UNIVERSITY OF CALIFORNIA
Santa Barbara

Querying Patterns in High-Dimensional
Heterogenous Datasets

A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
in
Computer Science
by

Vishwakarma Singh

Committee in Charge:
Professor Ambuj K. Singh, Chair
Professor Amr El Abbadi

Professor Bangalore S. Manjunath

March 2012

UMI Number: 3505307

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI

Dissertation Publishing

UMI 3505307
Copyright 2012 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 - 1346

The Dissertation of
Vishwakarma Singh is approved:

Professor Amr El Abbadi

Professor Bangalore S. Manjunath

Professor Ambuj K. Singh, Committee Chairperson

December 2011

Querying Patterns in High-Dimensional Heterogenous Datasets

Copyright (©) 2012
by

Vishwakarma Singh

Parts of Chapter 4 Copyright (©) 2010 by ACM, republished with kind permission
from ACM. Parts of Chapter 5 Copyright (©) 2010 by IEEE, republished with kind
permission from IEEE. Parts of Chapter 6 Copyright (©) 2008 by Springer-Verlag,

republished with kind permission from Springer.

il

To my parents, my wife, and my entire family.

v

Acknowledgements

First and foremost, I thank my advisor Prof. Ambuj K. Singh for his endless
support and valuable guidance. I would also like to acknowledge the guidance and
help of my other committee members: Prof. Amr El Abbadi and Prof. Bangalore
S. Manjunath. I am greatly thankful to co-authors of my papers, the members of
the Data Mining and Bioinformatics Lab (DBL), and the members of the Center
for Bio-Image Informatics for their help. T am sincerely grateful to Prof. Steven
K. Fisher, Chris Banna, and Geoffrey P. Lewis for providing biological data. The
role of all my teachers in my life is highly appreciable.

I cannot thank my parents enough for everything they have done for me. I
would not have been here without their love, support, and vision. I am also
infinitely grateful to my wife, Sarita Sarba Nand Singh, without whose love and

support this would have been impossible.

Curriculum Vitee
Vishwakarma Singh

Education

2012 Doctor of Philosophy (Ph.D.)
Dept. of Computer Science,
University of California, Santa Barbara,

California, USA.

2011 Master of Science (M.S.)
Dept. of Computer Science,
University of California, Santa Barbara,

California, USA.

2003 Bachelor of Technology (B.Tech.)
Dept. of Computer Science and Engineering,
Institute of Technology,
Benaras Hindu University,
Varanasi, India.

Experience

2009-2011 Research Assistant
Dept. of Computer Science,
University of California, Santa Barbara,
California, USA.

2009 Summer Intern
Dolby Laboratories (Research),
San Francisco, California, USA.

2008-2009 Research Assistant
Dept. of Computer Science,
University of California, Santa Barbara,
California, USA.
2007 Teaching Assistant
Dept. of Computer Science,
University of California, Santa Barbara,

California, USA.

2007 Summer Intern
Nokia Research Center,
Cambridge, Massachusetts, USA.

vi

2006-2007

2005-2006

2004-2005

2003-2004

Awards

2008

2001-2002

1999-2003

Publications

2012

2011

2011

2010

Research Assistant

Dept. of Computer Science,
University of California, Santa Barbara,
California, USA.

Senior Software FEngineer
CenturyLink,

Bangalore, India.
Applications Engineer
Oracle,

Hyderabad, India.
Associate Consultant

Oracle Financial Services Software Ltd.,
Mumbai, India.

Award for web based education portal “Click2School”, ICS
Technology HITEC Entrepreneurship Competition-2008, Uni-
versity of California, Irvine.

Merit award, Institute of Technology, Benaras Hindu Uni-
versity, India.

University Grants Commission merit scholarship, India.

Finding Skyline Nodes in Large Networks. Arijit Khan,

Vishwakarma Singh, and Jian Wu. To appear in the S3rd

International Workshop on Graph Data Management: Tech-

niques and Applications (GDM), 2012, Washington, DC, USA.
ProMiSH: Nearest Keyword Set Search in Very High Dimen-

sional Spaces. Vishwakarma Singh and Ambuj K. Singh.

Submitted for review.

SIMP: Accurate and Efficient Near Neighbor Search in Very

High Dimensional Spaces. Vishwakarma Singh and Ambuj

K. Singh. Submitted for review.

Querying Spatial Patterns. Vishwakarma Singh, Arnab Bhat-
tacharya, and Ambuj K. Singh. International Conference on

Eztending Database Technology (EDBT), 2010, pages 418-

429, Lausanne, Switzerland.

vii

2010 Efficient and Robust Detection of Duplicate Videos in a
Large Database. Anindya Sarkar, Vishwakarma Singh, Pra-
tim Ghosh, B. S. Manjunath, and Ambuj K. Singh. [EEFE
Transactions on Circuits and Systems for Video Technology
(CSVT), 2010, Volume 20, Issue 6, pages 870-885.

2010 Geo-Clustering of Images With Missing GeoTags. Vishwakarma
Singh, Sharath Venkatesha, and Ambuj K. Singh. [FEE In-
ternational Conference on Granular Computing (GrC), 2010,
pages 420-425, San Jose, USA.

2010 An Algorithm and Hardware Design for Very Fast Similarity
Search in High Dimensional Space. Vishwakarma Singh and
Wenyu Jiang. IFEFE International Conference on Granular
Computing (GrC), 2010, pages 426-431, San Jose, USA.

2010 Profile Based Sub-Image Search in Image Databases. Vish-
wakarma Singh and Ambuj K. Singh. UCSB Technical Re-
port, 2010-20.

2008 Efficient Computation of Statistical Significance of Query
Results in Databases. Vishwakarma Singh, A. Bhattacharya,
and Ambuj K. Singh. Proceedings of the 20th international
conference on Scientific and Statistical Database Manage-
ment, 2008, pages 509-516, Hong Kong, China.

viii

Abstract

Querying Patterns in High-Dimensional
Heterogenous Datasets

Vishwakarma Singh

The recent technological advancements have led to the availability of a plethora
of heterogenous datasets, e.g., images tagged with geo-location and descriptive
keywords. An object in these datasets is described by a set of high-dimensional
feature vectors. For example, a keyword-tagged image is represented by a color-
histogram and a word-histogram. Analyzing these datasets gives better insights
into the processes generating the datasets, opens new frontiers of scientific re-
search, and fuels development of life-changing products.

An effective mechanism for exploring these heterogenous datasets is querying.
One such kind of query is a pattern query. Given a heterogenous dataset and
a query, the task here is to find a set of objects which are constrained by a
relationship and satisfy the query. For example, given a dataset of keyword-tagged
objects, a useful pattern query is to find a set of similar objects that contains a
given set of keywords.

Querying patterns in high-dimensional heterogenous datasets brings about a

new set of computational challenges. High performance algorithms to efficiently

ix

and accurately query patterns are presented in this thesis. First, a scalable al-
gorithm, SIMP, is described for accurately querying near neighbors in a high-
dimensional dataset. SIMP significantly outperforms the state-of-the-art tech-
niques. Next, a novel algorithm, ProMiSH, is proposed for efficiently querying
patterns by keywords. ProMiSH has a speed-up of more than four orders over the
state-of-the-art techniques. Then, an algorithm, QUIP, is described for querying
patterns by example in a spatial dataset, e.g., geographical maps. QUIP offers
an improvement of 87% in running time over the baseline approach. Next, an
algorithm for querying patterns by example in a temporal dataset is described.
It specifically solves the problem of finding duplicate videos. The proposed al-
gorithm yields a practical query time for video duplicate detection. Finally, a
scalable method to compute statistical significance of results of a multi-object
query is discussed. Statistical significance or p-value provides a more useful cri-

terion for ranking the results of a query.

Contents

Acknowledgements %
Curriculum Vitae vi
Abstract ix
List of Figures Xiv
List of Tables XX
1 Introduction 1
1.1 Thesis Statement and Contributions. 5

2 SIMP: Accurate and Efficient Near Neighbor Search in High-
Dimensional Spaces 10
2.1 Introduction and Motivation L. 11
2.2 Literature Survey 16
2.3 Algorithm 19
2.3.1 Preliminaries 21
2.3.2 Index Structure L. 28
2.3.3 Search Algorithm 31
2.4 Statistical Cost Modeling and Analysis 36
2.5 Empirical Evaluations 41

2.5.1 Performance comparison with p-stable LSH and iDistance 46
2.5.2 Performance comparison with Multi-Probe LSH and LSB

Tree . . . o o 54
2.5.3 Large Scale Performance Evaluation. 60
2.5.4 Effectiveness of Pruning Criteria 64

xi

2.6 Parameter Selection for SIMP 65
2.7 Conclusions 66
Querying Patterns by Keywords in Multi-Dimensional Datasets 67
3.1 Imtroductiono 68
3.2 Literature Surveyo 76
3.3 Preliminaries L 79
3.4 Index for Exact search00 87
3.5 Exact Search (ProMiSH-E) 88
3.6 Searchin a Subset oo 93
3.6.1 Group Ordering, 94
3.6.2 Nested Loops with Pruning 96
3.7 Approximate Search (ProMiSH-A) 98
3.8 Cost Analysis of ProMiSH 102
3.9 Empirical Evaluations 000 105
3.91 Quality Testo 108
3.9.2 Efficiency on Synthetic Datasets 109
3.9.3 Efficiency on Real Datasets 115
3.9.4 Space Efficiencyo 120
3.10 Conclusionso 122
Querying Spatial Patterns 124
4.1 Motivation 125
4.2 Related Worko 131
4.3 Sub-Region Similarity 000 133
4.3.1 Scoring Function00 134
4.3.2 Instance of Scoring Function 136
4.3.3 Score of an Overlapping Region 137
4.3.4 NP-Completeness Proof 139
4.3.5 Dynamic Programming Heuristic 141
4.4 Query Algorithmso 148
4.4.1 TARS (Threshold Algorithm for Regionbased Search) . . . 152
4.4.2 SPARS (Single Pass Region-based Search) 155
4.5 Experimental Studies oL 161
4.5.1 Dataset Preparation 161
4.5.2 Performance Comparison of the Algorithms 163
4.5.3 Performance Analysis of SPARS 167
4.5.4 Quality Analysiso 170
4.6 Conclusionso 172

xii

5 Querying Patterns in Multi-Dimensional Temporal Datasets 175

5.1 Introduction 176
5.2 Literature Surveyo 183
5.3 Feature Extraction, 188
5.4 Proposed Distance Measure 192
5.5 Search Algorithms 194
5.5.1 Naive Linear Search (NLS) 196
5.5.2 Vector Quantization and Acceleration Techniques 197
5.5.3 Search Algorithms with Dataset Pruning 205
5.6 Experimental Setup and Results 213
5.6.1 Dataset Generation and Evaluation of Duplication Attacks 214
5.6.2 Empirical Evaluation of Various Proposed Algorithms . . . 216
5.6.3 Comparison of Other Histogram based Distances for VQ-
based Signatures Lo 220
5.7 Duplicate Confirmation 224
5.7.1 Distance Threshold based Approach. 224
5.7.2 Registration based Approach 225
5.8 Discussion 226
5.9 Conclusions 227
6 Efficient Computation of Statistical Significance of Query Results
in Databases 229
6.1 Motivation and Problem Statement 230
6.2 Algorithm 232
6.2.1 Use of Histograms to Approximate Distributions 234
6.2.2 Cascaded Convolution of Histograms 235
6.2.3 Convolution of Bounded Histograms 236
6.3 Experiments 238
6.3.1 Running Time 238
6.3.2 FError 241
6.4 Conclusions e 242
7 Conclusions 244
7.1 Impact 246
7.2 Futurework 247
Bibliography 248

xiii

List of Figures

1.1 (a) A query formed by a spatial arrangement of the tiles of retinal
maps. (b) A dataset of tiles of retinal maps. The map shows retinal
tissue labeled with peanut-agglutinin conjugated to a fluorescent probe.
The set of tiles bounded by the red box is a match for the query.

2.1 Spatial Intersection Pruning. (a) Answer space of query ¢(r,) is
bounded within the distance range [ry, ro] relative to viewpoint v;. Shad-
owed region contains all the candidates of query ¢(r,) relative to view-
point vy. (b) Shadowed region contains all the candidates of query ¢(r,)
relative to two viewpoints v; and vs. Intersection over two viewpoints
gives better pruning of the false candidates.
2.2 (a) A dataset with data space origin o and a viewpoint v. Values
r and 6 for point p are computed relative to v and its angular vector
ov. (b) Partition of the data space using equi-width w, rings and equi-
angular wy radial vectors relative to viewpoint v and v’s angular vector
ov. Each bin is given a unique id that places a canonical order on the
bins. . . .
2.3 Bounding range B={[ry, r2].[01,62]} of gball of a query ¢(r,) relative
to a viewpoint v and angular vector ov. 0oL
2.4 We see that point ps having d(q, p2) > r, lies outside the bounding
range of the gball of query ¢(r,) relative to viewpoint v lying on the line
L. Point p; having d(q,p2) < r, always lies within the bounding range
of the gball of query ¢(r,) for any viewpoint v..
2.5 Values of Pry obtained for varying ¢, where d(q, p)=c x r,, and
varying number n, of viewpoints used for spatial intersection on 128
and 256 dimensional real datasets. The value of Pry is always 1.

2.6 Metric Pruning. z is the nearest mcenter of point p. pis a candidate

for q(r,) only if r, > d(q, p) >| d(p,2z) —d(¢.2) |.

Xiv

21

22

24

24

26

27

2.7 All pairs distance distribution of 100,000 128-dimensional STF'T
feature vectors. L
2.8 The distance distribution of all the feature vectors in SIFT10M
dataset relative to a randomly chosen feature vector.
2.9 Comparative study of performance of SIMP with p-Stable LSH and
iDistance on 256-dimensional CHist dataset.
2.10 Comparative study of performance of SIMP with p-Stable LSH and
iDistance on 128-dimensional SIFT dataset.
2.11 Comparative study of performance of SIMP with p-Stable LSH and
iDistance on 32-dimensional Aerial dataset.
2.12 Comparative study of performance of SIMP with Multi-Probe LSH
(MP) and LSB Tree on 128-dimensional SIFT dataset.
2.13 Comparative study of performance of SIMP with Multi-Probe LSH
(MP) and LSB Tree on 256-dimensional CHist dataset.
2.14 Selectivity of SIMP on 128-dimensional real datasets of varying
sizes for varying number of hashtables L.
2.15 Query time of SIMP on 128-dimensional real datasets of varying
sizes for varying number of hashtables L.
2.16 Comparative study of performance of SIMP with p-Stable LSH on
128-dimensional 10 million SIFT points.
2.17 Data pruning (%) obtained by SIP and MP pruning steps of SIMP
using n,=>5, 000 mballs for varying query ranges on CHist dataset. . . .
2.18 Data pruning (%) obtained by STP and MP pruning steps of SIMP
using n,=15, 000 mballs for varying query ranges on CHist dataset.

3.1 Anexample of an NKS query on a keyword tagged multi-dimensional

dataset. Query is @Q={a, b, c}. The top-1 result is the set of points {7,
8, 9}. This figure also shows an example of a localized search: a sliding
window of side length ' prunes unwanted candidates like {2, 12, 13}.
3.2 Division of projected values of points on a unit random vector into
overlapping bins of equal width w=2r.
3.3 Probability mass functions f, of diameters of candidates of a query
of size 3 on a 2-dimensional and a 16-dimensional real datasets.

3.4 Values of Pr(Alr)? for varying diameters of candidates of a query
of size 3 on a 2-dimensional and a 16-dimensional real datasets.

3.5 Index structure and flow of execution of ProMiSH.

XV

49

51

56

57

61

62

63

64

70

83

83

84

3.6 (a) a, b, and ¢ are groups of points of a subset F’ obtained for
a query Q={a,b,c}. A point o in a group g is joined to a point o' in
another group ¢ if ||o — || < rg. Examining the groups in the order
{a, ¢, b} generates the least number of candidates by a multi-way join.
(b) A graph of pairwise inner joins. Each group is a node in the graph.
The weight of an edge is the number of point pairs obtained by an inner
join of the corresponding groups.
3.7 Average approximation ratio of ProMiSH-A for varying query sizes
on 32-dimensional real datasets of various sizes.
3.8 Query time comparison of algorithms for retrieving top-1 results
for queries of size g=5 on synthetic datasets of varying dimensions d.
Values of N=100,000, t=1, and U=1,000 were used for each dataset.

3.9 Query time comparison of algorithms for retrieving top-1 results
for queries of size ¢=5 on 25-dimensional synthetic datasets of varying
sizes N. Values of t=1 and U=1,000 were used for each dataset.
3.10 Query time comparison of algorithms for retrieving top-1 results for
queries of varying sizes ¢ on a 10-dimensional synthetic dataset having
100,000 points. Values of t=1 and U=1,000 were used for the dataset. .
3.11 Query time analysis of ProMiSH algorithms for retrieving top-1
results for queries of varying sizes q on 25-dimensional synthetic datasets

of varying sizes N. Values of t=1 and U=200 were used for each dataset.

3.12 Query time analysis of ProMiSH algorithms for retrieving top-1
results for queries of varying sizes q on large synthetic datasets of varying
dimensions d. Values of N=3 million, ¢t=1, and U=200 were used for
each dataset.
3.13 Query time analysis of ProMiSH algorithms for retrieving top-k
results for queries of sizes 3 and 6 on a 50-dimensional synthetic dataset

of size N=3 million. Values of t=1 and U=200 were used for the dataset.

3.14 Query time comparison of algorithms for retrieving top-1 results
for queries of size g=4 on real datasets of varying dimensions d and size
N=50,000.
3.15 Query time comparison of algorithms for retrieving top-1 results
for queries of varying sizes ¢ on a 16-dimensional real dataset of size
N=70,000.

3.16 Query time comparison of algorithms for retrieving top-1 results

for queries of size g=4 on 16-dimensional real datasets of varying sizes N.

3.17 Query time analysis of ProMiSH algorithms for retrieving top-1 re-
sults for queries of varying sizes ¢ on real datasets of varying dimensions
and size N=1 million.,

XVi

110

111

111

113

114

114

116

116

117

3.18 Query time analysis of ProMiSH algorithms for retrieving top-k
results for queries of size g=4 on real datasets of varying dimensions
and size N=1 million.,

4.1 Population density map of Afghanistan.
4.2 Example of a biologically interesting spatial pattern (best viewed
in color). The marked pattern highlights a fold of the retinal tissue
labeled with peanut-agglutinin conjugated to a fluorescent probe. Yellow
dots are the point of interests detected using affine covariant region
technique [93] of computing local descriptor.
4.3 A 4 x 4 query is overlapped with a database map. For each tile in
the 3 x 3 overlapped region, a score for the match is computed. Dynamic
programming is run on the score matrix to obtain the maximal scoring
connected subregion. Lo
4.4 Scoring a query tile q against a database tile t. b denotes the
perfect “background” tile. score(q,t) =s—Ar—c.
4.5 Overlapping regions found by translation of a query image) on a
database image [at 3 alignments.
4.6 Construction from Thumbnail Rectilinear Steiner Tree instance to
Maximal Weighted Connected Subgraph (MWCS) instance. The double
lined vertices are the original terminal points. The solid lines represent
the optimal solution of both the problems.
4.7 DP forms sub-region R(i,) by looking at scores of C(i,7), R(i —
Lij)and R(i,7—1). . . o oo oo
4.8 Example of a shape not captured by DP. The scores are shown in
brackets. The optimal solution consists of the cells (3,3), (2,2), (2,3),
(2,4) and (1,3) having scores 40, 10, 1, 35 and 10 respectively.
4.9 (a) Example of a biologically interesting pattern. (b) Retrieved
result when distance-based matching on entire region is used. (c) Re-
trieved result when score-based matching on sub-regions is used.
4.10 Index structure. Image I; maintains pointers to leaf nodes of its
tiles. Leaf nodes maintain pointer to 1;.
4.11 Overlap of query image) with database image I such that ¢; aligns
with tl.
4.12 MBR and its nearest query tile. ¢; is nearest to M BRs, with dis-
tANCE Apin. « « « o e e e e
4.13 Overlap of query image @ with virtual tiles (vty, vto,...) at dis-
tance doin. - - - - . . e
4.14 Tiles of the overlapping region for ¢; aligning with ¢; lie at distances
greater than d;m. . . 0 . o L L L

129

4.15 Effect of query size on the performance of the algorithms for retinal
IMages. e e
4.16 Effect of query size on the performance of the algorithms for aerial
IMAages. o e e
4.17 Percentage split of NN and DP time for varying query sizes for
TARS and SPARS for aerial images.
4.18 Performance of algorithms for varying database sizes of retinal im-
ages for query size 10.o
4.19 Performance of algorithms for varying database sizes of retinal im-
ages for query size 30.o
4.20 Effect of database size and dimension on the performance of SPARS
on retinal images.
4.21 Effect of database size and dimension on the performance of SPARS
on aerial images. L
4.22 Effect of query size and dimension on the performance of SPARS

4.23 Performance of SPARS for varying query sizes and database sizes
of retinal and aerial images.00
4.24 Top-1 result for various queries from three real datasets.

