chapter
shows that the maximum synchronization error has a two-region behavior. In the first

region, clock quantization error dominates any other errors, and in the second region,
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frequency drift due to changes in temperature overshadow other errors. This shows that
there is no gain in operating a time synchronization protocol with a resynchronization
rate in the first region. It will only consume more power due to higher message rates,
and not gain anything in terms of time accuracy. Operating a time synchronization
protocol inside the second region decreases the time synchronization accuracy due to
changes in frequency, however we gain in terms of a lower overall power consumption,

since fewer radio messages are necessary.

The analysis shows that the power aspect of clocking subsystems are non-trivial,
and that sometimes a simple assumption, like more stable clocks will save power in
smaller guard band, have to be investigated carefully before taken for true. This chapter
concentrated on the better understanding of the link between clocks, power, and synchro-
nization. Though this is not the end of the story. What if an embedded systems needs
very high absolute accuracy (demands high-frequency clocks)? In that case, the second
region of resynchronization intervals still demands a high resynchronization rate. 2us at
a resynchronization rate of 30 seconds seems to be the lower end of what is possible for
time synchronization in a wireless sensor network with current technology. Our analysis
is a first attempt to explain that going beyond that accuracy with reasonable average
power consumptions for wireless sensor networks is impossible if we don’t incorporate
and locally compensate for the change in temperature induced frequency error. The
next chapter will investigate this further, and develops a temperature compensating
mechanism using regular time synchronization, and the local knowledge of temperature

changes given by an on-board temperature sensor.
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CHAPTER 4

Temperature Compensated Time Synchronization

4.1 Introduction

Synchronizing two embedded systems over a wireless channel is a challenging problem.
One has to consider several error sources including the accuracy of time stamping of
a common event, message loss due to wireless channel fading and shadowing, and
changes in the clock frequency due to environmental changes (temperature, acceleration,
etc.). In addition to this, sensor networks add yet another challenge into the equation:
energy efficiency. Several synchronization protocols have been proposed in recent years,

addressing many of these problems.

In Reference Broadcast Synchronization [EGE02], every node keeps the relative
drift between its local clock and every other clock in the network. By comparing
the timestamps of periodic broadcast messages, the nodes calculate the clock offsets
between the receiving nodes, thus successfully eliminating any transmit latencies. Only
processing delay at the receiver and the difference in propagation delay between the

nodes are potential error sources.

A more complex model is solved by the Timing-sync Protocol for Sensor Networks
(TPSN, [GKSO03]). In TPSN, every node tries to synchronize to one reference node
through the establishment of a synchronization tree. In addition, TPSN uses a handshake
synchronization exchange which eliminates receive, transmit, and propagation delays.

This handshake is similar to what is used in the Precision Clock Synchronization
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Protocol (IEEE 1588, [Eid06]). However, IEEE 1588 is targeted for wired Ethernet
networks, and only early results on the feasibility of IEEE 1588 over IEEE 802.11 have
been published [CEP0O7].

The Flooding Time Synchronization Protocol (FTSP, [MKS04]) improves upon
TPSN through an elaborate and accurate method of timestamping messages. In addi-
tion, FTSP contains a reference node election mechanism and implicitly establishes
a synchronization tree. This makes the synchronization algorithm extremely simple,
and thus has become one of the most popular synchronization protocols used in sensor
network research. One problem that plagues FTSP, and any other synchronization
protocol relying on a synchronization tree, is that two nodes that are in two different
synchronization branches can still be radio neighbors. It has been shown that the
synchronization accuracy of these two radio neighbors can be severely impacted, due to
the fact that synchronization errors propagate differently down each synchronization
branch. A solution to this problem is provided by the Gradient Time Synchronization
Protocol (GTSP, [SW09]). In GTSP, the nodes listen to the beacon messages of all
their neighbors and update their local time using these timestamps. Thus, there is no
reference node nor synchronization tree within the network. Even though this solves the
problem of high synchronization errors between neighbors, it introduces the problem of
how to anchor the network to some global reference, such as Coordinated Universal

Time (UTC).

One problem none of these synchronization protocols addresses is the change in
frequency over time due to temperature variation. Every protocol assumes that the
temperature changes slowly enough within one synchronization period, and thus the
resulting frequency error is constant. We showed in Chapter 3 that there are clear limits
to this assumption. One attempt at solving this problem was introduced in the Rate

Adaptive Time Synchronization Protocol (RATS, [GGS05]). RATS uses a model of
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long term clock drift in order to predict the synchronization interval. It can thus achieve
with high probability an application specific synchronization accuracy, while optimizing
the resynchronization interval. However, RATS does not use temperature measurements

directly, and thus ignores an information source responsible for clock drift itself.

It is a well known fact that the quartz crystal’s resonant frequency changes with
change in temperature. This led early on to the development of Temperature Compen-
sated Crystal Oscillators (TCXO, [ZZX05]). In a TCXO, the crystal is co-located with
a temperature sensor. After an initial factory calibration, where the typical frequency
vs. temperature curve of the particular crystal is measured, a small compensation
mechanism measures the temperature during runtime, and accordingly tunes the crystal
to the right frequency. There are two major problems with using a TCXO in sensor
network platforms: (1) high cost and (2) high power consumption. The increase in cost
comes from the necessary initial calibration process, and the higher power consumption
is due to the addition of electronic parts in the TCXO. At the same time, new low-power
communication schemes, like Koala [MLTOS] turn the radio off for days at a time. After
such long sleep intervals, their clocks accumulate a significant time error due to changes
in temperature, and thus have to increase their guard bands. The increased guard bands
waste energy, and thus temperature compensated clocks could help to minimize this

effect.

