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Abstract

Biologists use progressive multiple sequence alignment to identify positional homology in
regions of molecular sequences. The popularity of this method is due to the pragmatic trade-off
between computational efficiency and accuracy. However, progressive alignmént has several
inherent limitations. This thesis assesses the underlying causes of these limitations and
presents novel methodology for improving existing alignment algorithms.

In progressive sequence alignment, a guide tree is inferred and then sequences are pairwise
aligned via dynamic programming in the order dictated by the tree. This results in an alignment
representing the reconstructed positional homology of the input sequences. This thesis
explores the relationship between guide tree topology and alignment accuracy.

We present two distinct genetic algorithms, both of which optimize a population of guide tree
topologies using stochastic crossover and mutation operators. One genetic algorithm, EVALYN,
achieves high accuracy scores when measured against published benchmark tests. However,
we find that EVALYN’s destructive crossover reduces the genetic algorithm to a stochastic hill
climb.

Most progressive alignment programs infer guide trees using the Neighbor-Joining algorithm.
The O(N3) time complexity of Neighbor-Joining makes it a bottleneck when aligning large
datasets. The Relaxed Neighbor-joining algorithm relaxes the requirements for joining tree
nodes, thereby reducing the typical time complexity to O(N2logN) with no significant qualitative
effects. This thesis describes Clearcut, the reference implementation for the Relaxed Neighbor-
Joining algorithm. Results show that Clearcut dramatically outperforms existing Neighbor-
Joining implementations.

Due to arithmetic ties encountered during the backtracking phase of dynamic programming, a
backtracking path is a directed acyclic graph. Each path in the graph results in a different final
alignment. The set of distinct alignments has Gaussian distributed accuracy scores. We
introduce an unbiased backtracking algorithm and demonstrate how biased backtracking leads
to suboptimal alignments.

We explore the correlation between guide tree quality and alignment quality by defining
quality in terms of distance from the true alignment or tree and then systematically degrading
guide trees via tree edit operators. There is a statistically significant correlation between guide
tree quality and alignment quality, although the measured effect of guide tree selection on

alignment quality is small.
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Chapter 1

Evolving Guide Trees in Progressive Multiple Sequence
Alignment

(1] Shyu, C, L. Sheneman, J.A. Foster (2004) Multiple Sequence Alignment with
Evolutionary Computation, Genetic Programming and Evolvable Machines special issue
on Biological Applications of Evolutionary Computation, (5)2:121-144.

1.1 Preface

This paper was incorporated into a survey article published in 2004 in the Journal of Genetic
Programming and Evolvable Machines.! The published survey article describes applying
evolutionary computation (EC) to the problem of multiple sequence alighment (MSA). The
article provided an overview of both the background and the current state-of-the-art. As such,
the article describes two previously unpublished techniques, including the use of the binary

coalescent representation that is explained in this chapter.

Large portions of this chapter appear in a slightly re-formatted, but otherwise unchanged

form in the published survey article.

1.2 Abstract

We present a novel application of genetic algorithms to the problem of aligning multiple
biological sequences through the optimization of guide trees. Individual guide trees are
represented as coalescing binary trees that provide for efficient and meaningful crossover and

mutation operations. We hypothesize that our technique avoids the limitations of other

1 Special issue on Biological Applications of Evolutionary Computation.
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heuristic tree-building techniques, and is therefore capable of producing better trees, as

measured by higher quality alignments. Further, our approach is more scalable than commonly

used progressive alignment techniques when aligning large datasets.

1.3 Introduction

Determining the optimal alignment of more than a handful of sequences has a prohibitive time
complexity. Because of this, various heuristic approaches have been developed, many of which
are capable of producing good alignments in a relatively short period of time. The most
commonly used heuristic technique is known as progressive multiple sequence alignment
(PMSA). The most notable implementation of this technique is the widely used CLUSTAL W [2]
program.

Although most progressive alignment systems such as CLUSTAL W provide a fast, heuristic
approach to multiple sequence alignment, CLUSTAL W itself performs a large number of
optimal or near-optimal pairwise alignments, which can take a prohibitively long time to
compute. Because of this, CLUSTAL W and other similar tools are unable to scale well beyond
the alignment of a few thousand sequences, or beyond dozens of very long sequences.

We present a technique for evolving guide trees using genetic algorithms (GA). As will be
described in additional detail, most progressive alignment approaches such as those used by
CLUSTAL W rely on the heuristic construction of a guide tree to specify the order of pairwise
alignments that result in a full multiple sequence alignment. By contrast, our approach
iteratively optimizes a population of guide trees using a genetic algorithm and evaluates the
fitness of each guide tree by performing a progressive multiple sequence alignment in the order
specified by each guide tree. This avoids the relatively expensive steps of finding the optimal
edit distances between all pairs of the sequences and then computing a guide tree based on
these edit distances.

In addition, ties can occur in progressive alignment in which several combinations of pairwise
distance measurements may result in the same distance score. Thus, multiple guide trees cduld
theoretically result from the comparison of the same set of input sequences. Most systems
arbitrarily break this tie in a deterministic fashion, but this avoids the construction of some

guide trees that might ultimately produce more optimal alignments. Due to our application of a
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GA to directly construct and evolve guide trees, we avoid this small but notable limitation of

progressive alignment techniques altogether.

1.4 Progressive Alignment Background

Traditional progressive multiple sequence alignment involves at least a three-step process in
which input sequences are first compared to one another using dynamic programming (DP) [3,
4] to estimate the edit distances between all possible pairs of sequences. The use of DP for
computing pairWise distances guarantees an optimal result for the pairwise comparisons, but

has time complexity of O(n?) for comparing just two sequences. For n input sequences, there

n . . .
are ( pairwise distances.
2

Notably, to counter the obvious scalability issues of performing so many optimal pairwise
alignments, systems such as CLUSTAL W offer the option of using faster, less-accurate forms of
pairwise distance measurements, but this ultimately results in the construction of less accurate
guide trees, which can have a deleterious impact on the overall quality of the entire multiple

sequence alignment.

— SEQ_0 SEQ_2
0z ]— do,1)
02 3 sea1= —  SEQO
d(0,3) — ]—- d1,2) e
a3 — SEQ2 — SEQ_3
:I- 4(2,3)
— seqQ 3 ___ seq_1

(a) (b) (c)

Figure 1.1: The traditional progressive alignment algorithm. (a) All possible pairs of sequences
are optimally aligned using dynamic programming to determine their edit distance. Then, (b)
edit distance information is used by a Neighbor-Joining algorithm to estimate and construct a
guide tree. (c) Finally, the sequences are progressively aligned using the guide tree in order to
produce an alignment. ' '

After all pairwise distances have been computed, the distances are used to construct a guide

tree using techniques such as Neighbor-joining (N]) [5]. The process of constructing a guide
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tree based on pairwise distances is simple and reasonably scalable, but it is a subject to certain
limitations. NJ is a simplistic iterative clustering algorithm which is based on the approach of
using pairwise edit distance information to decompose an initial star-shaped tree into a full tree
which represents, based on pairwise sequence distances, the phylogenetic relationships
between all of the taxa on the tree. In such a tree, the most similar sequences are clustered
together first, followed by the most similar sub-alignments, and so on. Eventually, an entire
tree is built which represents the similarity relationships between all of the sequences. In
progressive multiple sequence alignment, the tree built by processes such as Neighbor-Joining
are used as the guide that ultimately describes an order of operations of aligning sequences and
sub-alignments.

This traditional progressive alignment approach is, in general, a sound one. It is relatively
fast and often produces both good guide trees and, more importantly, reasonably good
alignments. The largest single problem with the progressive alignment technique is that it is
susceptible to convergence at local optima since in each progressive alignment, new
information is unable to be completely incorporated into the overall multiple alignment. For
example, when aligning a single sequence with an alignment, the sequence is not aligned
directly and optimally with every internal sequence within the alignment. Instead, the
sequence is aligned with the alignment as a whole. Gaps in the resulting alignment are inserted
into the sequence, or into the alignment as a whole, but are not optimally distributed
throughout the resultant alignment. It is this form of gradient descent which prevents
progressive alignment techniques from fully incorporating new information at each stage of a
progressive alignment, and which is a major cause for error and variance from the true optimal
alignment. The accuracy of the guide tree is therefore critical. By building a guide tree based on
edit distances between sequences, and thus first aligning sequences with the highest similarity,
the information gradient associated with each step of the alignment is minimized, as is the
number of gaps in the overall alignment.

A great deal of time in a progressive alignment is spent in constructing a matrix of edit

distances that are then used to build a guide tree via Neighbor-Joining. As mentioned before,
there are ('2’) pairwise sequence alignments necessary to build the distance matrix, where n is
the number of sequences being aligned. Each pairwise sequence alignment has a time
complexity of O(n?), where n is the average length of the two sequences being aligned. The time

complexity of the Neighbor-Joining algorithm is also O(n2), where n is the number of sequences

being joined into a guide tree. The time complexity for simply constructing a guide tree via
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progressive alignment is O(m*n*) where m is the length of the sequences being aligned, and n
is the number of sequences being aligned.

It is our central hypothesis that by avoiding deterministic guide tree construction, the time
necessary to directly compute a guide tree can be entirely avoided. We hypothesize that for
very large datasets, our approach will scale demonstrably better than traditional progressive

alignment techniques, while simultaneously resulting in higher quality multiple alignments.

1.5 Algorithm Implementation

The algorithm implements an iterative steady-state genetic algorithm. The population in the GA‘
consists of guide trees that are represented in an efficient, coalescing binary tree data structure
that enables fast and meaningful crossover and mutation. Variability operators such as
crossover and mutation are constructed such that the modified tree always remains a properly
formed PMSA guide tree. Rank-based selection is implemented via the use of a random number
generator that samples from a carefully parameterized beta probability distribution. This non-
uniform random selection, when overlaid across a sorted table of fitness scores for all
individuals in the population, allows for strongly biased rank-based selection wherein highly fit
parents are far more likely to be selected for crossover, and whose offspring replace low-fit
individuals on the opposite end of the distribution. Elitism is implemented, as the fittest
individual in a population is never destroyed by less-fit offspring. Fitness for any individual is
objectively computed by performing the progressive alignment in the pairwisé order specified
by the individual guide tree. The fitness of an individual tree is computed as the log of the
alignment score of the final alignment produced by performing the progressive alignment in the
order specified by that tree. In this way, a guide tree is optimized only with respect to the most
important measurement: the intrinsic quality of the final multiple sequence alignment. Because
of this, extraneous optimality criteria and sources of possible errors (such as misleading
Neighbor-joining trees) are ignored as the GA focuses only on maximizing progressive

alignment scores by evolving successively better guide trees.
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1.5.1 Guide Tree Encoding with the Binary Coalescent

We present a novel chromosome encoding for the individual guide trees in our GA. The
encoding is extremely efficient in the contexts of both space and time and allows for the
application of fast and meaningful crossover and mutation operators. One of the most
important aspects of our chromosome encoding is that it avoids the problem of dealing with
duplicate leaves during branch swapping.

Each individual in the population represents a possible guide tree, and is stored as an integer
vector describing how nodes on one level of a'coalescing tree connect to the next level of the
same coalescing tree. At ;he lowest level of the tree, level 0, there are n terminal nodes, where n
is the number of sequencés being aligned. Each terminal node corresponds to a particular
sequence from the n sequences being aligned. The ordering of the terminal nodes is static. At
the next level, there are n-1 nodes to which each of the terminal nodes may connect. This forces
at least one coalescence at level 1. In general, each level of the coalescing tree has n-x nodes,
where n is the number of sequences being aligned, and x is the level of the tree. A binary
coalescing tree with n terminal nodes has n levels, and is therefore triangular in shape and

requires at most the following number of nodes:

+
Number of Nodes = M

where n is the number of leaf nodes on the tree.

SEQ_1

SEQ 2

SEQ_3

SEQ 4

SEQ S

SEQ 8

SEQ_7

SEQ_8

Figure 1.2: A coalescing binary tree of 8 sequences. Note that full coalescence occurs at an
upper bound of n steps, but can often occur sooner.
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Since a node is little more than the description of the edge from a given node to another node
at a subsequent level, these nodes (and therefore the tree itself) can be represented as an
integer vector. If the nodes of each column in such a tree are numbered from 0 through n-x,
where n is the number of leaf nodes and x is the column index, then the tree shown above in

Figure 1.2 can be efficiently represented as the string:
2,0,5,3,4,7,7,3,3,(-1),1,3,5,0,4,1,3,(-1),1,4,4,(-1),0,(-1),3,1,0,2,(-1),2,1,(-1),0,0,0

In this encoding, each value represents a description of the edge from a node at level x in the
coalescing tree to another node at level x+1. The value -1 is used to represent edgeless nodes.

Since we are essentially evolving a phylogenetic tree, we add the constraint that any one node
can have no more than two connections from the left. To efficiently enforce this constraint, at
each node we also track the number of connections from the previous level. For a binary
coalescing tree, these values are 0, 1, or 2. By examining the number of left and right

connections at each node, it is straightforward to quickly confirm the validity of a given tree.

1.5.2 Evaluating Guide Tree Fitness

The initial population of trees in our GA consists of some number of randomly generated trees.
These trees are built in a bottom-up fashion in a completely random walk up to the root of the
tree. For each node at given level of a tree, a node in a subsequent level is chosen entirely at
random, constrained only by the limitation that nodes at level x are allowed a maximum of two
connections from level x-1. Completely viable, random trees can be built very quickly using this
approach.

Tree fitness is computed for each individual in the initial random population as well as for
each offspring that results from crossover/mutation operations. Fitness is computed by first
building an intermediate evaluation tree which is a temporary data structure used to hold the

sequences and partial alignments as the progressive alignment is computed by a post-order

traversal of the evaluation tree. At each node in the evaluation tree, the fitness function
recursively descends, and then performs an alignment. An alignment can occur between a pair
of sequences, between a single sequence and a partial alignment, or between two partial
alignments. In this way, the complete progressive alignment is built up until the root node of

the evaluation tree contains the complete alignment and the score for that alignment. The
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natural log of this alignment score is then computed and represents the objective fitness for the

guide tree.

(@4.3), (1.5)

SEQ_2 SEQ_1 SEQS

SEQ_4 SEQ3
SEQ1 SEQ 2 SEQ3 SEQ4 SEQS

Figure 1.3: The Process of Fitness Evaluation. The coalescing binary tree is first converted to
an evaluation tree, and then a progressive alignment is performed via a post-order traversal of
the evaluation tree in which sequences and partial alignments are progressively aligned into a
complete alignment of all of the input sequences.

Fitness evaluation is the most computationally time-consuming component of this genetic
algorithm, especially towards the top of the evaluation tree, where large partial alignments are
themselves being éligned. Specifically, the time complexity of computing alignments is given in
Table 1.1.

Table 1.1: Time complexity for three kinds of dynamic programming alignments [6].

Type of Alignment Time Complexity
0O(mn)

Sequence + Sequence .
where m and n are the lengths of the sequences being aligned

O(kn + min{s, k}mn)

Sequence + Alignment | where m is the length of the sequence, n is the length of the alignment, k
is the number of sequences represented comprising the alignment, and s
is the size of the alphabet

O(km + nl + min{s?, kI}mn)

Alignment + Alignment | where m and n are the lengths of the two alignments, k and | are the
numbers of sequences in the alignments, and s is the size of the alphabet
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The fitness of the individual guide trees is maintained in a fitness table that is sorted in
descending order of relative fitness. This sorted fitness table is used for the selection process,

as a precursor to crossover and mutation.

1.5.3 Selection, Crossover, and Mutation

A rank-based selection process is implemented wherein a parameterized beta distribution is
overlaid across a sorted fitness table. Two unique parents and one tree to be replaced are
chosen at random from this non-uniform probability distribution which has a strong bias for
selecting parents with a high fitness as well as a strong bias towards selecting lower-fit
individuals to be replaced by the offspring of crossover. The beta distribution is parameterized

with @ = 3.0, and a # = 0.5, and has the distribution shown in Figure 1.4 below.

Selection
Probability

0.0

High Fitness Low Fitness

Figure 1.4 - The beta probability distribution used for selection of parents for the crossover
operation. The inverse of this distribution is used for the selection of a child.