5.1 Block diagram of the proposed duplicate detection framework - the
symbols used are explained in Table 5.1.
5.2 Comparison of the duplicate video detection error for (a) keyframe
based features and (b) entire video based features: the query length is
varied from 2.5% to 50% of the actual model video length. The error
is averaged over all the query videos generated using noise addition
operations, as discussed later in Section 5.6.1. The model fingerprint
size used in (a) IS DX. . . . Lo
5.3 Comparison of the duplicate video detection error for the proposed
distance measure d(-,-) (5.1) and the Hausdorff distances: here, (h, :
P = k) refers to the partial Hausdorff distance (5.3) where the k"
maximum is considered.o
5.4 Comparison of the fraction of model videos retained after VQ-M2
based pruning, for varying fractional query lengths, and using different
sized query signatures. The number of cluster centers for the query is
fixed at 2% and 10% of the number of query frames, after temporal sub-
sampling, i.e. M/Tg = 0.02 and 0.10 (notations as in Figure 5.1) for
the 2 cases. (a) Pruning using P=1. (b) Pruning using P=3.

XViii

5.5 Variation of the detection accuracy with varying levels of video clip
(from a different video) insertion - a fractional query length of 0.1 means
that the query consists of 10% frames present in the (original query +
inserted video clip). Model fingerprint size = 5x.
5.6 Runtime improvements due to PDP are shown for the PLS and
VQ-based linear search schemes: (b-1) results using NLS and PLS; (b-
2) results using VQLS-A - with and without pruning; and (b-3) results
using VQLS-B - with and without pruning. “Pruning/ no pruning”
indicates whether or not PDP has been used. Here, runtime = (T3 + T})

is the time needed to return the top-K model videos after the first pass.

5.7 Runtime improvements due to pruning in the model video space,
for VQLS-A and VQLS-B, are shown. By “no prune’, we mean that
pruning in model video space (VQ-M1 or VQ-M2) is absent, while PDP
1s used for all the methods. Significant runtime savings are obtained for
VQ-M1(A) and VQ-M2(A) over VQLS-A (Figure a) and for VQ-M2(B)
over VQLS-B (Figure b).(a) Results with and without dataset pruning

for VQLS-A. (b) Results with and without dataset pruning for VQILS-B.

5.8 Comparison of the detection accuracy obtained using the different
VQ based distances, for K = 10 and K = 100, is shown. Results using
d;n: and dr; are near-identical and so, only d; based results are shown.
Results using dy ¢ are significantly better than that using d..s (which in
turn performs better than dr; and dj,.) at smaller query lengths. (a)
Detection results for various distances (k=10). (b) Detection results for
various distances (k=100).o o

6.1 The PRUNE algorithm.
6.2 Efficient convolution of histograms. o; 1 @ h; = ;. The bins below
the score thresholds (shown inside circles) can be pruned to save time.

6.3 Comparison of the various approaches of p-value computation. . .
6.4 The effect of pruning on the running time of p-value computation.
6.5 The effect of query score and number of bins on the running time
of p-value computation.
6.6 The percentage error in p-value computation due to binning. . . .

XiX

218

219

222

List of Tables

1.1 A brief description of all the query types discussed in this thesis. .

2.1 A descriptive list of notations used in the chapter.
2.2 Error ratio {(%) for expected number of candidates E(C') for vary-
ing query ranges r, and varying number of mballs n,.
2.3 Parameters of LSB Tree and LSB Forest for two real datasets.

3.1 A descriptive list of notations used in the chapter.
3.2 Percentage ratio of the expected number of candidates IV, to the
total number of candidates N, of a query.
3.3 Description of real datasets of five different sizes.
3.4 Ratio of the index space to the dataset space for ProMiSH-E for
varying N, d,and U.
3.5 Ratio of the index space to the dataset space for ProMiSH-A for
varying N, d,and U.
3.6 Ratio of the index space to the dataset space for Virtual bR*-Tree
for varying N, d, and U.

4.1 Sorted access of tiles for a given query (qi,¢2) in TARS.
4.2 Percentage energy remaining after PCA.
4.3 Database sizes of retinal and aerial images.
4.4 Datasets used for quality analysis, corresponding parameter values
for scoring function, and precision measures.

5.1 Glossary of notations

XX

5.2 Time complexity of the various modules involved in computing
A= {d(X?, Q)}fvzl (5.4), returning the top-K NN, and then finding the
best matched video Vj« from them. F = ZZZL F;/N denotes the average
number of vectors in a model fingerprint. For the VQ-based schemes,
the distance d(-,-) is replaced by the distance dyg(-,-) (5.9), while the
other operations involved remain similar.
5.3 Runtime needed to compute all the model-to-query distances (73)
and storage (in bits) are compared for VQLS-A and VQLS-B.
5.4 Average Ju,, (averaging over all queries) and maximum number of
iterations J for varying fractional query lengths (¢, whose value is shown
in parentheses) and K, for U = 8192. Both J,,, and J increase with K
and €. . .. e
5.5 Comparison of the percentage of model videos retained after dataset
pruning for VQ-M1 with that obtained using DBH, for different frac-
tional query lengths (¢) and K. For DBH, pepror = 0.05 is used.

5.6 Comparison of query time (in terms of T}, Ts, and T}) and storage
(in bits) for VQ-M1 and VQ-M2.
5.7 Detection error obtained using CLD features, for individual noise
attacks, averaged over fractional query lengths from 2.5%-50%, and over
varying parameters for a given attack, are shown.
5.8 Comparison of all the 3 parameters - detection accuracy, query
time (expressed in seconds), and storage, for the different methods, at
varying K. Query time equals (T3 + Ty + T5) (along with the time for
k-means-clustering to obtain @ from @, and the time for sorting the
query dimensions). Unless otherwise mentioned, the elements are stored
in "double” format (=64 bits). The storage cost of VQ-M1(A) depends
on the fractional query length (£): thus, for K = 10, the storage cost
equals 35.86 MB for ¢ = 0.10.

poel

197

204

208

210

212

217

221

Chapter 1

Introduction

The recent technological advancements have helped in a fast-paced generation
of high-dimensional heterogenous datasets. For example, mobile computing de-
vices have simplified the generation of images and videos tagged with geo-location,
timestamp, and descriptive keywords. Similarly, high-throughput imaging devices
have led to the creation of large maps of biological and geographical systems, which
are often annotated with descriptive keywords and spatial relationships. An ob-
ject in these datasets is represented by a high-dimensional feature vector. For
example, a grayscale image is represented by a 256-dimensional color-histogram.
Similarly, a document is represented by a histogram of hundreds of words.

Many of these datasets are heterogenous, i.e., the features of an object in the
dataset are not directly comparable. For example, a keyword-tagged image has
two kinds of features: a visual feature and a text feature. These two features of an

image are not directly comparable, and hence the dataset is heterogenous. Simi-

Chapter 1. Introduction

larly, a dataset of geo-tagged news articles is heterogenous. The word-histogram
and the geo-location of the news article are not directly comparable.

These heterogenous datasets are rich sources of valuable information. An
effective mechanism for exploring these datasets is querying. One such kind of
query is a pattern query. Given a heterogenous dataset and a query, the task
here is to find a set of objects which are constrained by a relationship and satisfy
the query. The retrieved set of objects which are constrained by a relationship is
called a pattern.

An example of a pattern query is described next. Consider a dataset of ge-
ographical maps. These maps, being very large, are split into tiles of fixed size.
Each tile is represented by a high-dimensional visual feature vector and its spatial
location in the map. A query, as shown in Figure 1.1(a), consists of a set of tiles.
The goal here is to retrieve a connected set of tiles which is visually similar to the
query. A result is shown by a red box in Figure 1.1(b). The set of tiles in the
result satisfies the connectivity relationship. and hence forms a pattern.

Three kinds of pattern queries are described in this thesis. The first query
finds a set of keyword-tagged neighboring objects in a multi-dimensional feature
space that contains a given set of keywords. This paradigm of querying patterns
is called querying patterns by keywords. The second query finds a set of connected

objects similar to a given set of connected objects in a spatial dataset. The

Chapter 1. Introduction

(a) A query (b) A tiled map of retinal tissues

Figure 1.1: (a) A query formed by a spatial arrangement of the tiles of retinal
maps. (b) A dataset of tiles of retinal maps. The map shows retinal tissue labeled
with peanut-agglutinin conjugated to a fluorescent probe. The set of tiles bounded
by the red box is a match for the query.

Chapter 1. Introduction

third query finds a set of time-sequenced objects similar to a given set of time-
sequenced objects in a temporal dataset. The last two queries fall into the category
of querying patterns by example.

To answer the pattern queries discussed above, there is a need to develop
retrieval mechanisms. Typically, each object in the dataset is transformed into a
multi-dimensional feature vector. Then, a measure of similarity between objects
is designed. Next, all the vectors in the dataset are stored in an index. A given
query object is also transformed into a feature vector. Finally, objects similar to
the query object are efficiently retrieved from the dataset using the index.

An example of a typical search application, a map service, is described next.
A map service helps to find a location nearest to a query location. Here, each
location in the dataset is represented by a vector of its latitude and longitude. All
the locations in the dataset are indexed into an R-Tree [52]. Nearness between
two locations is measured by their Euclidean distance. A query location is also
represented by its latitude and longitude. Finally, the location nearest to the
query location is obtained by a best-first search [56] using the R-Tree [52].

The querying technique described above, though highly successful for many
domains, suffers from many limitations. First, it works only for datasets of a
single modality, e.g., a dataset of color-histograms of images. Second, it supports

only pair-wise object comparisons. Third, it answers only single-object queries,

Chapter 1. Introduction

e.g., querying documents similar to a given document. Fourth, the state-of-the-art
indexing techniques [11, 26, 52| retrieve results accurately and efficiently only for
datasets of dimensions up to 20 [128]. In addition, the methods [49, 59] giving
efficiency for high-dimensional datasets fail to guarantee 100% result accuracy.
The limitations of the state-of-the-art methods, as discussed above, make them
unsuitable for querying patterns in high-dimensional heterogenous datasets. A
method for querying patterns should handle heterogenous datasets, should sup-
port similarity between sets of objects, and should provide both efficiency and
accuracy in high-dimensions. Therefore, there is a need to develop new methods

to answer pattern queries in high-dimensional heterogenous datasets.

1.1 Thesis Statement and Contributions

In this thesis, it has been shown that: “Patterns can be queried accurately and
efficiently in high-dimensional heterogenous datasets.”

Novel index structures and search algorithms for efficiently and accurately
querying patterns are presented in this thesis. The performance of the proposed
algorithms was validated using a set of metrics on multiple high-dimensional real
datasets. A brief summary of all the queries discussed in the thesis is given in

Table 1.1.

Chapter 1.

Introduction

terns by exam-
ple in a spatial
dataset

Chapter | Query types Description
No.
2 r-near neigh- | The dataset consists of objects represented by multi-
bor queries dimensional feature vectors. The dimension of the
dataset ranges between 32 and 256. A query consists
of an object and a radius r. The result is the collection
of all the points within a distance r from the query
object.
3 Querying pat- | Kach object in the dataset is represented by a multi-
terns by key- | dimensional feature vector and a set of keywords. The
words dimension of the dataset ranges between 2 and 100.
A query consists of a set of keywords. A result is
a set of neighboring objects in the multi-dimensional
feature space that contains all the query keywords.
4 Querying pat- | Each object in the dataset is represented by a multi-

dimensional feature vector and a spatial location. The
dimension of the dataset ranges between 3 and 13. A
query consists of a set of connected objects as shown
in Figure 1.1(a). A result is a connected set of ob-
jects which is similar to the query as shown in Fig-
ure 1.1(b).

ot

Querying pat-
terns by exam-
ple in a tempo-
ral dataset

The dataset consists of time-sequenced objects where
each object is represented by a multi-dimensional fea-
ture vector. The dimension of the dataset ranges be-
tween 1 and 8192. A query is a set of time-sequenced
objects. A result is again a set of time-sequenced ob-
jects that is similar to the query. An example of such
a query is video duplicate detection.

Table 1.1: A brief description of all the query types discussed in this thesis.

Near neighbor queries form a vital step in many pattern mining and querying
tasks. A mnovel technique, SIMP, is discussed in Chapter 2 for querying r-near
neighbors in very high-dimensional spaces. SIMP efficiently queries r-near neigh-
bors for all the query ranges with 100% quality guarantee. SIMP creates multiple

2-dimensional projections of the data space relative to random points. It uses a

Chapter 1. Introduction

hash-based approach to take an intersection of the 2-dimensional projections to
efficiently determine the neighbors. Empirical comparisons on three real datasets
of dimensions between 32 and 256 and sizes up to 10 million show a superior
performance of SIMP over LLSH [31], Multi-Probe L.SH [87], L.SB tree [122], and
iDistance [60]. Scalability tests on real datasets of dimensions up to 256 and sizes
up to 100 million establish that SIMP scales linearly with the query range, the
dataset dimension, and the dataset size.

Querying patterns by keywords in a dataset of keyword-tagged objects is in-
troduced in Chapter 3. Each object is represented by a multi-dimensional feature
vector and a set of keywords. A new algorithm, ProMiSH, is proposed for query-
ing a set of neighboring objects in a multi-dimensional feature space that contains
a given set of query keywords. ProMiSH uses random projections and hash-based
index structures to query results, and achieves high scalability and speed-up.
Empirical studies, both on real and synthetic datasets, show that ProMiSH has a
speed-up of more than four orders over the state-of-the-art tree-based techniques.
Scalability tests on datasets of sizes up to 10 million and dimensions up to 100 for
queries of sizes up to 9 show that ProMiSH scales linearly with the dataset size,
the dataset dimension, the query size, and the result size.

Querying patterns by example in a spatial dataset is presented in Chapter 4.

Each object is represented by a multi-dimensional feature vector and a spatial

Chapter 1. Introduction

location. Given a spatial pattern, the task here is to retrieve similar patterns
from the dataset. A novel algorithm, QUIP, is described for querying the spatial
patterns. QUIP uses a dynamic programming based scoring scheme to measure the
similarity between patterns. QUIP has two index-based scalable search strategies:
TARS and SPARS. Experimental results on real image datasets show that TARS
offers an 87% improvement for small queries, and SPARS a 52% improvement for
large queries in running time, as compared to the baseline approach. Qualitative
tests on real datasets achieve precision of more than 80%.

Querying patterns by example in a temporal dataset is discussed in Chap-
ter 5. Tt specifically solves the problem of querying duplicate videos. First, a new
non-metric distance measure is proposed to find the similarity between a query
and a database video. Then, a novel search algorithm based on pre-computed
distances and pruning techniques is described to efficiently find duplicate videos.
Experiments on a database of 38,000 videos, worth 1,600 hours of content, show
that the duplicate videos for queries of duration 60 seconds are retrieved in 0.032
seconds with a high accuracy of 97.5%.

Queries, such as database similarity searches, return results satisfying certain
properties of distances or scores. For domain scientists, the absolute values of
scores are seldom sufficient. Statistical significance or p-value of the result is a

more useful criterion. An efficient method to calculate the approximate p-value

Chapter 1. Introduction

of a multi-object result, when the distribution of scores for the database objects
is non-parametric, is presented in Chapter 6. Experimental evaluations on large
databases show that the method is practical, runs five orders of magnitude faster
than the basic approach, and has an error of less than 5% in p-value computation.

This thesis concludes with a summary of the proposed pattern queries and the
corresponding retrieval methods. An insight into the impact of this research work

and challenges of the future tasks is also provided in the conclusions.

Chapter 2

SIMP: Accurate and Efficient
Near Neighbor Search in
High-Dimensional Spaces

Search for near neighbors of a given query object in a collection of objects
is a fundamental operation in numerous applications, e.g., multimedia similarity
search, data mining, information retrieval, and pattern recognition. The most
common model for search is to represent objects in a high-dimensional attribute
space, and then retrieve points near a given query point using a distance mea-
sure. In this chapter, we specifically study the problem of r-near neighbor (r-NN)
queries. These queries retrieve all the points within a distance r from the query
point. Near neighbor search in high-dimensional spaces still remains an open
problem.

Existing techniques solve this problem efficiently only for the approximate

cases [31, 49, 122]. These solutions are designed to solve r-near neighbor queries

10

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

for a fixed query range or a set of query ranges with probabilistic guarantees, and
then extended for nearest neighbor queries. Solutions supporting a set of query
ranges suffer from prohibitive space cost [49]. There are many applications which
are quality sensitive and need to efficiently and accurately support near neighbor
queries for all query ranges [119, 86, 18, 120]. In this chapter, we propose a
novel indexing and querying scheme called Spatial Intersection and Metric Pruning
(SIMP). It efficiently supports r-near neighbor queries in very high-dimensional
spaces for all query ranges with 100% quality guarantee and with practical storage
costs. Our empirical studies on three real datasets having dimensions between 32
and 256 and sizes up to 10 million show a superior performance of SIMP over
LSH, Multi-Probe LSH, LSB tree, and iDistance. Our scalability tests on real
datasets having as many as 100 million points of dimensions up to 256 establish
that SIMP scales linearly with the query range, the dataset dimension, and the

dataset size.

2.1 Introduction and Motivation

Let U be a dataset of N points in a d-dimensional vector space R%. Let d(.,.)
be a distance measure over R%. An 7-NN query is defined by a query point ¢ € R?

and a search range r from ¢. It is a range query whose result set contains all the

11

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

points p satisfying d(q, p) < r. An r-NN query is useful for constructing near
neighbor graphs, mining of collocation patterns [113], and mining density based
clusters [39]. An 7-NN query can also be repeatedly used with increasing query
ranges, starting with an expected range, to solve the nearest neighbor family of
problems [49, 60, 73].

In order to achieve a practical performance in query processing, data points
are indexed and searched using an efficient data structure. A good index should be
space and time efficient, should yield accurate results, and should scale with the
dataset dimension and size. There are many well-known indexing schemes in the
literature, mostly tree-based [11, 26, 52|, for efficiently and exactly solving near
neighbor search in low dimensions. It is known from the literature that the perfor-
mances of these methods deteriorate and become worse than sequential search for
sufficiently large number of dimensions due to the curse of dimensionality [128].
iDistance [60] is a state-of-the-art method for an exact r-NN search. It has been
shown to work well for datasets of dimensions as high as 30. A major drawback of
iDistance is that it works well only for clustered data. It incurs expensive query
costs for other kinds of datasets and for very high-dimensional datasets.

There are many applications which need efficient and accurate near neighbor
search in very high dimensions. For example, content based multimedia similarity

search uses state-of-the-art 128-dimensional SIFT [86] feature vectors. Another

12

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

example is DNA sequence matching which requires longer seed length (typically
60-80 bases) to achieve higher specificity and efficiency while maintaining sen-
sitivity to weak similarities [18]. A common practice is to use dimensionality
reduction [110] techniques to reduce the dimensions of the dataset before using an
index structure. These techniques being lossy transformations do not guarantee
optimal quality. These techniques are also not useful for a number of datasets, e.g.,
strings [139] and multimedia [86, 87], which have intrinsically high dimensionality.