The question we address is whether a time synchronization protocol can be used
to temperature calibrate the local clock? The contribution of this work is the develop-
ment of such a protocol, the Temperature Compensated Time Synchronization Protocol
(TCTS). TCTS is a technique that autonomously learns the calibration parameters of the
local crystal to essentially provide a stable TCXO. TCTS enhances standard synchro-
nization protocols by allowing them to increase the time between resynchronization

beacons, without impacting the synchronization accuracy. This increase in resynchro-

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Power Consumption of Internal Temperature Sensor
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Figure 4.1: Current profile of a TMote Sky while sampling the internal temperature
sensor. It takes 35ms to wakeup the CPU, stabilize the internal voltage reference, take
the sample, and shut down the CPU again. During that time, the node consumes a total

of 66.5ul, or about 10% of what a radio message consumes (~600uJ).

nization period reduces the impact of time synchronization on power consumption, as
well as communication overhead. An additional benefit is a more robust time base in

case of communication loss or extremely long intercommunication periods.

4.2 The Cost of Measuring Temperature

One important factor in TCTS is that every node has to locally measure the temperature.

But this measuring doesn’t come for free and costs energy itself. We measured the
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Power Consumption of External SHT11 Temperature Sensor
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Figure 4.2: This is the current consumption of a TMote Sky while sampling the external

SHT11 temperature sensor. It takes a total of 220ms or about 287uJ.

energy consumed during temperature measurement of a TMote Sky platform running
TinyOS 2.x, in order to get a sense of how much energy is used to just measure a
temperature sensor, compared to sending a message over the radio. The TMote Sky has

two different temperature sensors, the internal on-chip sensor, and an external Sensirion

SHTI11.

Figure 4.1 shows the current profile when a node wakes up, samples the internal
temperature sensor, and goes back to sleep. Figure 4.2 shows a similar graph for the
case of using the external SHT11. Integrating over the current curve, and multiplying
by the power supply voltage of 3V gets us the energy consumed for just measuring the

temperature. In the case of the internal temperature sensor, this corresponds to 66.5 uJ,
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and for the external SHT'11 to 287uJ. This is almost one order smaller for the internal
sensor compared to just sending or receiving a radio message which costs about 600uJ
[HCO8]. It is to mention that for the SHT11 case, the microcontroller does not shut off
while the SHT11 prepares the temperature sample. Such a modification could greatly
improve the power profile in that case, and drop the current consumption much further

down.

This shows that a node can sample a temperature sensor at least 10 times, before it
consumes as much energy as sending one radio message. However, the radio message
will most likely incur cost on several nodes (one node broadcasting one message
will get received by everyone else, thus greatly multiply the overall network power
consumption). Thus, a big gain can be made if a node can reduce the amount of

messages sent over the radio by measuring the local temperature instead.

4.3 Frequency Error Estimation

The nominal frequency of a local clock f; is the fundamental unit of a time synchroniza-
tion protocol. It is impossible for a system to achieve a better accuracy than 1/ f, due to
quantization effects in the local clock. Thus, the local frequency has a major impact in
how accuratly a time synchronization protocol can estimate its current frequency error.

More precisely,

1
fo-T

where 6 is the error in the frequency error estimation, and 7 the resynchronization

op(T) = (4.1)

time between timestamp beacons.

Equation 4.1 suggests that the longer we wait between synchronization exchanges,

the better the accuracy of our frequency error estimation. Unfortunately, this is only true
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Figure 4.3: The error in the frequency error estimation of a sensor node is hampered
by two different phenomenas: (1) quantization due to the digital nature of a clock, and
(2) temperature induced frequency drift. Simulation shows that there is an optimal

resynchronization period at which estimation error is minimized.
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in an environment where the temperature doesn’t change. In reality, the frequency error
of a clock changes with temperature. Similar to the calculations performed in Section

3.3, and repeated here for clarity, we define the temperature dependent frequency as

f@O=0+60)- fo

where 6(¢) is the frequency error expressed as 6(f) = g(x(?)). Here, g() is a function
defined by the resonating element, e.g. a quadratic curve for a tuning fork crystal, and

k(t) the temperature at time 7.

Given two beacons from a remote node A, each containing the precise time the
beacons were sent, a node B can estimate its current frequency error relative to node

A’s clock using

P (a2 — t) — (ta1 — tp1)
Q - .
Taa — a1
Without loss of generality, let’s assume that 7' = 4, — 14, and that the clock of node A

is perfect. Thus, the measured frequency error becomes

T —(tm—ta) _ S gl(o)dr

P ,
Q T T

where j; :’:2 g(k(7))dT is essentially the accumulated error over the interval from #,; to
t42. In other words, it computes the average frequency error over the time between the
two messages. Thus, assuming that the frequency error changes over time, the error the
time synchronization protocol will make in terms of frequency error estimation at the

time instance t,; is
Or(taz) = 0g — g(k(42)), 4.2)
where ¢ is the current drift estimate, and g(«(4)) the actual drift of the crystal.

This gives us the theoretical background to investigate the errors made in frequency
error estimation of a time synchronization protocol. In order to verify these results,
we need to simulate an actual time synchronization protocol. We reuse our modified

Castalia simulator from Section 3.3.4.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.3 summarizes the simulated result for two different nominal frequencies,
Jo = lkHz and fy = 32kHz. It shows that the simulated error of the frequency error
estimates follows the two theoretic limits, once limited by the quantization accuracy
given by Equation 4.1, and then hindered by the change of the frequency error over
time due to changes in temperature, given by Equation 4.2. This shows that there is an
optimal resynchronization time that minimizes the error in frequency error estimation.
This optimum highly depends on the nominal clock frequency fj, and the temperature

environment the node is located at.

4.4 TCTS Algorithm

The main idea behind TCTS is to measure the temperature during frequency error esti-
mation. Once a node learned the relationship between frequency error and temperature
(i.e. it found g(«)), the node can back off and increase the time between synchronization
intervals while adapting its frequency error estimation from temperature measurements

alone. Thus, the protocol contains two phases: (1) calibration and (2) compensation.

TCTS itself does not make any assumptions on the network architecture, i.e., it is a
technique to elongate the time between resynchronization intervals, and thus is com-
patible with network synchronization protocols like FTSP, GTSP, or a synchronization
tree similar to TPSN or IEEE 1588. However, it is assumed that a node running TCTS,
let’s call it slave node, receives accurate time measurements from a remote node, called
master, and that the slave node can communicate with its master. This communication
is necessary, since the slave node has to let the master node know the resynchronization

interval. More details on this communication will follow in the next two subsections.
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4.4.1 Calibration

At initialization, the slave node does not know its current frequency error. Thus, it needs
to rely on the cooperation of a master node that has knowledge of the accurate time.
In order to increase the precision with which the slave estimates its current frequency
error, it requests from the master node timestamped beacons with the optimal interval.
The slave node can determine this interval by the knowledge of the nominal frequency
of the local clock, and some knowledge about the temperature environment it expects,

as we explained earlier in Section 4.3.