Once the rank-based selection process chooses two unique parents and one child (also
unique), these individuals are processed by the crossover operator. The GA performs a type of
single-point crossover in which a crossover point is chosen at random for one of the parent
trees. In effect, a crossover point is simply one of the n levels on the coalescing tree data
structure. A second crossover point is chosen on the second parent using a linear search for a
compatible matching level.

Two binary coalescing trees are not always compatible for crossover. Preliminary analysis

indicates that an incompatible selection occurs in < 5% of all cases, and appears to decrease
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slowly as a function of tree size. Compatible parent trees are trees in which there exist some
internal level at which the internal nodes on the trees can be entirely connected via edges in
order to produce a viable child. Since the selection of crossover points is stochastically driven,
we arbitrarily attempt 20 times to identify possible crossover points between two randomly
selected parent trees before deciding that the trees are incompatible for crossover. In the event
that two trees are found to be incompatible, we re-select new parents and attempt crossover

until compatible trees are found.

SEQ_t
SEQ2
seq_3
SEQ_4 SEQ 1 CHILD
seQ s seq_2 N
VAN
SEq_3 S SN °
/ "

SEQ_1 Vd

SEQ_4 /7 @

Figure 1.5: The crossover of two compatible coalescing binary trees. Note that a graft repair
was needed in this example in order to prevent orphaning the leaf node SEQ_3.

The crossover process is shown in Figure 1.5. The lower portion of the first parent at
Crossover Point 1 is added to the upper portion of the second parent at Crossover Point 2. This
preserves all of the lower-level node relationships below Crossover Point 1 from the first
parent, while mixing with the preserved upper-level sub-tree ordering specified in the second
parent at and above Crossover Point 2. At the point at which the two different trees now
intersect in the child tree, edges between nodes are constructed in such a way that the child
tree always remains viable. In some cases, as shown in Figure 1.5, some edges will need to be
constructed at the interface which did not exist at all in the previous tree. In this case, we repair
the graft by randomly selecting a viable nodé from the next level in the coalescing tree such that

no terminal nodes are ultimately orphaned, and the tree remains fully connected and viable.
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Mutation of a child tree after crossover is a simple process of selecting some connected node
on the tree and changing its upper edge to connect to a randomly selected, but viable node. In
some cases, removing an edge from a node which is connected higher up in the tree requires a
recursive repair mechanism which traverses up the tree from the newly orphaned node,
removing all edges from the visited nodes until a node is found that has two connected nodes.

Once all such edges are removed, the tree is again viable.

1.5.4 Algorithm Parameters

The GA has a steady-state population of 30 individual guide trees. The algorithm is iterative
and not generational, and iterates for a configurable number of times before halting. For the
tests and experiments conducted with this GA, the algorithm was arbitrarily terminated at
10,000 iterations. The number of iterations required to reach convergence on the globally
optimal guide tree is a function of both the number of sequences and the length of the
sequences. In real world application of this GA approach, the termination condition for the GA
could be dynamically calculated at run-time as a function of average sequence length and the
number of sequences being aligned. Alternatively, the algorithm could continue until no further
improvement was observed.

Since this is an iterative, steady-state GA, a single selection and crossover happens at each
generation. However, some minority of individual trees may not be compatible for crossover,
and so there is an effective crossover probability that is something slightly smaller than 100%.
In each iteration, each child tree from crossover has a 10% chance of incurring a single point
mutation. Examining the effects of manipulating the mutation rate is an area of future work.

In addition to the GA parameters, alignment parameters were also provided. As mentioned
previously, dynamic programming algorithms were used to align sequences and alignments
based on the evolved guide trees. The alignments and alignment scores are produced in the
context of an evolutionary model that takes the form of a scoring system that specifies the
penalties for opening new gaps in an alignment or extending an open series of gaps.

The central idea behind making this distinction is based on the fundamental idea that it
should be considered more expensive to open a new region of gaps than to simply extend an
existing gap region. In addition, different scores are assigned to residue matches and

mismatches in an alignment.
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Table 1.2: Concise Summary of Experimental GA Parameters

GA Parameter Value

Population Type Steady-State

Population Size .| 30

Population Initialization Bottom-up randomly generated, viable guide tree
Number of Iterations 10,000

Selection Type Biased, Rank-Based using Beta probability distribution
Crossover Type Branch Swapping on Coalescing Binary Tree
Crossover Rate Slightly less than 1.0

Mutation Type Random intra-tree, same-level branch migration
Random Number Generator R250 from GNU Scientific Library

The scoring system used in this GA implements affine gap penalties, and is parameterized as
shown in Table 1.3.

Table 1.3: The GA Alignment Scoring System with Affine Gap Penalties

Score Type Value
Gap Opening Penalty -5.0
Gap Extension Penalty -1.0
Nucleotide Match Score 10
Nucleotide Mismatch Score 2.0

We used the same gap and substitution penalties between Clustal W and our GA to more

" “accurately contrast the relative performance of both algorithms.
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1.6 Experimental Results

All experimental runs were conducted on a workstation with a 1GHz Intel Pentium-III CPU,
640MB of RAM, running Redhat Linux version 7.2. Over 30 tests were run in which the number
of sequences and/or different sequence lengths were varied. The input sequences for all of the
experimental runs were constructed using a periodic, stochastic variation of the Jukes-Cantor
[7] model of nucleotide evolution across a fixed star-shaped topology. All generated nucleotide
sequences across such a tree are roughly evolutionarily equidistant. Evolving sequences across
more realistic and variable topologies would lead to more realistic sequence simulation and
should be included in future work.

For each experiment, alignments were performed both with our GA and with CLUSTAL W
(v1.82). Performance, in terms of both efficiency and apparent alignment quality, are
summarized for several of our experimental runs. In order to more accurately compare the
results of CLUSTAL W to our GA, we attempted to identically parameterize each system. In
order to do this, we identically configured affine gap penalties and substitution costs, and
disabled the delayed alignment of divergent sequences in CLUSTAL W. All of the experimental
runs produced similar overall results for all of the input sequences, regardless of the number of
sequences being aligned, and the results presented in this section were chosen as

representative results for the entire experimental evaluation of our system.

20 Sequences, 100 bp in Length

11.27

11.265 r.,.r""

1. ]

11,26
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Figure 1.6: The fitness trend of the fittest individual across 10,000 iterations when evolving a
guide tree to align 20 sequences of length 100 bps.
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100 Sequences, 100 bp in Length
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100 Sequences, 1000 bp in Length

19.063
19.062
19,061
19.06
19.059
19.068
19.057
19.056
19.055
19.054

Max Fitness

1 138 275 412 549 686 823 960
lterations x 10

(b)

Figure 1.7: The fitness curves demonstrated by the GA when applied to two different inputs,
one of which is (a) 100 bp long, and one of which is (b) 1000 bp long. Note that in (B), the
fitness improvement is more gradual. This effect is due to the larger number of nucleotides in
each sequence being aligned. Neither graph reached a true plateau, indicating that 10,000

iterations is insufficient for these sequences.
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Figure 1.7: Visual comparison of the alignment produced by the GA (a) and the alignment
produced by CLUSTAL W (b). Although extremely similar, the GA alignment is slightly more
optimal. For example, the alignment produced by CLUSTAL W has one additional column,
indicating that more gaps were used to construct the alignment. The slight improvement in

alignment quality is also apparent on a closer visual inspection.
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1.7 Conclusions

We effectively applied a novel genetic algorithm to the problem of progressive multiple
sequence alignment. In addition, we presented a novel binary coalescent tree data structure
that lends itself nicely to the problem of performing crossover on two trees without duplicating
terminal nodes.

In our tests, our evolutionary approach has been shown to produce more refined alignments
than CLUSTAL W. In addition, we believe that preliminary execution time data seem to indicate
a trend that our approach may be more scalable than CLUSTAL W when aligning very large
numbers of very long sequences, although more work must be performed to make a conclusive

determination on the relative scalability of our technique.

1.8 Fufure Work

Our approach can be shown to produce better alignments than CLUSTAL W while also being
more scalable than CLUSTAL W for large datasets (i.e. 500 sequences of length 2500 or larger).
Additional testing needs to be done in order to evaluate this hypothesis and determine the
precise inflection point at which stochastic optimization techniques such as genetic algorithms
surpass CLUSTAL W in both alignment quality and scalability.

We intend to study the parameterization of our GA in greater detail to determine how best to
converge to a near-optimal guide tree in the minimum number of iterations. The effects of
modifying tunable parameters such as population size and mutation rate on solution
convergence rates and solution quality will be more fully explored. Additionally, we intend to
explore new étyles of crossover and mutation operators based on coalescing trees in order to
maximize the benefits of those operators.

Currently, this GA is designed to handle only nucleotide sequences. We intend to extend this
algorithm to handle protein sequence data as well, with support for fully pluggable amino acid
substitution matrices (such as BLOSUM and PAM). Once this GA supports the alignment of
amino acid sequences, we intend to perform benchmarked comparisons against other

techniques using the BAliBASE [8] alignment database.
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The problem of sequence alignment is embarrassingly parallel. Genetic algorithms are also
inherently parallel, and so we intend to parallelize our fitness function such that it can be
efficiently handled in a Beowulf cluster configuration.

Finally, we will examine the effects of evolving guide trees whose fitness is evaluated by some
measure of fitness distinct from final alignment quality. Other fitness criteria for applying
evolﬁtionary pressure to improving guide trees may be equally effective in achieving high-

quality alignments, and perhaps considerably faster.
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Chapter 2

Evolving Better Multiple Sequence Alignments

[9] Sheneman, L., ].A. Foster (2004) Evolving Better Multiple Sequence Alignments, In the
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2004),
Seattle, WA.

2.1 Preface

We later applied the genetic algorithm described in Chapter 1 to the BAiBASE benchmark. The
results were generally disappointing. Looking closer at our method, we found that crossover on
the binary coalescent was too destructive to efficiently explore tree space. In fact, crossover
with the binary coalescent reduced to a random search. A review of the literature on optimizing
phylogenetic trees with evolutionary computation led to the idea of a simpler representation
with a better understood and less destructive crossover operator. This chapter was presented
at the 2004 Genetic and Evolutionary Computation Conference (GECCO) in Seattle and appears

in its entirety in the peer-reviewed conference proceedings.

2.2 Abstract

Aligning multiple DNA or protein sequences is a fundamental step in the analyses of phylogeny,
homology and molecular structure. Heuristic algorithms are applied because optimal multiple
sequence aligmﬁent is prohibitively expensive. Heuristic alignment algorithms represent a
practical trade-off between speed and accuracy, but they can be improved. We present EVALYN

(EVolved ALYNments), a novel approach to multiple sequence alignment in which sequences
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are progressively aligned based on a guide tree optimized by a genetic algorithm. We
hypothesize that a genetic algorithm can find better guide trees than traditional, deterministic
clustering algorithms. We compare our novel evolutionary approach to CLUSTAL W and find
that EVALYN performs consistently and significantly better as measured by a common
alignment scoring technique. Additionally, we hypothesize that evolutionary guide tree
optimization is inherently efficient and has less time complexity than the commonly used

Neighbor-Joining algorithm. We present a compelling analysis in support of this scalability

hypothesis.

2.3 Introduction

Aligning multiple DNA or amino acid sequences is an extremely important task in modern
biology. Researchers apply multiple sequence alignment (MSA) to a diverse set of problems.
MSA is used to find positional homology across distinct biological sequences as a first step in
inferring evolutionary relationships between organisms. MSA is used in gene identification and
discovery and in identifying similarity in molecular structure and function. Among other
practical applications, MSA plays a critical role in the diagnoses of genetic disease and the
development of modern pharmaceuticals.

A sequence alignment is composed of two or more biological sequences that are arranged
such that homologous characters within the sequences are grouped (aligned). Alignments are
often represented as a two-dimensional matrix where rows are sequences and columns are
sequence positions. A good alignment is one that maximizes positional homology across all
columns and all sequences. Alignments are constructed by inserting gaps in order to shift
characters and group homologous characters into columns. Since it is impossible to know
whether evolution inserted or deleted characters relative to one another, these
insertions/deletions are simply called indels. Gaps represent indels in sequence alignments.
Placing a single gap in a sequence causes the remainder of the sequence to shift by one position.
Gaps placed in the optimal positions will result in an alignment where positional homology is

maximized as shown in Figure 2.1.
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A-CTTCAACTAAGT-ATTG-AATAAA~CT~GCTTAGATATATCTCCARATTATTAGCTATCGCTTAT~GGATTATATTAC
ACCTTTA--TAARGTCATTG-ACT-AAGCTCGCCTAGAT === ====~". AARTTACCCGCTATCG--~ATATCC-CCTATTAC
=CC-TCAACTAAGT-ATTG~AATAAAG--~GCTTAGATATATCTCCAAATTACTAGCTAT-~~-TATATCCTCATAT -~~~

Figure 2.1: Example of a multiple sequence alignment of three DNA sequences. Gaps represent
indels and are denoted by the dash (-) character

Before the advent of alignment algorithms, researchers laboriously aligned multiple
sequences by hand. This task was both error-prone and time-consuming. In the 1970’s,
researchers developed simple pairwise alignment algorithms based on dynamic programming
(DP) and proved that they produce optimal alignments with respect to any given scoring
system. [3, 4]. Although these algorithms extend easily to the simultaneous and optimal
alignment of multiple sequences, they are NP-Hard [10] and have a time-complexity of O(LV)
where L is the average length of the sequences being aligned and N is the number of sequences
being aligned. Using DP, the simultaneous optimal alignment of more than a handful of
sequences is prohibitively expensive. As a result, heuristic approaches trade quality for speed.

Progressive multiple sequence alignment is the most common heuristic [11] and is depicted
in Figure 2.2. In traditional progressive MSA, a distance matrix is formed by using DP to
compute the optimal edit distance between all possible combinations of sequence pairs. A
clustering algorithm such as Neighbor-Joining [5] takes a distance matrix as input and
deterministically constructs a guide tree based on these distances, grouping closely related
sequences prior to more divergent sequences. Once a guide tree has been constructed,
sequences are progressively pairwise aligned in the order dictated by the guide tree. Closely
related sequences are aligned prior to more distant sequences. Progressive MSA avoids the
computationally intractable problem of the simultaneous alignment of multiple sequences by
instead performing incremental pairwise alignments.

However, traditional progressive MSA has fundamental problems. Most importantly, after
sequences are pairwise aligned, any inserted gaps in that pairwise alignment become
immutable, and subsequent alignments with other sequences cannot retroactively add
additional information to improve previously aligned sequences. This is a form of error
propagation, also known as “once a gap, always a gap”. The guide tree has a direct qualitative

impact on this error propagation, as the amount of error is heavily dependent on the order in
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which sequences are progressively aligned. Since guide tree construction algorithms such as
Neighbor-Joining are greedy and starting-point dependent, they are easily trapped in local
optima, often resulting in suboptimal multiple alignments. We hypothesize that an evolutionary
algorithm is better able to avoid entrapment in local optima and will perform better than
Neighbor-Joining in constructing good guide trees. Better guide trees result in better multiple

sequence alignments.

AGCCTGCCT
AGCCTGCCT }
2
4 CTGCCTTTA CTGCCTTTA
4 :|— 2 AGCCTGOCT ~-=
ACCTGCCTT -=-CTGCCTTTA
2 ACCTGCCTT ﬁ ﬁ ~ACCTGCCTT~
1 ARGCTECT -~
AAGCTGCT ArGeTacT
Pairwise Distances Guide Tree Alignment

Figure 2.2: Computing pairwise edit distances to construct a guide tree. Traditional
progressive algorithms cluster similar sequences prior to divergent sequences. A guide tree
specifies an ordering of pairwise alignment operations that construct a complete multiple
sequence alignment

Additionally, for large datasets, Neighbor-joining has a prohibitive time complexity of O(N3),
where N is the number of input sequences. As researchers apply MSA to larger and larger
datasets, Neighbor-Joining scales poorly as N grows large. It is our hypothesis that an
evolutionary computational approach to guide tree construction is more scalable than

Neighbor-Joining.