State-of-the-art techniques for r-NN search in very high dimensions trade-off
quality for efficiency and scalability. Tocality Sensitive Hashing (L.SH) [59, 49]
is a state-of-the-art method for approximately solving r-NN query in very high
dimensions. LSH, named Basic-LLSH here, solves (rg, €)-neighbor problem for a
fixed query range rg. It determines whether there exists a data point within a
distance 7y of query ¢, or whether all points in the dataset are at least a distance
(1+¢€)rg away from ¢. In the first case, Basic-LSH returns a point within distance
at most (1+¢€)rg from q. Basic-LSH constructs a set of L hashtables using a family
of hash functions to fetch near neighbors efficiently. Basic-LLSH is extended, hereby
named Eztended-1.SH, to solve e-approximate nearest neighbor search by building
several data structures for different values of r. Ezrtended-L.SH builds a set of L

hashtables for each value of 7 in {rg, (1+€)rg, (1+€)?ro, -+, Tmaz }, Where 7 and

13

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

Tmaz are the smallest and the largest possible distance between the query and the
data point respectively.

LSH based methods and their variants, though efficient and scalable, lack 100%
quality guarantee because of their probabilistic nature. In addition, they are un-
able to support queries over flexible ranges. Basic-LSH is designed for a fixed
query range 7o, and therefore yields poor result quality for query ranges r > ry.
Ezxtended-LSH suffers from prohibitive space costs as it maintains a number of
index structures for different values of r. The space usage of even Basic-LLSH
becomes prohibitive for some applications like biological sequence matching [18]
where a large numbers of hashtables are required to get a satisfactory result qual-
ity. Recently, Lv et al. [87] improved Basic-LSH to address its space issue with
a novel probing sequence, called Multi-Probe LLSH. However, Multi-Probe L.SH
does not give any guarantee on quality or performance. Tao et al. [122] proposed
a B-tree based index structure, LSB tree, to address the space issue of Fxtended-
LSH and the quality issue of Basic-LSH for query ranges which are any power of
2. Nonetheless, LSB tree is an approximate technique with a high space cost.

We find that none of the existing methods simultaneously offer efficiency, 100%
accuracy, and scalability for near neighbor queries over flexible query ranges in
very high-dimensional datasets. These properties are of general interest for any

search system. In this chapter, we propose a novel in-memory index structure

14

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

and querying algorithm called SIMP (Spatial Intersection and Metric Pruning).
It efficiently answers m-NN queries for any query range in very high dimensions
with 100% quality guarantee and has practical storage costs. SIMP adopts a two-
step pruning method to generate a set of candidate near neighbors for a query.
Then it performs a sequential search on these candidates to obtain the true near
neighbors.

The first pruning step in SIMP is named Spatial Intersection Pruning(SIP).
SIMP computes multiple 2-dimensional projections of the high-dimensional data.
Each projection is computed with respect to a different reference point. SIMP par-
titions each 2-dimensional projection into grids. It also computes the projection of
the query answer space. SIMP generates a set of candidates for a r-NN query by
an intersection of the 2-dimensional grids and the projection of the query answer
space. It preserves all the true neighbors of a query by construction. A hash based
technique is used in this step to gain space and query time efficiency. The second
step of pruning is called Metric Pruning (MP). SIMP partitions the dataset into
tight clusters. It uses triangle inequality between a candidate, candidate’s nearest
cluster center, and the query point to further filter out false candidates.

We also design a statistical cost model to measure the performance of SIMP.
We show a superior performance of SIMP over state-of-the-art methods iDistance

and p-stable LSH on three real datasets having dimensions between 32 and 256

15

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

and sizes up to 10 million. We also compared SIMP with Multi-Probe LSH and
LSB tree on two real datasets of dimensions 128 and 256 and sizes 1 million and
1.08 million respectively. We observed that SIMP comprehensively outperforms
both these methods. Our scalability tests on real datasets of sizes up to 100
million and dimensions up to 256 show that SIMP scales linearly with the query
range, the dataset dimension, and the dataset size.

Our main contributions are: (a) a novel algorithm that solves r-NN queries for
any query range with 100% quality in a very high-dimensional search space; (b)
statistical cost modeling of SIMP; and (c) extensive empirical studies. We discuss
related work in Section 2.2. We develop our index structure and query algorithm
in Section 2.3. A statistical cost model of SIMP is described in Section 2.4. We
present experimental results in Section 2.5. We describe schemes for selecting the

parameters of SIMP in Section 2.6.

2.2 Literature Survey

Near neighbor search is well solved for low dimensional data (usually less than
10). Gaede et al. [44] and Samet et al. [110] present a survey of these multidimen-
sional access methods. All the indexing schemes proposed in the literature fall

into two major categories: space partitioning and data partitioning. Berchtold

16

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

et al. [13] partition the space using a Voronoi diagram and answer a query by
searching for the cell in which the query lies. Space partitioning trees like KD-
Tree recursively partition the space on different dimensions. Data partitioning
techniques like R-Tree [52], M-Tree [26] and their variants enclose relatively near
points in Minimum Bounding Rectangles or Spheres and recursively build a tree.
The performance of these techniques deteriorates rapidly with an increase in the
number of data dimensions [128, 17].

For very high dimensions, space filling curves [76] and dimensionality reduction
techniques are used to project the data into low dimensional space before using an
index. Weber et al. [128] proposed VA-file to compress the dataset by dimension
quantization and minimize the sequential search cost. Jagadish et al. [60] proposed
iDistance to exactly solve r-NN queries in high dimensions. The space is split
into a set of partitions and a reference point is identified for each partition. A data
point p is assigned an index key based on its distance from the nearest reference
point. All the points are indexed using their keys in a B4+-Tree. iDistance performs
well for clustered data of dimensions up to 30. The metric pruning of SIMP is
inspired from this index structure.

Near Neighbor search is efficiently but approximately solved in very high di-
mensions [49, 5]. Locality sensitive hashing (I.SH) proposed by Indyk et al. [59]

provides a sub-linear search time and a probabilistic bound on the result qual-

17

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

ity for approximate r-NN search. LLSH uses a family of hash functions to create
hashtables. It concatenates hash values from k hash functions to create a hash
key for each point. It uses L hashtables to improve the quality of search. LSH
hash functions put nearby objects in the same hashtable bucket with a higher
probability than those which are far apart. One can determine near neighbors by
hashing the query point and retrieving elements stored in the bucket containing
the query. Many families of hash functions have been proposed [49, 22, 31, 4]
for near neighbor search. p-stable LSH [31] uses vectors, whose components are
drawn randomly from a p-stable distribution, as a family of hash functions for [,
norm. As discussed in Section 2.1, LSH suffers from the quality and the space
issues.

Many improvements and variants [9, 97, 101, 87, 37, 63, 122, 78, 118] have
been proposed for the LSH algorithm to solve the approximate near neighbor
search. Lv et al. [87] proposed a heuristic called Multi-Probe LSH to address
the space issue of Basic-LSH [49]. They designed a novel probing sequence to
look up multiple buckets in hashtables of Basic-LLSH. These buckets have a high
probability of containing the near neighbors of a query. Multi-Probe LSH does
not have any quality guarantee and may need a large number of probes to achieve

a desired quality, thus making it inefficient.

18

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

A B-tree based index, called LSB ftree (a set of LSB trees is called an LSB
forest), was proposed by Tao et al. [122] for near neighbor search in relational
databases to simultaneously address the space issue of Extended-LSH [59] and
the quality issues of Basic-1.SH for query ranges which are any power of 2. Fach
d-dimensional point is transformed into an m-dimensional point by taking its
projection on m p-stable hash functions similar to p-stable LSH [31]. Points are
indexed using a B-Tree on their z-order values which are obtained by partitioning
the m-dimensional space with equi-width bins. Near neighbor search is carried
by obtaining points based on the length of the longest common prefix of z-order.
[LSB tree is an approximate technique with weak quality guarantees and can have
prohibitive costs. It is noteworthy that all the LSH based techniques create index
structures independent of the data distribution.

A cost model for near neighbor search using partitioning algorithms was pro-
vided by Berchtold et al. [12]. An M-Tree cost model was presented by Ciaccia et

al. [27]. Weber et al. [128] and Béhm et al. [17] developed these ideas further.

2.3 Algorithm

We develop the idea of SIMP using a dataset & of N points in a d-dimensional

vector data space R%. Each point p has a unique identifier. We use Euclidean

19

Chapter 2. SIMP: Accurate and Efficient Near Neighbor Search in High-
Dimensional Spaces

q(rq): A query with point ¢ and search range 7

v: A viewpoint
ny: Number of viewpoints

G(v): Polar grid of viewpoint v

N: Number of data points in U
h(s): A hashtable of SIMP
p: A data point

o: Origin of the data space

s: Signature of a hashtable

f: Angle of a data point p relative to a viewpoint v and its angular vector ov

S: Percentage of the data points obtained by an algorithm as candidate for a query
(selectivity)

C: Candidate set obtained by an algorithm for a query

r: Distance of a point p from a viewpoint v

b: Bin id of a point in a polar grid

P: Number of probes used by Multi-Probe LSH
L: Number of hashtables in the index structure
k : Size of a hash signature s

d: Dimension of the dataset

w,: Radial width between rings of a polar grid
wp: Angle between radial vectors of a polar grid
n,: Number of mballs used for Metric Pruning

Table 2.1: A descriptive list of notations used in the chapter.

metric to measure the distance d(.,.) between a pair of points in R%. We take
o as the origin of the data space. An r-NN query ¢(r,) is defined by the query
point ¢ and the search range r,. The answer set of the query ¢(r,) contains all
the points of the dataset &/ which lie within a hyper sphere of radius r, and center
at ¢. This hyper sphere is the answer space of the query ¢(r,). We describe all

notations used in this chapter in Table 2.1.

20

Chapter 2. SIMP: Accurate and Efficient Near Neighbor Search in High-
Dimensional Spaces

2.3.1 Preliminaries

We first explain the idea of intersection for Spatial Intersection Pruning (SIP)
that effectively prunes false candidates. Then we describe how intersection is
performed using multiple projections of the data points, each relative to a different
reference point, to find candidates. We show that the projection relative to a
random viewpoint is locality sensitive: a property that helps SIMP effectively
prune false candidate by intersection. Finally, we explain the idea of Metric

Pruning (MP).

(a) One viewpoint (b) Two viewpoints

Figure 2.1: Spatial Intersection Pruning. (a) Answer space of query ¢(r,) is
bounded within the distance range [ri, r| relative to viewpoint v;. Shadowed
region contains all the candidates of query ¢(r,) relative to viewpoint vy. (b)
Shadowed region contains all the candidates of query g(r,) relative to two view-
points v and vo. Intersection over two viewpoints gives better pruning of the false
candidates.

We explain SIP using Figure 2.1. Let vy be a randomly chosen reference point,

called a viewpoint, in the d-dimensional data space RY. We compute distance

21

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

r=d(vy,p) for each point p in the dataset relative to v;. Let the answer space
of a query ¢(r,) be contained in the distance range [r1, 7] from v; as shown in
Figure 2.1. All the points having their distances in the range [ri, 7] from v;
form the set of candidate near neighbors for the query ¢(r,). We show the region
containing the candidates in shadow in Figure 2.1(a). Let v, be another viewpoint.
Let [}, 75] be the distance bounding range for the answer space of the query ¢(r,)
relative to ve. Now, the true near neighbors of the query ¢(r,) must lie in the
intersection of the range [ry,rs] and [r},r5] as shown with shadowed region in
Figure 2.1(b). We see that an intersection over two viewpoints bounds the answer

space more tightly, and thus achieves better pruning of false candidates.

°
AN
°
O
o
Vs Angular Vector \/
o [}
°
® °
(a) An example dataset (b) Polar grid relative to v

Figure 2.2: (a) A dataset with data space origin o and a viewpoint v. Values
r and 6 for point p are computed relative to v and its angular vector ov. (b)
Partition of the data space using equi-width w, rings and equi-angular wy radial
vectors relative to viewpoint v and v’s angular vector ov. Each bin is given a
unique id that places a canonical order on the bins.

22

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

We describe how the intersection is performed using an example dataset shown
in Figure 2.2(a). Let v be a viewpoint. The vector ov joining origin o to the
viewpoint v is called v’s angular vector. We compute distance r=d(v,p) and
angle 6 for each point p in the dataset relative to v and ov. The range of the
distance r is [0, Tpmae], Where 7,4, is the distance of the farthest point in the

dataset from v. The angle € lies in the range [0°, 180°] and is computed as
0 = cos '(ov.vp/(d(o,v) x d(v,p))) (2.1)

Thus, we get the projection of the d-dimensional dataset onto a 2-dimensional
polar (r,0) space relative to v. We partition this polar space into grids using equi-
width w, rings and equi-angular wy radial vectors relative to the viewpoint v as
shown in Figure 2.2(b). This partitioned data space is called v’s polar grid G(v).
For a given query ¢(r,), we compute the projection ¢’ of the query point g relative
to the viewpoint v and the angular vector ov. Then, the projection of the answer
space of the query ¢(r,) relative to v and ov, named gball, is a circle with radius
r, and center ¢’. All the true neighbors of ¢(r,) are contained in this ¢ball. We
make a choice to use polar coordinates because both of its dimensions, distance r
and angle @, reflect an aggregate value of all the original dimensions in R%. Any
other coordinate system can be similarly used in place of polar coordinates.

Let the gball of the query ¢(r,) be enclosed within the bounding range B={{r,

7o],[01, 02]} relative to a viewpoint v as shown in Figure 2.3. We find a set of bins

23

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

v
Y

-
il TP

Figure 2.3: Bounding range B={[r1, r2],[01.02]} of gball of a query ¢(r,) relative
to a viewpoint v and angular vector ov.

of polar grid G(v) that encloses the bounding range B. Points contained in these
bins form the set of candidates for the query ¢(r,) relative to v. For a set of
n, viewpoints, a candidate set is obtained for each viewpoint independently. An
intersection of the candidate sets obtained from the n, viewpoints gives the final

set, of candidates.

v
Y

-
il TP

Figure 2.4: We see that point ps having d(g, p2) > r, lies outside the bounding
range of the gball of query ¢(r,) relative to viewpoint v lying on the line L. Point
p1 having d(q, p2) < r, always lies within the bounding range of the gball of query

q(r,) for any viewpoint v.

24

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

We next show that the projection relative to a random viewpoint v is locality
sensitive. Let v be a randomly chosen viewpoint from the data space and G(v)
be its polar grid. Let the gball of a query ¢(r,) be enclosed within the bounding
range B={[rq,rs], [0, 62]} relative to v. The bounding range B is computed as
shown in Section 2.3.3. Let p be a point at distance r=d(v,p) from v and at an
angle 0 from v’s angular vector ov. Point p is chosen as a candidate if r; < r < rg
and 01 < 0 < 6,. If n, randomly chosen viewpoints are used for intersection, then
a point p is a candidate only if it lies in the intersection of the bounding ranges
obtained from each of the viewpoints independently. Let Pry be the probability
that p is selected as a candidate when r < r,. Let Pry be the probability that that
p is selected as a candidate when r > r,. Probabilities are computed with respect
to the random choices of viewpoints. We say that the projection with respect to

a random viewpoint is locality sensitive if Pro < Pry.

Lemma 1. The projection of points on a polar (r, 8) space relative to a random

viewpoint is locality sensitive.

Proof. Let points p; and py be such that d(q, p1) < r, and d(q, p2) > r,. Let py
be at an angle 6,, and p, be at an angle 6, relative to the angular vector ov of a
random viewpoint v.

Point p, satisfies 1 < d(q, p1) <7y and 6; < 6, < 6, for any viewpoint v by

construction as shown in Figure 2.4. Therefore, Pri=1.

25

Chapter 2. SIMP: Accurate and Efficient Near Neighbor Search in High-
Dimensional Spaces

1 1 —
ket ——
K=8 -t
0.8 0.9 I k=16 ---=---
08 |
06 |
N N
a & 07t
04 |
06 |
02} os |
0 0.4 ‘
L 3 1 15 2 25 35 4 45 5
Cc
(a) 128-dimensional data (b) 256-dimensional data

Figure 2.5: Values of Pry obtained for varying ¢, where d(q, p)=c x r,, and
varying number n, of viewpoints used for spatial intersection on 128 and 256
dimensional real datasets. The value of Pry is always 1.

Next we show that Pry < 1 by geometric considerations using Figure 2.4. We
draw a line L passing through ¢ and p, as shown in Figure 2.4. We draw the
enclosing rings of the query ¢(r,) at radii r1=(d(v, q) — r,) and ra=(d(v, q) + 1)
from a randomly chosen viewpoint v on the line L. We see that the point ps lies
outside the enclosing ring, i.e., d(v, ps) < ry or d(v, pa) > 7o. This is true for any

viewpoint lying on the line L. Therefore, Pro < 1 [

We empirically observed that the probability Pro rapidly decreases with an
increase in the distance of a point p from the query. This also implies that the
probability of a false near neighbor being selected as candidate decreases with its
distance from the query point. To derive these results, we computed the values

of Pry for a query ¢(r,) for varying ¢, where d(q, p)=c X r,, using Monte Carlo

26

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

methods. We also computed values of Pry for different number of viewpoints
n, used for intersection. We used two real datasets of dimensions 128 (SIFT)
and 256 (CHist) for the simulation. We describe these datasets in Section 2.5.
We performed simulation using 10 million random viewpoints. We observed that
the value of Pry decreases at a fast rate with increasing value of ¢, as shown in
Figure 2.5. For example, the value of Pry is zero for 128-dimensional dataset for
c=4 and n,=4. The value of Pr; is always 1.

SIMP achieves a high rate of pruning of false near neighbors due to Lemma 1
and the intersection of the gball of a query with polar grids of multiple viewpoints.
This makes SIMP a very efficient method for »-NN search with 100% quality guar-
antee. In this chapter, we develop a suitable data structure and search algorithm

using hashing to implement the idea of STP.

Figure 2.6: Metric Pruning. z is the nearest mcenter of point p. p is a candidate
for q(ry) only if 7, > d(q. p) >[d(p, 2) —d(q.2) |

To get extra performance, we augment SIP with metric pruning. This pruning

is based on triangle inequality and is carried with respect to data clusters. To

27

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

obtain a good pruning, these clusters need to be quite small. As a result, we cluster
all the data points into n, tight clusters where a cluster is named an mball. We
name the center of an mball as an mcenter. Let z be the nearest mcenter to a
point p. From triangle inequality, we know that a point p is a candidate only if
ry > d(q, p) >| d(p, z) — d(q, z) |, as shown in Figure 2.6. The nearest mcenter z
of each point p and the distance d(p, z) are pre-computed for an efficient pruning

using triangle inequality at runtime.

2.3.2 Index Structure

The index structure of SIMP consists of data structures for efficient processing
of both SIP and MP. A set of hashtables and bit arrays constitute the index
structure of SIP. The index structure of MP consists of three associative arrays.

We first discuss the construction of the index structure for SIP. We randomly
choose n, viewpoints V={v;}; from the d-dimensional dataset. We construct a
polar grid for each of the n, viewpoints. For each polar grid G(v), a data point p
is assigned the id of the bin of the polar grid in which it lies. The bin id of a point
p having distance r=d(v, p) and angle 6 relative to a viewpoint v and v’s angular

vector ov is

b= ([r/w,] x ([180°/wg| + 1)) + [6/we].

28

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

For example, if we take w,=50 and wy=45° for creating a polar grid and a point
p at r=70 and #=40° from the viewpoint, then the bin id of p is 1 x 5+ 0=5. The
distance r of any point p from a viewpoint v lies between [0, 7,42, Where 7,4, is
the distance of the farthest point in the dataset from v. The angle 6 of any point
p relative to ov lies between [0°, 180°].

Polar grids incur a high space cost if stored separately. A polar grid can be
stored in an array whose entry at index ¢ is the collection of the data points in the
bin 7 of the polar grid. A point is stored only by its identifier in the array. This
gives a space cost of n, X N for n, polar grids and a dataset of size N. This space
cost may become unmanageable for large values of n, and N. For example, if N
is 100 million points and n,=100, then the total space cost of the index is 40GB.