For each timestamp beacon, the slave node notes its current local time zime and
temperature 7. Using this information, and a simple regression on the time, and time
offset between the timestamp and local time, the slave node can estimate its current
frequency error 69 and offset average offset. It can now store this frequency error in a
calibration table containing temperature Vs. frequency error estimates. Assuming that
the temperature doesn’t change, the slave node can now inform the master that it is
calibrated, and thus the master increases the time between beacons. Subsequently, the

slave node will switch into the compensation state.

4.4.2 Compensation

During compensation, the slave node regularly measures the environmental temperature.
After every measurement, the slave checks the temperature vs. frequency error curve
to see if it knows the frequency error for the corresponding temperature. If the table
entry is missing, then the node switches back into the calibration state, informing the
master to send timestamp beacons at the calibration rate. However, if the frequency
error is known then the current frequency error estimate is updated using the calibration

information.
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After the update in frequency error, the slave node has to compensate its local
offset estimation. More precisely, every time the slave node changes its frequency
error estimate after a temperature measurement, it has to update its current local offset
estimate using

(5Q + 6'Q
offset = offset + — -1 4.3)

where 6, 1s the old frequency error, 6, the new frequency error, 7 the last local

compensation time, and ¢ the current local time.

Even if the slave node is completely calibrated, i.e., if we found the frequency error
estimate for every temperature possible, the master still needs to send the occasional
synchronization beacon due to inaccuracies in the calibration. These occasional syn-
chronization beacons assure that the absolute time error between the master and the
slave never increases above a certain threshold. After each such beacon, the slave node
calculates the absolute time error. If this error is below the required synchronization
accuracy, then the slave informs the master to increase the beacon interval, in order to
save energy. There are several such increase strategies possible. In our current TCTS
implementation, we use an additive increase, multiplicative decrease, similar to TCP’s

congestion avoidance algorithm.

4.5 Simulation Results

The difficulty in comparing TCTS to a legacy time synchronization protocol is the
lack of a static resynchronization period. The length of the resynchronization period
during the calibration phase of TCTS is given by the nominal clock frequency f;
and the expected temperature environment. However, TCTS has its limit. It cannot
infinitely wait between resynchronization periods and still periodically resynchronizes,

as explained in the last section. In addition, TCTS’ average resynchronization period
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Figure 4.4: This graph shows the hourly average resynchronization time. In the first
24h, TCTS calibrates the local clock, and thus uses a very short synchronization period.
Once calibrated, the resynchronization time rapidly increase and thus saves power and

communication overhead.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



will increase the less it has to calibrate. Figure 4.4 shows the average beacon interval
per hour. We can clearly see that during the first 24 hours of the simulation, TCTS
is primarily in calibration mode, since it has never encountered the environmental
temperatures. However, as soon as TCTS can rely on the calibration information, the

average resynchronization period rapidly increases.

Compared to FTSP, the overall accuracy of TCTS is very comparable. On average,
through the whole 96h simulation, TCTS has an average beacon interval of 329 sec-
onds and 95% of the errors lie within +4 tics of a 32kHz clock. FTSP with a static
resynchronization rate of 7 = 400 seconds achieves 95% of the errors within +3.2
tics. However, by examining TCTS after its initial calibration period, TCTS’ average
beacon interval increases rapidly, without impacting its overall accuracy. Disregarding
the first 24h of the simulation, the average resynchronization period of TCTS increases
to T = 439 seconds, after 48h it becomes T = 590 seconds, and after 60 hours even
T =730 seconds. At T = 700s FTSP’s accuracy drops to 95% of the errors within £11
tics, whereas TCTS maintains the +4 tics accuracy. Figure 4.5 illustrates this behavior

further.

4.5.1 Robustness Towards Communication Loss

One further advantage of TCTS over a legacy time synchronization protocol is in
scenarios where communication either gets lost or severely impacted. Examples of
such scenarios are heavy environmental conditions (snow on antenna, heavy rain, etc.),
mobility (moving outside radio range of peers), or covert military operations where
radio silence is crucial. In these scenarios, TCTS switches automatically into a TCXO
mode, where the frequency of the local clock gets regularly updated. In contrast, legacy
synchronization protocols will have to rely on the last frequency error measured. Figure

4.6 compares the synchronization accuracy of TCTS with FTSP if the synchronization
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Comparison of FTSP and TCTS performance
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Figure 4.5: If one ignores the one-time calibration overhead, TCTS quickly outperforms
FTSP in terms of accuracy with long resynchronization intervals. This is for a 32kHz

tuning fork crystal.
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FTSP vs. TCTS if Synchronization is Stopped

Temperature [C]

Synchronization Error [ms]

Time [h]

FTSp ——— TCTS — Temperature -

Figure 4.6: Illustration of what happens if time synchronization is stopped. We can
clearly see how FTSP’s performance worsens once the temperature starts to change,

whereas TCTS keeps the synchronization accuracy at a much higher level.
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Figure 4.7: TCTS estimates the frequency drift function g(«) for the current temperature,
and stores it in a calibration table. In our simulation, g(x) is a quadratic curve, as
found in the tuning fork crystals. Even with only a 0.25C temperature resolution, the

performance of TCTS is extremely high.
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process gets stopped after 56 hours. As soon as the temperature starts to change
significantly from the last temperature observed during the last synchronization interval,
FTSP starts to loose accuracy, while TCTS can keep its accuracy at a very precise level.
Over the 16 hours where no resynchronization occurs, TCTS accumulates only 4ms
of time synchronization error. This corresponds to a clock stability of < 0.07ppm!
Figure 4.7 shows the calibration information TCTS collected during this experiment,
and compares it to the actual clock model fed into the simulator itself. This plot shows
that a time synchronization protocol can successfully temperature calibrate a local clock

oscillator, and thus removes the factory calibration step necessary for a TCXO.