2.4 Previous Work

Notredame and Higgins performed the seminal work in applying a genetic algorithm (GA) to
MSA with a tool known as Sequence Alignment by Genetic Algorithm (SAGA) [12]. SAGA evolves
a population of alignments using a complex set of 22 crossover and mutation operators in an
attempt to gradually improve the fitness of the alignments in the population. Providing
meaningful scores for sequence alignments can be somewhat problematic, and by default SAGA

relies on a weighted sum-of-pairs approach [13] in which each pair of sequences in an
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alignment is compared and scored and then the scores from all of the pairwise alignments are
summed to produce a representative score for the entire alignment.

Although SAGA produces high quality results that are comparable (or sometimes better) than
other popular heuristic techniques, SAGA scales poorly when aligning more than 20 sequences.
SAGA applies a large and overly complex litany of crossover and mutation operators, which are
dynamically scheduled via a sophisticated adaptive, self-tuning mechanism. By contrast, the GA
approach outlined herein uses only one form of crossover and one mutation operator, thus
simplifying the implementation and analysis of the algorithm.

Thomsen et al. [14] developed an alignment post-processing program that uses a genetic
algorithm to improve alignments constructed by algorithms such as CLUSTAL V [15]. A
population of alignments is initialized by randomly distributing gaps throughout the individual
alignments yet seeding the population with a single alignment produced by CLUSTAL V.
Assuming that this CLUSTAL-derived seed was of higher quality than the randomly generated
seeds, any fitness improvement in the fittest individual is, by definition, an improvement over
the output of CLUSTAL V. The authors aligned as many as 71 sequences with an average length
of 100 residues and arguably demonstrated a 10% quality improvement over CLUSTAL V.

Related work has been done towards the application of genetic algorithms to the problem of
evolving phylogenetic trees. Most notably, [16] and [17] used genetic algorithms to evolve trees
which were optimized with respect to maximum likelihood. Additional previous work has been
done by [18] in inferring phylogenetic trees with respect to maximum parsimony [19].

Notably, the manipulation of tree-based data structures with genetic algorithms has been

widely explored in the genetic programming literature [20].

2.5 Algorithm Implémentation

We present EVALYN, a novel progressive multiple sequence alignment (MSA) program that
utilizes a genetic algorithm (GA) to optimize guide trees. EVALYN starts with a steady-state
population of randomly constructed binary trees and iteratively optimizes this population using
a combination of selection, crossover, and mutation. Guide trees are rooted binary trees. Each
node in the guide tree contains an alignment that in turn contains at least one sequence. Leaf

nodes have no children and contain the original input sequences.
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2.5.1 Crossover and Mutation

In every iteration of the genetic algorithm, EVALYN selects two unique parents for crossover
based on an exponential distribution of relative rank. This ensures that highly fit trees are
selected for crossover far more often than unfit trees, yet all trees are viable crossover
candidates. Similarly, EVALYN selects a single unfit guide tree to be replaced by the offspring of
a crossover operation.

EVALYN’s crossover operator is depicted in Figure 2.3. We implement tree crossover in a
way similar to that described in GAML [21], a genetic algorithm for phylogenetic inference.
Both selected parents are copied and a randomly chosen crossover point (internal node) is
selected in the first parent. The first parent is re-rooted at the crossover point, and the
remainder of the tree above the crossover point is discarded. All leaf nodes that exist in this
new, smaller tree are removed from the second parent, and the second parent is collapsed into a
typical bifurcating tree. This collapsed second parent is then attached to the first parent at a

randomly chosen insertion point.

PARENT 1 |{  earent2 || = cmmp

(@ ® ©

Figure 2.3: Crossover as a three-step process. First, a copy of PARENT 1 is rooted at a randomly
selected crossover point and all nodes above this point are discarded as shown in (a). Next, all
leaves are removed from a copy of PARENT 2 which exist in the newly rooted tree from (a). As
shown in (b), leaves A and B are removed from PARENT 2, and the tree is collapsed to form a
new bifurcating tree containing only leaves C and D. In (c), the final child tree is constructed by
combining the sub-trees from (a) and (b) at a randomly chosen insertion point
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With some small prébability, EVALYN mutates the child tree by performing a same-
tree branch swap. Interestingly, this is implemented by performing a crossover
operation on two copies of the same child guide tree, effectively swapping branches

within the same tree.

2.5.2 Measuring Guide Tree and Alignment Fitness

As shown in Figure 2.4, the fitness of a particular guide tree is measured by performing
progressive MSA in the order dictated by the guide tree and then scoring the resulting

alignment.

((C,(A,B)), (D,E))

Figure 2.4: Evaluating the fitness of a guide tree. Fitness is computed by performing the
progressive sequence alignment in the order dictated by the guide tree. EVALYN performs a
depth-first traversal of the guide tree and aligns A and B first. Sequence C is then aligned to the
alignment of A and B to form a 3-sequence alignment of sequences 4, B, and C. The complete
multiple sequence alignment of all sequences is performed by aligning the two alignments on
either side of the root node of the guide tree. The sum-of-pairs score of the final alignment is
the fitness of the alignment

We use the common sum-of-pairs score (SPS) as our scoring method as outlined in Figure 2.5.
In the case of protein, the evolutionary distance between every pair of residues in each column
of the alignment is computed using a probabilistic residue substitution model such as PAM [22]
or BLOSUM [23]. DNA is similarly handled using simple nucleotide substitution models that

properly weight transitions and transversions. The SPS for the entire alignment is simply the
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sum of the SPS for each column in the alignment. Gaps are typically assigned large penalties,
while substitutions are assigned smaller negative penalties or positive rewards. For our
purposes, a higher SPS indicates a better alignment. Therefore, there is selective pressure

favoring alignments with higher sum-of-pairs scores.

SPS=2+(-5)+2+0+2

Figure 2.5: A sum-of-pairs score (SPS) is computed for a simple pairwise alignment. A
substitution matrix assigns points for nucleotide matches/mismatches and affine gap penalties
are applied '

As in other MSA implementations, EVALYN implements affine gap penalties, in which the
leading gap in a subsequence of contiguous gaps invokes significantly higher penalties than
non-leading gaps. Affine gap penalties result in dense, contiguous gapped regions instead of
sparsely distributed, isolated gaps. This affine gap model is more biologically realistic and

ultimately creates more biologically realistic alignments.

2.6 Algorithm Analysis

We hypothesize that EVALYN has less computational complexity than Neighbor-Joining, and is
therefore more scalable than CLUSTAL W as a function of the number of input sequences. We
briefly analyze the time complexity of EVALYN and compare it to the time complexity of the
Neighbor-Joining algorithm used in CLUSTAL W to demonstrate support for this hypothesis.
We show that with only regard to the number of input sequences, EVALYN is an O(N) algorithm.
By contrast, CLUSTAL W’s Neighbor-Joining algorithm is O(N3).
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EVALYN evaluates guide tree fitness by performing the progressive MSA in the order dictated
by the guide tree and computing the sum-of-pairs score for the resulting alignment. At each
step in the progressive alignment, we compute an optimal global pairwise alignment [3]. Each
pairwise alignment has an 0(L?) complexity, where L is the average length of the sequences or
partial alignments being aligned. There are N-1 such pairwise alignments for every evaluation
of a guide tree, resulting in an O(N x L2) complexity, where N is the number of input sequences
being aligned, and L is the average length of all sequences. This fitness evaluation happens once
per iteration. With I iterations, EVALYN becomes an O(I x N x L2) algorithm. Finally, when
evaluating the fitness of the initial, randomly generated population of size P, the fitness of each
guide tree must be computed prior to iteration, resulting in an initial cost of O(P x N x L2). In
typical usage, I >> P and we can simplify our analysis to O(I x N x L2). Although EVALYN is an
iterative algorithm and has large amounts of constant-time overhead in the form of the multiple
1, it does have a linear time complexity with respect to the N input sequences.

Although CLUSTAL W is fast in the typical usage scenario, it performs very poorly as N grows
very large (thousands of input sequences). CLUSTAL W uses Neighbor-Joining to construct
guide trees, and Neighbor-Joining has been shown to possess a O(N3) time complexity [24].

The practical question remains as to whether or not EVALYN is capable of finding
comparable or better guide trees in less time than CLUSTAL W when aligning extremely large
numbers of sequences. For example, if N is very large, it may be the case that  must be similarly
large in order for EVALYN to converge on guide trees which score better than those constructed
via Neighbor-Joining. We've shown that EVALYN is O(N), but how fast does I (or P) need to
grow as a function of N in order to get good alignments? Future experiments will focus on

characterizing this behavior.

2.7 Experimental Setup and Results

We hypothesize that a genetic algorithm (GA) is capable of finding better guide trees than those
that are constructed using traditional deterministic clustering algorithms such as Neighbor-
Joining. To test this hypothesis, we compare EVALYN to the popular CLUSTAL W progressive
MSA tool [2]. CLUSTAL W uses Neighbor-Joining to construct guide trees based on a computed
pairwise distance matrix. Both EVALYN and CLUSTAL W compute the sum-of-pairs score for
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the final multiple sequence alignment, and this is used as an objective metric of alignment
quality.

First, we create DNA sequences via simulation under the Jukes-Cantor model [7] of sequence
evolution in which transitions and transversions are equally probable. We simulated the DNA
sequences by producing a random template sequence of the desired length and then using this
template sequence to generate related sequences with no more than 50% sequence divergence.
This simplistic simulation implies a true tree with a star topology and an ungapped true
alignment. In this way, we generated 10 independent sets of 50 sequences, all of which were
100 nucleotides in length. We performed 10 experimental runs of EVALYN on each of the 10
input datasets and averaged the results.

Second, CLUSTAL W was run with default parameters on each of the 10 input datasets and
we recorded the final sum-of-pairs score of the ocutput alignment. In 10 independent trials,
EVALYN used the same 10 inputs and saved the best guide tree after 2500 iterations. In all
cases, EVALYN used a population size of 500 guide trees, a mutation rate of 0.01, and ran for

2500 iterations as shown in Table 2.1.

Table 2.1: Experimental settings for EVALYN.

Population Type Steady-state

Population Size 500 guide trees

Crossover Rate 100% (steady-state population)
Mutation Rate 0.01

Iterations 2500

Selection Type Rank-Based

Substitution Matrix Matches = 1.9, Mismatches = 0
Gap Open Penalty -10.0

Gap Extension Penalty -0.01

Where possible, EVALYN was parameterized identically to CLUSTAL W with respect to gap
penalties and nucleotide substitution costs. The results from this experiment are shown in

Figure 2.6.
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EVALYN vs. CLUSTAL W (Default Settings)
Aligning 50 Simulated DNA Sequences of Length 100
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Figure 2.6: Comparing CLUSTAL W and EVALYN with default parameters. We ran CLUSTAL W
with default settings. Across all 10 input sets, EVALYN produced comparable or better guide
trees which resulted in better alignments with higher sum-of-pairs scores (SPS) than CLUSTAL
W. Since EVALYN is a stochastic algorithm, the mean SPS and standard deviation across
repeated trials is shown

Third, we invoked CLUSTAL W again for each dataset, but instead of generating its own guide
trees, CLUSTAL W instead used the best guide trees produced by EVALYN. This technique
removed any experimental error due to possible inconsistencies in alignment scoring between
CLUSTAL W and EVALYN. We computed the mean and standard deviation of the sum-of-pairs
scores across all 10 trials for each of the 10 inputs. We also calculated the standard deviation
across EVALYN runs to assess the error and statistical significance of our results.

Results indicate that EVALYN outperforms CLUSTAL W significantly and consistently when
the two programs have identical parameterization. In the case where CLUSTAL W was run with
default settings, EVALYN continued to outperform CLUSTAL W as shown in Figure 2.7.

Tests of the statistical significance of all results were performed using a non-parametric
Wilcoxon signed-rank test and showed that these results are statistically significant under that
test.

By taking optimized guide trees produced by EVALYN and providing them as input to
CLUSTAL W, we have found strong evidence to support our first hypothesis that guide trees
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evolved via a genetic algorithm produce better multiple sequence alignments than guide trees

constructed using Neighbor-Joining.

EVALYN vs. CLUSTAL W (identical Settings)
Aligning 50 Simulated DNA Sequences of Length 100

700000 SEVALYN
600000 OCLUSTALW

$00000 1

400000 -

300000 1

200000

Sum-of-Pairs Scores

100000 1

1 2 3 4 5 6 7 8 8
input Dataset #

Figure 2.7: Comparing CLUSTAL W and EVALYN with identical parameters (same substitution
matrix, same gap penalties, etc.) Across all 10 input sets, EVALYN produced better guide trees
that resulted in better alignments with higher sum-of-pairs scores

2.8 Conclusions

Aligning multiple sequences of biological data is a critical aspect of modern biology. Since
constructing optimal alignments is prohibitively time-intensive, popular heuristic MSA
algorithms trade accuracy for speed in order to maximize their practical usefulness. We
introduced EVALYN, a genetic algorithm for performing multiple sequence alignment. We
demonstrated that EVALYN produces higher-scoring alignments than CLUSTAL W under the
popular sum-of-pairs metric. In addition, we provided a strong analytical argument that an
evolutionary computational approach to guide tree optimization as used in EVALYN is more
scalable than traditional guide tree construction algorithms such as Neighbor-Joining.

By using a genetic algorithm to produce better guide trees, we achieved an important practical
goal of producing a measurably better multiple sequence alignment program than CLUSTAL W,

currently the most popular and actively used MSA program today.
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2.9 Future Work

In future work, we will examine different metrics of alignment quality in order to show that
EVALYN is able to produce biologically significant results. Although the sum-of-pairs score
(SPS) for an alignment is commonly used, it has some inherent problems. First, alignments with
the highest SPS are not always the most biologically significant or meaningful. Guide trees and
multiple sequence alignments constructed under the SPS optimality criterion may in fact
produce alignments that are meaningless when interpreted by a biologist. Finding ways of
quantifying the level of biological significance of an alignment is an ongoing and active area of
research. Toward this end, we intend to test EVALYN against the Benchmark Alignment
dataBASE (BAIiBASE) [8], which is a carefully designed set of protein alignments that were
aligned and verified with elucidated or inferred structural and functional information. The
BAIiBASE alignments are composed of real protein sequences, and are intended to be a kind of
“gold standard” by which alignment algorithms can be tested for their ability to recover
biologically significant alignments. In addition to testing EVALYN against BAIiBASE, we will
develop new fitness functions to maximize meaningful biological signal in alignments. For
example, future fitness functions may take into account predicted or elucidated secondary
structure.

All phylogenetic analysis begins with multiple sequence alignment, which establishes the
positional homology of the sequence data that is used for the basis of constructing and
optimizing phylogenetic trees. Phylogenetic analysis is extremely dependent on the
assumptions, biases, and accuracy of the initial multiple sequence alignment. State-of-the art
work in phylogenetic inferencing attempts to address this by simultaneously optimizing both
alignment and phylogeny. As guide trees serve as rough estimations of sequence phylogeny,
EVALYN also simultaneously optimizes phylogeny and alignment. In effect, EVALYN performs
phylogenetic tree optimization by using alignment sum-of-pairs scores as the optimality
criterion. Along these lines, we will explore additional measures of guide tree fitness such as
parsimony [19] and the more statistically rigorous approach of maximum-likelihood [25]. '

Finally, empirically characterizing the scalability of EVALYN across different numbers,

lengths, and types of input sequences is a key focus of future work. In this paper, we analyzed
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EVALYN to show that it has a linear time complexity with respect to the number of input
sequences. However, the rate of solution convergence as a function of the number of input
sequences is not yet well understood. Future experimentation will explore the relationship
between population size, GA convergence properties, sequence divergence effects, and

alignment quality.
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Chapter 3

Clearcut: A Fast Implementation of Relaxed Neighbor-Joining

[26] Sheneman, L., Evans, J. and Foster, J.A., Clearcut: a fast implementation of Relaxed
Neighbor-Joining. Bioinformatics. 2006 Nov 15;22(22):2823-4

3.1 Prefacev

This brief paper was published in Bioinformatics in 2006 and describes Clearcut, the reference
implementation of the Relaxed Neighbor-Joining (RNJ) algorithm. The separate paper
describing Relaxed Neighbor-Joining was published in the Journal of Molecular Evolution and

appears in Appendix A.