We develop a hash based index structure to reduce the index space. We assume
without loss of generality that n,=k x L for some integers k and L. We use a value
of k=4 for SIMP. We split n, viewpoints into L groups, each of size k. A set of k
viewpoints is called a signature s={vy, --- , vx}. Thus, we construct L signatures
s; such that (s;Ns;)=0 for any two signatures s; and s;, and UiLzlsi =V. We create
a hashtable h(s) for each signature s. We generate a k-size {b; --- by} hash key
for each data point p for a signature s by concatenating the bin ids of p obtained
from the polar grids of the viewpoints v € s. All the data points are hashed into

the hashtable h(s) using their k-size keys by a standard hashing technique. A

29

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

point is stored by its identifier in the hashtable. Each hashtable h(s) defines an
intersection over k polar grids. The space cost of L hashtables is L x N, which is
k times less than the space cost of storing n, polar grids (n, x N).

We describe the creation of hashtables with an example. Let V={vq, v,
v3, v4} be a set of n,=4 viewpoints. We create two signatures s;={vy,v2} and
So={v3, v4} for k=2. We create hashtables h(s;) and h(sg) for signatures s; and
sq respectively. Let the bin ids of a point p in the polar grids of viewpoints vy,
v9, v3, and vy be by, be, bz, and by respectively. Then, point p is hashed into A(s;)
and h(sg) using keys b1by and bgby respectively.

We also maintain a bit array called isEmpty for each polar grid G(v). The
size of this bit array is equal to 1 if 7,,,,=0 and is equal to ((|7mez/ wr] + 1) X
([180°/wg| + 1)) if rmar > 0. The actual memory footprint of a bit array is
negligible. A bin’s id in a polar grid G(v) is its index in the bit array of G(v). All
the bits corresponding to empty bins of a polar grid G(v) are marked true.

The index structures of MP are created as follows. We split all the data points
into n, mballs. We assign a unique identifier to each mcenter. We store mcenters
in an associative array using their identifiers as keys. We store the identifier and
the distance of the nearest mcenter for each data point in associative arrays using

the point’s identifier as key.

30

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

2.3.3 Search Algorithm

In this section, we present the search algorithm for SIMP to retrieve candidates
for a query ¢(r,) using the data structures of SIP and MP. SIMP performs a
sequential scan on these candidates to obtain the near neighbors of the query.

In the SIP step, SIMP first finds the nearest viewpoint v; to the given query
point g. Then it obtains hashtable h(s) corresponding to vy, i.e., v; € s. SIMP
computes the keys of the buckets of h(s) containing the candidates of the query
q(ry) as follows. For a query ¢(r,), SIMP finds a set of bins enclosing the gball
of the query from the polar grid of each of the k viewpoints v € s. SIMP takes
a cartesian product of these k sets to get the keys of the buckets containing
candidates. The union of the data points in these buckets gives the set of can-
didates from the hashtable h(s). For example, let viewpoints {v1,v2} be the
signature s of hashtable h(s) for k=2. Let {b11,b12} be the set of bins of polar
grid G(vq) and {ba1, baa} be the set of bins of G(vy) enclosing the gball of the query
q(ry). The union of the data points contained in the buckets of h(s) having keys
{b11b21, b11b29, b1obo1, b1abas } gives the set of candidates from A(s).

We explain here the method to determine a set of bins of a polar grid G(v)
that encloses the gball of a query ¢(r,) relative to a viewpoint v. We first compute
the bounding range B={[ry, 2|, [01,62]} of the gball relative to the viewpoint v

as shown in Figure 2.3. Let d(q,v) be the distance of the query point ¢ from the

31

Chapter 2. SIMP: Accurate and Efficient Near Neighbor Search in High-

Dimensional Spaces

Algorithm 1 getBins

In: g(rq): query, d(q,v): distance of query from the viewpoint v
In: 0: angle of the query relative to ov
: A: isEmpty bit array of G(v)
BC «— ¢ /* ids of enclosing bins */
(71, r2],[61, 2] < bounding range of the gball of ()
start BinR « |71 /w, |, endBinR « |rq/wy, |
startBind « |01 /wg |, endBinf «— |65 /wy]|
for all r; € [startBinR, endBinR| do

for all §; € [startBinf, endBinf] do

BC «— BC U (Ti X (L180°/w9j + 1) +92)

end for
end for
: for all b € BC do
if A[b] is True then

BC + BC\'b
end if
: end for
: return BC

-

e e N e T

viewpoint v. The values of r; and r, are obtained as follows:

d(q,v) —ry if r, < d(q,v)

0 if 7, > d(q,v)
ro = d(q,v)+r,

We find the aperture ¢ of the gball of ¢(r,) relative to v as follows:

o=2x sz’n_l(Tq/d(qz v)).

32

(2.4)

Chapter 2.

Dimensional Spaces

SIMP: Accurate and FEfficient Near Neighbor Search in High-

Algorithm 2 SIMP

In:
In:
In:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18:
19:
20
21
22
23
24
25
26
27
28
29
30
31

q(rq): query, H: set of hashtables
Z: array containing the nearest mcenter of each data point
pz: array of distances of the points from their nearest mcenter

: C «) /*candidate set */

! v1 <« nearest viewpoint to g
t h(s) «— H(vi € 3)

1Y «— [1]

: for all v € s do

BC' « getBins(q(rgq), d(q,v), 0, isEmpty)
Y «—Y x BC

: end for
: for all key € Y do

C — C U points € hlkey]

: end for

1 /* Metric Pruning */

1 gz « [] /* list of distances of mcenters z from g*/
: for all c€ C do

2z «— ¢’s nearest mcenter from Z
if gz[z] # Null then

d «— qz[z]

else
& — qzl2] — d(g.2)

end if

if | pzlc] = d’ |> rq then
C—C\c

end if

: end for

1 /*Sequential search */
: for allce C do

if d(g,c) > rq then
C—C\c
end if

: end for
: return C

We determine angle 6 of the query point g relative to viewpoint v and its angular

vector ov using Equation 2.1. The values of 8; and 6y are given by

(

0r=19 0° if 9/2 >0

33

0—¢/2 ifp/2<0

0° if r, > d(q,v)

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

(

0+¢/2 i (¢/2+0) < 180°

02

180° if (¢/2 4) > 180° (2.6)

180° if r, > d(q.v)

\

We compute the bins from a polar grid G(v) using the bounding range B={[r,
7o],[01, O]} as described in Algorithm 1. We first obtain the set of bins enclosing
the gball of the query for radial partitioning and angular partitioning indepen-
dently in steps 3 and 4 respectively. We iterate through these bins to compute a
set of bins of G(v) that encloses the gball in steps [5-9]. We remove empty bins
from this set using isEmpty bit array of G(v) in steps [10-14].

In the MP step, SIMP uses triangle inequality between a candidate obtained
from SIP step, candidate’s nearest mcenter, and the query point ¢g. It retrieves
the nearest mcenter z of a candidate and the distance to the mcenter d(p, z) from
the index. SIMP computes the distance d(q, z) between the mcenter z and the
query point g. SIMP discards a candidate if r, <| d(p, z) — d(q, z) |.

We describe the execution of SIMP using Algorithm 2. Spatial intersection
pruning is performed in steps [1-11]. SIMP finds hashtable h(s) whose signature
s contains the nearest viewpoint vy to the query point ¢ in steps [2-3]. For each
viewpoint v in signature s, SIMP obtains a set of bins BC' enclosing the gball of

the query g(r,) in step 6. SIMP computes a set Y of hash keys by a cartesian

34

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

product of the set of bins BC' in step 7. SIMP takes a union of the points in the
buckets of hashtable h(s) corresponding to the hash keys Y in steps [9-11]. Next,
SIMP applies metric pruning in steps [13-24]. For each candidate, SIMP gets the
identifier of its nearest mcenter 2z from a pre-computed array Z in step 15. SIMP
computes the distance of the query ¢ from z if it is not previously computed;
otherwise it retrieves the distance from an array ¢z in steps [16-20]. A candidate
is tested using the triangle inequality in step 21. Finally, all the true neighbors
are obtained by computing the actual distance of each of the candidates from the
query point in steps [26-29].

Extension to nearest neighbor search: The SIMP algorithm for »-NN
search can be extended for top-k nearest neighbor search using the approach
proposed by Andoni et al. [49]. For a dataset, an expected distance F(r) of top-k
nearest neighbors from query points is estimated under the assumption that the
query distribution follows the data distribution. We start the »-NN search with
r=E(r). If no nearest neighbor is obtained, then we repeat SIMP with range

((14 ¢) x r) until at least k points are retrieved.

35

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

2.4 Statistical Cost Modeling and Analysis

We develop statistical models to measure the query costs of SIMP. For a query
q(r,), the number of buckets of a hashtable probed in steps [5-11] and the number
of candidates C' to which distance is computed in steps [26-30] of Algorithm 2
define the cost of SIMP. We develop models to find the expected number of buckets
of a hashtable h(s) probed and the expected number of candidates obtained for a
query q(rq).

Data distribution: For a viewpoint v and a point p, let r=d(p,v) be the
distance of p from v and 6 be the angle of p relative to v’s angular vector ov.
Let P,(r,) be the spatial probability mass function of the data space relative to
the viewpoint v. A hashtable h(s) defines an intersection over k viewpoints. Let
[, 6] represent the list [r;, 6;]%_ ;. We represent a point p relative to k viewpoints
of a hashtable h(s) as p([r,]), where [r, 0] is the list of distances and angles of p

relative to all the viewpoints v € s.

p([r, 0]) = [UE_(ry,, 6,,) for all v; € 5] (2.7)

Let P([r, 6]) be the joint spatial probability mass function of the data space over k
viewpoints. Let @ be the query space. The joint spatial probability mass function

Q([r, 8]) of the query space is taken to be similar to the data space mass function

36

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

P([r, 0]). All the expectations are computed with respect to query mass function
Q([r, 0]). A query q(r,) is represented as q(rq, [r, 6]) relative to k viewpoints.
Expected number of hash buckets probed: We compute the set of bins
BC of a polar grid G(v) enclosing the gball of the query ¢(r,) using Algorithm 1.
All the bits of isEmpty bit array are taken to be false. The total number of
buckets Y ([r,0]) of a hashtable h(s), whose signature s has k viewpoints, probed

for a query q(r,, [r, 0]) is given by

k
Y(r, 6)) =] I BC., |
i=1
The expected number of buckets probed in a hashtable h(s) is obtained by taking

a sum over the query space @ with respect to the query mass function Q([r,d]).

QI
E(Y) = ZY([T: 02) x Q([r,0].) (2.8)

Expected number of candidates: To obtain the expected number of can-
didates F(C), we first derive the probability of a random point p being chosen as
a candidate by spatial intersection pruning. The bounding range B={[ry, r2],[01],
6>]} of the gball of a query ¢(r,) relative to a viewpoint v is obtained as discussed
in Section 2.3.3. For a viewpoint v, the probability that p is selected as a candidate
is

Pr,(p is candidate) = Pr(p € B)

02 12
= D) D> Pur.0).
0, T

37

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

For k viewpoints, a random point p is a candidate only if p lies in the intersection
of the bounding ranges of all the k viewpoints. Let {Bj, - -+, B} be the bounding
ranges with respect to k viewpoints. Then, the probability that p is a candidate
is
Pr,(p is candidate) = Pr(p € BN ---N By).

The intersection of the bounding ranges of k£ viewpoints is not independent. There-
fore, to obtain the probability Pr,(p is candidate), we compute the bounding vol-
ume of the gball of query ¢(r,) for each viewpoint v independently. The bounding
volume for a viewpoint v is obtained by a cartesian product of the bounding dis-
tance and angular ranges of the gball relative to v. The joint bounding volume of

k viewpoints is obtained by
k
Vol = []Iri. 5] x [63.65].
i=1
The probability that a random point p is a candidate, if k£ polar grids are used, is
obtained by taking a sum of the joint spatial probability mass function P([r,8])
of the data space over the joint volume

Pr31P(p is candidate) = ZP([T, 0]). (2.9)

Vol

Next, we derive the probability that a random point p is chosen as a candidate

by metric pruning. The distance probability distribution of points of a data space

38

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

relative to a point p; is given by

Fpu(r) = Pr(d(p, p) <7).

The probability that a random point p, having the nearest mcenter z, is a candi-

date for a query q(r,) is

PrMP(pis candidate) = Pr(| d(p,2) —d(q, 2) |[< ry)

= Fu(ry) (2.10)

where F, is the distance distribution of | d(p, z) — d(q, z) | relative to ¢. It is not
feasible to compute F, at runtime or store it for all possible queries. Therefore, we
approximate it with 7 , which is the distance distribution of | d(p, 2) — d(z,. 2) |
relative to the nearest mcenter z, of the query point q.

The probability of a random point p being chosen as a candidate for query

q(ry, [, 0]) using both SIP and MP is:

J\/[P(

Pr(peandidate) = Pr™"" (p is candidate)

x Pro7(p is candidate) (2.11)

The total number of candidates C' for a query q(r,, [r, 0]) is given by C=Pr(p is cand) x
N, where N is the dataset size. The expected number of candidates F(C) is ob-

tained by taking a sum over the query space () with respect to query mass function

39

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

([, 9]).
Q]
E(C) = ZPr(p is candidate) x Q([r,6],) x N (2.12)

=1

It is worth noting that Equation 2.12 gives the expected number of candidates
E(C) for Algorithm SIMP. If the distance probability distribution F’, of the data
points relative to the query point ¢ is known, then the actual number of candidates
is Fq(rq) x N.

We empirically verified the robustness of our model for E(C') using error ratio

¢ If E(C,) is the average number of candidates obtained empirically, then
§=| E(Ca) = E(C) | /E(Cd) (2.13)

We computed £(%) for multiple query ranges r, and various number of mballs n,
on two real datasets of dimensions 128(SIFT) and 256 (CHist) which are described
in Section 2.5. The values of £(%) are shown in Table 2.2. We see that (%) on
both the datasets is less than 1% for all query ranges r, and the number of balls
n,.

Space complexity: SIMP has a linear space complexity in the dataset size
N. We compute the memory footprint of SIMP for a d-dimensional dataset having
N points. Let the space usage of a word be W bytes. Let each dimension of a
point take one word. Then, the space cost of the dataset is (N xdx W) bytes. Let

a point identifier take one word. A point is stored by its identifier in a hashtable.

40

Chapter 2. SIMP: Accurate and Efficient Near Neighbor Search in High-
Dimensional Spaces

d=128 d=256
rq | 7.=5,000 | n,=15,000 | ry | 7.=5,000 | n,=15, 000
50 | 0.947 0.947 [300 | 0.703 0.693
100 | 0.953 0.952 | 400 | 0.698 0.687
150 | 0.954 0.954 | 500 | 0.739 0.733
200 | 0.954 0.054 | 600 | 0.743 0.734

Table 2.2: Error ratio £(%) for expected number of candidates E(C') for varying
query ranges r, and varying number of mballs n,.

Therefore, the space required for . hashtables is (L x N x W) bytes. The space
cost of n, mcenters is (n, x d x W) bytes. (N X loga(dmaz) + N X loga(n.)) bytes
are required to store the distance and the identifier of the nearest mcenter for
each point. d,,., is the maximum distance of a point from its nearest mcenter.
We fairly assume that [0ge(dne:) < W and loga(n,) < W/2. Therefore, the total
memory footprint is N x W x (d+ L+ (n,/N)d+1+1/2) bytes =ax N xW o N.
Here, a is a constant proportional to d and W is a constant. Thus, we see that

the space complexity of SIMP is O(N).

2.5 Empirical Evaluations

We empirically evaluated the performance of SIMP on five real datasets. We
compared SIMP with four alternative methods: (1) p-stable LSH [31], (2) Multi-
Probe LSH [87], (3) LSB tree [122], and (4) iDistance [60]. All these methods are

briefly described in Section 2.2. p-stable LSH and iDistance are state-of-the-art

41

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

methods for an approximate and an exact search respectively, while Multi-Probe
LSH and LSB tree have been recently proposed. We first introduce the datasets
and the metrics used for measuring the performance of the algorithms. Then
we describe the query workload for our experiments and the construction of an
specific instance of SIMP index. Next we describe the performance comparison of
SIMP with the alternative methods. Finally, we show scalability results of SIMP
on datasets having as many as 100 million points.

Dataset description: We used 5 real datasets of various dimensions and sizes
for our experiments. The first real dataset, called STF'T, contains 128-dimensional
1 million SIFT [86] feature vectors extracted from real images [61]. SIFT is a state-
of-the-art feature used for content based image retrieval and object recognition.
The second dataset, called SIFT10M, and the third dataset, called SIFT100M,
has 10 million and 100 million 128-dimensional SIFT feature vectors of real images
respectively. We obtained these three datasets from INRIA Holiday dataset!. All
pairs distance distribution of 100, 000 SIFT feature vectors is shown in Figure 2.7.
The distance distribution of all the feature vectors in SIFT10M dataset relative
to a randomly chosen feature vector is shown in Figure 2.8. The distance in

Figure 2.7 and Figure 2.8 is scaled to have a maximum value of 1.

Thttp://lear.inrialpes.fr /jegou/data.php

42

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

0.006
0.005 r
0.004 r
0.003 r

Probability

0.002 r
0.001 r

0 02 04 06 08 1
Distance

Figure 2.7: All pairs distance distribution of 100,000 128-dimensional STFT
feature vectors.

0.007
0.006 r
0.005 r
0.004 r
0.003 r
0.002 r
0.001

0

Probability

0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Distance

Figure 2.8: The distance distribution of all the feature vectors in SIFT10M
dataset relative to a randomly chosen feature vector.

The fourth real dataset, called CHist, has 256-dimensional 1,082,476 color
histograms of images. For this, we downloaded random images from Flickr®. We

transformed each image into gray-scale. Then we extracted a 256-dimensional

Zhttp://www.flickr.com/

43

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

histogram from each image by counting the number of occurrences of each color
in the image. The fifth dataset, called Aerial [116], has 10 million points of 32
dimensions. We obtained 82,282 gray-scale aerial images from the Alexandria
Digital Library®. These aerial images are satellite images and air photos of dif-
ferent regions of California. The size of these images varies from 320 x 160 pixels
to 640 x 480 pixels. We split each of the aerial images into non-overlapping tiles
of size 32 x 32 pixels. The total number of tiles obtained are 10, 625,200. We
computed a 32-dimensional histogram of the pixel values of each tile in a manner
similar to Color Structure Descriptor [90].

Performance metrics: We measured the performance of the algorithms us-
ing following metrics: (1) recall, (2) selectivity, (3) query time, and (4) space usage.
These metrics validate the quality of results, the efficiency, and the scalability of
the algorithms. Recall measures the result quality of an algorithm. It is the ratio
of the number of the true neighbors retrieved by an algorithm to the total number
of the true neighbors in the dataset for a query. The true near neighbors of a query
in a dataset are obtained using sequential search. iDistance and SIMP have 100%
recall. The efficiency of the algorithms are measured by their selectivity, query
time, and space usage. Selectivity of an indexing scheme is the percentage of the

data points in a dataset for which the actual distance from the query is computed.

3http://www.alexandria.ucsb.edu/

44

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

Query time is the elapsed CPU time between the start and the completion of a
query. We verify the space efficiency of the algorithms by computing the memory
footprints of their index structures. The main factors governing the query cost of
SIMP are the dataset size N, the dataset dimension d, and the query range r,.
We verify the scalability of SIMP by computing its query time for varying values
of N, d, and r,. We observed a sequential search time of 311ms for SIFT, 603ms
for CHist, 774ms for Aerial, 3,209ms for SIFT10M, and 28, 000ms for SIFT100M.

Query workload: We randomly picked 1,000 query points from each of the
STFT, CHist, and Aerial datasets. We used the queries of SIFT also for both
SIFT10M and SIFT100M. Each result on a dataset is reported as an average over
all its query points. We performed experiments for multiple query ranges r, for
cach query point g. We used query ranges r,= {50, 100, 150, 200} for SIFT,
Aerial, SIFT10M, and SIFT100M and query ranges r,={300, 400, 500, 600} for
CHist. For a dataset, query ranges are chosen such that at least 90% of its data
points have their top-1 nearest neighbors within the largest query range. We
computed the cumulative mass function of distances of top-1 nearest neighbors of
a large set of random query points from each dataset. We found that more than
90% of the queries of SIFT, Aerial, SIFT10M, and SIFT100M have their top-1
nearest neighbor within a query range of 200. The same was true for the query

range of 600 for CHist.