4.6 Summary

Temperature Compensated Time Synchronization is a first step towards an automatic
temperature calibration of a local clock. This chapter showed that TCTS can outperform
a standard time synchronization protocol by exploiting local temperature information
to increase the synchronization intervals. This increase results in overall network power
savings, since fewer synchronization messages have to be transmitted. In addition,
TCTS improves the robustness of an embedded device in case of communication

difficulties.

This chapter introduced a first implementation of TCTS. For this implementation,
FTSP was chosen as the host synchronization protocol, since it is one of the most widely
used synchronization protocols in the sensor network community, and its implementa-
tion is readily available. Overall, this chapter gave insight into time synchronization by
solving a problem introduced by the underlying hardware a synchronization protocol
relies on. The next chapter will go one step further and improve said hardware to

minimize power consumption, while improving time resolution.
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CHAPTER 5

Architectural Support for Increased Time Accuracy

5.1 Introduction

Wireless sensor networks, due to their mission-critical applications and wire-free
nature, present one of the most extreme power budget design challenges in the field
of electronics. Improvements in timing can reduce the energy required to operate
a sensor network in three ways: (1) an improvement in timing synchrony among
network members prevents unnecessary radio on-time, (2) it allows beam-forming
and other collaborative techniques to displace larger more energy intensive sensory
systems bringing new, previously unachievable capabilities to the network nodes, and
(3) improved timing precision may eliminate the need for continuous sampling, through
a signal processing technique known as Compressed Sensing, saving power in the

sensory and acquisition subsystems.

The average power consumption in sensor network research platforms has been
steadily declining for many years, mainly due to refinements in wireless communication
protocols. Wireless communication is the most power hungry subsystem of a wireless
sensor network node, largely due to the high cost of idle listening, e.g. the necessity of

guard bands to offset clock inaccuracies [DCS07].

Accurate time on an embedded system is not only needed for more precise com-
munication timing, new applications of sensor networks in industrial settings push the

limits of the currently available technology. For example, IEEE 1588 Precision Timing
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Protocol was developed because NTP, the de facto Internet time synchronization stan-
dard, was not precise enough for industrial measurement and control systems. However,
IEEE 1588 requires sub-microsecond accuracies, a level of precision not yet attained by
any wireless synchronization protocol [MKS04, SW09]. To achieve sub-microsecond
accuracy, high resolution becomes as important as high stability. This requires high
speed clock signals in the MHz range, translating into high power consumption due to

high frequency.

Recent advances in sampling, called Compressive Sampling [CWO07], suggest huge
power savings. The theory shows that one can reconstruct a sparse signal with high
probability while just randomly sampling it'. This removes the necessity of constantly
acquiring samples at a regular constant time interval, potentially saving a significant
amount of energy. However, it introduces the problem that high precision is needed to
know the exact time between the random samples, or else reconstruction becomes error

prone.

5.1.1 Architectural Requirements

One key observation is that providing accurate time to an embedded system does not
necessitate a stable clock frequency. A globally synchronized high-resolution alarm or
real time clock is enough. There are three main requirements that need to be addressed,

in order to provide such a service to a system:

1. Low-Power, High-Resolution Local Clocks
In general embedded systems, local clocks get sourced from a quartz crystal with
frequencies ranging from a couple of kilo Hertz, to several tens to hundreds of

Mega Hertz. One important thing to remember is that the higher the frequency

!The author is aware that this is a gross simplification of the Compressive Sampling theory. For more
information on CS, please see [CDS98, CRT06]
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of a crystal, and thus its associated hardware, the higher the power consumption.
More precisely, P ~ Py + (C - V2 - f), where P, is the power lost due to leakage,
C is the effective load capacitance, V the driving voltage, and f; the frequency at
which the circuit runs. For that reason, low-power real time clocks are sourced
from a low-frequency crystal, usually a 32 kHz Tuning Fork crystal. Additionally,
during system sleep, high frequency clock signals and crystals get turned off in

order to safe energy. Therefore, the system will loose high resolution time.

2. Efficient and Robust Time Synchronization Protocols
Many different time synchronization protocols have been developed for wireless
sensor networks [MKS04, SW09]. An extensions to make them more robust
against temperature changes was presented in the last chapter. Even simple
primitives, such as the *Estimated Time on Arrival’ [KDL06] have been inves-
tigated. While all these protocols work extremely well, they all rely on a high
frequency clock in order to get to their claimed < 10us time accuracies. Thus,
their hardware cannot achieve a low-power sleep state, or else the systems would
loose time, and thus synchronization. The problem does not lie within the time

synchronization protocol itself, but with the hardware that they are running on.

3. Hardware Timer Units that Support Long Sleep Intervals at Minimal Power
Many of the popular sensor network platforms contain timer units with counters
of different bit lengths. However, often the counters are not long enough and thus
have to be extended in software by tracking their overflow bits. For example,
the popular Texas Instrument MSP430 has several 16-bit timer units. If a 32kHz
frequency clock is connected to one of them, then the microcontroller will have
to wake up every 2 seconds to track its overflow. This time could be extended
by using prescalers existing in the timer unit, though the system would loose

significant time resolution, since dynamic switching between different clock
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frequencies implies loosing track of time.

In this chapter, we will address all three requirements and give a solution to provide
global synchronized real time clocks with high time resolution at very low power
consumption. We will first introduce a formalization of the power consumed by the
Flooding Time Synchronization Protocol (FTSP) as a representative example. Using
this knowledge, we investigate how a dual-crystal system, containing a high and a
low frequency crystal, can optimize the power consumption of an embedded system
during sleep times, while still providing high resolution time during the active state,
and thus greatly improves the power consumption of a legacy single crystal system.
We conclude this chapter by presenting a first prototype of the High-Low Frequency
Timer Unit (HLTimer) implementation on an Actel Igloo FPGA. We will show its
power performance, and how it could be interfaced in future sensor network platforms

to provide hardware architectural support for existing microcontrollers.