3.2 Abstract

Clearcut is an open source reference implementation for the Relaxed Neighbor-Joining (RNJ)
algorithm. While traditional Neighbor-Joining (N]) remains a popular method for distance-
based phylogenetic tree reconstruction, it suffers from an O(N3) time complexity and cannot
reasonably handle very large datasets. By contrast, RN] realizes a typical-case time complexity
of O(N2logN) without any significant qualitative difference in output. RN] is particularly useful
when inferring very large trees. In addition, RN] retains the desirable property that it will
always reconstruct the true tree given a matrix of additive pairwise distances. Clearcut
implements RN] as a C program which takes either a set of aligned sequences or a pre-

computed distance matrix as input and produces a phylogenetic tree.
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3.3 Background

Researchers are handling increasingly larger datasets that will require algorithms with
significantly improved performance. Relaxed Neighbor-Joining [27] is an extremely fast
distance-based phylogenetic tree construction algorithm that modifies the popular Neighbor-
Joining algorithm [5]. Both algorithms share similar theoretical properties, including the
guarantee that the true tree will be recovered if the distance matrix is purely additive [28]. In
the much more common case where distances are noh-additive, the qualitative difference in
output between the two algorithms is negligible.

While NJ has historically been considered an extremely fast method for inferring phylogenies,
it has been shown to run in time O(N3) for all inputs [29]. While RN] also has a worst-case
runtime proportional to N3, it has an average-case runtime of O(N2logN), allowing RN]J to
process much larger trees in most cases. Likewise, this speed improvement allows RN]J to
bootstrap more trees in a shorter period of time without measurably sacrificing tree quality.

As the name implies, Neighbor-Joining works by starting with a star-shaped tree and
iteratively joining “neighboring” nodes until a bifurcating tree is constructed. At each step,
traditional N searches the entire distance matrix and identifies and joins the node pair with the
global minimum distance. In contrast, RN] opportunistically joins any two neighboring nodes
immediately after it is determined that the nodes are closer to each other than any other node
in the distance matrix. It is not required that the candidate nodes be the closest of all nodes
remaining in the matrix. In this sense, our algorithm relaxes the requirement of exhaustively

searching the distance matrix at each step to find the closest two nodes to join.

3.4 Implementation

Clearcut is a small, standalone program written in C under the Linux operating system. The
current distribution also compiles cleanly with GCC under FreeBSD and Mac OS X. Clearcutis
entirely a text-based program that takes all arguments on the command-line. Clearcut source

code is freely distributed under the BSD license.
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Clearcut implements both relaxed and traditional Neighbor-Joining. It is capable of taking input
either in the form of a pre-computed pairwise distance matrix or a set of aligned sequences in
FASTA format. When presented with an alignment, Clearcut will compute pairwise distances by
first determining the percent identity between all sequence pairs. Optionally, compensation for
multiple hits is possible by applying either a Jukes-Cantor or Kimura correction to the pairwise
distances. These optional distance corrections can be applied in an analogous manner to either
DNA or amino acid sequences.

Unlike traditional NJ, RN] is a non-deterministic algorithm and is sensitive to the order in
which distances are input and the order in which nodes are joined. Command-line options can
force Clearcut to randomly reorder taxa to mitigate any stochastic bias resulting from the
original order in which taxa are presented in the input. A similar argument controls whether
attempts to join nodes are done randomly or in a strictly deterministic order. Attempting to
join randomly selected nodes can reduce systematic bias in some cases, while it is faster to
attempt to join nodes in a consistent, systematic way.

Since RNJ is a non-deterministic algorithm, Clearcut optionally allows the user to quickly
generate any number of distinct, equally valid RN] trees from the same non-additive distance

matrix.

3.5 Performance

We compared Clearcut to several popular traditional N] implementations including PHYLIP
Neighbor [30], QuickTree [24], and Quickjoin [31]. We artificially constructed trees of different
sizes that were representative of the two extreme tree shapes: maximally deep (pectinate) and
maximally shallow (perfect). We stochastically assigned gamma-distributed branch lengths to
each branch and then used the simulated tree to construct a purely additive distance matrix.
Compared to existing Neighbor-Joining programs, Clearcut’s RN] implementation
reconstructed the true phylogenetic tree in a fraction of the time for all tested tree shapes and
sizes (Figure 3.1). Quick]oin, the second fastest N] implementation, was unable to handle our

largest input due to its extremely large memory requirement.
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Figure 3.1: Neighbor-Joining implementation speed tests. These tests between Clearcut’s RN]
implementation and other traditional NJ programs demonstrate that Clearcut is dramatically
faster for all tested tree shapes and sizes. Note the logarithmic scale used on both axes.

Due to rigorous implementation optimizations, especially with respect to cache locality, even

Clearcut’s traditional Nj implementation is extremely fast.

3.6 Future Enhancements

Future versions of Clearcut will allow users to bootstrap RN]J trees by sampling with
replacement from the provided distance matrix. A majority-rule consensus tree will be
constructed from the bootstrap and nodal-support values will be computed. The labeled
consensus trees will be rendered in Graphviz format.

Additionally, future versions of Clearcut will be optionally compiled first into a C library, that

will allow it to be easily linked and embedded inside other programs.
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Chapter 4

Estimating the Destructiveness of Crossover on Binary Tree
Representations

[32] Sheneman, L, Foster, .J.A, (2006) Estimating the Destructiveness of Crossover on Binary
Tree Representations, In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO '06), Seattle WA, July 8th - July 13th, 2006.

4.1 Preface

This chaptervappears in article form in the 2006 Genetic and Evolutionary Computation
Conference (GECCO '06) proceedings and was presented at that conference’s graduate student
workshop. The technique described in this paper was developed during efforts to characterize
the asymptotic runtime complexity of EVALYN. This diagnostic method makes it possible for
the first time to empirically estimate the destructiveness of crossover on very specific tree

representations and thereby infer an operator’s expected efficiency in exploring treespace.

4.2 Abstract

For many applications, evolutionary algorithms represent individuals as typical binary trees
with n leaves and n-1 internal nodes. When designing a crossover operator for a particular
representation and application, it is desirable to quantify the operator’s destructiveness in
order to estimate its effectiveness at using building blocks. For the case of binary tree
representations, we present a novel approach for empirically estimating the destructiveness of

any crossover operator by computing and summarizing the distribution of Robinson-Foulds
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distances from the parent to the entire neighborhood of possible children. We demonstrate the
approach by quantifying the destructiveness of a popular tree-based crossover operator as
applied to the problem of phylogenetic inferencing. The benefits and limitations of the

destructiveness metric are discussed.

4.3 Introduction

Evolutionary algorithms can operate directly on many data structures, including trees and
graphs. The most common example of tree-based evolutionary computation is genetic
programming (GP) [20] in which a genetic algorithm operates on parse trees. The theoretical
groundwork for establishing the ability of a GP to find and exploit building blocks is becoming
increasingly established (for at least a narrow range of representations and crossover
operators) [33,34]. However, a general schema theorem for GAs applied to tree structures is
largely or entirely underrepresented in the literature.

Phylogenetic inferencing is a common application of GAs using tree structure representations
[21,17,18]. A phylogeny expresses the evolutionary relationships between a set of organisms,
and this relationship is often represented as either a rooted or unrooted bifurcating (i.e. binary)
tree. The GAs search the space of valid phylogenetic trees, using the common optimality criteria
of maximum parsimony or maximal likelihood. The above cited examples of phylogenetic
inferencing GAs all use distinct crossover operators, but all of them operate on the same
underlying binary tree structure. While the performance of GAs in the area of phylogenetic
inferencing has had mixed results, most biologists who are inferring phylogenies rely on
simpler techniques such as parallel hill climbing. A potential explanation for this lack of real-
world adoption of GAs in this area may be due to the difficulty in establishing and quantifying
the effectiveness of the GA in efficiently assembling building blocks on tree structures.
Alternatively, the theoretical mechanisms by which such a tree-based GA is capable of
efficiently searching phylogenetic tree space are far from understood. However, by establishing
a technique for empirically quantifying the destructiveness of a particular tree-based operator,
one may be able to elucidate the mechanisms by which building blocks are constructed and

destroyed.
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Figure 4.1: Lewis crossover with two parent trees. A node known as a crossover point is
identified in the first parent tree (a) and the remainder of the tree is pruned, leaving only
the crossover point and all of its children nodes. From the second parent (b), all of the
nodes that were selected from the first parent are pruned from the tree. In (c), the two
remaining subtrees are recombined at an insertion point, creating a child tree which
should share some topological characteristics of the parents.
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Several metrics exist for measuring the distance between any two trees. The most ubiquitous

metric is known as the Robinson-Foulds approach [35]. This technique works by first

acknowledging that any internal branch in a binary tree represents a bisection of the tree into

two sets of leaf nodes. If all of the unique bisections are enumerated for both trees, one can

identify and count all of the unique bisections in order to estimate the distance between trees.

Robinson-Foulds is a true mathematical measure of distance, largely because it satisfies the

triangle inequality [36]. That is, the direct distance between any two trees is always shorter

than a distance computed using intermediate trees.
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If one accepts that the EC building blocks in a tree representation are entirely or largely
described by the topological characteristics of the tree, and one further assumes that the
Robinson-Fould’s metric reasonably estimates the distance between the topologies of the two
trees, then Robinson-Foulds can be applied as a reasonable measure of the destructiveness of
the crossover operator. One can recombine two parent trees and perform crossovers in all
possible combinations (or a sufficiently large and unbiased sample of combinations). From this,
one can build a representative neighborhood of child trees that resulted from all possible
recombinations of the original parent trees by the crossover operator. By measuring the
Robinson-Fould’s distance between every child and each of its two parents, one can estimate
the destructiveness of the operator by analyzing the distribution of R.F. distances that result.
For example, child trees that have very little topological resemblance to either of their parents
have obviously been transformed via crossover to such a degree that most meaningful building
blocks have likely been destroyed. Overly destructive crossover operators are identified by

summarizing or visualizing distributions of Robinson-Foulds distances.

4.4 Methods

We randomly generated several pairs of parent binary trees, each with ten leaf nodes. For each
pair of parents, we exhaustively applied Lewis’s crossover operator at every valid crossover
and insertion point and generated the neighborhood of all possible offspring to the two parent
trees under Lewis’s crossover. We then calculated the normalized Robinson-Foulds distance
from every child to each of the original parent trees. This resulted in two distributions: one
distribution of distances of child to parent for each parent. Both distributions were
summarized and plotted as a histogram.

For perspective and as a form of experimental control, we also generated a random tree and
then generated a population of random trees of approximately the same magnitude as the
neighborhood of children resulting from the application of Lewis’s crossover. The distribution
of Robinson-Foulds distances from each of the randomly generated trees to the original tree
was computed. This distribution represents the worst-case for which the neighborhood should

have no systemic topological similarity to the original tree. The distribution of distances from
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trees generated by highly destructive recombination should approach this worst-case
distribution, and thus this worst-case distribution can be used as a form of experimental control

and comparison.

4.5 Results

We discovered some surprising, yet easily explained details about the underlying mechanisms
and overall destructiveness of Lewis’s crossover operator. The two distributions of the
crossover neighborhood vs. each parent tree were significantly different in mean, variation, and
overall shape as shown in Figure 4.3. The obvious conclusion to be reached from this result is
that Lewis’s crossover operator is consistently far more destructive to the first parent than the
second. This result indicates a systematic bias in the way in which Lewis’s crossover uses
potential building blocks from each parent: Lewis’s crossover operator preserves most of the
topology (i.e. building blocks) of the second parent and destroys almost all of the building
blocks from the first parent.

This asymmetrical crossover destructiveness occurs for the simple reason that in binary
trees, the majority of nodes are closer to the terminals of the tree. In fact, approximately half of
all nodes are terminals, and one-quarter of all remaining nodes directly share an edge with a
terminal. This introduces a dramatic bias in the way in which nodes are selected for crossover
points from the first parent. A review of the source code for Lewis’s GAML indicate that this
bias is not programmatically removed from his crossover algorithm. Because of this bias of
randomly choosing nodes near the leaves of the first parent as crossover points, only single
nodes or very small subtrees are preserved from the first parent, and then these are attached to

a minimally pruned second parent.
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Figure 4.3: Example pair of distributions of Lewis crossover destructiveness. Thisisa
representative pair of distributions found when analyzing the destructiveness of Lewis’s
crossover operator. In each of our experimental runs, we found that in general the distances
from the neighborhood to the first parent (a) were far greater (mean=0.878, stdev=0.169) than
the distances of the neighborhood to the second parent (b) (mean=0.487, stdev=0.234). The
shapes of the distributions were always consistent, with (a) being largely exponential in shape,
while (b) was largely normal in shape.
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Figure 4.4: The distribution of Robinson-Foulds distances. Here, we show the distance from
one randomly generated tree to a large group of other randomly generated trees. This
distribution is useful as an experimental control, in that it shows the worst-case distribution of
scores for an operator that is as maximally destructive as a random step. The mean R.F.
distance was 0.964, with a standard deviation of 0.07.

4.6 Discussion

A distribution of Robinson-Foulds distances gives an estimation of the destructiveness of a
particular crossover operator. Different crossover operators should have different measures of
destructiveness. Obviously, with a GA, every operator is destructive to some extent. The goal
in designing an effective crossover operator is to balance the destructiveness in order to ensure
that the operator is not so destructive that the operator is throwing away everything that might
have been beneficial in the parents. Such a massively destructive step is equivalent to
proposing a highly inefficient random step. However, an operator that is so non-destructive
that the operator is proposing nothing but small, local search steps is unlikely to be effective
either.

We applied the Robinson-Foulds distance metric to the crossover operator that Lewis
implemented in GAML. We found some surprising results that gave us insight not only into
how effective we can expect Lewis’s crossover operator to be in general, but it allowed us to
trivially identify the underlying biases present in the crossover operator which would prevent it

from behaving efficiently.
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Robinson-Foulds is not without its problems. First, the distance estimate given by the
Robinson-Foulds approach is a weighted estimate of the distances and is heavily influenced by
the starting topology of the tree. For example, seemingly small, individual changes to pectinate
topologies can result in maximum normalized distances and these large distances are not
possible in‘ one step when starting with balanced (perfect trees). Ideally, one would discard
Robinson-Foulds and instead use a distance metric that computes or estimates the minimum
edit distance between tree topologies (i.e. the cost of transforming one tree to another by
application of the operator). Unfortunately, the general problem of determining the minimum
edit distance is NP-complete. In addition, for our use in generating a distribution of distances
between parents and all possible children, such an edit-distance approach is non-informative
(all distances would be 1), thus using Robinson-Foulds as a topological distance estimate seems
a reasonable approach. Finally, since we are dealing with randomly generated trees which are,
taken as a whole, closer to perfectly balanced than pectinate, the chances of dealing with the

topology-oriented biases of Robin-Foulds are mitigated.
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Chapter 5

Eliminating Dynamic Programming Bias in Multiple
Sequence Alignment Algorithms

5.1 Preface

This paper was submitted to BMC Bioinformatics in 2007 and rejected. We may revise the work
and resubmit to another journal.

This work stems from dealing with subtle implementation details uncovered while
programming EVALYN. EVALYN uses Needleman-Wunsch dynamic programming (DP) to
perform optimal pairwise alignments, but the backtracking step often encountered arithmetic
ties, which were stochastically resolved to avoid bias. This work explores the nature and
frequency of these dynamic programming ties and a novel sampling approach for finding better

alignments.

5.2 Abstract

Most useful algorithms that align multiple molecular sequences rely on dynamic programming.
In practice, dynamic programming algorithms commonly produce arithmetic ties. Conventional

methods for resolving these ties often produce biased results through arbitrary and

deterministic strategies. These tie resolution strategies substantially influence the final
sequence alignment, especially in the context of progressive multiple sequence alignment. With
progressive alignment, the search through alignment space is constrained by tie resolutions
since alignment steps depend'heavily on previous tie resolution decisions. In fact, the standard
model of progressive multiple sequence alignment is flawed, as we demonstrate with a simple

example where the optimal multiple sequence alignhment can only be achieved by combining
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sub-optimal sub-alignments. We demonstrate that progressive alignment with unbiased tie
resolution results in a set of possible alignments and a corresponding distribution of alignment

scores. This distribution can be sampled to find better alignments.