45

Chapter 2. SIMP: Accurate and Efficient Near Neighbor Search in High-
Dimensional Spaces

SIMP index: Here we describe a specific construct of SIMP index. The
viewpoints for SIMP are picked randomly from the dataset. SIMP uses a fixed
signature size of k=4 for its hashtables. The number of hashtables L is decided
based on the memory constraints. We used two values of L={1, 25} for our
experiments. SIMP requires values of w, and wy to create polar grids. A fixed
value of wy=45° is used for creating the polar grids. The value of w, is learned for
each dataset by training. For our experiments, we chose a training query range
ro and also randomly picked a set of query points from each dataset. Then we
measured the performance of SIMP for a set of values of w, using ry and the query
points. We chose the value of w, which produced the best result for the dataset.
We used k-means clustering to find mballs and mcenters for metric pruning (MP).
For our experiments, we used n.=5, 000 mballs for metric pruning.

All the experiments were performed on Debian GNU /Linux 5.0 and quad-core
Intel(R) Xeon(R) CPU 5,140@2.33GHz with 4MB cache. All the programs were

implemented in Java. We used Java Hotspot 64-bit (16.3 build) Server VM.

2.5.1 Performance comparison with p-stable LSH and iDis-
tance

We present the performance comparison of SIMP with p-stable LSH [31] and

iDistance [60] on SIFT, CHist, and Aerial datasets. We first describe the settings

46

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

of the algorithms used for comparative studies. Then we give empirical evidences
to show that SIMP is much superior than LSH on the result quality. Next we em-
pirically show that SIMP is much more efficient than iDistance for all datasets and
query ranges. We also show that SIMP scales linearly with the dataset dimension
d and the query range r,. The scalability of SIMP with the dataset size is shown
in Section 2.5.3. Finally, we compare the space efficiency of these algorithms.
We used following settings of the algorithms for comparison. We implemented
p-stable LSH similar to Datar et al. [31] for Euclidean norm. The parameters of
LLSH are the number of hashtables L, the number of hash values &’ concatenated to
generate a hash key, and the bin-width w used to bucket the projected values. We
used the same number of hashtables L=25 for both LSH and SIMP. We learned
the values of £’ and w for LSH. We chose the query range ro=50 for SIFT and
Aerial and the query range =300 for CHist for learning the parameters &’ and
w of LSH and the parameter w, for SIMP. We measured the performance of LSH
for a set of values of k£’ and w on each dataset using the training query range rq
and a set of randomly picked query points. We chose the values of &' and w for
which LSH had 100% recall with the least query time. For LSH, we learned the
values w=1, 700 and k'=8 on CHist, w=350 and £’=8 on SIFT, and w=250 and

kE'=8 on Aerial. For SIMP, we learned the values w,=300 on CHist, w,=30 on

47

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

SIFT, and w,=100 on Aerial. We used n,=5, 000 mballs for SIMP. We used the
mecenters of these mballs as reference points for iDistance.

We observed that SIMP always guarantees 100% quality compared to LSH
whose quality falls below 50% for larger query ranges. We show the performance
of the algorithms on CHist, SIFT, and Aerial datasets in Figures 2.9, 2.10, and
2.11 respectively. We see that SIMP and iDistance have 100% recall on datasets
of all sizes and dimensions and for all query ranges. Unlike SIMP, the recall of
LSH falls rapidly with an increase in the query range. LSH had a recall of only
21.6% for r4=200 on Aerial dataset.

Our empirical results show that SIMP has a superior performance than iDis-
tance on datasets of all sizes and dimensions and for all query ranges. Both
the methods always yield 100% result quality but SIMP significantly outperforms
iDistance in efficiency. We see from Figures 2.9, 2.10, and 2.11 that iDistance
has larger query time and selectivity than SIMP on all the datasets. This differ-
ence in performance widens with an increase in the dimension of the datasets and
the query range. SIMP had a selectivity of 5% compared to 42% selectivity of
iDistance on CHist dataset for the query range r,=300 as seen in Figure 2.9.

We observed that the selectivity and the query time of SIMP grows linearly
with the dataset dimension d and the query range r,. We see from Figures 2.11

and 2.10 that SIMP has a selectivity of 0.2% and 0.7% on 32-dimensional Aerial

48

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

[———
oo e |
. 98y]
g g7} ., |
§ 96 | sequential Search]
c 95 LSH(L=25) -
ga | SIMP(L=25)
iDistance-5000 e g
93 +]
92 :
300 350 400 450 500 550 600
Query Range
(a) Recall
600 : " . I .
< 400 [""Sequential Search |
£ LSH(L=25)
i= 300 SIMP(L=25)
e iDistance-5000 e
S 200 r
(€]
T —]

0
300 350 400 450 500 550 600
Query Range

(b) Query Time

100
Sequential Search

g % LSH(L=25) |
> SIMP(L=25)
s 60 r iDistance-5000 |
° 40 7
%)

20 Ty 4

0
300 350 400 450 500 550 600
Query Range

(¢) Selectivity

Figure 2.9: Comparative study of performance of SIMP with p-Stable LSH and
iDistance on 256-dimensional CHist dataset.

49

Chapter 2.
Dimensional Spaces

SIMP: Accurate

and FEfficient Near Neighbor Search in High-

Figure 2.10: Comparative study of performance of SIMP with p-Stable LSH and

Recall (%)

Query Time (ms)

Selectivity (%)

100
90
80
70

60 r

50
40
30

300
250
200
150
100

50 |

100

©
o

o2}
o

D
o

n
o

o

Sequential Search
H(L=25)
SIMP(L=25)
iDistance-5000

60 80 100 120 140 160 180 200
Query Range

(a) Recall

Sequential Search
LSH(L=25) -
SIMP(L=25) -
iDistance-5000 -

60 80 100 120 140 160 180 200
Query Range

(b) Query Time

Sequential Search
LSH(L=25) -
SIMP(L=25) -
iDistance-5000

60 80 100 120 140 160 180 200
Query Range

(¢) Selectivity

iDistance on 128-dimensional SIFT dataset.

50

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

100 frer
90 e,]
80]
= 60]
8 50
T 40 Sequential Search
30 | LSH(L=25) -
SIMP(L=25) -
20 I iDistance-5000 -
0
60 80 100 120 140 160 180 200
Query Range
(a) Recall
g0 f T
700 ¢]
g 600]
o 500 | Sequential Search 1
£ LSH(L=25)
Eo 400 SIMP(L=25)]
S 300 iDistance-5000 e 1
& 200 e
100 | e
0 I L L L L L L
60 80 100 120 140 160 180 200
Query Range
(b) Query Time
100
~ 80 r Sequential Search 1
< LSH(L=25)
> 60 SIMP(L=25)]
S iDistance-5000
3 40t]
[0
(9]
20 1
0 ‘ ‘ ‘ ‘ ‘

60 80 100 120 140 160 180 200
Query Range

(¢) Selectivity

Figure 2.11: Comparative study of performance of SIMP with p-Stable LSH and
iDistance on 32-dimensional Aerial dataset.

ol

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

and 128-dimensional SIFT datasets respectively for the query range 50. This
shows that the selectivity of SIMP grows linearly with d. From Figure 2.9, we
see that the selectivity of SIMP grows from 5% for r,=300 to 17% for r,=600 on
CHist dataset. This validates that the selectivity of SIMP grows linearly with r,.
The small values of the selectivity of SIMP on all the datasets verify that SIMP
effectively prunes false candidates using its index structure. The linear behavior
of SIMP with d and 7, is further confirmed by its query time on all the three
datasets. We see from Figure 2.9 that the query time of SIMP grows linearly from
50ms for 7,=300 to 150ms for r,=600 on CHist. The query time of SIMP also
increases only linearly with d.

It is evident from the empirical results that SIMP is a superior alternative
for an accurate and efficient »-NN search. p-stable LSH and SIMP have similar
performance for the training query range ro. With an increase in the query range
rq > 7o, the search quality of p-stable LSH falls sharply, whereas SIMP gives 100%
result quality with only a linear increase in the search cost. Further, p-stable LSH
is inefficient for queries with 7, < ry. Thus, we see that LSH index structure
created for a fixed query range ry can not handle queries with varying query
ranges accurately and efficiently. SIMP performs much better than iDistance
across all the datasets of various dimensions. The performance difference between

SIMP and iDistance grows with an increase in the dimension of the dataset. The

52

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

poor performance of iDistance is because of its multiple searches on the B+ Tree
and high selectivity. iDistance searches B+ tree for each mball intersected by an
r-NN query.

Space cost comparison: We now discuss the space costs of SIMP, p-stable
LSH, and iDistance. We compute memory footprints of the algorithms for CHist
dataset using parameters W=4, N=1,082, 476, L=25, d,,.=22, 500, and n,=5, 000.
Amae 18 the maximum distance of any point from its nearest mcenter. The space
cost of the dataset for each algorithm is (N x d x W)=1,109MB. The memory
footprint of LSH index is (N x W x L)=108MB and SIMP index is (N x W x L) +
(n, xdx W + N X logs(dmaz) + N X loga(n,))=117TMB. The extra space usage of
SIMP over p-stable LSH is from the data structures of the metric pruning. This
overhead remains constant for any value of L. The index structure of iDistance
needs a total of 14MB space. Each entry of iDistance needs 32 bits for storing
its distance from nearest mcenter as key and 32 bits to store a pointer to a child
node or a data object. Each leaf node also needs 8 bytes for storing pointers of
its neighboring nodes. iDistance needs 5.12MB for storing 5,000 mcenters. We
take 512 entries per node for B+ tree of iDistance. For L=1, the memory usage

of SIMP and iDistance is the same.

53

Chapter 2. SIMP: Accurate and Efficient Near Neighbor Search in High-
Dimensional Spaces

2.5.2 Performance comparison with Multi-Probe LSH and

LSB Tree

Here we describe the performance comparison of SIMP with Multi-Probe
LSH [87] and LSB tree [122] on 128-dimensional SIFT and 256-dimensional CHist
datasets. We first describe the settings of the algorithms used for the comparison.
Then we present results to show that SIMP significantly outperforms both Multi-
Probe LSH and LSB tree on all the datasets for all the query ranges. Finally, we

compare the space efficiency of the algorithms.

Dataset t f py | m | L Hopo u B w
SIFT 217 | 15| 0.61 | 24 | 354 | 478019 | 18 | 4096 | 4
CHist | 22500 | 23 | 0.61 | 26 | 521 | 1.3327E8 | 27 | 4096 | 4

Table 2.3: Parameters of LSB Tree and LSB Forest for two real datasets.

We used a similar index structure for Multi-Probe LSH as p-stable LSH. We
implemented the Query-Directed probing sequence algorithm for Multi-Probe LSH
as it was shown to perform better than the step-wise probing sequence [87]. Multi-
Probe search algorithm does not have a terminating condition, whereas LSB search
algorithm has a terminating condition for top-k search. Therefore, we made the
following choices for the termination of Multi-Probe and LSB Tree in order to have
a meaningful comparison, based on both quality and efficiency, with SIMP for r-

NN queries. We terminated Multi-Probe after a fixed number of probes P. LSB

o4

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

search was terminated for a fixed selectivity S that is the percentage of the dataset
explored by LSB search as candidates. We did not compare against LSB forest
because of its high space overhead, which can be observed from its parameters in
Table 2.3 and has also been noted by the authors. We used L=1 hashtable for
both Multi-Probe and SIMP. We used n,=>5, 000 mballs for SIMP. We learned the
values w,=300 and w,=50 on CHist and SIF'T datasets respectively for SIMP. We
learned the values w=1, 700 and £’'=8 on CHist and w=350 and &’=8 on SIF'T for
Multi-Probe.

A performance comparison of the algorithms on SIFT and CHist datasets
are shown in Figures 2.12 and 2.13 respectively. We measured the performance
of Multi-Probe for P=6, 000 probes and LSB tree for the selectivity S=25% on
SIFT dataset. We used P=1.500 probes for Multi-Probe LSH and a selectivity
S=40% for LSB tree on CHist dataset. Figures 2.12 and 2.13 show that the recall
of both Multi-Probe LSH and LSB tree decreases with an increase in the query
range, while SIMP has 100% recall for all query ranges. Multi-Probe had a recall
of 90% and LSB had a recall of 79% for the query range 200 on SIFT dataset
as seen from Figure 2.12. These results verify that SIMP always yields superior
result quality than Multi-Probe and LSB.

We empirically found that SIMP is much more efficient than Multi-Probe and

LSB tree. We see from Figures 2.12 and 2.13 that both Multi-Probe and LSB

95

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

105
100
;\3 90 | g
S 85]
é}j 80 |
S Sequential Search |
70 | MP-6000 -]
65 | 88250000 -]
60 L= :
60 80 100 120 140 160 180 200
Query Range
(a) Recall
500 57— ; I ; : | .
. 400 r q
E
o 300F B
S Sequential Search
= 00 | MP-6000 |
S LSB-250000 -
=1 SIMP
(@] 100 e 1
0 P)))))) |
60 80 100 120 140 160 180 200
Query Range
(b) Query Time
100 f— ‘ ‘ ‘ ‘ ‘ ‘
Sequential Search
. 80} MP-6000 =]
2 LSB-250000 - o
_é‘ 60 L SlMP 1
>
k3]
L) 40 1
[0
(/) "
20

60 80 100 120 140 160 180 200
Query Range

(¢) Selectivity

Figure 2.12: Comparative study of performance of SIMP with Multi-Probe LSH
(MP) and LSB Tree on 128-dimensional SIFT dataset.

56

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

105 ‘ ‘ ‘ ‘ ‘]
-
©
8 85] .]
o Sequential Search

80 MP-1500 - 1

LSB-400000 - .
75 S|MP 4
70

300 350 400 450 500 550 600
Query Range

(a) Recall

800 Fromermresm e
700} 7
£ 600 | i .
< MP-1500 -
2 500 | LSB-400000 |
=400 | SIMP v |
2 300t 7
>
&G 200f]

10 (0N 1

0 ‘ ' : L .
300 350 400 450 500 550 600
Query Range
(b) Query Time
100 ‘ ‘ ‘ ‘ ‘
Sequential Search

< 9 MP-1500 -]
< LSB-400000 e
2 607 SIMP e |
=
3
S 40+ .) |
Q
[9p]

20 1T 1

0
300 350 400 450 500 550 600
Query Range

(¢) Selectivity

Figure 2.13: Comparative study of performance of SIMP with Multi-Probe LLSH
(MP) and LSB Tree on 256-dimensional CHist dataset.

o7

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

have larger selectivity and query time than SIMP for all query ranges r, on both
the datasets. For r,=50 on SIFT dataset, Multi-Probe was 24 times slower and
had 24 times more selectivity than SIMP. For r,=50 on SIFT dataset, LSB was
17 times slower and had 12 times more selectivity than SIMP. SIMP was also
significantly better than LSB Tree and Multi-Probe on CHist dataset.

Our empirical evidences show that SIMP, that guarantees 100% quality, is a
superior alternative for an accurate and efficient »-NN search over Multi-Probe
LSH and LSB tree. Multi-Probe is a heuristic with no performance and quality
guarantees. A large number of probes improves the result quality of Multi-Probe
but worsens its efficiency. Multi-Probe yields a high query time for a large number
of probes because of the high cost of the computation of the probing sequence and
a high selectivity. The poor performance of LSB can be mainly attributed to two
reasons. First, m-dimensional points obtained after projections are indexed into
a B-Tree based on their z-order values. The value of m increases with an increase
in the database size and dimension for constant values of the other parameters.
It is well known from the literature that the performance of tree-based indices
deteriorate for large dimensions, and so does B-Tree based LL.SB tree. The value
of m is 24 for SIFT and 26 for CHist as seen in Table 2.3, which are sufficiently
large to make the LLSB tree inefficient. Second, its query time increases with an

increase in candidate size because of a large number of bit operations required for

o8

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

computing LLCP between two z-orders. The size of a z-order value is m x u=24 x
18=432 bits for SIFT dataset and 26 x 27=702 bits for CHist dataset.

Space cost comparison: Here, we discuss the space costs of each of the algo-
rithms using parameters d=256, N=1, 082,476, W=4, L=1, and n,=5,000. The
space cost of the dataset for each algorithm is 1, 109MB. The memory footprint of
Multi-Probe index is 4.5MB and SIMP is 13MB. The hashtables of Multi-Probe
LSH and SIMP store only the identifier of a point, which takes one word (W
bytes). The extra space usage of SIMP over Multi-Probe is again from the data
structures of metric pruning. We compute the memory required by L.SB tree using
the parameters of CHist shown in Table 2.3. We use 512 entries per node for LSB.
Each entry of LSB tree stores a z-order value (to compute LLCP) as key and a
pointer to a child node or a data object. A z-order value needs m x u=702 bits for
storage and a pointer needs 32 bits of storage. LSB tree also needs to store for-
ward and backward pointers of the immediate neighbors of each leaf node. Thus,
the total space required for LSB is 100MB. For L=1, we find that the memory
footprint of LLSB is at least 7 times worse than SIMP and 22 times worse than
Multi-Probe. For L=2, L.SB takes 200MB whereas the space cost of SIMP and
Multi-Probe increase only by 4.5MB (for storing an extra hashtable) to 17.5MB

and 9MB respectively.

59

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

2.5.3 Large Scale Performance Evaluation

We validated the scalability of SIMP on 128-dimensional real datasets of sizes
up to 100 million. Our stress tests reveal that SIMP scales linearly with the
dataset size and the query range at very high dimensions. We already showed
in Section 2.5.1 that SIMP scales linearly with the dataset dimension. We also
further compared SIMP with p-stable LSH for a large workload of 14,700 queries
on 128-dimensional SIFT10M dataset having 10 million points. This test again
confirmed that SIMP efficiently and accurately queries near neighbors for any
query range, while p-stable LSH has a very poor recall for query ranges larger
than the training query range ro. We used a value of w,=30 and n,=5,000 for
SIMP for these studies.

We computed the selectivity and the query time of SIMP on SIFT, STF'T10M,
and SIFT100M datasets to verify its scalability. We computed these values for
varying number of hashtables L={1, 25} and varying query ranges r,. We show
the selectivity and the query time of SIMP in Figures 2.14 and 2.15 respectively.
Each result is an average over 1,000 random queries. These results reveal that
SIMP has similar selectivity for the dataset of any size for a given r, and L. This
property implies that SIMP scales linearly with the dataset size. This is further
confirmed by the query time of SIMP. We see from Figure 2.15 that the query time

of SIMP increases approximately 10 times with 10 times increase in the dataset

60

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

25 : : ‘ ‘

SIMP(L=1, N= 1 million) ——

SIMP(L=1, N= 10 million) - o
SIMP(L=1, N= 100 million)

20 SIMP(L=25, N= 1 million) ===~

SIMP(L=25, N= 10 million) =

SIMP(L=25, N= 100 million) ----=---

Selectivity (%)

60 80 100 120 140 160 180 200
Query Range

Figure 2.14: Selectivity of SIMP on 128-dimensional real datasets of varying
sizes for varying number of hashtables L.

for a given r, and L. We also observed that the query time of SIMP has a linear
behavior with the query range.

SIMP had a query time of 0.4 seconds on 100 million points for r,=50 and L=25
compared to 28 seconds of sequential search. For SIFT100M dataset, we observed
by random sampling that every point has at least one near neighbor within the
query range 50. This shows that SIMP can be used to efficiently and accurately
find the nearest neighbors in very large datasets of very high dimensions.

The comparative results of SIMP with p-stable LSH on SIFT10M dataset for

14,700 random queries is shown in Figure 2.16. We used a value of L=25 for both

61

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

100000 \

SIMP{L=1, N= 1 million) ——
SIMP(L=25, N= 1 million) ««e--
SIMP(L=1, N= 10 million) -
SIMP(L=25, N= 10 million) -
~ 10000 F S”V|P(|——1 N= 100 million)
E
()
RS
l_
>
> 1000
>
a
o
>
3
- 100
10-‘--"' ‘

60 80 100 120 140 160 180 200
Query Range

Figure 2.15: Query time of SIMP on 128-dimensional real datasets of varying
sizes for varying number of hashtables L.