5.2 The Cost of Time Synchronization

The distributed nature of time synchronization protocols makes it difficult to track
its power consumption. An action on one node can have implications on an other.
For example, if a node sends out a timestamped message, every node in radio range
will receive it, no matter if it is useful to that node or not. Recent advances in the
sensor network community [FDLO8] make it for the first time possible to track such
activity across nodes. The Quanto system is a network-wide time and energy profiler
for embedded networked devices. By tracking the internal power state of a device and
its associated node activity, and adding this activity information to radio messages,

Quanto can successfully track activity migration from node to node.

While measuring activity duration on a single node is possible through toggling 1/0
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pins on the hardware, and then externally measuring the time between I/O toggles, this
becomes quickly intractable considering the distributed nature of time synchronization
protocols. In addition, the more subsystems one wants to observe, the more I/O pins
are necessary. Quanto solves this problem in software by adding software instructions
into the code. No additional hardware is necessary, and thus observation of large
networks of nodes become feasible. While in our later example we use Quanto on 3
nodes only, it is technically possible to extend these measurements over a large network
with several hops, to provide accurate accountability of how much resources a certain
distributed algorithm consumes. In our case, this is not necessary since we can get all

the measurements for our analysis over a 1-hop network.

Quanto leaves the problem open on how to cross correlate activities across nodes
since the logs are collected using local time information at each node, i.e., while
activities migrate from node to node, the timestamps of these activities are in terms of
each nodes local time. Thus, time synchronization becomes an integral part of Quanto
to show the activities on a common time line. We extended our Quanto testbed with the
Flooding Time Synchronization Protocol (FTSP), and at the same time use Quanto to
track the state of FTSP across nodes. The objective is to find out how much time each

node spends to treat messages sent out by FTSP in order to synchronize the network.

5.2.1 The Flooding Time Synchronization Protocol

The strength of FTSP lies in its simplicity. By default, every node broadcasts its estimate
of the global time every T seconds. Upon reception of such a message, a neighboring
node timestamps the message using its local timebase, and decides if it records this
global time, local time pair in its time log or not. The deciding factor is a global
sequence number that gets transmitted in every message. If the sequence number in a

received message is lower or the same as the one the node received in the last message,
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then it throws out the time pair. If it is higher, then it is a new time estimate, and the
node keeps the message in its log. After successful reception of a new time pair, the
node runs a linear regression on the last N time pairs to extract its local clock frequency
error and time offset between local and global time. These estimates can later be used

to translate any local time into global time, and vice-versa.

Another important part of FTSP is its root election mechanism. The root node is
the only node in the network that increases the global sequence number in the time
synchronization messages. Thus, the whole network will eventually synchronize to this
nodes time. By default, a node calling itself root will give up that role if it hears from
an other node with a lower node id. It turns out that this very simple rule works very
efficiently, and within a short time a network elects the node with the lowest node id as

the synchronization root.

Given this simple algorithm, there are two important events of interest. The first
event is when a node receives a time synchronization message, and it rejects it because
of an old sequence number. The second event happens when the message gets treated

and the algorithm runs the linear regression in order to update its estimates.

Figure 5.1 and 5.2 show the activity log retrieved from 3 nodes using Quanto
representing the two different events of interest. For each node, we tracked the activity
on the CPU, as well as the node radio (Texas Instrument’s CC2420). The different
colors represent the different activities that Quanto tracks. The most important one is
activity “X:Ftsp”, where “X” represents the node id. This activity represents the FTSP
algorithm running on node “X”. Figure 5.1 shows how the activity “1:Ftsp” originates
at node 1, and then, after reception of the packet at the other two nodes, migrates to
their CPUs. In this case, the packet originated from the synchronization root, and thus
both receivers keep the message and calculated the linear regression on their time pair

logs. In contrast, Figure 5.2 depicts the case when the message gets quickly discarded
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Figure 5.1: Time synchronized Quanto Activity log of three nodes participating in time
synchronization. Node 1 sent out a timestamped broadcast message. Node 2 and 3

receive the message and process it, since Node 1 is their synchronization root node.

after reception, since its sequence number is too old.

Using these two figures, we can extract four time intervals, the time to transmit
a message Ty, the time to receive a message Ty, the time to calculate the linear
regression T¢,., and the time to throw out a message Tycq.. Table 5.1 summarizes the
result. These four time durations build the basis for a simplified time synchronization

power model, that we introduce in the next section.
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Figure 5.2: Time synchronized Quanto Activity log of three nodes participating in time
synchronization. Node 3 sent out a timestamped broadcast message. However, since 3
is not the synchronization parent of node 1 or 2, they both just receive and then discard

it.

5.2.2 Time Synchronization Power Model

One can differentiate two modes of time synchronization in order to calculate its power
consumption; Single Hop, and Multi-Hop cases. The single hop case is easier to
understand, and therefore we will start with this case, before we generalize it to the
multi-hop network. The goal of our model is to find out the power vs. frequency
stability curve that a clocking subsystem has to have, in order to improve over a regular

32kHz quartz crystal.
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Trx | Trx Tcac | Tncaic

11ms | 7.5ms | 7.5ms | 3ms

Table 5.1: Different Time Constants

Case 1: Single Hop Network In the single hop case, where every node can hear each

other, the average power consumption of a node can be calculated as follows.

Root Node The root node does not process other node’s broadcast messages. How-
ever, it still has to receive them because potentially, there could be a node with a lower

node ID and then the root node would give up its role to that node. Thus

Pay = Pry -Trx +(N-1)- (P;X * Trx + Pproc * TNcaic) + Py, 5.1)

where Pry is the power consumed by the system during transmit, Try the time it takes
to send the message, N the total number of nodes in the network, Pp,,. the power during
packet processing, Tycqc the time to process a message and reject it, T the time interval
between resynchronization attempts, and Pcy is the average power consumption of the

clocking system.