5.3 Introduction

Dynamic programming (DP) is a common, mathematically rigorous technique for solving a wide
variety of optimization problems [37]. In DP, problems are broken down into independent sub-
problems, and these sub-problems are individually and systematically solved and eventually
combined to assemble the overall solution. DP is inherently Markovian in the sense that every
incremental step of DP is dependent only on a small set of immediately previous steps (i.e.
adjacent sub-problems). Dynamic programming is commonly used to optimally align molecular
sequences with respect to a fixed substitution matrix and gap penalties [3,4,38].

In pairwise sequence alignment, DP constructs a 2-dimensional matrix in which all the
characters from one sequence (or alignment profile) are placed across the top of the matrix, one
character per matrix column. Likewise, the other sequence (or matrix profile) is placed along
the left edge of the matrix. The matrix is then filled with values moving from one corner of the
matrix to the other corner in a systematic fashion as depicted in Figure 5.1. The value of each
cell is determined by the three adjacent cells that were solved one step previously. At every
cell, the cost of substituting residues or adding/extending a gap is assessed. These costs are
determined by the choice of substitution matrix and affine gap penalties. Every cell is assigned a
value in order to maximize the local benefit (or minimize the cost) of moving from one of the
three adjacent cells to the current cell, and is computed using the following recurrence

relationship:

F@i-Lj-D+s(x;y;),
F(i,j)=max{ F(i-1j)-d,
F@,j-1)-d.

F(ij) is the current cell in the DP matrix F at position i, j. The cost function s(x,y) is a lookup into
a substitution table describing the cost of substituting symbol x; with symbol y;,. d represents

the cost incurred for adding a gap. Substitution matrices for nucleotides typically reflect
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differences in transversion/transition ratios, while substitutions for proteins are commonly
based on empirically derived, probabilistic models such as PAM [22] and BLOSUM [39]. Affine
gap costs are often used, which assigns a fixed gap penalty for starting a new gapped region, and

a smaller penalty for extending an existing gapped region [40].

O - >

—

Figure 5.1: The Needleman-Wunsch dynamic programming matrix. The cells of the matrix are
initially computed based on specific substitution rates and gap penalties. The algorithm then
backtracks from the lower right to the upper left cells to reconstruct the alignment in reverse.
In this example, there are three ties along the backtracking path. These backtracking ties lead
to three equally optimal pairwise sequence alignments. We used a simple substitution/gap
model where matches = 1, mismatches = 0, initial gaps = -1.0 and gap extensions = -0.1.

When the entire DP matrix is filled, the path that led from the starting point to the end point is
uncovered through a process known as backtracking. Backtracking is an algorithmic procedure
that identifies the valid steps at each cell that could have led to the cell being filled with the
locally optimal value that it ultimately received.

Identifying an optimal sequence alignment for a set of input sequences is known to be NP-
Hard [41, 10]. Dynamic programming techniques sequence alignment compute the provably
optimal alignment for n sequences of mean length k in time O(k"). In other words, optimal
simultaneous multiple sequence alignment via dynamic programming quickly becomes
computationally intractable as the number of input sequences increase, even when the dynamic

programming matrix is evaluated only within pre-computed bounds [13].
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5.3.1 Dynamic Programming Ties

Dynamic programming ties can and do occur. Ties happen when the value of a cell can be
computed with the identical values from more than one adjacent cell. Due to the presence of
these ties, the path through the dynamic programming matrix is not a single, branchless, linear
path, but a directed acyclic graph (DAG). In the presence of ties, the backtracking algorithm
changes from a simple linear traversal to a graph traversal.

The backtracking step can break ties arbitrarily and deterministically, or break ties in a
wholly stochastic, unbiased way. In the interest of speed and simplicity (and perhaps naiveté),
most progressive multiple sequence alignment algorithms break these ties in an arbitrary
fashion, severely biasing the resultant alignment. Other algorithms break the tie stochastically
by assigning each valid path equal probability. For example, by giving each of two valid paths a
50% chance of consideration. However, this method of tie resolution is also flawed.

It is obvious that when ties are encountered along the backtracking path, the path ceases to
be strictly linear and should really be considered a directed acyclic graph (DAG). The
backtracking DAG represents a set of possible, equally optimal paths through the DP matrix.
One enumerates the set of optimal pairwise alignments by exhaustively traversing all paths
through the DAG.

In many cases, traversing all possible paths through the backtracking DAG is prohibitively
expensive, and branching due to arithmetic ties in the DAG is resolved arbitrarily or in a

stochastic, but biased fashion.

5.3.2 Progressive Multiple Sequence Alignment

Feng and Doolittle proposed the progressive multiple sequence alignment method [42] as a
practical alternative to the intractable simultaneous alignment of n input sequences using n-
dimensional dynamic programming. PMSA represents a pragmatic tradeoff between alignment
accuracy and speed. While the final alignment is no longer guaranteed to be optimal, it is
computed relatively quickly. Instead of using dynamic programming techniques on all n
sequences simultaneously, PMSA applies pairwise dynamic programming to optimally align
pairs of sequences and subalignments.

This method reduces the amount of computation from O(k") in the case of optimal

simultaneous alignment to O(nk?) in the case of progressive alignment. In short, PMSA
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represents a dramatic asymptotic runtime improvement with respect to both the average
length and number of input sequences.

PMSA uses estimated evolutionary distances between all sequence pairs to construct a guide
tree. The guide tree is typically constructed using a distance-based tree inference algorithm
such as Neighbor-joining [5,29]. Guide trees dictate the order of the pairwise DP alignments.
The guide tree is an estimate of the phylogeny of the input sequences as determined by the
relatedness of the sequences to one another. By aligning more similar sequences prior to more
distant sequences, one limits the introduction of excessive and immutable gaps early in the
alignment process. As sequences are added to a progressive alignment, previously introduced
gaps cannot be retroactively altered. This leads to the PMSA phenomenon of “once-a-gap,
always-a-gap”.

Arithmetic ties encountered during dynamic programming have a particularly pronounced

effect in PMSA algorithms. This effect is discussed in detail in Section 5.6.

5.4 The Frequency of Ties

Ties occur frequently in dynamic programming. The frequency of ties is determined by several
factors, including the content and relatedness of the sequences and alignment parameters such
as choice of substitution matrix and affine gap costs. By simulating pairs of nucleotide
sequences under specific evolutionary models, we demonstrate possible scenarios and patterns
of tie frequency as a function of sequence similarity.

We use distinct simulated sequence pairs stratified into different levels of sequence
similarity, from low to high. The sequences are generated by simulation under the F84 model of
sequence evolution [43] using the ROSE program [44]. By using otherwise fixed alignment
parameters with these sequences, we pairwise align the sequences with the Needleman-
Wunsch algorithm and count the frequency of dynamic programming ties across different levels
of sequence relatedness.

We hypothesize that DP ties become more frequent as sequence similarity increases. The
results summarized in Figure 5.2 below provide support for this hypothesis.

We found that when aligning very similar sequences, the path through the backtracking DAG
has fewer equally optimal branches. By contrast, highly divergent sequences include many ties

along the DAG. This may indicate that DP matrices for highly divergent sequences simply have
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less inherent signal, and therefore DP ties occur more frequently due to chance. By contrast,
closely related sequences may contain a stronger DP signal where chance ties are less likely.

The most common type of tie involves two-way ties with the diagonal direction. Several
examples of such ties are shown in Figure 5.1. Ties between horizontal and vertical directions
are very rare, as are three-way ties between all adjacent nodes.

Figure 5.3 indicates that the number of DP ties through the entire matrix remains fairly
constant, independent of sequence relatedness. Ultimately, the size and branching of the DAG
shrinks as sequence relatedness increases, despite a fairly constant overall number of ties

throughout the matrix.

Percentage of Ties In DAG

Simulated DNA (ROSE)
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Figure 5.2: Arithmetic tie frequency along the directed graph during backtracking. Here we
present an example of the number of arithmetic ties encountered during backtracking. All four
distinct kinds of ties are counted separately. The figure shows averages computed over
multiple replicates. The 1 Kb nucleotide sequence pairs were simulated with ROSE under the
F84 model. We computed percent sequence identity post-alignment using CLUSTAL W. Here,
our DP algorithm used match=+1, mismatch=0, gap open = -1, gap extend = -0.1,
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Percentage of Ties of Total DP Matrix
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Figure 5.3: Counting ties in DP matrix as function of sequence similarity. We present the tie
count averaged over multiple replicates. The sequences were simulated as in Figure 5.2. The
full DP matrix is 1000x1000, of which up to 10% of the cells contain at least one kind of tie. The
correlation of tie frequency to sequence similarity is significantly different from the strong
linear correlation found along the actual backtracking DAG as shown previously in Figure 5.2.

5.5 Removing Bias from Dynamic Programming

Most existing dynamic programming implementations for molecular sequence alignment break
ties in an arbitrary and deterministic way that introduces bias. Superficially, this appears
justifiable since there seems to be no reason to prefer one equally optimal pairwise alignment
over another. However, in the context of progressive multiple sequence alignment, where the
particular output of one stage becomes the input to the next, choosing between equally optimal
pairwise alignments becomes vitally important.

In the case of pairwise DP alignment, ties involving the diagonal are sometimes resolved by
simply choosing the diagonal path. This move results in no immediate gap insertions. At first
glance, this technique appears to reduce the total number of gaps in the alignment since
diagonal moves represent substitutions and do not add gaps to an alignment. In reality, this

arbitrary tie-breaking technique simply delays gap insertions until later backtracking stages,
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systematically biasing gap placement along the aligned sequences. Finally, there is no
mathematical or biological justification to arbitrarily prefer diagonal paths over other, equally
optimal paths.

Another common approach to breaking DP ties is to essentially “flip a coin” wherever a tie is
encountered during backtracking. While neither arbitrary nor deterministic, this stochastic
approach remains biased because there are often an unequal number of ways to get to any
particular cell along the backtracking DAG. Flipping a coin during backtracking, disregarding
the number of paths leading to the current cell, results in choosing some paths with higher
likelihood than other valid paths. Since there is no objective justification for choosing one
equally valid backtracking path over another, this biased tie resolution strategy artificially
constrains the alignment.

We propose an extension to traditional dynamic programming algorithms that allows for
stochastic, unbiased tie resolution during backtracking. Our extended DP algorithm impacts
both the matrix fill and backtracking steps. The algorithm stores not only the value at each cell,
but also a list of the valid directions that lead to that cell. We also store the total number of
paths that lead to that cell. The total number of paths for any particular cell is computed as the
sum of the number of paths from the adjacent cells in the valid direction list. For example, if a
cell’s value can be computed from two adjacent cells, then there is a two-way tie. The number
of paths leading to the current cell is the sum of the number of paths leading from the two
adjacent, tied cells.

During backtracking, when a tie is encountered, we stochastically resolve the tie by choosing
a valid random direction with weights proportional to the number of paths from each direction.
By proportionally weighting our backtracking directions, all valid paths to the current cell are
considered with equal likelihood. An example of this extended dynamic programming
algorithm is shown in Figure 5.4 below.

The extended dynamic programming algorithm for aligning sequences X and Y using

substitution matrix S and gap penalty D:
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The Modified Matrix Fill Algorithm (for global alignment)

FOR EACH row i AND column j in DP matrix F DO: '
Fi,j.val & max (F;_j,5-1 + 8(X;,Y3), Fi,5-1 — D, Fi-1,; — D)
Fi,j.dirs < find directions() // including tied dirs
FOR EACH direction r in Fj,;.dirs DO:
Fi,;.npaths € F; j.npaths + F..npaths
DONE
DONE

The Modified Backtracking Algorithm (for global alignment):

i=length(X) // start at lower-right corner

j=length(Y)
WHILE i>0 AND ;>0 DO:
wt.up €& F;.,,;.npaths / Fi,j.npaths

wt.left € F;j-1.npaths / Fi,j.npaths

wt.diag € F;i, jo;.npaths / Fi,j.npaths

newdir € rand_weight(wt.up, wt.left, wt.diag)
DONE

A AGCT
B 11 1213 14

1 2

-1.0 -0.1/-02 0.3

B

A
T§-1.1 0 -0.1 0.8
C
T

Figure 5.4: Extending dynamic programming: unbiased, stochastic backtracking. For every cell,
we track the number of paths leading to that cell (shown in upper-right squares in every cell
along the backtracking graph). When randomly resolving ties during backtracking, our choice
is weighted based on this path count, providing equal weight to every path through the matrix.
In this example, the weights are depicted on the backtracking path lines.
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5.6 One Guide Tree, Many Alignments

The current dogma with progressive multiple sequence alignment implies that there exists a
one-to-one relationship between guide trees and alignments. That is, a sef of input sequences,
an evolutionary model (e.g. alignment parameters) and a guide tree determines the single
resulting alignment. However, the presence of arithmetic ties during dynamic programming in
progressive alignment contradicts this dogma. The goal of a good PMSA algorithm is to search
for and find the best possible multiple sequence alignment achievable through progressive
sequence alignment (i.e. the globally optimal progressive alignment).

During pairwise alignment, DP ties result in a set of equally optimal pairwise alignments.
This has a combinatorial effect during progressive MSA, as one set of possible pairwise
alignments could be aligned with yet another set of possible pairwise alignments. The choice of
which optimal alignments to align next during PMSA constrains the possibility in subsequent
alignment steps during the progressive alignment. Unfortunately, there is no information
present to inform the choice of which optimal alignments to align at each step. While every
pairwise alignment step results in a set of one or more equally optimal alignments, the stepwise
choice of alignments/profiles impacts the ability to find the globally optimal progressive
alignment. Ultimately, every tie-breaking decision constrains the search for the globally
optimal MSA. Since the choice of alignments at each pairwise step is uninformed, it is rare that
a PMSA algorithm achieves the globally optimal PMSA for any given set of inputs.

A guide tree does not correspond directly to a single, deterministic multiple sequence
alignment. A guide tree, together with input sequences and alighment parameters, results in a
set of possible complete progressive multiple alignments. This set of progressive alignments is
rarely equally optimal. In reality, a single guide tree represents an entire set of possible
multiple alignments and a corresponding distribution of alignment scores.

Figure 5.5 shows the output of a simulation experiment wherein we fixed the parameters to
the progressive alignment algorithm and sampled the alignments produced through unbiased
tie resolution as described previously. We simulated 10 sequences using ROSE [44] under the
F84 model. ROSE introduced indels of different sizes in the output sequences, and outputted
the “true” alignment. We fixed the guide tree and other alignment parameters and sampled
1,000 alignments by simply resolving dynamic programming ties in different ways. We scored

the alignments by measuring their distance from the true alignment output by ROSE.
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We align the same set of sequences using the same inputs via CLUSTAL W [2] to demonstrate
how a deterministic progressive alignment algorithm performs relative to the distribution of
possible alignment scores. We find that sometimes CLUSTAL W performs relatively well,
sometimes it performs poorly, but it always misses the complete picture (the full distribution of
alignments) and will almost never arrive at the best possible progressive alignment for any

particular set of inputs.
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Figure 5.5: Example alignment score distributions, given a single guide tree. We show four
distributions of 1,000 alignment scores each. For each distribution, we aligned 10 simulated
nucleotide sequences and resolved ties in an unbiased, stochastic fashion. Within each
sequence set, the alignments were derived from the same fixed guide tree and model
parameters. All differences in alignments and scores within each example are entirely due to
different output due to stochastic tie breaking. In each example, we show where the alignment
generated by CLUSTAL W scored with respect to the complete distribution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



54

5.7 A Progressive Alignment and Dynamic Programming
Counterexample

Progressive multiple sequence alignment suffers from a fundamental limitation known as
“once-a-gap, always-a-gap” [42]. Sequences and alignment profiles are pairwise aligned in the
order dictated by a guide tree using only the local information present in the sequences at hand.
Most PMSA algorithms use dynamic programming to achieve locally optimal pairwise
alignments. Subsequent alignment steps cannot or do not use new information to retroactively
inform and optimize the relative gap positions for sequences that have already been aligned.
Resolved homology and relative gap placement are immutable between already-aligned
sequences.