SIMP and LSH. We learned the values of w=350 and k'=8 for L.SH using ry=50.
We observed that SIMP is 60 times faster than sequential search for r,=50. For
r,=50, LSH had a query time of 54ms and a selectivity of 0.59% compared to a
query time of 53ms and a selectivity of 0.48% for SIMP. We found that recall of
LSH fell to 38.10% for r,=200 unlike SIMP which had 100% recall for all query

ranges.

62

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

100 ftomsrmprgee
90 |
. 80t N
£ 70}
T 60
Y 50} :
o Sequential Search ——
40 ¢ LSH(L=25) wmen g
30 | SIMP(L=25) e _
20 — " . " L . X
60 80 100 120 140 160 180 200
Query Range
(a) Recall
3000 ¢t
E 2500
g 2000 | Sequential Search ——
- | LSH(L=25) wwe
o 1500 SIMP(L=25) e
@
1000 +
3
500 |
60 80 100 120 140 160 180 200
Query Range
(b) Query Time
100
80 Sequential Search ——
§ I LSH(L=25) wswen
— SIMP(L=25) s
= 60 -
=
3 40
@
7]
20
& 3

60 80 100 120 140 160 180 200
Query Range

(c) Selectivity

Figure 2.16: Comparative study of performance of SIMP with p-Stable I.SH on
128-dimensional 10 million STFT points.

63

Chapter 2. SIMP: Accurate and Efficient Near Neighbor Search in High-
Dimensional Spaces

2.5.4 Effectiveness of Pruning Criteria

We performed experiments on CHist dataset to study the pruning effectiveness
of spatial intersection pruning (SIP) and metric pruning (MP) for varying query
ranges. We show the results in Figure 2.17 for n,=5,000 and Figure 2.18 for
n,=15,000. We observed that the total pruning achieved by SIMP decreases with
an increase in the query range for a given number of mballs n,. SIP being the
first step contributes the most to the pruning. MP provides an additional pruning
over SIP. We also observed that the contribution of MP increases with an increase
in the query range.

186

SIP

HP
8e | 1
60 | :
40 | 1
20 | 1
;]
300 408 508 600

Ouery Range

Search space prunning (%)

Figure 2.17: Data pruning (%) obtained by SIP and MP pruning steps of SIMP
using n,=>5, 000 mballs for varying query ranges on CHist dataset.

64

Chapter 2. SIMP: Accurate and Efficient Near Neighbor Search in High-
Dimensional Spaces

~ 188 ; . : :
= SIP mmmm
o HP ===
= 88 | i
=
=
=
£ 68 1
[- 8
8
e 48| 1
-8
%]
-E o8t 1
m
]
7] a

380 480 508 608

HQuery Range

Figure 2.18: Data pruning (%) obtained by SIP and MP pruning steps of SIMP
using n,=15,000 mballs for varying query ranges on CHist dataset.

2.6 Parameter Selection for SIMP

The tunable parameters of SIMP are the number of hashtables L, the radial
bin-width w, of polar grids, and the number of mballs n, used for metric pruning.
The parameters L and w, play a similar role for SIMP as the number of hashtables
and the bin-width of p-stable LSH. The parameter w, is learned by training SIMP
on a dataset using a training query range ry. Though SIMP outperforms existing
techniques even for L=1 hashtable, a better performance is achieved by using
a larger number of hashtables. The value of L can be determined based on the
available memory. The mcenters of SIMP play a similar role as the reference points
of iDistance. The number of mballs n, should be determined based on the data

distribution. It can be computed by fixing a value of Root Mean Square Error

65

Chapter 2. SIMP: Accurate and FEfficient Near Neighbor Search in High-
Dimensional Spaces

for each cluster. It can also be learned by the methods proposed by Jagadish et

al. [60] for iDistance. We suggest to use a value of n,=5, 000.

2.7 Conclusions

In this chapter, we proposed SIMP for answering r-NN queries in a high-
dimensional space. SIMP offers both 100% accuracy and efficiency for any query
range unlike state-of-the-art methods. SIMP uses projection, spatial intersection,
and triangle inequality to achieve a high rate of pruning, and thus gains high per-
formance. We efficiently implemented the spatial intersection approach by hash-
ing. We also developed statistical cost models to measure SIMP’s performance.
SIMP captures data distribution through its viewpoints and mcenters. We empir-
ically showed a better performance of SIMP over p-Stable LSH and iDistance on
three real datasets of dimensions 32, 128, and 256 and sizes 10 million, 1 million,
and 1.08 million respectively. We also showed a much superior performance of
SIMP over Multi-Probe LSH and LSB tree on two real datasets of dimensions 128
and 256 and sizes 1 million and 1.08 million respectively. We empirically validated
on the datasets of sizes up to 100 million and dimensions up to 256 that SIMP

scales linearly with the query range, the dataset size, and the dataset dimension.

66

Chapter 3

Querying Patterns by Keywords
in Multi-Dimensional Datasets

Keyword-based pattern search in text rich multi-dimensional datasets facili-
tates many novel applications and tools. This chapter introduces querying pat-
terns by keywords. We consider a dataset of objects that have keywords and
are embedded in a vector space, and queries that ask for the tightest groups of
points satisfying a given set of keywords. We name these queries nearest keyword
set search (NKS) queries. We propose ProMiSH (Projection and Multi Scale
Hashing) that uses random projection and hash-based index structures to query
results, and achieves high scalability and speed-up. We present an exact and an
approximate version of the algorithm. Our empirical studies, both on real and
synthetic datasets, show that ProMiSH has a speed-up of more than four orders
over state-of-the-art tree-based techniques. Our scalability tests on datasets of

sizes up to 10 million and dimensions up to 100 for queries of sizes up to 9 show

67

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

that ProMiSH scales linearly with the dataset size, the dataset dimension, the

query size, and the result size.

3.1 Introduction

Objects (e.g., images, documents, or chemical compounds) are characterized
by a collection of relevant features, and are commonly represented as points in
a high dimensional attribute space. For example, images (documents) are repre-
sented by vectors of their colors (words). These objects very often have descriptive
text information associated with them, for example, descriptive tags in images or
chemical compounds or names of geo-locations in maps. In this chapter, we con-
sider multi-dimensional datasets where each data point has a set of keywords. The
presence of keywords allows for the development of new tools for querying and
exploring these multi-dimensional datasets.

A variety of queries on text-rich datasets have been studied in the literature,
such as spatial keyword search [33], spatial preference query [133], and location-
specific keyword search [55, 142]. In this chapter, we study nearest keyword set
search (NKS) queries on text rich multi-dimensional datasets. An NKS query is a
set of user provided keywords. The top-1 result of an NKS query is a set of data

points which contains all the query keywords and the points form the tightest

68

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

cluster in the high dimensional space. Figure 3.1 illustrates an NKS query. The
high dimensional points in the dataset are represented by circles. Each point has a
unique identifier and is tagged with a set of keywords. For a query @Q={a, b, c}, the
set of points {7, 8, 9} contains all the query keywords {a, b, ¢} and are nearest to
each other compared to any other set of points containing these query keywords.
Therefore, the set of points {7, 8, 9} is the top-1 result for the query Q.

NKS queries are useful for many applications. These can be used to extend
existing image (web) search engines where images (web pages) are represented by
their feature vectors in high dimensional spaces. If there is no image (web page)
that contains all the query keywords given by an user, then the search engine
can return a set of the most similar images (web pages) which contains all the
query keywords. The similarity between images (web pages) is measured by the
distance between their feature vectors. The smaller the distance between images
(web pages), the higher the similarity between them. NKS queries are also helpful
for extending existing map services'. A person moving into a new place may be
interested in finding an apartment that is very near to a school and also to a
hospital using a map service. Here the query @ is {apartment, school, hospital}

and the nearness between places is measured by the distance between their geo-

thttp://maps.google.com

69

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

a,d b, e c,d
©) o @?
b,o0,8
e ®
©)

GV
, .

II \\

' | b,

-

Figure 3.1: An example of an NKS query on a keyword tagged multi-dimensional
dataset. Query is Q={a, b, c}. The top-1 result is the set of points {7, 8, 9}.
This figure also shows an example of a localized search: a sliding window of side
length 7' prunes unwanted candidates like {2, 12, 13}.

attributes. NKS queries are also useful for enhancing GIS systems? and for geo-
tagging of objects and regions [137].

Query Definition: Let D C R? be a d-dimensional dataset having N points.
Each point 0o € D has a unique identifier (id). Each point is also tagged with a
set of keywords o(0)={vy,..,v:} €V, where V is a dictionary of size U of all the
unique keywords in D. We use Ly (Euclidean norm) to measure distance between
any two points 0;,0; € D, i.e., dist(0;,0;) = ||0; — 0;]|2. We measure the nearness

of a set of points A by the maximum distance between any two points in A, called

2http://www.geabios.com

70

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

D : A dataset
VY : A dictionary of unique keywords in D

Q : A set of keywords comprising a query

o : A point in D

v : A keyword

N (v) : Number of points in D having keyword v

N : Number of points in D

U : Number of unique keywords in D

q : Number of keywords in query Q

d : Number of dimensions of a point

t : Number of keywords per point

k : Number of top results

wg : Initial bin-width for hashtable

m : Number of unit random vectors used for projection
L : Number of Hashtable-Inverted Index structures

s : A scale value

r : Diameter of a set of points

z + A d-dimensional unit random vector

Table 3.1: A descriptive list of notations used in the chapter.

diameter r(A).

r(A) = vJ}}fj)éA”"i — 0j[2

A relatively small value of r(A) implies that the points in A are very near to each
other or the corresponding objects are very similar to each other. A g-size NKS
query Q={vg1,-.., 0o} has ¢ unique keywords provided by a user. Set A C D is
a possible result, called a candidate, of @ if it contains points for all the query
keywords, i.e., @ € (J,c4 0(0), and no subset of A does so. We allow overlapping

candidates. If S is the set of all candidates of @), then a result of () is the candidate

71

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

A* such that

A* = inr(A).
ey

A top-k NKS query retrieves k candidates having the least diameters. If two
candidates have equal diameter, then they are further ranked by their cardinality.

A naive solution for an NKS query can incur unmanageable costs. One solution
is to use an inverted index to find all points in the dataset which contain at least
one query keyword. For a query @) of size g, selected points can be grouped by
query keywords into ¢ groups. Then one can generate all the candidates by a
cartesian product of the ¢ groups, and pick the top-k candidates with the least
diameters. Let N(v) be the number of points tagged with a query keyword v. The
number of candidates explored by the naive method would be [[}_; N(v;) and the
cost of search for top-1 result in a d-dimensional dataset would be d x []{_; N(v;).
This search cost can be very large for large values of g or N(v).

A search method using a data partitioning tree-based index was proposed by
Zhang et al. [135, 137] to solve NKS queries on multi-dimensional datasets. The
performance of this algorithm deteriorates sharply with an increase in the dimen-
sion of the dataset as the pruning techniques become ineffective. Our empirical
results show that this algorithm may take hours to terminate for a high dimen-

sional dataset having only few thousands points. That a tree-based algorithm

72

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

does not scale with an increase in the dimension of the dataset was also noted by
the authors.

NKS queries are useful for many applications as discussed earlier. These ap-
plications use datasets of number of dimensions. For example, map services use
location information which is two dimensional, multi-attribute geo data [81] are
represented using feature vectors having dimensions in tens, and feature vectors
of images and documents have dimensions in hundreds. Therefore, there is a need
for an efficient algorithm that scales linearly with the dataset dimension. An
algorithm also needs to yield practical query times on large datasets.

We propose the ProMiSH (Projection and Multi-Scale Hashing) algorithm to
efficiently solve NKS queries. We present an exact (ProMiSH-E) and an ap-
proximate (ProMiSH-A) version of the algorithm. ProMiSH-E always efficiently
retrieves the true top-k results, and therefore has 100% accuracy. ProMiSH-A
is much more time and space efficient but returns results whose diameters are
within a small approximation ratio of the diameters of the true results. Both the
algorithms scale linearly with the dataset dimension, the dataset size, the query
size, and the result size. Thus, ProMiSH possesses all the three desired charac-
teristic of a good search algorithm: 1) high quality of results (accuracy), 2) high

efficiency, and 3) good scalability.

73

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

ProMiSH-E uses a set of hashtables and inverted indices to perform a localized
search of results. Hashtables are created by projecting points onto unit random
vectors, and then splitting the lines of projected values into overlapping bins of
equal width. ProMiSH-E hashtables are inspired from Locality Sensitive Hashing
(LSH) [31], which is a state-of-the-art method for nearest neighbor search in high
dimensional spaces. The index structure of ProMiSH-E supports accurate search,
unlike LSH-based methods that allow only approximate search with probabilistic
guarantees. ProMiSH-E creates hashtables at multiple bin-widths, called scales.
A search starts with the hashtable at the lowest scale and sequentially proceeds to
higher scales, until a termination condition is met. A search in a hashtable yields
subsets of points that contain query results.

ProMiSH-E explores a subset of points obtained from a hashtable using a novel
pruning based strategy. Points in the subset are grouped by query keywords.
These groups are ordered based on their pairwise inner joins. A greedy method
is proposed to obtain the ordering of the groups as the computation of optimal
ordering is NP-hard. Finally, results are obtained by an efficient multi-way dis-
tance join of the groups. ProMiSH-A is an approximate variation of ProMiSH-E
to achieve even more space and time efficiency.

We evaluated the performance of ProMiSH on both real and synthetic datasets.

We used state-of-the-art Virtual bR*-Tree [137] as a reference method for com-

74

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

parison. The empirical results show that ProMiSH consistently outperforms Vir-
tual bR*-Tree on datasets of all dimensions. The difference in performance of
ProMiSH and Virtual bR*-Tree grows to more than four orders of magnitude
with an increase in the dataset dimension, the dataset size, and the query size.
Our scalability tests on datasets of sizes up to 10 million and dimensions up to
100 for queries of sizes up to 9 show that ProMiSH scales linearly with the dataset
size, the dataset dimension, the query size, and the result size. Our datasets had
as many as 24, 874 unique keywords and a data point was tagged with a maximum
of 14 keywords. The space cost analysis of the algorithms show that ProMiSH-A
is much more space efficient than both ProMiSH-E and Virtual bR*-Tree.

Our main contributions are: (1) a novel multi-scale index structure for scalable
answering of NKS queries, (2) an efficient candidate generation technique from
a subset of points, and (3) extensive empirical studies. We present a detailed
literature survey in Section 3.2. We discuss preliminary ideas about our index
structure and algorithm in Section 3.3. We design our index structures in Sec-
tion 3.4. An exact search algorithm (ProMiSH-E) that finds relevant subsets of
points is described in Section 3.5. Section 3.6 discusses how answers are gener-
ated from the subsets. We propose an approximate algorithm (ProMISH-A) and
derive its upper approximation ratio bound in Section 3.7. We analyze the cost

of ProMiSH in Section 3.8. Finally, we present empirical results in Section 3.9.

75

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

3.2 Literature Survey

A variety of queries, semantically different from our NKS queries, have been
studied in literature on text-rich spatial datasets. Location-specific keyword
queries on the web and in the GIS systems [142, 55, 123, 71| were answered us-
ing a combination of R-Tree [52] and inverted index. Felipe et al. [33] developed
IR2-Tree to rank objects from spatial datasets based on a combination of their
distances to the query locations and the relevance of their text descriptions to the
query keywords. TR2-Tree is an R-Tree which contains a signature of the textual
content of a subtree in the subtree’s root. Cong et al. [28] integrated R-tree and
inverted file to answer a similar query as Felipe et al. [33] using a different rank-
ing function. Martins et al. [91] computed text relevancy and location proximity
independently, and then combined the two ranking scores. Cao et al. [20] recently
proposed algorithms for spatial group keyword query defined by a query location
and a set of query keywords. They proposed to retrieve a group of spatial web
objects such that the group’s keywords cover the query’s keywords and the objects
in the group are nearest to the query location and have the lowest inter-object
distances. Other keyword-based queries on spatial datasets are aggregate nearest
keyword search in spatial databases [83], top-k preferential query [133], finding

top-k sites in a spatial data based on their influence on feature points [131], opti-

76

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

mal location queries [38, 136], and retrieving top-k prestige-based relevant spatial
web objects [19].

Our NKS query is similar to the m-closest keywords query of Zhang et al. [135].
They designed bR*-Tree based on a R*-tree [10] that also stores bitmaps and
minimum bounding rectangles (MBRs) of keywords in every node along with
points MBRs. The candidates are generated by a priori algorithm [2]. They prune
unwanted candidates based on the distances between MBRs of points or keywords
and the best found diameter. Their pruning techniques become ineffective with
an increase in the dataset dimension as there is large overlap between MBRs due
to the curse of dimensionality. This leads to an exponential number of candidates
and large query times. A poor estimation of starting diameter further worsens
the performance of their algorithm. bR*-Tree also suffered from a high storage
cost, therefore Zhang et al. modified bR*-Tree to create Virtual bR*-Tree [137] in
memory at run time. Virtual bR*-Tree is created from a pre-stored R*-Tree which
indexes all the points, and an inverted index which stores keyword information
and path from the root node in R*-Tree for each point. Both, bR*-Tree and
Virtual bR*-Tree, are structurally similar, and use similar candidate generation
and pruning techniques. Therefore, Virtual bR*-Tree shares similar performance

weaknesses as bR*-Tree.

77

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

Many tree-based indices, e.g., R-Tree [52] and M-Tree [26], have been pro-
posed for an efficient near neighbor search in high dimensional spaces. Tree-based
indices fail to scale to dimensions greater than 10 because of the curse of dimen-
sionality [128]. VA-file [128] and iDistance [60] provide better scalability with the
dataset dimension. However, the task of designing an efficient method for solving
NKS queries by adapting VA-file or iDistance is not obvious.

Methods based on random projections [62] and hashing [72, 49, 31, 122] have
come to be state-of-the-art methods for an efficient near neighbor search in datasets
of high dimensions. Datar et al. [31] used random vectors constructed from p-
stable distributions to project points, and then computed hash keys for the points
by splitting the line of projected values into disjoint bins. They concatenated hash
keys obtained for a point from m random vectors to create a final hash key for
the point. All points were indexed into a hashtable using their hash keys. Our
index structure is inspired from the same.

Multi-way distance joins of a set of multi-dimensional datasets, each of which
is indexed into a R-Tree, have been studied in literature [103, 102]. As discussed
above, a tree-based index fails to scale with the dimension of the dataset. Further,
it is not straightforward to adapt these algorithms if every query requires a multi-

way distance join only on a subset of the points of each datasets.

78

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

3.3 Preliminaries

In this section, we first describe how a localized search makes answering NKS
queries efficient. Then we discuss the idea of projection used to create our index
structure. We also present two lemmas which ensures that the exact search al-
gorithm ProMiSH-E always finds the true top-k results. Finally, we empirically
show using a statistical model that our index structure supports a very efficient
and accurate search. A list of commonly used notations in the chapter is presented
in Table 3.1.

We illustrate a localized search with an example. Figure 3.1 shows a query
Q={a,b,c} and its top-1 result set {7,8,9}. We see from the figure that the
number of points tagged with keyword a is 4, keyword b is 3, and keyword ¢
is 4. Therefore, the total number of candidates explored by a naive method
would be 48. One of the candidates explored by the naive method is the set
{2,12,13}. For a localized search, we create a sliding window of side length 7.
We anchor the window at a point having a query keyword, e.g., point 1 having
keyword a in Figure 3.1. We perform a search only on the points which lie in the
overlapping region of the window and the data space. This search using a window
of side length r’ is repeated for every point in the dataset that contains a query

keyword. Tt can be seen that such a localized search with a reasonable estimate

79

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

of 7 prunes unpromising candidates like {2, 12,13}, making the search efficient.
A search can start with a small sliding window of side length r’. Then, 7’ can be
progressively increased with every iteration until a candidate is found in one of
the overlapping regions. In this chapter, we design a suitable index structure and
a search technique to implement this idea.