Other Nodes All the other nodes in the network will have to process messages coming

from the root node, and reject the ones from the other nodes. Thus,

Prx -Trx + (N = 1) Prx - Trx + Pproc * (Tcaie + (N = 2) - Tncaie
Pavg — TX TX ( ) RX RXT P (Cl ( ) NCI)(5.2)

+Pci,

where T, is the time it takes to process a message and run the time synchronization

algorithm using the message.
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Case 2: Multi-Hop Case The main difference between the multi-hop and single-hop
network is that N becomes the number of neighbors for each individual node. Thus, the
node with the lowest node id in the network will have an average power consumption
described by Equation 5.1. Every other node in the network will have an average power
consumption described by Equation 5.3. However, for every node, N is the number of
direct neighbors in radio range, and since this number is different for every node, every

node will have a different average power consumption.

5.2.3 Power - Frequency Stability Equilibrium

One system variable in Equations 5.1 and 5.3 is the time between resynchronization
requests T. This parameter can be freely chosen by the system developer. However,
in Chapter 3 we showed that this parameter is intrinsically linked to the accuracy a
synchronization protocol can achieve. Thus, given a specific maximum synchronization
error €, we can estimate the resynchronization interval T to achieve this level of

accuracy.

For a general clocking system, 6-7 < e must hold, where § is the clock stability over
the resynchronization interval T. We now can compare a new hypothetical clocking

system to a regular 32kHz system by finding P, such that

Poy > P, (5.3)

avg®

where P,,, is the average power consumption of the legacy 32kHz system, and P,,, the

average power consumption of the new hypothetical clocking system.

First, let’s define the energy consumed purely by the resynchronization process:

E=Prx-Trx +(N—=1)Prx - Trx + Pproc * Tcaie + (N = 2) - Pproe - Tncae  (5.4)

We can rewrite Equation 5.3 and solve for the power the new system clock can
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Allowed Power Consumption of a new XO to Improve over Regular XO
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Figure 5.3: Result of Equation 5.6 using the Epic platform as an example. We can
observe that for dense networks (N >75 nodes), a TCXO with a power consumption of

around 200uW starts to be a viable solution to improve the power consumption.

4
consume as PClk

Poy < Pay—— (5.5)

5.24 Concrete Example using the Epic Sensor Network Platform

In Chapter 3 we developed a model relating the time synchronization accuracy to the
resynchronization interval, give a certain temperature environment. From these results,

we can show that for an accuracy of € < 0.1ms, a standard 32kHz crystal using the
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Pcy Prx Pgrx Pproc

S6uW | 59.1 mW | 66.7 mW | 1.65 mW

Table 5.2: Different Average Power Consumptions

Flooding Time Synchronization Protocol has to resynchronize every T < 250s. With
this number, well published power measurements of the Epic platform (see [DTJ08],
summarized in Table 5.2) and the timing numbers obtain in the last section using Figures
5.1 and 5.2, summarized in Table 5.1, we can solve Equation 5.6 and find the region in
which a more stable clock has to operate, in order to improve the power consumption

of a regular quartz crystal.

Figure 5.3 illustrates the different power regions. An interesting observation is that
the more neighbors N a node has, the more energy that node can spend on having a
more stable clock. However, this is only valid if the stability of the clocks between
resynchronization attempts is smaller than 0.4 ppm. Above that, the more neighbors
there are, the worse it is for the node since it has to transmit too many resynchronization
messages. However, if the stability increases, the more neighbors there are, the more
energy is spent on resynchronization given a fixed T of 250s. Thus, there is more energy

available for the clocking system.
5.3 Exploiting Dual-Clock Hardware Designs for Increased Time
Resolution

One major problem in high-accuracy time synchronization in embedded systems is
the need for high-frequency clock signals in order to achieve high-resolution time. A
simple, though novel, approach to this problem is to use two clocks, one high frequency,

one low frequency, to track time. During system sleep, only the low-frequency clock
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Power Consumption of a Duty-Cycled Dual-Clock Architecture
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Figure 5.4: Power consumption of a dual-clock hardware design given a specific
duty-cycle of the radio, assuming the slow clock consumes 56uW and the fast clock

660uW.

is on and tracks time. However, during active time, the high frequency clock is used
to interpolate between the low frequency’s clock ticks, and thus keep high resolution
time. The benefits of such a system is that during system sleep, no high frequency clock

signal is using precious energy.

This advantage of a high and low frequency clock becomes even more evident when
considering the low duty-cycles observed in sensor network applications. Figure 5.4
shows the average power consumption of a dual-clock system. For this figure, we
assumed that the low frequency clock consumes around 56uW, while the high frequency

clock consumes SmW. We can see that even at a very high duty-cycle of 10%, the clock
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system will consume only 1/10th of the high frequency’s active clock consumption,

while still keeping high time resolution.

The key technology behind this system consists of correctly wiring two timer units,
each sourced by either the low, or the high frequency clock. More precisely, the low
frequency clock has to be connected to one of the capture units of the high frequency
timer unit. This will allow the microcontroller to keep track of the phase of the low
frequency clock. By tracking the phase of the low frequency clock, during an external
capture event, both the high and the low frequency timer capture their content. Using
some multiplication and modulo operations, we can now find the precise time in the

high frequency clock’s resolution.

5.3.1 Sub-uSecond Time Synchronization Using the Dual-Clock Approach

To show the effectiveness of the dual-clock approach, we implemented it in TinyOS
using the Epic platform. The hardware modifications added an external 8MHz clock to
the second clock input, thus allowing accurate timing at a high frequency. Both timers of
the MSP430F1611 were used, TimerB connected to the already existing 32kHz crystal,
and TimerA to the new 8MHz clock signal. We modified FTSP and the CC2420 driver
to allow tracking of the phase of the 32kHz signal. Thus, FTSP can easily go from the
32kHz clock signals to a higher rate accuracy by multiplying the 32kHz counters by

244 and adding the phase offset.