The key problem with the current PMSA paradigm is that optimal pairwise alignment at each
step of the progressive alignment process constrains the search for the globally optimal
alignment achievable through PMSA. PMSA algorithms are greedy because they always choose
the locally optimal alignment at each step, even if choosing a suboptimal pairwise alignment at
an earlier step may subsequently result in a globally optimal progressive alignment.

While this limitation of progressive multiple sequence alignment is well known, we present a
concrete, visual example of the effect in Figure 5.6. In this example, we progressively align
three short DNA sequences. In one case, we align the sequences in the traditional fashion by
consistently choosing from locally optimal pairwise alignments. In the other case, we vary from
the optimal dynamic path slightly, resulting in a locally sub-optimal pairwise alignment but a
globally superior overall progressive alignment.

In this specific example, we first pairwise align Seq1 and Seq2 and take the resulting
alignment profile and align it with Seq3. There is one possible optimal pairwise alignment of
Seql and Seq2 (ie. there are no dynamic programming ties), and in this case the optimal
backtracking path is precisely along the diagonal. If we align Seq1 and Seq2 optimally, and take
the resulting alignment profile and optimally align it with Seq3, the result is globally
suboptimal. This is demonstrated by aligning Seq1 and Seq2 together in a demonstrably
suboptimal way by diverging slightly from the diagonal. When we take this locally suboptimal
pairwise alignment and align it with Seq3, the result is globally superior to the first example.

It is infeasible to try all possible optimal and even slightly suboptimal paths in all

combinations for large datasets. However, we believe this counterexample points to clear
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possibilities for future improvements for progressive alignment algorithms. Progressive
algorithms could sample alignments, not only from optimal backtracking paths, but from paths
in close proximity to the optimal path. It is possible to sample with trial and error from such
alignments to incrementally approximate the globally optimum progressive alignment. Such
sampling could continue as long as time permits, as determined by the user of the alignment

algorithm.

Sequences To Align:
Seql: GATG
Seq2: TTCG
Seg3: ACCG

Guide Tree:
((Seql,seq2) , Seq3)

{seql,seq?) optimal alighment

GATG

Ce SP Score = 1.0

O O -4 =

se se sub-optimal alignment

Optimal Path GAT~-G )
r-CE Sp Score = -1.0

Vaiation from

Optimal Path PMSA with optimal backtrace
GATG- p
rrcg- SP Score = -1.0
Match = +1.0 -ACCG SO
Mismatch = +0.0
Gap Open = -1.0 PMSA with suboptimal backtrace
Gap Extend = -0.1 [,
GAT-G SP Score =:0.0
TT~C6
AC~Ce

Figure 5.6: PMSA counterexample: Optimal DP leading to suboptimal
progressive alignments. This example clearly depicts a key limitation in
progressive multiple sequence alignment. We progressively align 3 short DNA
sequence fragments. In one case, we produce the typical result by following the
optimal DP backtracking path during the alignment of the first two sequences.
In the other case, we vary slightly (in red) from the optimal backtracking path.
By wondering off of the optimal backtracking path, we get a sub-optimal
pairwise alignment of the first two sequences. Aligning the third sequence with
the sub-optimal alignment of the first two sequences, we find a globally better
final alignment. By using alignments dictated by locally optimal backtracking
paths, we significantly constrain the search for the best possible overall
sequence alignment. Future PMSA algorithms could also attempt sub-optimal
backtracking paths near the optimal path for a more complete search.
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5.8 Discussion

We demonstrated that dynamic programming ties are common in practice. In our simulation
example, we showed that the frequency of DP ties increase as a function of the relatedness of
the input sequences. In the case of simple pairwise alignments, dynamic programming ties
result in a set of equally probable and equally optimal alignments. However, in the case of
progressive multiple sequence alignment, the pairwise DP ties result in a combinatorial
explosion of possible outputs. Since the way in which the sets of alignments are paired and
aligned during the progressive alignment step impacts the final alignment output, these distinct
outputs result in a distribution of alignment scores. Without information guiding the selection
of which alignments to use at each progressive step, the globally optimal complete progressive
alignment is almost never realized. We demonstrated how conventional, deterministic
progressive alignment algorithms fall far short of finding the globally optimal progressive
alignment, leaving considerable room for improvement to existing progressive alignment and
dynamic programming approaches.

We also demonstrated an extension to the traditional DP approach that removes bias during
stochastic backtracking. This modification to the common Needleman-Wunsch or Smith-
Waterman algorithms is simple to implement and relatively inexpensive in both space and time.

It is typically too computationally expensive to enumerate all possible combinations of DP
backtracking paths in order to identify the specific combination of paths resulting in the
globally optimal progressive multiple sequence alignment. Breaking ties in an unbiased,
stochastic manner is the only practical way to fairly explore the space of path combinations.
Repeatedly and fairly sampling from the complete set of DP paths and constructing a sample
distribution of alignment scores allows one to characterize the search space and choose paths
which are notably better than the average alignment.

We demonstrated that deterministic programs with arbitrary tie-breaking mechanisms
produce alignments that score significantly lower than the globally optimal progressive
alignment.

Finally, we presented a concrete visual example of the core limitation of progressive multiple
sequence alignment: the well known “once-a-gap, always-a-gap” phenomenon. Traditional
progressive alignment algorithms are greedy in the sense that only optimal pairwise alignments
are considered, while it is trivial to identify cases where locally suboptimal pairwise alignments

can be used to achieve superior overall alignments. We recommend that future progressive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



57

alignment algorithms sample from both optimal and slightly suboptimal backtracking paths in

an attempt to identify globally superior alignments.
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Chapter 6

Quantifying The Correlation of Alignment Accuracy and
Guide Tree Quality

6.1 Preface

This chapter derives from a manuscript that remains unsubmitted for publication at the time of
the writing of this report. We currently plan to submit this paper to the Pacific Symposium on
Biocomputing (PSB '09). This chapter describes a large simulation study, empirically exploring
the critical aspect of progressive multiple sequence alignment: the relationship of guide trees

to alignment quality.

6.2 Abstract

Evolutionary biologists commonly use progressive multiple sequence alignment to identify
positional homology in regions of molecular sequences. This progressive alignment approach
infers a guide tree from input sequences and then aligns the sequences based on the order
dictated by the guide tree. It is reasonable to assume that true phylogenies makes the best
possible guide trees, resulting in alignments which best reconstruct the true positional
homology of the input sequences. In this study, we use both real-world data and simulated data
to empirically quantify and characterize the correlation between guide tree quality and
alignment quality for several datasets. For both alignments and trees, we define quality as the
proximity from the true alignment or tree. We find strong evidence that alignment quality is
negatively correlated to the distance between a given guide tree and the true phylogeny. In

many cases, this correlation appears logarithmic, indicating that the largest deltas in alignment
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accuracy occur within a few steps of the true tree. Our results inform alignment algorithm

designers about the advantage of constructing extremely accurate guide trees.

6.3 Introduction

Multiple sequence alignments represent the positional homology of molecular sequences.
Nucleotides or residues are arranged by inferred homology into columns, while “gaps” are
inserted to represent insertion/deletion (indel) events. The final output is often visualized as a
rectangle, containing two or more molecular sequences with indel regions interspersed to
correctly align columns and maximize the overall positional homology of the original input
sequences.

Many researchers rely on the technique of progressive multiple sequence alignment (PSMA)
in order to produce both fast and accurate multiple alignments. Commonly used PMSA
programs include CLUSTAL W [2], T-Coffee [45] and MUSCLE [46]. All three of these programs
infer a guide tree using fast and simple distance-based algorithms such as Neighbor-Joining [5]
or UPGMA [47]. Once the guide tree is constructed based on the pairwise distances of the input
sequences, the sequences are then aligned to each other in the order specified by the guide tree.
A guide tree built by joining neighboring taxa in a pairwise distance matrix represents an
ordering in which similar sequences are aligned prior to more distant sequences. Among other
benefits, this approach limits the introduction of immutable gaps early in the alignment process,
leading to relatively accurate alignments with an overall smaller number of gapped regions.
Some PMSA algorithm developers claim that guide trees based on minimum pairwise edit
distance produce more accurate alignments than guide trees based on the estimated
evolutionary distance between taxa.

How important is guide tree selection to progressive alignment? Most PMSA algorithms
quickly construct a distance-based guide tree and simply use that ordering. Some newer PMSA
programs spend additional time refining guide trees to further optimize multiple alignments.
MUSCLE initially infers a UPGMA tree and draft alignment, but subsequently uses this draft
alignment to construct a Kimura-corrected [48] pairwise distance matrix that is the basis for an
improved UPGMA-derived guide tree. MUSCLE further tries to refine the overall progressive

alignment by iteratively and systematically re-rooting the guide tree. EVALYN [9] is a genetic
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algorithm that iteratively performs crossover and mutation operations to optimize a population
of guide trees. EVALYN measures the fitness of any individual guide tree by aligning the input
sequences based on the guide tree and scoring the alignment using a sum-of-pairs (SP) metric.

While both MUSCLE and EVALYN spend significant compute resources to find guide trees that
result in better overall multiple alignments, it is unclear if the gains in guide tree quality are
worth the extra effort. MUSCLE performs relatively well in benchmark alignment tests [46],
indicating that additional guide tree optimization may be measurably beneficial. However,
questions remain concerning the maximum and expected gains from guide tree refinement as
well as the correlation between guide tree quality and alignment quality.

Nelesen et al. [49] concluded that alignment quality and guide tree quality are not strongly
correlated. While we agree with their results given their experimental design, their
experimental design is limited in a number of key ways. Namely, their experiment is strictly a
simulation study wherein they test the performance of a number of common PMSA programs
under a small handful of similar methods for inferring guide trees. By contrast, our
experimental design uses both biologically derived data as well as simulated sequences. We
emphasize a novel, systematic, fine-grained approach to quantifying the quality of guide trees
and its correlation to alignment quality.

We hypothesize that under PMSA, alignment quality is correlated to guide tree quality. While
this correlation may seem obvious, the topic is largely absent in the literature. Quantifying the

relationship between guide tree selection and alignment accuracy is an important ancillary goal.

6.4 Methods

This experiment systematically computes alignment accuracy as a function of guide tree quality.
We quantify any found correlation and perform a hypothesis test by assessing the statistical
significance of that correlation.

With progressive alignment algorithms, the output alignment A is a function, pmsa(), of the

input sequences S and the guide tree T.2 Most progressive alignment algorithms infer T from S

2 A progressive alignment is also a function of the alignment parameters such as gap costs and
substitution matrix. This experiment uses default program parameters and we therefore
exclude them in our function description.
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prior to computing the alignment, but pre-computed guide trees can be provided as optional

input:

A =pmsa(S, T)

First, we define A as the accuracy or quality of A as compared against A* using some arbitrary

comparison function aligncompare:

Aq= aligncompare(A* A)

Ay is expressed as a normalized accuracy measurement in the interval [0,1] of a test alignment
with respect to a reference alignment. 4¢=1 indicates that the two alignments are identical,
while a score of Ag=0 means that A and A* share no common features under the distance
evaluation function. The aligncompare() function can be implemented in a variety of ways.
Minimum edit distance is an ideal measure of alignment similarity, but it is usually prohibitively
expensive to compute for realistically sized datasets. Instead, we use both the sum-of-pairs (SP)
accuracy rate and the total-column (TC) accuracy rate metrics.

Both SP-accuracy and TC-accuracy represent the percentage of correct alignment features in
A, as compared against the reference alignment A*. The sum-of-pairs (SP) metric compares
alignments by summing all correctly aligned nucleotide pairs in 4 with respect to A* and then
dividing that sum by the total number of nucleotide pairs in A* SP-error is the complement of
SP-accuracy.

The total column (TC) score compares alignments at the column level by summing the
correctly aligned columns in A (given A*) and dividing this integer value by the total number of
columns in A* Since a column with a single nucleotide mismatch is considered incorrectly

aligned, TC is obviously more sensitive than SP.

We define alignment distance Aais: as alignment error and it is the complement of alignment
accuracy:
Adgist = 1-Ag

Similarly, we define tree distance Tais in terms of the distance of a given tree T from the true
tree, T*

Taise = treedistance(T* T)
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The function treedistance() returns a non-negative integer in the interval [0,%), representing
the edit distance between T and T* In our particular experimental design, we actually create
guide trees at known edit distances from T* conveniently eliminating the need to estimate
minimum edit distances.

Since we define quality as the proximity to the true alignment or tree, the goal of this
experiment is to quantify the correlation between A¢ and Tais: under this distance-based
definition of quality. Based on prior assumptions about progressive alignment, we expect Ag to

decrease as Taist increases and therefore be negatively correlated.

6.4.1 Degrading Guide Trees

We iteratively and randomly apply tree edit operators to an initial guide tree T* using either
Nearest-Neighbor Interchange (NNI) or Tree Bisection and Reconnection (TBR) [36]. Every
repeated application of NNI or TBR degrades the true tree by some known upper-bound
estimate of edit distance.

The NNI operator swaps neighboring branches in a tree. Each internal branch of an unrooted
bifurcating tree connects four other branches. These four branches are each other’s nearest
neighbors, connected to one another via the internal branch. NNI swaps nearest neighbors on
internal branches of the given tree. For each random NNI operation, we randomly choose one
internal branch and one pair of neighbors to interchange.

TBR bisects the guide tree at some branch, resulting in two distinct unrooted trees. The two
unrooted trees are then reconnected at two reconnection points on bdth trees, resulting in a
rearranged tree. Typically TBR tries all possible bisection and reconnection points between the
two trees and evaluates that topology under some objective function. We define a single
random TBR step to mean that we bisect the guide tree at one randomly selected branch and
reconnect the two trees at a randomly chosen reconnection point on each tree. Notably, TBR is
a strict superset of NNI, and TBR almost always introduces larger topological changes at each
step.

For each input dataset, we independently degrade guide trees up to 50 edit operations from
T* separately under both the NNI and TBR operators. We generate 100 guide trees at each of
the 50 degradation levels. Every tree at every level is degraded independently, starting from T%

to avoid autocorrelation.

The algorithm for the experiment is:
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FOR EACH true tree T#*; DO
FOR EACH edit operator OP; € {NNI, TBR} DO
FOR EACH degradation level L, € {1,2,..50} DO
FOR EACH replicate R; € {1,2,..100} DO
Tiin €< OP;(T;)

a

Aijy € pmsa(S;, Tijn) R
A, 50 € aligncompare(A*;, A;j)
DONE
DONE
DONE
DONE
CLUSTAL W (with default settings) aligns the input sequences, using every degraded guide
tree as an input. The QSCORE program3 computes the SP and TC accuracy scores by comparing
the alignments derived from every degraded guide tree with the known true alignment. Aqis
simply the SP-accuracy or TC-accuracy score returned from QSCORE. Results are averaged
across all 100 replicates for each guide tree degradation level. Since Tuis: is explicitly known for
every T and T* we can easily compute the correlation between A¢ and Tuist for all alignments
-« and guide trees in the experiment. For the simulated studies, we replicate this experiment five

times using different randomly generated starting true trees and simulated true alignments.

6.4.2 Experimental Input Data

This experiment uses naturally evolved trees and alignments as well as sequences and trees
simulated under evolutionary parameters estimated from those natural data. Naturally evolved
molecular sequences rarely provide us with known true alignments and/or trees. However,
sequences simulated over known trees conveniently provide both true trees and true
alignments, enabling the explicit definition of quality in terms of distance from the known
“truth”.

Simulated evolution involves simplistic pseudo-stochastic models of molecular sequence
evolution. Because of this, there is inherent risk with all simulation studies that attempt to
generalize an algorithm’s behavior from simulated to natural cases. For this reason, this
experiment analyzes data from both natural and simulated evolution. To better compare
results from each kind of data, we directly estimate the simulation model parameters from the

natural datasets.

3 QSCORE is available from R.C. Edgar at www.drive5.com
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6.4.3 TreeBASE Alignments and Trees

We used TreeBASE [50] to identify naturally evolved sequences with published alignments and
phylogenies. TreeBASE is an annotated online database of peer-reviewed phylogenies and their
corresponding sequence alignments. We arbitrarily chose three distinct TreeBASE studies
containing sufficiently challenging alignments and trees.