We use the idea of projection of points on unit random vectors to create our
index structure. The projection of any two points o; and oy in R? is defined by
01.09 = Z?Zl 01; X 09;. We project all the points in a dataset D onto a unit random
vector z. We split the line of projected values into overlapping bins of equal width
w as shown in Figure 3.2. Each point is assigned a hash key based on the bin in
which it lies. Since the line is split into overlapping bins, each point lies in two
bins, and therefore gets two hash keys. For example, the line of projected values
T in Figure 3.2 has been split into overlapping bins {x1, x2, x3, y1, y2, y3}. Point
o lies in bins x1 and y2, and therefore gets two hash keys corresponding to each

of the bins. We assign hash keys to a point o as follows:

where C is a constant to distinguish values of hy and hs.

80

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

ProMiSH generates m-size signatures for a point o by concatenating its hash
keys obtained from m unit random vectors. Since a point gets two hash keys
from each unit random vector, a total of 2™ signatures are generated for it. For
example, let z; and 2z, be two unit random vectors for m=2. Let the hash keys
of a point 0 be {x1, y1} from z; and {xo, yo} from 2o. ProMiSH creates 2* 2-size
signatures {x;Xo, X1y2, V1Xg, y1¥2} for o by concatenation. These signatures are
used to index points into a hashtable. Each bucket of the hashtable contains a
subset of points in the dataset. To achieve efficiency, ProMiSH performs a search
in each promising buckets of the hashtable independently for answering an NKS
query.

Next we discuss two lemmas which guarantee that ProMiSH-E always retrieves

the true top-k results for an NKS query using the index structure.

Lemma 2. Let R be a d-dimensional Euclidean space. Let z be a vector uniformly
picked from a unit (d-1)-sphere such that z € R and ||z||a = 1. For any two points

o1 and oy in R?, we have ||oy — 05|]2 > ||z.01 — 2.02]]2.

81

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

Proof. Since, an Euclidean space with dot product is an inner product space, we

have
||z.01 — z.00||2 = |z.(01 — 02)]
< lzfl2 x [lor — 02|z
= ||lo1 — 02|z since ||z]|s =1
The inequality follows from Cauchy-Schwarz inequality. O]

Lemma 3. If a set of points A = {o1,..,0,} in R® with diameter r is projected
onto a d-dimensional unit random vector z, and the line is split into overlapping
bins of equal width w > 2r, then all the points of set A are contained in one of

the bins.

Proof. From Lemma 2 and the definition of diameter, we have Vo;, o; € A, |z.0,—
z.0;] < ||lo; — 0j]| < r. Therefore, the span of projected values of the points in
set A, i.e., max(z.01,...,2.0,) — min(z.o1, ..., 2.0,), is < r. Since the line is split
into overlapping bins of width 2r, it follows from the construction, as shown in
Figure 3.2, that a line segment of width r is fully contained in one of the bins.

Hence, all the points in set A will lie in the same bin. O

We illustrate here with an example how Lemma 3 guarantees retrieval of true

results. For a query @, let the diameter of its top-1 result be r. We project

82

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

X2 ') X3
a 1 1
J1 K 1]

yl yZ | y3 |
Abrojected point o

Figure 3.2: Division of projected values of points on a unit random vector into
overlapping bins of equal width w=2r.

f— w=2r ——| T
x1 |
|

all the data points in D on a unit random vector and split the projected values
into overlapping bins of bin-width 2r. Now if we perform a search in each of the
bins independently, then Lemma 3 guarantees that the top-1 result of query @ is

certainly found in one of the bins.

£ 0.004 2 0.0006

3 3

(1] m

2

e 0 g 0

a o
0 0.5 1 0 0.5 1
Candidate Diameter r Candidate Diameter r

(a) d=2 (b) d=16

Figure 3.3: Probability mass functions f, of diameters of candidates of a query
of size 3 on a 2-dimensional and a 16-dimensional real datasets.

Dataset Dimension d 2 4 8 | 16 | 32

Percentage Ratio (%—:) 0.007 | 0.3 | 5.8 | 22 | 47

Table 3.2: Percentage ratio of the expected number of candidates N, to the total
number of candidates N, of a query.

83

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

oo £ 1 > 1
+- w £
= c
0 0.5 1 0 0.5 1
Candidate Diameterr Candidate Diameter r
(a) d=2 (b) d=16

Figure 3.4: Values of Pr(A|r)? for varying diameters of candidates of a query of
size 3 on a 2-dimensional and a 16-dimensional real datasets.

Statistical Model: We develop a statistical model to compute the expected
number of candidates explored by ProMiSH in a hashtable. We show using this
model that ProMiSH effectively prunes the false candidates. Let D be a d-
dimensional dataset of size N where each point o is tagged with one keyword.
Let @ be an NKS query with ¢ keywords {vg1, ..., vg.}. Let set A* C D with
diameter r* be the top-1 result of query Q.

Let f, be the probability mass function of the keywords v € V. Using f,, we
get the number of points tagged with a query keyword vg as N(vg) = f,(vg) X N.

Therefore, the total number of candidates for query @ in D is
q
N =[] folvgi) x N (3.3)
i=1

Let f, be the probability mass function of diameters of candidates of). Then,

the total number of candidates of () having diameter r is given by
N, = f.(r) x N, (3.4)

84

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

We select all the points in D which contain at least one query keyword vg. We
project these points on a unit random vector z. We split the line of projected
values into overlapping bins of equal width w = 2r*. Let A be a candidate of
query @ with diameter r. Let Pr(A|r) be the conditional probability that A
is fully contained within a bin. This probability is computed for random unit
vectors. If this process is repeated on m independent unit random vectors, then
the joint probability that a candidate A is contained in a bin in each of the m
vectors is Pr(A|r)™. A hashtable of ProMiSH is created using m unit random
vectors. Therefore, the expected number of candidates explored by ProMiSH in a
hashtable is

Ny =Y Pr(Ajr)™ x N, (3.5)

We empirically computed the probability mass function f,, the probability Pr(A|r)™,
and the ratio of N, to IV,,. We used real datasets of varying dimensions each hav-
ing N=1 million points for our experiments. We describe these real datasets in
Section 3.9. We used randomly selected queries of size ¢=3. We show proba-
bility mass functions f, of diameters of candidates of a query) on datasets of
dimensions d=2 and d=16 in Figure 3.3. We computed the diameters of all the
candidates of a query @) in the dataset to obtain f, and r*. The diameters of the
candidates were scaled to lie between 0 and 1. We show values of Pr(A|r)? for

varying diameters of candidates of a query @) on datasets of dimensions d=2 and

85

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

d=16 in Figure 3.4. To compute Pr(A|r), we randomly chose a candidate A of
diameter 7. We projected all the points of A on one million unit random vectors.
Then we computed the number of vectors on each of which all the points in A lie
in the same bin.

We make following observations from the above studies: (a) the diameters of
the candidates of a query have a heavy-tailed distribution, and (b) the value of
Pr(A|r)™ decreases exponentially with an increase in the diameter of the candi-
date of a query. The first observation implies that a large number of the candidates
have diameters much larger than r*. The second observation implies that the can-
didates with diameter larger than r* have much smaller chance of falling in a bin
than A*, and thus being probed by ProMiSH. Therefore, most of the false candi-
dates, i.e., candidates with diameters larger than r*, are effectively pruned out by
ProMiSH using its index structure.

We show percentage ratio of N, to NNV, in Table 3.2 for datasets of varying
dimensions. Each ratio was computed as an average over 50 random queries. We
observe from Table 3.2 that ProMiSH prunes more than 99% of the false candi-
dates for datasets of low dimensions, e.g., d=2. For datasets of high dimensions,

e.g., d=32, more than 50% of the false candidates get pruned.

86

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

3.4 Index for Exact search

The index structure of ProMiSH-E has two main data structures. The first
data structure is a keyword-point inverted index Zj, which indexes all the points in
the dataset D using their keywords. Zj, is shown with a broken maroon rectangle
in Figure 3.5. The second data structure consists of multiple hashtables and
their corresponding inverted indices. We call a hashtable H together with its
corresponding inverted index Zyp, as the HZ structure.

We create a hashtable H as follows. We randomly choose m d-dimensional
unit vectors. For each unit random vector z, we compute the projection z.o for
each point o in D. Next we split the line of projected values using overlapping bins
of width w as shown in Figure 3.2. We compute hash keys for each point using
Equations 3.1 and 3.2. Each point o gets two hash keys {by;, b;} from each unit
random vector z;. Thus, we have m pairs of hash keys for each data point o. We
take a cartesian product of these m pairs of hash keys to generate 2™ signatures
for each point o. A signature sig(o)={bj1, ..., bjm} of a point o contains a hash key
from each of the m pairs. We hash each point o using each of its 2™ signatures
as hash key into the hashtable H. A signature sig(o) of a point o is converted
into a hashtable bucket identifier (bucket id) using a standard hash function, e.g.,

(> bji * pr;)%ohashtable_size, where pr; is a random prime number.

87

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

For each hashtable H, we create a corresponding inverted index Zp,. For each
bucket of ‘H, we compute the union of keywords of its points. Then we index each
bucket of the hashtable H against each of the unique keywords it contains in the
inverted index Zxpp.

We show a ‘HZ structure in Figure 3.5 with a broken blue rectangle. We create
HZ, structures for increasing bin-width w=wy2°, where wy is initial bin-width and
s €40,...,L — 1} is the scale. If pMax is the maximum span of projected values

of points on any unit random vector, then

(3.6)

We do not create a HZ index structure for w > pMax as it puts the whole dataset

D in a single bin.

3.5 Exact Search (ProMiSH-E)

Here, we describe the ProMiSH-E algorithm. A search starts with the HZ
structure at scale s=0. ProMiSH-E finds buckets of hashtable H, each of which
contains all the query keywords, using the inverted index Zy,. Then ProMiSH-E
explores each of the selected buckets using an efficient pruning based technique

to generate results. ProMiSH-E terminates after exploring HZ structure at the

88

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

Find all the hash

Index Ikhb M

1
iHash Bucket Ids Points bucketsin I, Keywords| Hash Bucket Ids |
: 1 [T.ad|[2:be havinkg aIIthde a |:| :
1 query keyworas,
| 2 (Zicv][8 a [[9:bgll "oq bucket . b 2] :
! 3 6cd][0e) c] |
: Hashtable H Keyword-Bucket Inverted :
I
. :
| 1

Retrieve Hash
.__Bu.ckets._‘-'__________________;7-_[I_5 ________________ 1 .
Smallest
Perform subset search diameter
on each retrieved hash r*

bucket using points -
having a query keyword.

: Keywords| Point Ids :
I a !
H b FIRET Find all the points havi
nd all the points havin
! c %] i i poi ving
1

a query keyword

Figure 3.5: Index structure and flow of execution of ProMiSH.

smallest scale s such that the kth result has the diameter r; < w25, Figure 3.5
shows a flow of execution of ProMiSH-E.

Algorithm 3 details the ProMiSH-E algorithm. ProMiSH-E maintains a bitset
BS. For each vg € @, ProMiSH-E retrieves the list of points corresponding to vg
from Zj, in step 4. For each point o in the retrieved list, ProMiSH-E marks the
bit corresponding to o’s identifier in B.S as true in step 5. Thus, ProMiSH-E finds
all the points in D which are tagged with at least one query keyword. Next the

search continues in the HZ structures, beginning at s=0. For any given scale s,

89

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

Algorithm 3 ProMiSH-E

In: @Q: query keywords; k: number of top results
In: wq: initial bin-width
PQ « [e(]], +00)]: priority queue of top-k results
HC:": hashtable to check duplicate candidates
BS: bitset to track points having a query keyword
for all o € UVUQGQIk'p[’UQ} do
BSJo] < true /* Find points having query keywords*/
end for
for all s € {0,..., L — 1} do
Get 'HT at s
9: E[] <« 0 /* List of hash buckets */
10: for all vg € Q do

11: for all bld € Ikhb[”Q] do

12: E[bId] + E[bId] + 1

13: end for

14: end for

15: for alli € (0, ..., SizeOf(E)) do
16: if E[i] = SizeOf(Q) then

17: F’ — () /* Obtain a subset of points */
18: for all o € HJ[i] do

19: if BS[o] = true then

20: F'—F'Uo

21: end if

22: end for

23: if checkDuplicateCand(F’, HC) = false then
24: searchInSubset(F’, PQ)
25: end if

26: end if

27: end for

28: /* Check termination condition */
29: if PQ[k].r < wg2°! then

30: Return PQ

31: end if

32: end for

33: /* Perform search on D if algorithm has not terminated */
34: for all o € D do
35: if BS[o] = true then

36: F'— F'Uo
37: end if
38: end for

39: searchInSubset(F’, PQ)
40: Return PQ

90

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

ProMiSH-E accesses the HZ structure created at the scale in step 8. ProMiSH-
E retrieves all the lists of hash bucket ids corresponding to keywords in @) from
the inverted index Zpy, in steps [10-11]. An intersection of these lists yields a
set of hash buckets each of which contains all the query keywords in steps [12-
16]. For the example in Figure 3.5, this intersection yields the bucket id 2. For
each selected hash bucket, ProMiSH-E retrieves all the points in the bucket from
hashtable H. ProMiSH-E filters these points using bitset BS to get a subset of
points F” in steps [17-22]. Subset " contains only those points which are tagged
with at least one query keyword. F” is a potential set and is explored further.
Subset F” is checked if it has not been explored earlier using checkDuplicate-
Cand (Algorithm 4) in step 23. Since each point is hashed using 2 signatures,
duplicate subsets may be generated. If F’ has not been explored earlier, then
ProMiSH-E performs a search on it using searchinSubset (Algorithm 5) in step
24. Results are inserted into a priority queue PQ of size k. Each entry e([],) of
PQ is a tuple containing a set of points and the set’s diameter. PQ is initialized
with k entries, each of whose set is empty and the diameter is +o0c. Entries of PQ)
are ordered by their diameter. Entries having equal diameter are further ordered
by the size of their set. A new result is inserted into PQ only if its diameter is

smaller than the kth smallest diameter in PQ. If ProMiSH-E does not terminate

91

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

after exploring the HZ structure at the scale s, then the search proceeds to HZ

at the scale (s + 1).

Algorithm 4 checkDuplicateCand

In: F’: a subset; HC': hashtable of subsets
F' — sort(F")
prl: list of prime numbers; pr2: list of prime numbers;
for all o € F’ do
pr1 < randomSelect (prl); pro < randomSelect (pr2)
hi < h1 + (0o X pri); ha < ha + (0 X pra)
end for
h «— hihg;
if isEmpty(HC[h])=false then
if elementWiseMatch(F’, HC[h]) = true then
Return true;
end if
: end if
: HC[h].add(F");
: Return false;

— = = e
W = oY

ProMiSH-E terminates when the kth smallest diameter r; in P() becomes less

than or equal to half of the current bin-width w=w2° in steps [29-31]. Since

e < w“fs, Lemma 3 guarantees that each of the true candidates are contained
in a bin of the hashtable, and therefore have been explored. If ProMiSH-E fails
to terminate after exploring HZ at all the scale levels s € {0,..., L — 1}, then it
performs a search on the complete dataset D in steps [34-39)].

Algorithm checkDuplicateCand (Algorithm 4) uses a hashtable HC to perform
a duplicate check for a subset F’. Points in F’ are sorted using their identifier.

Two separate standard hash functions are applied to the identifier of the points in

the sorted order to generate two hash values in steps [2-6]. Both the hash values

92

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

are concatenated to get a hash key h for the subset F’ in step 7. The use of
multiple hash functions helps to reduce hash collisions. If HC' already has a list
of subsets at h, then an element-wise match of F’ is performed with each subset

in the list in steps [8-9]. Otherwise, F” is stored in HC' using key h in step 13.

3.6 Search in a Subset

We design an algorithm for finding the tightest clusters in a subset of points.
A subset is obtained from a hashtable bucket as explained in Section 3.5. Points
in the subset are grouped based on the query keywords. Then all the promising
candidates are explored by a multi-way distance join of these groups. The join
uses 1, the diameter of the kth result obtained so far by ProMiSH-E, as the
distance threshold.

We explain a multi-way distance join with an example. A multi-way distance
join of ¢ groups {g1.- - ,g,} finds all the tuples {01, , 0z, 04k, , 04} such
that Vo, y: 0y € gz, 0yk € gy, and [|0z j — 0y ||2 < 7% Figure 3.6(a) shows groups
{a, b, ¢} of points obtained for a query @={a, b, ¢} from a subset F’. We show
an edge between a pair of points of two groups if the distance between the points

is at most 7, e.g, an edge between point o; in group a and point o3 in group b. A

93

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

multi-way distance join of these groups finds tuples {01, 03, 09} and {019, 03, 0g}.

Each tuple obtained by a multi-way join is a promising candidate for a query.

3.6.1 Group Ordering

A suitable ordering of the groups leads to an efficient candidate exploration by
a multi-way distance join. We first perform a pairwise inner joins of the groups
with distance threshold r;. In inner join, a pair of points from two groups are
joined only if the distance between them is at most r;. Figure 3.6(a) shows such
a pairwise inner joins of the groups {a, b, c}. We see from Figure 3.6(a) that a
multi-way distance join in the order {a, b, ¢} explores 2 true candidates {{o1, o3,
09}, {010, 03, 09} } and a false candidate {o1, 04, 06}. A multi-way distance join in
the order {a, ¢, b} explores the least number of candidates which is 2. Therefore,
a proper ordering of the groups leads to an effective pruning of false candidates.
Optimal ordering of groups for the least number of candidate generation is NP-
hard [58].

We propose a greedy approach to find the ordering of groups. We explain the
algorithm with a graph in Figure 3.6(b). Groups {a, b, ¢} are nodes in the graph.
The weight of an edge is the count of point pairs obtained by an inner join of the
corresponding groups. The greedy method starts by selecting an edge having the

least weight. If there are multiple edges with the same weight, then an edge is

94

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

(a) Pairwise inner joins (b) A graph representation
Figure 3.6: (a) a, b, and ¢ are groups of points of a subset F’ obtained for a
query @={a,b,c}. A point o in a group g is joined to a point ¢’ in another group
g if |Jo—0|| < ry. Examining the groups in the order {a, ¢, b} generates the least
number of candidates by a multi-way join. (b) A graph of pairwise inner joins.

Each group is a node in the graph. The weight of an edge is the number of point
pairs obtained by an inner join of the corresponding groups.

selected at random. Let the edge ac, with weight 2, be selected in Figure 3.6(b).
This forms the order set (a — ¢). The next edge to be selected is the least weight
edge such that at least one of its nodes is not included in the order set. Edge cb,
with weight 2, is picked next in Figure 3.6(b). Now the order set is (a — ¢ — b).
This process terminates when all the nodes are included in the order. (a — ¢ —b)
gives the ordering of the groups.

Algorithm 5 describes how the groups are ordered. The kth smallest diameter
ri is retrieved form the priority queue PQ in step 1. For a given subset F’ and
a query @, all the points are grouped using query keywords in steps [2-5]. A

pairwise inner join of the groups is performed in steps [6-18]. An adjacency list

95

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

AL stores the distance between points which satisfy the distance threshold r;. An
adjacency list M stores the count of point pairs obtained for each pair of groups
by the inner join. A greedy algorithm finds the order of the groups in steps [19-30].
It repeatedly removes an edge with the smallest weight from M till all the groups
are included in the order set curOrder. Finally, groups are sorted using curOrder

in step 30.

3.6.2 Nested Loops with Pruning

We perform a multi-way distance join of the groups by nested loops. For
example, consider the set of points in Figure 3.6. Each point o,; of group a is
checked against each point o, ; of group b for the distance predicate, i.e., |[0g; —
opjll2 < 7. If a pair (04, 0p;) satisfies the distance predicate, then it forms a
tuple of size 2. Next this tuple is checked against each point of group c. If a
point o, satisfies the distance predicate with both the points o,,; and oy, then
a tuple (044, 0pj. Oc) Of size 3 is generated. Each intermediate tuple generated
by nested loops satisfies the property that the distance between every pair of its
points is at most r,. This property effectively prunes false tuples very early in the
join process and helps to gain high efficiency. A candidate is found when a tuple
of size ¢q is generated. If a candidate having a diameter smaller than the current

value of r; is found, then the priority queue PQ and the value of r, are updated.