We deployed a network of 5 of these modified nodes, each running FTSP in low
power listening mode, i.e., the nodes are duty-cycling. During their sleep states, the
nodes solely rely on the 32kHz crystal, while the 8MHz clock is turned off. When the
node wakes up, the 8MHz clock is turned on too to provide high-resolution time. The
FTSP resynchronization rate was set to 30 seconds. In addition, a 6th node, not running

FTSP, sent a regular beacon. This beacon was received and timestamped by the 5 nodes
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Dual-Clock FTSP Performance on the Epic Platform
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Figure 5.5: Performance of a dual-clock enhanced FTSP implementation. The hardware
contains one 8MHz and one 32kHz crystal. The radio chip is a TI CC2420, using the
start of frame delimiter (SFD) of the 802.15.4 messages for time stamping. On average,

the accuracy is well below 1 us.
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simultaneously. The timestamps were then transmitted to a basestation computer which

calculated the differences in timestamp accuracies.

Figure 5.5 shows the effective accuracy of the dual-clock FT'SP implementation. It
shows that the accuracy is well below 1us, while still using the TinyOS’s Low Power
Listening capabilities. During system sleep, the high frequency clock is turned off, and
thus doesn’t consume any energy, while during active time, the high frequency clock is

turned on, and high accuracy time synchronization can be achieved.

This is fundamentally different from what FTSP was achieving before. While in
the first publications [MKS04] FTSP did achieve an accuracy of a couple of us, this
was only possible by keeping the high frequency clock active at all times. Thus, the
platform lost the ability of a low-power sleep mode and batteries drained very fast. In
our implementation, the system will still sleep at its minimum power possible, and thus

long lasting battery life is to be expected.

5.4 A Power-Aware Timer Module, the HLTimer

One negative point of our dual-crystal, sub-uSecond synchronization implementation
is that it uses both timer units available on the Texas Instrument MSP430F1611. This
leaves no timer available for any triggered ADC conversion or other tasks relying on
its own timer. In addition, the use of two full timer units is quite a waste of hardware,
since only a small sub-part of the timer unit is used. Thus, we implemented a new
High-Low Timer (HLTimer) unit on an Actel Igloo FPGA that leverages the advantages

of a dual-clock system.

Figure 5.6 shows a simplified view of the major blocks contributing to the HLTimer’s
VHDL implementation. The core contains two counting registers, and one 16-bit

counter. Two clock signals, the low frequency (LCLK) and the high frequency (HCLK)
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Figure 5.6: This is a simplified block diagram of the main HLTimer components. The
main counter is a 16-bit counter that is fed by the high frequency clock signal HCLK.
The low frequency clock LCLK drives the rest of the logic and increments the different

counting registers LTC and HTC based on the HLTimer’s algorithm.
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drive the respective parts of the implementation. An enable signal (H_EN) indicates
to the timer unit if the HCLK is active or not, and switches the time resolution of the

counting register HTC from high to low.

The key to the HLTimer implementation is a period counter register. This register
stores the value of the 16-bit counter at every LCLK clock tick. In addition, at that
instance the 16-bit counter is reset to 0, and thus starts counting again. This number
indicates how many HCLK ticks there are for each LCLK, and thus indicates the
increment by which the counting register should be incremented at each LCLK clock

tick while the HCLK clock is turned off, i.e.,

increment = V—H} .
L

In summary, at every LCLK clock tick, an adder (Add) adds the period register to
the LTC counting register. This register keeps track of time in a low-resolution mode.
At the same time, a Smart Adder, depending on the H_EN signal, either adds the 16-bit
counter value to the LTC counting register, and stores it in the HTC counting register,
or if the HCLK is turned off just stores the LTC counting register directly in the HTC
counting register. Thus, the HTC register eventually switches between a low and high

resolution time, without ever loosing time itself.

An important component of a timer unit is the capture and a compare unit. But
neither of these units is different from a regular timer unit already found in microcon-
trollers. The only difference is that they don’t operate on the counter that gets directly
incremented by the clock signal, but on the derived HTC counting register instead. The
capture unit will upon reception of a trigger signal copy the HTC register into a timer
capture register TCCR, and thus store the value for a microcontroller, that can read it at
convenience. The only difference that a microcontroller might want to know is if the
value corresponds to a high, or low resolution time. This could easily be indicated by

one of the bits in the field, or by a special additional configuration register, since the
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Figure 5.7: The power consumption of the HLTimer abruptly increases if the resolution
is set to high. The effect is that the counting in the HTC register becomes much finer,

and thus high resolution time becomes available.

HLTimer always knows if it is in low or high resolution mode.

The current implementation of the HLTimer consists of the counting mechanism
illustrated in Figure 5.6 and a single capture unit that allows to capture the HTC register
if the signal on an input line goes high. We tested the implementation on an Actel
IGLOO AGL600 FPGA. This particular FPGA has 600’000 system gates and 13824
core cells (D-Flip Flops). Our implementation consumes only 868 core cells, or a mere
6%. This shows that the HLTimer could easily fit onto a smaller version of the IGLOO,

lowering the static power consumption even further.
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Even with the larger FPGA, the system performs exceptionally well. The FPGA
core consumes only 42.8uA while sleeping and a 32kHz clock on, while consuming 767
uA during active time when a 16MHz clock drives the circuit. Note that the quiescent
current of the core itself is 36uA during flash freeze mode, i.e., when nothing happens

on the FPGA itself.

Figure 5.7 depicts the measured power consumption of our prototype implementa-
tion and illustrates the time accuracy during a change of time resolution. The H_EN
signal indicates to the core if the high frequency clock should be on, or off. Figure 5.7
also shows the power breakdown between FPGA core, and clocks. One can observe that
the clocks consume the wast majority of the power, especially when the high frequency

clock is active (11mW compared to ImW for the core).

5.5 Summary

This chapter explored the link between time synchronization accuracy and power
consumption of an embedded system. We developed a model to accurately determine
the power consumption of a time synchronization protocol, using time synchronized
logs of Quanto, an activity tracking system for sensor networks. We developed boundary
conditions for clocking systems and its requirements on power consumption and clock
stability. Using a popular sensor network platform as example, the Epic module, we
showed that the more neighboring nodes there are to a node, the more gain we can have

by providing a more stable clock.