In this article, we refer to these datasets by their TreeBASE matrix accession number, thereby
allowing easy lookup via TreeBASE of the specific NEXUS file containing both the putative
alignment and phylogeny. The first dataset, M2045 [51] contains both the 22-taxon alignment
from fungal 18S ribosomal RNA and the corresponding maximum likelihood tree. A 16-taxon
dataset, M3016 [52], contains longer, chloroplast sequences and a putative maximum
parsimony phylogeny. The M2783 dataset [53] is a pathogenic plant fungus study, consisting of
an alignment of 33 short, well-conserved 5.8S ribosomal RNA sequences. Interestingly, the
published maximum likelihood tree derived from this alignment is highly pectinate, as the

sequences represent sequentially derived Ceratobasidium strains.

Table 6.1: The selected TreeBASE datasets.

TreeBASE Average
AMatrllx # Sequence Alignment % ID Gene Method Comment
ccession | Taxa Length
4 Length
185 Maximum
22 2618 2723 88.63% ribosomal Likelihood
M2045 RNA fungus
rbcL
16 3695 3977 88.84% Parsimony
M3016 (Chloroplast) plant
5.85 Maximum Fungus
M2783 33 562 605 96.70% ribosomal Likelihood Plant
RNA
pathogen

These alignments and trees in TreeBASE are computed using conventional methods such as
progressive alignment, maximum parsimony, and maximum likelihood. Both the alignments
and trees probably contain errors. However, for the purposes of this study, we treat the
TreeBASE alignments and trees as true and correct. This allows us to use the TreeBASE data as

a reference set against which we can measure accuracy in our experiments. In order to test our
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methods with known true alignments and phylogenies, we simulate sequences and alignments

over known trees.

6.4.4 Simulated Sequences and Trees

Simulated evolution concurrently provides the precise true tree and the precise true alignment.
We used ROSE [44] to simulate molecular evolution based on model parameters directly
estimated from the three TreeBASE studies. We chose to base the simulation parameters on the
three TreeBASE datasets in order to ground our simulations in reality and better contrast any
differences between the simulated cases and the non-simulated cases.

For each TreeBASE dataset, we provide ROSE with estimates of sequence length, equilibrium
nucleotide frequencies, indel probabilities, indel size probability distributions, as well as 16-
parameter, time irreversible nucleotide substitution matrices. - For each of the three TreeBASE
datasets, ROSE simulated 5 replicate datasets, each with its own stochastically generated
phylogeny. ROSE generated unique random phylogenies for all five replicates, but these
starting trees were identical across TreeBASE cases. In other words, there were only five
simulated starting trees in the whole experiment, but each of these 5 starting trees was used in

the M2045, M3016, and M2783 based simulations.

6.4.5 Measuring Alignment Quality

The ultimate goal of multiple sequence alignment is to accurately reconstruct the series of
insertion, deletion, and mutation events that occurred via evolution. For most naturally
occurring molecular sequences, we can never know the true alignment with absolute certainty.
Using simulation, however, we know the true alignment and can use various metrics to assess
the distance between any alignment and the true alignment. This distance from the true
alignment is the best, least-biased measure of alignment quality.

We use the QSCORE program to measure the distance between reference alignments and true
alignments. QSCORE uses four comparison functions and returns normalized accuracy

estimates, valued between 0 and 1.
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6.5 Results

‘Overwhelmingly, we found a strong relationship between alignment accuracy and amount of
tree degradation across all three TreeBASE-derived datasets and all replicates as shown in

Figures 6.1-6.3. This apparent correlation was found in all but a small minority of cases.
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Figure 6.1: Naturally evolved M2045 fungal 18S rRNA TreeBASE study results. These results
demonstrate that degrading the guide trees up to 50 random independent NNI and TBR
operations has little absolute effect. However small the effect, the correlation between
alignment accuracy score (4¢) and distance from the true tree (Tast) remains strong and
statistically significant. SP represents the Sum-of-Pairs accuracy metric, while TC represents
the Total Column accuracy metric.
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Figure 6.2: Results of simulations based on M2045 fungal 18S rRNA TreeBASE study. In these
representative simulated results, the effect of tree degradation on alignment quality is much
more pronounced than with the naturally evolved datasets. The correlation between A and
Taist is significant, negative, and non-linear. Error bars represent +/- one standard error from
the sample mean. SP represents the Sum-of-Pairs accuracy metric, while TC represents the

(b)

Total Column accuracy metric.
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Figure 6.3: Results for the natural M3016 rbcL Chloroplast study. This figure shows
that degrading the guide trees up to 50 random independent NNI and TBR operations
has little absolute effect for the naturally evolved alignments and trees shown in (a) and
(b). In (b), the correlation between Tas:and Ag is not statistically significant. SP
represents the Sum-of-Pairs accuracy metric, while TC represents the Total Column
accuracy metric.
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Figure 6.4: Results for the simulated M3016 rbcL Chloroplast study. Alignment

accuracy scores in the simulated cases demonstrate a notably higher overall sensitivity
and correlation to Tgs: than in the natural cases shown in Figure 6.3. SP represents the
Sum-of-Pairs accuracy metric, while TC represents the Total Column accuracy metric.
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Alignment accuracy dropped faster with TBR degradation than with NNI degradation due to the

relatively higher destructiveness of the TBR operator. Also, the net measured effect of tree

degradation was significantly more pronounced under the TC-accuracy metric compared to SP-

accuracy. This also was anticipated, due to the relatively higher sensitivity of TC to differences

between alignments.
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The overall impact of guide tree degradation on alignment accuracy was relatively small,

especially as measured under SP-accuracy. Across our entire study, we found that guide tree

degradation had a median effect of less than 5% on alignment scores with SP, and a median of

25% effect under the more sensitive TC metric.
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Figure 6.5: Results using the shorter 5.8S rRNA M2783 fungal pathogen study (natural)

(b)

this dataset, the absolute effect of guide tree degradation is very small, yet statistically
significant. These shorter sequences are highly similar with a 96.7% identity and a very

pectinate true tree. SP represents the Sum-of-Pairs accuracy metric, while TC represents the
Total Column accuracy metric.
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Figure 6.6: Results using the shorter 5.8S rRNA M2783 fungal pathogen study (simulated).
With this dataset, the absolute effect of guide tree degradation is very small, yet statistically
significant. These shorter sequences are highly similar with a 96.7% identity and a very
pectinate true tree. SP represents the Sum-of-Pairs accuracy metric, while TC represents the
Total Column accuracy metric.

This small effect, shown in Figures 6.5 and 6.6, is inline with the results presented by Nelesen et
al. Alignment accuracy as a function of tree degradation is apparently non-linear. In fact, it
appears to be logarithmic in nature, indicating a larger measureable effect closer to the true

tree. Since the Nelesen experiment used a handful of similar guide trees (e.g. those inferred
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with UPGMA, Neighbor-Joining, etc.), this may contribute to their conclusion that there is no

strong correlation between alignment and guide tree quality.
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Figure 6.7: The largest measured effect for each dataset for both SP-error (a) and TC-error (b).
As expected, the overall effect of degrading the guide tree is largest as measured by the more
sensitive TC metric. Also, the magnitude of the effect is largest when degrading trees with the
more disruptive TBR operator. Unexpectedly, simulated data sets are generally more sensitive
to poor guide trees.

We found a strong correlation in most experimental runs, despite the small overall effect of

guide tree selection on alignment accuracy.
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The datasets derived from the M2783 alignments and trees were far less sensitive to guide
tree degradation as shown in Figures 6.5 and 6.6. Yet even this dataset indicated a statistically
significant correlation. These 5.8S rRNA sequences are highly conserved with 96.7% sequence
identity. We hypothesize that since the input sequences start so close to the true alignment, the
effect of guide tree selection is significantly reduced. Other factors may also explain this result:
this dataset had more taxa and shorter sequences than the others.

Unexpectedly, tree degradation produced a larger measureable effect on alignment quality
with the simulated cases than with the naturally evolved cases. This is most apparent in the

M2045 and M3016 derived datasets.

6.5.1 Significance of Correlation

Precisely stated, we hypothesize that alignment accuracy decreases as the distance of the guide
tree from the true tree increases. Since our figures indicate a non-linear correlation, we use the
Spearman rank correlation coefficient and formulate a statistical hypothesis test under the null

hypothesis that this correlation coefficient is 0:

Hg.'r=0
Hpr<>0

While the Tasc values are always in ranked order, A¢ scores were ranked in descending order.

We computed the Spearman coefficient r on these rankings and computed ¢ as:

We then performed the appropriate t test for each of these coefficients at p=0.01 with 48

degrees of freedom. The results under both the SP and TC metrics are shown in Figure 6.5.
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Figure 6.8: The Spearman rank coefficient for alignment quality and tree degradation. Most
datasets show a strong negative correlation. The horizontal line represents the value under
which we reject the null hypothesis. We clearly reject Ho for the large majority of datasets in
this study.

6.6 Discussion

Across all simulated and biological datasets, we found a strong, statistically significant
correlation between guide tree quality and alignment quality. While TC scores were more
sensitive than SP scores to the use of degraded guide trees, our overall conclusion is
independent of our choice of alignment distance metric. Furthermore, our conclusions are
independent of tree transformation operator.

In many cases, especially those with the more disruptive TBR operator, the effect of guide

tree quality to alignment quality appears non-linear and logarithmic in nature. In other words,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75

the largest effect on alignment quality almost always occurs within 5-10 steps from the true
tree, and then gradually tapers off. This result may be of interest to PMSA algorithm
developers, as it informs us as to the relative importance of choosing a good guide tree. It may
often be worth the additional computational time to optimize a good guide tree even further.
We see measurable performance gains for exactly this reason from programs such as MUSCLE
that infer a quick guide tree using distance methods and then improve upon the initial tree to
produce better alignments.

Superficially, our results contradict the findings in Nelesen et al, where they performed a
similar study looking for correlation between guide tree quality and alignment quality.
Contrary to our results, they showed that there was no strong correlation between alignment
quality and guide tree quality.

We do ultimately refute Nelesen et al, concluding instead that there is a significant
correlation between alignment quality and guide tree quality. However, we do agree with
Nelesen that the overall effect of guide tree selection to alignment quality is usually very small,
especially as measured under the SP metric. We also agree that the choice of alignment
algorithm and associated parameters is usually more important than the choice of guide tree.
Ultimately, the Nelesen experiment is able to show that the effect of guide tree selection on
alignment quality is very small, but their method is not sensitive enough to actually quantify the
correlation of the subtle effect.

First, our study presents a more systematic approach for generating guide trees at different,
measurable distances from the true tree. By contrast, Nelesen et al. used a handful of distinct,
but similarly generated guide trees and then compared the effect of using these trees on overall
alignment scores. Second, their study used only the SP metric, which is not as sensitive to errors
as the TC metric. Our study uses both metrics. While TC produces much larger, measurable
effects, we found similar correlation results independent of the method for measuring
alignment distance.

We did find that the overall effect of guide tree selection on alignment quality is relatively
small under the SP metric. Therefore, we broadly concur with Nelesen et al. that “... despite the
large differences in topological accuracy of the guide trees, alignment accuracy (measured using
SP-error) for a particular alignment method varies relatively little between alignments
estimated from different guide trees.” Across our entire study, we found that guide tree
degradation had a median effect of less than 5% on alignment scores under SP, and a median of

25% effect under the more sensitive TC metric. However, small effects do not preclude a
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correlation and we did find a statistically significant nonlinear correlation between guide tree
quality and alignment quality.

For at least two datasets (M2045 and M3016), there was a large difference in sensitivity to
guide tree selection between the simulated and non-simulated cases. This sensitivity difference
was less noticeable in the M2783-derived datasets. Determining why simulated datasets seem
more sensitive than non-simulated datasets to this experimental approach is an area of
potential future work.

The overall net effect of guide tree degradation in the M2783 TreeBASE study was
significantly smaller than the other studies. In this dataset, sequences in the true alignment
were highly conserved with a 96.7% sequence identity. We initially conclude that highly
conserved molecular sequences are far less sensitive to guide tree selection under PMSA. Our
general experimental method lends itself to a future systematic analysis of the correlation

between percent identity and guide tree sensitivity under PMSA.

6.7 Future Work

We would like to extend this experimental method to other PMSA programs such as MUSCLE,
MAFFT [54] and T-Coffee. This would help exclude any kind of implementation-specific biaé to
our results.

The distance of a progressive alignment to the true alignment seems to be a nonlinear,
logarithmic function of the distance of the guide tree to the true tree. Determining a closed-
form description of this relationship may prove advantageous.

We found evidence that progressive alignment with well-conserved input sequences is
relatively insensitive to guide tree topology. This result was largely anticipated, since the input
sequences are initially closer to the true alignment. However, other variables may affect the
amount of overall sensitivity to guide tree selection including sequence length, nucleotide
frequencies, number of taxa, and topology of the true tree. We propose a broader future study
quantifying the correlation between these variables and sensitivity to guide tree selection. An
adaptive PMSA algorithm might pre-compute these sequence statistics to estimate the optimal

amount of time to spend on guide tree refinement.
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Appendix A

Relaxed Neighbor-Joining: A Fast Distance-Based
Phylogenetic Tree Construction Method

[27] Evans,]., L. Sheneman, and ].A. Foster (2006) Relaxed Neighbor-Joining: A Fast Distance-
Based Phylogenetic Tree Construction Method, J. Mol. Evol, 62:785-792.

A.1 Preface

As second author of this paper, I did not include this article as a chapter in this report. As co-
author and significant contributor, | included it as an appendix.

The novel Relaxed Neighbor-joining algorithm stemmed from collaborative work with Jason
Evans of the University of Idaho. While working on optimizing the performance of the classic
Neighbor-Joining algorithm, Evans invented Relaxed Neighbor-Joining. The Clearcut program
(Chapter 4) implements Relaxed Neighbor-Joining. Both the Clearcut program and the Clearcut

publication ultimately came from the algorithm design work described in this paper.

A.2 Abstract

Our ability to construct very large phylogenetic trees is becoming more important as vast
amounts of sequence data are becoming readily available. Neighbor-Joining (NJ) is a widely
used distance-based phylogenetic tree construction method that has historically been
considered fast, but it is prohibitively slow for building trees from increasingly large datasets.
We developed a fast variant of NJ called Relaxed Neighbor-Joining (RN]) and performed
experiments to measure the speed improvement over NJ. Since repeated runs of the RN]

algorithm generate a superset of the trees that repeated NJ] runs generate, we also assessed tree
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quality. RN] is dramatically faster than N}, and the quality of resulting trees is very similar for
the two algorithms. The results indicate that RN] is a reasonable alternative to NJ and that it is
especially well suited for uses that involve large numbers of taxa or highly repetitive

procedures such as bootstrapping.

A.3 Introduction

The Relaxed Neighbor-Joining (RNJ) algorithm is a distance-based phylogenetic tree
construction method that is similar to the Neighbor-Joining (N]) algorithm [5,29]. RNJ and NJ
have the desirable property that they are consistent estimators of phylogeny if the distances in
a dataset are purely additive [28]. An additive dataset is one for which there exists a tree with
nonnegative branch lengths that perfectly represents all of the pairwise distances. In practice,
datasets are rarely additive, but NJ still works well as long as distances are nearly additive
[55,56]. N]is one of the more commonly used tree construction methods, and in most cases it -
generates useful results. NJ tree construction requires pairwise distances as input. Users of N]
typically start by calculating the magnitudes of differences between DNA sequences for the taxa
under consideration. Those magnitudes are then treated as distances, and the NJ algorithm
attempts to construct a tree that encodes all of the pairwise distances. The quality of results
depends heavily on the accuracy of the distances, and several researchers have addressed this
issue. At the most basic level, distances can be corrected to account for multiple mutations at
the same DNA site [48]. Felsenstein uses a likelihood-based model for calculating distances
[36]. The Weighbor variant of the NJ algorithm reweights distances in an attempt to improve
results when distantly related taxa are included in the dataset [57]. The BION] variant of NJ
takes into account the variances and covariances of the distances and minimizes these at each
step during tree construction [58]. NJ is generally regarded as a fast reconstruction method, but
its runtime complexity is O(n3), which means that for large datasets, reconstruction is
impractical. Mailund and Pedersen developed Quickjoin [31], which implements a heuristic
method that avoids considering pairs of nodes when they are known to fall outside bounds that
are calculated from previous passes through the matrix of pairwise distances. Runtime results
are good for this heuristic, as is shown later, but substantial extra space is required for auxiliary
data structures, which limits Quickjoin to approximately 8000 taxa on modern 32-bit computer

systems. As such, this heuristic approach is only compelling for a limited range of input sizes.
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Typical N] implementations do not make use of such heuristics. Their runtimes are
proportional to n3 for all inputs, and they require space proportional to n2, RN] typically
requires time proportional to nZgn, without using any more space than NJ. Unlike simpler
distance-based tree construction methods, NJ is able to deal with varying rates of evolution, so
the resulting trees need not be ultrametric. This is accomplished by making join decisions
based on transformed distances that take all taxa into consideration. A transformed distance

T4s between taxon A and taxon B is calculated as

n

E D, + SDBi
-LizA

T =D _ i=li=B i=1,i=
AB AB

n-2

where Dy is the distance between taxon x and taxon y, and n is the total number of taxa. The
fractional sums represent the average distances from 4 and B to all other taxa. Note that the
divisor is n-2 because D4 and Dgp are always zero, and Dyg is excluded, which means that two
distances are effectively excluded from each sum. There are two components that contribute to
a minimal transformed distance. A small absolute distance between 4 and B contributes, but it
is also important that, on average, A and B are farther from other taxa than they are from each
other. By joining two taxa with globally minimal transformed distance between them at each
step of tree construction, NJ builds the tree starting from the leaf nodes, without risk of joining
taxa that are not immediate neighbors. Figure A.1 helps to illustrate why this is so. D¢p is the
minimum pairwise distance, but T4p and Tgr are the minimal transformed distances. This is
because C and D are closer to the center of the tree than are the taxa with minimal transformed
pairwise distances. We modified the NJ algorithm in order to improve tree construction speed,
with the additional goal of maintaining the quality of generated trees. This paper describes the
algorithmic modifications that are the basis of RNJ, then presents experiments that measured
tree construction speed and tree quality. The experimental results indicate that the RN]

algorithm is very fast, and that RN] trees are of very similar quality to N]J trees
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Figure A.1: Phylogenetic tree and corresponding patristic distance matrix. Each matrix cell
contains the absolute pairwise distance (top) and transformed distance (bottom). D¢p is the
minimum pairwise distance for this tree, but the associated transformed distance T¢p is not
minimal; T4 and Tgr are minimal. The NJ algorithm will first join A and B or E and F.

Like NJ, RN]J uses transformed distances when making join decisions, but rather than looking
for a minimum among all transformed distances, RN]J looks for two taxa that have minimal
transformed distance between them as compared to their transformed distances to all other
taxa. Whereas NJ only joins pairs of neighboring leaf nodes that are minimally distant, RN] can
join any pair of plausible neighboring leaf nodes. There are typically many more pairs of
neighboring leaf nodes than there are neighboring leaf nodes with minimal transformed
distance, and RN] is usually able to find such pairs without having to calculate transformed
distances for all taxon pairs. We refer to the algorithm as “relaxed” NJ because it does not
search for the globally minimal transformed distance; RNJ employs a less stringent, relaxed join
criterion. Following is a general description of the RN]J algorithm, which operates on an input

matrix of pairwise distances:
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Level 3

Level 2

Level 1

Figure A.2: A pectinate tree with x = 4 leaf taxa. The tree has x - 1 = 3 levels, and branches span
from 1 tox-1 = 3 levels.

Where R is the set of rows in the matrix of pairwise distances:

1. While [R]|>2:
(a) Choose arow AE R,
(b) Choose arow BE {{R | B = A}.
(c) Calculate the set of transformed distances T, ={T,,.VRE {R |R = A}
(d) Calculate the set of transformed distances 7, = {T,,, VYR € { | R #B}}
(e 1f T,, €{min(7,)} and T, €{min(T;)}
i. Create a new node X, and join it to the nodes represented by A and B.
ii. Remove A and B from .
iii. Insert a row that corresponds to node X into ).
2. Join the nodes represented by the remaining two rows.

There is a situation in which RNJ could mistakenly join two nodes, unless an additional check is
performed. For example, nodes C and D in Figure A.1 could be mistakenly joined, since T¢p is
minimal compared to the transformed distances in the matrix rows and columns that
correspond to nodes C and D. However, there is a simple way to always recognize and avoid
such errant joins when distances are additive. (For non-additive distances, conflicting data lend
partial support to such joins, so they are not necessarily in error.)

Consider that if the path A <> B includes an internal branch, there exists a node R such that
the internal branch is a component of the path A <> R. In such a case, joining A and B would
remove the internal branch, which would change Taz. In fact, the way that branch lengths are
calculated during joins changes the distance from A to all other nodes (except B) if there should
be an internal branch between A and B. Therefore, when distances are additive, errant joins can

be avoided by making sure that T4z does not change for an arbitrary choice of R other than B.
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RNJ s algorithmic complexity is O(n3), but typical performance is much better. The runtime of
RN]J tree construction is primarily determined by the number of transformed distances that

must be calculated.

Level 2

Level 1

Figure A.3: A perfect tree with 2x=2]eaf taxa. The tree has x = 2 levels, and all leaf taxa are x = 2
branches away from the root.

There is some probability that step (1a) of the RN] algorithm will choose a taxon that has an
immediate neighbor. That probability ranges from 4/n to 1; it is minimal for pectinate
(maximally deep) trees such as that in Figure A.2 and maximal for perfect (fully balanced) trees
such as that in Figure A.3. For the extreme case of pectinate trees, RN] typically affords only a
constant (though substantial) speedup over NJ, but for trees that are even somewhat balanced,

RN] performs approximately proportional to nzlgn.

A.4 Experiment

We performed three experiments, which looked at (1) algorithmic correctness, (2) speed, and
(3) quality of results. The correctness and speed experiments used additive distance matrices as
input, in order to make validation possible and performance comparisons fair.

The experiments used four distinct tree shapes, and branch lengths were based on random
sampling from the gamma distribution. The gamma distribution was chosen because it provides
a simple mechanism for generating trees with varying degrees of branch length variation,

where all branches have nonnegative lengths. In all cases, we chose parameters such that
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1
A =— where A is the scale parameter and « is the shape parameter, so that the expected
a

value was always 1. We chose values of a = 2, so that all distributions had the same basic
shape. Specifics of how trees of the four shapes were generated follow: Pectinate. A pectinate
tree with x leaf taxa has x-1 levels. For a given x, there is only one such tree shape, assuming
unordered node adjacencies (Figure A.2). Each branch is assigned a length by summing the

results of iteratively multiplying some constant branch length scalar € with a number that is

Lm: C x D;, where Di ~I(a,A=1/a). Lmin and Lymex are

drawn from the gamma distribution: 2

the minimum and maximum levels that the branch spans. The root node is implicit, so the

branch that contains the implicit root has a length that is the sum of that branch s implicit

component branches.
100000 F T T T
10000 + A
1000 - " ;
. 100 ¢
g
Q 10+
§ -
= < ' Neighbor (pectinat ;
ei r {pectinate} —s—
0.1 0 - eighbor {perfect; e
QuickTree (pectinate) ~——a— |
0.01 ] QuickTree (perfectg ol
QuickJoin (pectinate) ——
QuickJoin {perfect) ——»—
0.001 RNJ (pectinate) ~—e— <
) 4 ) RNJ (pergect) ———
512 1024 2048 4096 8192 16384

Number of taxa

Figure A.4: Speed comparison of NJ/RN] tree construction for two tree shapes (pectinate and
perfect) and varying numbers of taxa. RN] vastly outperforms the NJ implementations of
QuickJoin, QuickTree, and PHYLIP neighbor for all tree shapes and sizes.

Treezilla

Treezilla trees are based on a single 500-taxon tree that is based on data from Chase et al. [59].
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These trees differ only in their branch lengths. Each branch is assigned a length by multiplying
some constant factor with a number that is drawn from the gamma distribution: C x D, where
D~T(a,A=1/a).

Random
A random tree is generated via star decomposition. Each branch is assigned a length using the

same procedure as for treezilla trees.

Perfect

A perfect tree always has 2x leaf taxa, for some positive integer x. There are x levels of the tree,
and every leaf taxon is x branches away from the root (Figure A.3). Each branch is assigned a
length using the same procedure as for treezilla trees. The root node is implicit, so the branch
that contains the implicit root is on average twice as long as the other branches. For purposes

of tree generation, that branch s length is assigned as though it is two separate branches.

A.4.1 Correctness

We generated a total of 10 random trees for each of the following numbers of taxa: 3 to 50, and
100x, where x = [1..100]. Branch lengths were gamma-distributed: ~ I'(a =2,A =1/2). For each
of these trees we generated the corresponding additive distance matrix, then used RN]J to

reconstruct a tree. In every case, RNJ succeeded in recovering the original tree.

A.4.2 Speed

We generated trees of the two extreme shapes: pectinate and perfect. Branch lengths were
gamma-distributed: ~I'(a =2,A=1/2). The‘trees had 2x taxa, where x = [9,14]. From these
trees, we generated additive distance matrices, which were randomly shuffled in order to avoid
inputs that favored a particular search order. We then compared the runtime of RN]J to the
runtimes of PHYLIP neighbor [30], QuickTree [24], and QuickJoin [31]. The experiments were
run on an Intel Pentium-4 3 GHz Linux system, and all four programs were compiled with the

same optimization flags. Figure A.4 summarizes the results.

A.4.3 Quality

We used ROSE [44] to simulate true alignments and true trees for 512 taxa under the F84
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model of molecular evolution [60, 43] for four tree shapes (pectinate, treezilla, random, and
perfect), ranges of sequence length (250 to 2500, in increments of 250), divergence time (0.25
to 2.5, in increments of 0.25), and level of evolutionary rate heterogeneity (o = 2x for x from 1
to 10). Rose was run with a mean mutation rate of 0.01342302. Mutation rate is meaningful
only in the context of time; we chose the mutation rate and time intervals such that the full
range of useful divergence was simulated. We used insertion/deletion thresholds of 5.0 x 10-6,
and insertion/deletion function vectors of [.2,.3,.4,.4,.3,.2,.1]. We chose these insertion/deletion
settings in order to add a level of biological realism to the problem of calculating pairwise
sequence distances. We used PHYLIP s dnadist program to estimate pairwise sequence

distances according to the F84
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Figure A.5: RN] quality results (mean MSE of Robinson-Foulds distances) for all four tree
shapes (pectinate, treezilla, random, and perfect), where sequence length is 1500. The results
are worst for pectinate trees and best for perfect trees.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



86

model. We used QuickTree to generate NJ trees and used the Robinson-Foulds distance
measure [35], specifically as described by Moret et al. [61], to calculate the distance of each
resulting tree from the corresponding true tree. The Robinson-Foulds distance measure
represents the proportion of branches in two trees that induce bipartitions unique to one

tree or the other.

Experiments were replicated on two levels.

1. One hundred RNJ and 100 NJ trees were created from each distance matrix, and the
mean squared error (MSE) was calculated for the resulting Robinson- Foulds distances.
The distance matrix was randomly shuffled before each NJ replicate, so that ties would
be broken approximately randomly.

2. At a higher level, each experimental configuration was replicated 100 times and the
mean and variance of the value mentioned in (1) were calculated. These two levels of
replication were necessary in order to avoid spurious results due to stochasticity of RNJ,
NJ, or the simulations. A total of 80 million trees were generated and analyzed in these
tests. All of the quality experiments were run on a 220-processor Beowulf

supercomputer.

Due to the large volume of the raw results, we were only able to fit representative samples
here, along with descriptions of the general trends. In general, the quality of the RNJ and NJj
results was very similar. Both algorithms performed best on perfect trees, nearly as well on
random trees, somewhat worse on treezilla trees, and very poorly on pectinate trees. Figure
A.5 shows one slice of the results for RN]. We do not present the variance of the mean squared
error because for all experiments, a lower mean equated to a lower variance. The general
patterns are very similar for RNJ and NJ; the only differences are variations in magnitude. As

sequence length increased, results universally improved.
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Figure A.6: Quality results of RN] versus NJ, for all four tree shapes (pectinate, treezilla,
random, and perfect), where sequence length is 1500. The plots depict relative quality using the
formula log10 MMSEN] log10 MMSERN]J, where MMSE is the mean MSE of the Robinson-
Foulds distances to the true trees. The formula calculates orders-of-magnitude differences
between RN]J and NJ. Positive values mean that RN] performed better than NJ. For the dark cells
in the perfect trees plot, N] always recovered the true tree topology.

Results were best for 1:00 < time < 1:75, depending on the tree shape. This was expected,
because we chose the range of time such that at the extremes, PHYLIP dnadist was barely able
to compute pairwise distances. As o« increased (molecular clock rate heterogeneity decreased),
results generally improved. For pectinate trees however, results were uniformly bad,
regardless of a; RNJ and NJ generated poor trees because the variations in the long branches
overwhelmed the short branches along the “spines” of the trees. This is an inherent aspect of

pectinate trees, which calls into question the general usefulness of RNJ and NJ on pectinate
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trees. Nonetheless, we included pectinate trees because they represent one of the two extreme
cases of tree topology, and because some previous NJ quality experiments included them [54].
Figure A.6 shows the relative performance of RNJ and NJ for one slice of the quality
experiments. With few exceptions, N] generated slightly better trees than RN] did for all
configurations of the experiments that were based on perfect, random, and pectinate trees. For
the treezilla-based experiments, however, NJ only did slightly better for the shortest sequences,
and the RN]J trees quickly surpassed those of NJ as the sequence length increased. Itis

important to note that even in this case, the algorithms produced trees of very similar quality.

A.5 Discussion

NJ favors joins for which there is maximal agreement about whether the nodes under
consideration are neighbors, as evidenced by transformed distances. RN] treats all plausible
joins as equally good. As such, RN] trees tend to vary more than NJ trees. NJ is maximally
greedy at each join, whereas RN] is less greedy. NJ's greediness can cause systematic bias,
which leaves open the risk of uniformly poor results for certain classes of input. Although RN]
is also potentially prone to bias, that bias is of a less troubling nature; all join operations for
which the distance matrix contains support are given approximately equal opportunity,
whereas NJ may completely exclude potential joins for which support is low. Were it possible
to accurately quantify evidence for potential joins, an unbiased algorithm would randomly
choose from the possibilities proportional to their levels of support.

The quality experiments were constructed such that the algorithm that performs better tends
to have lower variance, because outliers have a large effect on the summary statistics. RNJ can
construct a superset of the trees that NJ can construct, and this higher variance could be an
advantage in some cases. Consider that the simulations used the same model of molecular
evolution for both simulation and pairwise distance estimation. There was no mismatch
between the true model and the inference model, so lower variance generally meant better
overall results, but if there were a model mismatch, as is the case for biological data, RNJ’s
higher variance would improve the chances of capturing the true tree in its distribution of
possible resulting trees. Thus RN]J is more robust than NJ in such a case.

We demonstrated that RNJ is substantially faster than NJ, which makes RNJ compelling for
certain uses. For example, heuristic searches for optimal trees often start with NJ trees and try

to improve from there. For large datasets, the substantial time that RN] saves compared to Nj

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

can instead be used for the heuristic search, which should allow more starting points to be
considered in the same amount of time. Another application is that of guide tree creation for
progressive multiple sequence alignment (MSA), as implemented by programs such as
CLUSTAL W [2]. NJ is the most algorithmically complex step of progressive MSA, so for large
numbers of sequences, using RN] instead of NJ can have a substantial impact on total program
runtime.

As for overall quality of results, neither algorithm is clearly superior. NJ clearly produces
better trees on average for perfect trees, but RNJ produces better trees on average for treezilla-
based trees. That RNJ does better than NJ for the experiments that were based on biological
data leaves us to wonder if this is peculiar to the treezilla data or if RN] will generate better

trees than NJ for a wide range of biologically based data.
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