Exploiting several small hardware modifications, and a smart way of exploiting
a dual-clock system, we showed how sub-usecond time synchronization is possible
without spending the tremendous energy a high—frequency clock needs. The main idea

behind the dual-clock system is to use a low-frequency clock signal to keep absolute
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time during system sleep, and a high-frequency clock signal during system active time
to interpolate between the low frequency ticks, to provide high-resolution time. Using
such a system, we demonstrated an actual dual-clock implementation using a modified
version of TinyOS 2.x and the Flooding Time Synchronization Protocol (FTSP). Our
implementation exceeded any preceding sensor network synchronization protocol ac-
curacy by a factor of 5, while still keeping the average node power consumption to a

minimum.

However, this system is hard to implement on regular microcontrollers and consumes
too many system resources. Thus, we developed the High-Low Timer (HLTimer) unit on
an FPGA. With this implementation, we showed how the HLTimer could be integrated
into a microcontroller, and what the major power gains could be, if a microcontroller

manufacturer would decide to add such a unit as a peripheral.
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CHAPTER 6

Discussion & Conclusion

Despite the demand for better time synchronization accuracy and the quest for ever
lower power consumption, the actual source of time in embedded systems has seen less
innovation than other parts of the systems. While clock source design is still a very
active field, and the clocking network within chips provides many challenges to the
chip designer, innovation in timer units to provide accurate time to software running
on a microcontroller has been missing. This dissertation advocates the need for a new
timer design and developed theory to better understand the link between environmental
temperature changes, the biggest factor of change in clock frequency, and time synchro-
nization accuracy. It culminates in the design of a temperature compensation technique
for time synchronization protocols, and the development of a next-generation timing
unit that allows a duty-cycled embedded system to achieve high resolution time during
the active state, while still consuming minimal power during sleep. We now conclude
by discussing how the latter two contributions, temperature compensation and high-low

timers, would interact, and examine the benefits of this new approach.

6.1 Low-Power, High-Accuracy Time in Embedded Systems

Time in embedded systems is one of the most important services. It becomes even
more important in networked embedded systems which have to communicate with

other devices. Here, time is often used to either tell a device when to talk to whom, or
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to timestamp sensor measurements in order to compensate for transmission latencies.
While improvements in time services have been made over the years, most of them

stayed within their isolated domain:

e While compensating for temperature induced frequency drift in crystal oscillators
has been done for years in TCXOs, their dollar and energy cost is often too high to
make them viable solutions for the lowest tiers in sensor networks. Unfortunately,
TCXO designers can only optimize their designs within their domain, not crossing
and taking advantage of other embedded system services, like communication or
time synchronization. While some TCXOs and other clocking devices can accept
a 1pps signal for recalibration and compensation for aging, this signal assumes
that there is an other clocking system available that is even more precise than the

TCXO, thus, adding even more cost to the platform itself.

e Time synchronization made leaps and bounds over the last couple of years, ever
improving its accuracy. While carefully taking into account the errors introduced
by the communication layer, timestamping accuracies, lost messages, interrupt
latencies, the research largely ignored the cost and errors introduced by the local
clock, often abstracting it to a clock signal with constant frequency error over the

time intervals of interest.

e The timer unit in a microcontroller is responsible for providing time to the
software running on the core. It takes a clock signal as an input, and simply
counts the number of ticks in it. In addition to that, it usually provides options
to capture the counter for a certain event, or produce an output signal when the
counter reaches certain time values. In more advanced timer units, one sometimes
gets the possibility to chain several units together, and thus doubling the width of
the counting register. While this can greatly decrease the interrupt burden on a

microcontroller, it is as far as innovation goes in timer units.
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This dissertation showed the importance of cross-layer optimization in the case of

time accuracy and its power consumption as follows.

e The Dual Crystal Compensated Crystal Timer was our first attempt at improving
clock stability for embedded systems, not by trying to generate a stable clock
signal, but by using smart software algorithms compensating for the frequency
error. This development gave us insight into the critical interaction of the change
in environmental temperature, frequency error, and timer units. However, we
quickly realized that we can improve upon this by incorporating communication

capabilities.

e Temperature Compensated Time Synchronization is the answer to our in-depth
analysis on the impact of change in environmental temperature on time synchro-
nization accuracy. By cutting through the layers and observing the main cause
of frequency error, change in environmental temperature, a temperature aware
algorithm can greatly improve the local clock stability and thus decrease the

overall power consumption of a time synchronization protocol.

e The last part addressed in this dissertation is the often needed high time resolution
in duty-cycled embedded systems. The High-Low Timer solves this problem
by intelligently linking a slow frequency clock to a high frequency clock. By
implementing this strategy on an FPGA, we reduced the burden of keeping
track of time from the microcontroller, which now can be better tasked for
communication and sampling. At the same time, the introduction of the slow
clock removes the necessity of keeping the high clock active during sleep times,

thus greatly reducing the sleep power consumption.

Chapter 3 showed that in order to estimate the current frequency error within a

reasonable time frame, high frequency clocks are necessary. Additionally, the shorter
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the time necessary to measure that error, the smaller the error due to temperature
changes during the measurement interval. For that reason, combining the HLTimer with
Temperature Compensated Time Synchronization is the perfect fit, taking the best of
both worlds. The high frequency measurements can be used to reduce the time in which
TCTS has to stay in calibration mode. For example, if TCTS has to rely on 32kHz
crystals, resynchronization rates during calibration have to be 100 seconds long, or else
the error estimation would not be optimal. However, with the HLTimer’s S8MHz crystal,
this interval can be made as small as 10 seconds, achieving even better frequency error

estimation due to higher time resolution than with a 32kHz crystal.

This dissertation removes the usual boundary that is drawn between clock source
and timing unit, by incorporating frequency error compensation into the time counting
element. This was achieved by carefully analyzing the effects on temperature on
these clock sources, and exploiting the inherent communication capabilities of sensor
network platforms. Thus, we believe that this dissertation makes a strong case for a

reexamination of that particular microcontroller peripheral, the timing unit.

6.2 Looking Ahead

When all is said, this dissertation is about the interaction of the lowest timing element,
the clock generator, the timer unit keeping time, and how software uses this time for
synchronization and timing accuracy. It revisited common assumptions embedded
system developers make on each of them, and shows how bringing information from
the lowest tier up into the highest timing elements, the algorithms running in the

microprocessor, can greatly improve accuracy and power consumption.
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