96

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

Algorithm 5 searchInSubset

In: F’: subset of points; Q: query keywords; ¢: query size

In: PQ: priority queue of top-k results
1: rp < PQ[k].r /* kth smallest diameter */
2: SL « [(v,]])]: list of lists to store groups per query keyword
3: for all v € Q do

4: SL[v] « {Vo € F’' : 0 is tagged with v} /* form groups */
5: end for

6: /* Pairwise inner joins of the groups*/
7: AL: adjacency list to store distances between points

8: M « 0: adjacency list to store count of pairs between groups
9: for all (v;,v;) € @ such that i <gq, j<g¢, i <jdo

10: for all o € SL[v;] do

11: for all o’ € SL[v;] do

12: if |0 — 0'||2 < 7}, then

13: ALo, 0] « |lo — ||z

14: M{v;,vj] — Mlv;,vi] + 1
15: end if

16: end for

17: end for

18: end for

19: /* Order groups by a greedy approach */
20: curOrder « []

21: while Q # () do

22: (v;,vj) < removeSmallestEdge(M)

23: if v; & curOrder then

24: curOrder.append(v;); Q «— Q \ v;
25: end if

26: if v; € curOrder then

27: curOrder.append(v;); Q «— Q \ v;
28: end if

29: end while
30: sort(SL, curOrder) /* order groups */
31: findCandidates(q, AL, PQ, Idx, SL, curSet, curSetr, ry,)

The new value of 7, is used as distance threshold for future iterations of nested
loops.

We describe answer exploration by nested loops using Algorithm 6 (findCan-
didates). Nested loops are performed recursively. An intermediate tuple curSet is

checked against each point of group SL[Idz| in steps [2-23]. First, it is determined

97

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

using AL whether the distance between the last point in curSet and a point o in
SL[Idz] is at most 7 in step 3. Then the point o is checked against each point
in curSet for the distance predicate in steps [5-15]. The diameter of curSet is
updated in steps [9-11]. If a point o satisfies the distance predicate with each
point of curSet, then a new tuple newCurSet is formed in step 17 by appending
o to curSet. Next a recursive call is made to findCandidates on the next group
SL[Idx + 1] with newCurSet and newCurSetr. A candidate is found if curSet
has a point from every group. A result is inserted into PQ after checking for
duplicates in steps [26-33]. A duplicate check is done by a sequential match with
the results in PQ. For a large value of k, a method similar to Algorithm 4 can
be used. If a new result gets inserted into PQ), then the value of r; is updated in

step 18.

3.7 Approximate Search (ProMiSH-A)

We first discuss ProMiSH-A which is more space and time efficient than
ProMiSH-E. Then we show using a statistical model that ProMiSH-A retrieves
results within a small approximation ratio of the true results with a high proba-

bility.

98

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

Algorithm 6 findCandidates

In: ¢: query size; SL: list of groups

In: AL: adjacency list of distances between points
In: PQ: priority queue of top-k results

In: Idz: group index in SL

In: curSet: an intermediate tuple

In: curSetr: an intermediate tuple’s diameter
1. if Idz < q then

2: for all o € SL[Idz] do

3: if AL[curSet[Idz-1], o] < rj then

4: newCurSetr < curSetr

5: for all o’ € curSet do

6: dist — ALlo, o]

7 if dist < rp then

8: flag « true

9: if newCurSetr < dist then
10: newCurSetr «— dist

11: end if

12: else

13: flag «— false; break;

14: end if

15: end for

16: if flag = true then

17: newCurSet «— curSet.append(o)
18: ri < findCandidates(q, AL, PQ, Idx+1, SL, newCurSet, newCurSetr, ry,)
19: else

20: Continue;

21: end if

22: end if

23: end for

24: return ry,

25: else

26: if checkDuplicateAnswers(curSet, PQ)) = true then
27: return rg

28: else

29: if curSetr < PQIk].r then

30: PQ.Insert([curSet, curSetr])

31: return PQ[k].r

32: end if

33: end if

34: end if

The index structure and the search method of ProMiSH-A are variations of

ProMiSH-E, therefore we describe only the differences. The index structure of

99

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

ProMiSH-A differs from ProMiSH-E only in the way the line of projected values
of points on a unit random vector is split. ProMiSH-A splits the line into non-
overlapping bins of equal width, unlike ProMiSH-E which splits the line into
overlapping bins. Therefore, each data point o gets one hash key from a unit
random vector z in ProMiSH-A. A signature sig(o0) is created for each point o
by the concatenation of its hash keys obtained from each of the m unit random
vectors. Each point is hashed using its signature sig(o) into a hashtable at a given
scale.

The search technique of ProMiSH-A differs from ProMiSH-E in the initializa-
tion of priority queue P@Q and the termination condition. ProMiSH-A starts with
an empty priority queue PQ), unlike ProMiSH-E whose priority queue is initialized
with k entries. ProMiSH-A checks for a termination condition after fully exploring
a hashtable at a given scale. It terminates if it has k& entries in its priority queue
PQ@). Since each point is hashed only once into a hashtable of ProMiSH-A, it does
not perform a subset duplicate check or a result duplicate check.

Approximation ratio: An approximation ratio p > 1 is defined as the ra-
tio of the diameter of the result reported by ProMiSH-A r to the diameter of

r

the true result r*, i.e., p==. Next we describe a model to obtain probabilistic

approximation ratio bound for ProMiSH-A.

100

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

Let D be a d-dimensional dataset and Q={vg1,---,vg,} be an NKS query.
The total number of candidates N, of query @ having diameter r is given by
Equation 3.4. We project all the points in dataset D, which contain at least one
query keyword vg, onto a unit random vector z. We split the line of projected
values into non-overlapping bins of equal width w. Let Pr(A|r) be the conditional
probability for random unit vectors that a candidate A of query) having diam-
eter r is fully contained within a bin. For m independent unit random vectors,
the joint probability that a candidate A is contained in a bin in each of the m
vectors is Pr(A|r)™. A hashtable of ProMiSH-A is created using m unit random
vectors. Therefore, the probability that no candidate of diameter r is retrieved by
ProMiSH-A from the hashtable is (1— Pr(A|r)™)". Let the diameter of the top-1
result of query @ be r*. Then the probability P(r') that at least one candidate of

any diameter r, where r* < r <7/, is retrieved by ProMiSH-A is given by

T/

P(r)y=1-] (= Pr(Ajr)™™. (3.7)

r=r*

For a given constant A, where 0 < A < 1, we can compute the smallest value
of ' from Equation 3.7 such that A < P(r’). The value p*::—; gives an upper
bound on the approximation ratio of the results returned by ProMiSH-A with the
probability A. We empirically computed p* for queries of size ¢=3 for different
values of A using this model. We used a 32-dimensional real dataset having 1

million points described in Section 3.9 for our study. For a set of randomly chosen

101

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

queries of size 3, we computed the values of N, and Pr(A|r)?. We used projections
on 1 million random vectors and a bin-width of w=100 for computing Pr(A|r).
We obtained the approximation ratio bound of p*=1.4 and p*=1.5 for A=0.8 and

A=0.95 respectively.

3.8 Cost Analysis of ProMiSH

In this section, we discuss the time and the space cost of ProMiSH. We use the
following settings for the cost analysis. Let D be a dataset having N d-dimensional
points each of which is tagged with ¢ keywords. Let the space cost of a point’s
identifier, a dimension of a point, and a keyword be E bytes individually. Let U
be the number of unique keywords in D. Let Q={vg1, - ,vg,} be an NKS query
of size q. We assume that the data points are uniformly distributed across all the
keywords. Therefore, the total number of the data points tagged with a keyword
v 18

t

N() = N x ()

Time cost: Let the index structure of ProMiSH-E be comprised of HZ structures
at L scale levels where the value of L is obtained by Equation 3.6. Let H, be
the hashtable at scale s. We assume without any loss of generality that the

hashtable H; is created using m=1 unit random vector. Let pSpan be the span

102

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

of the projected values of the data points on the unit random vector. We assume
that the data points tagged with a keyword v are uniformly distributed on the
line of projected values. ProMiSH-E divides the the line of projected values into
overlapping bins to compute the hash keys of the points using a bin-width of
w=wy2°. Therefore, the number of the data points having keyword v lying in a

bucket b of H, is

N(vb) = N(v)*w/pSpan

— N(v)/2-

We first compute the cost of search in a bucket b of H,. The cost of pairwise inner
joins for a query @ of size q for d-dimensional data points is (N (vb) x ¢)* x d/2.
Nested loop enumerates the candidates by looking up the pre-computed distances
between the points from the adjacency list. Therefore, the worst case cost of the
nested loop is N(vb)?. The total cost of search in a bucket b of the hashtable H,
is
T(bs) = ((N(vb) x q)* x d/2) + N (vb)?

The total number of buckets in H, of ProMiSH-E is 2551, Therefore, the cost
of search in H, is

T(H,) = 2875t x T'(bs)

103

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

ProMiSH-A divides the line of projected values into non-overlapping bins. The
total number of buckets in H, of ProMiSH-A is 2275, The cost of search in the

hashtable H, of ProMiSH-A is

T(H,) = 2575 x T(bs)

We show the query time of ProMiSH for NKS queries on multiple real and syn-
thetic datasets in Section 3.9.

Space cost: The index structure of ProMiSH consists of the keyword-point
inverted index Zy, and L pairs of hashtable ‘H and keyword-bucket inverted index
Tinp- The space cost of Zy, is S(Zy,) =(N x E x t) bytes. For ProMiSH-E, each
point is hashed into a hashtable H using 2™ signatures, therefore a hashtable takes
Sg(H) =(2™ x N x E) bytes. For ProMiSH-A, each point is hashed using only
one signature, therefore a hashtable takes Sa(H) =(N x FE) bytes. The space
cost of a Zyp, inverted index is S(Zypy) = (U X M X logaM/8) bytes, where M
is the number of buckets in hashtable H. The total space cost of the index of
ProMiSH-E is S(Zy,) + Sg(H) + S(Zxns). The total space cost of the index of
ProMiSH-A is S(Zy,) + Sa(H) + S(Zgns). We show the ratio of the index space of

ProMiSH to the dataset space in Section 3.9.4.

104

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

3.9 Empirical Evaluations

We empirically evaluated the performance of ProMiSH-E and ProMiSH-A on
synthetic and real datasets. We used recently introduced Virtual bR*-Tree [137]
as a reference method for comparison. We briefly described Virtual bR*-Tree
in Section 3.2. Virtual bR*Tree was proposed as an improvement over bR*-
Tree [135]. We first introduce the datasets and the metrics used for measuring
the performance of the algorithms. Then we discuss the quality results of the
algorithms on real datasets. Next we describe comparative results of ProMiSH-E,
ProMiSH-A, and Virtual bR*-Tree on both synthetic and real datasets. We also

report scalability test results of ProMiSH on both synthetic and real datasets.

Finally, we present a comparison of the space usage of all the algorithms.

Id | Dataset Size (N) | Dictionary Size U | Average ¢
1 10,000 5,661 12
2 30,000 6,753 13
3 50,000 7,101 13
4 70,000 7,902 14
5 1 Million 24,874 11

Table 3.3: Description of real datasets of five different sizes.

Datasets: We used both synthetic and real datasets for experiments. Syn-
thetic data was randomly generated. Each component of a d-dimensional synthetic
point was chosen uniformly from [0-10,000]. Each synthetic point was randomly

tagged with ¢ keywords. A dataset is characterized by its (1) size, N; (2) dimen-

105

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

sionality, d; (3) dictionary size, U; and (4) the number of keywords associated with
each point, t. We created various synthetic datasets by varying these parameters
for our empirical studies.

Our NKS query extends the functionality of the existing keyword-based image
search engines as discussed in Section 3.1. An extended search engine returns a
group of similar images which contains all the user provided keywords as a result.
Based on this application, we used images having descriptive tags as real datasets.
We downloaded images with their textual keywords from Flickr®. We transformed
each image into grayscale. We created a d-dimensional dataset by extracting a
d-dimensional color histogram from each image. Fach data point was tagged
with the keywords of its corresponding image. We describe real datasets of five
different sizes used in our empirical studies in Table 3.3. The largest real dataset
had 24, 874 unique keywords and each point in it was tagged with 11 keywords. A
query for a dataset was created by randomly picking a set of keywords from the
dictionary of the dataset. A query is parameterized by its size q.

Performance metrics: We measured the performance of the algorithms by
their approzimation ratio, query time, and space usage. These metrics help us
evaluate the quality of results (accuracy), the efficiency, and the scalability of the

search algorithms.

3http://www.flickr.com/

106

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

We measured the quality of results of an algorithm by its approximation ra-
tio [49, 122]. For 1 < i < k, if r; is the ith diameter in top-k results retrieved
by an algorithm for a query) and r} is the true ith diameter, then the approx-
imation ratio of the algorithm for top-k search is given by p(Q) = (31, :T)/k
The smaller the value of p(Q), the better is the quality of the results returned by
the algorithm. The least value of p(@) is 1. We report the average approzimation
ratio (AAR) for a query of a given size, which is the mean of the approximation
ratios of 50 queries.

We validated the time efficiency of the algorithms by measuring their query
time. The index structure and the dataset for each method reside in memory.
Therefore, the query time measured as the elapsed CPU time between the start
and the completion of a query gives a fair comparison between the methods. A
query was executed multiple times and the average execution time was taken as
its query time. Finally, we report the query time for a query size g as an average
of 50 different queries. The query time of a search algorithm mainly depends on
the dataset size N, the dataset dimension d, and the query size q. Therefore,
we validated the scalability of the algorithms by computing their query time for
varying values of N, d, and q. We verified the space efficiency of an algorithm
by computing the ratio of its index memory footprint to the dataset memory

footprint.

107

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

Methods implementation: We implemented all the methods in Java. For
Virtual bR*-Tree, we fixed the leaf node size to 1,000 entries and other nodes’
sizes to 100 entries. Virtual bR*-Tree finds only the smallest subset, therefore
we used k=1 for ProMiSH for a fair comparison. We used the value of m=2 and
L=5 to create the index structure of ProMiSH-E and ProMiSH-A. For a dataset,
if pMazx is the maximum span of projected values of data points on any unit

random vector, then a value of wo:p];[Lax was used as the initial bin-width.

All the experiments were performed on a machine having Quad-Core Intel
Xeon CPU@2.00GHz, 4,096 KB cache, and 98 GB main memory and running

64-bit Linux version 2.6.

3.9.1 Quality Test

We validated the result quality of ProMiSH-E, ProMiSH-A and Virtual bR*-
Tree by their average approximation ratio (AAR). ProMiSH-E and Virtual bR*-
Tree perform an exact search. Therefore, they always retrieve the true top-k
results, and have AAR of 1. We used the results returned by them as the ground
truth. Figure 3.7 shows AAR computed over top-5 results retrieved by ProMiSH-
A for varying query sizes on two 32-dimensional real datasets. We observe from

Figure 3.7 that AAR of ProMiSH-A is always less than 1.5. This low AAR allows

108

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

ProMiSH-A to return practically useful results with a very efficient time and space

complexity:.
2 - -+ ProMiSH-A (N=70,000)

o #ProMiSH-A (N= 1,000,000)

=2 «+ProMiSH-E

§15 vmelbhiTee , —

®

£

8 .

s 1 - E b : -

o

<

:

0-5 T T I 1
3 4 5 6
Query Size

Figure 3.7: Average approximation ratio of ProMiSH-A for varying query sizes
on 32-dimensional real datasets of various sizes.

3.9.2 Efficiency on Synthetic Datasets

We performed experiments on multiple synthetic datasets to verify the effi-
ciency and the scalability of ProMiSH. We first discuss the comparison of query
times of Virtual bR*-Tree, ProMiSH-A, and ProMiSH-E for varying dataset di-
mensions d, dataset sizes N, and query sizes q. We found that ProMiSH performs
at least four orders of magnitude better than Virtual bR*-Tree. We also show
results of the scalability tests of ProMiSH for varying values of N, d, ¢, and the

result size k. Our scalability results reveal a linear performance of ProMiSH with

109

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

N, d, q, and k. All the query times were measured in milliseconds (ms) and are

shown in log scale in all the figures.

— 1000000 -
= 100000 -
£
= 10000 -
g 1000 - :
S ~+-ProMiSH-E
3 100 - =\V/irtual bR*-tree
3 10 { *ProMisH-A
1 " : e : 2y : i :

2 4 10 25
#Dimensions

Figure 3.8: Query time comparison of algorithms for retrieving top-1 results
for queries of size g=5 on synthetic datasets of varying dimensions d. Values of
N=100,000, t=1, and U=1,000 were used for each dataset.

The query times of ProMiSH-E, ProMiSH-A, and Virtual bR*-Tree for re-
trieving top-1 results for queries of size 5 on datasets of varying dimensions d are
shown in Figure 3.8. We used a dataset of 100,000 points where each point was
tagged with t=1 keyword using a dictionary of size U=1,000. For the dataset
of dimension 25, ProMiSH-A completed in 1.8 ms and ProMiSH-E took only 4.2
ms. Conversely, results for Virtual bR*-Tree could not be obtained since it ran for
more than 5 hours. We observed that ProMiSH not only significantly outperforms
Virtual bR*-Tree on datasets of all dimensions but the difference in performance

also grows to more than five orders with an increase in the dataset dimension.

110

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

Log Query Time (ms)

Figure 3.9:

1000000 -~
100000 -
10000 -
1000 -
100 -

10 -

1 -

-+ProMiSH-E
=Virtual bR*-tree
-=ProMiSH-A

s

&

0.1

T T T 1

25 50 100
Dataset Size (Thousands)

10

Query time comparison of algorithms for retrieving top-1 results

for queries of size ¢=5 on 25-dimensional synthetic datasets of varying sizes N.
Values of t=1 and U=1,000 were used for each dataset.

—

Log Query Time (ms

1000000
100000
10000
1000
100

10

1

0.1

A ~-ProMiSH-E
i =\Virtual bR*-Tree
A -+=ProMiSH-A
e+ "
2 3 4 5
Query Size

Figure 3.10: Query time comparison of algorithms for retrieving top-1 results
for queries of varying sizes g on a 10-dimensional synthetic dataset having 100,000
points. Values of t=1 and U=1,000 were used for the dataset.

We show the query times of all the three algorithms on 25-dimensional datasets

of varying sizes N for retrieving top-1 results for queries of size 5 in Figure 3.9.

Each dataset used a dictionary of size U=1,000 and t=1 keyword per point. The

query time of Virtual bR*-Tree could not be obtained for the dataset of size

111

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

N=100,000 as it failed to finish even after 5 hours of execution. We report the
query times of all the three algorithms for retrieving top-1 results for queries
of varying sizes ¢ on a 10-dimensional synthetic dataset of size N=100,000 in
Figure 3.10. Each data point was tagged with =1 keyword using a dictionary
of size U=1,000. For a query of size 5, ProMiSH-A had a query time of 1.7
ms, ProMiSH-E had a query time of 4.2 ms, and Virtual bR*-Tree had a query
time of 305 seconds. We again observed that ProMiSH not only significantly
outperforms Virtual bR*Tree but the difference in performance grows to five
orders of magnitude with an increase in the dataset size and the query size.

All the above results show that ProMiSH has a linear increase in its query
time with a linear increase in the dataset size N, the dataset dimension d. and
the query size ¢. In contrast, Virtual bR*-Tree fails to scale with ¢, d, and N.
These results confirm that the pruning criteria of Virtual bR*-Tree, as discussed in
Section 3.2, becomes ineffective with an increase in the dimension of the dataset.
This leads to an exponential generation of potential candidates and large query
times.

Next we present scalability results of ProMiSH-E and ProMiSH-A on large
synthetic datasets of varying dimensions for large query sizes and varying result
sizes. Each dataset used a dictionary of size U=200. A point in each dataset was

tagged with t=1 keyword. Figure 3.11 shows the query times of both algorithms

112

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

100000

Yy ~+PrOMiSH-E, N=100,000

'E 10000 - <=-ProMiSH-E, N=3,000,000
= — s g ~#ProMiSH-E, N=10,000,000
1000 ;
.§ —ProMiSH-A, N=100,000
E 100 ~=ProMiSH-A, N=3,000,000
g -o-ProMiSH-A, N=10,000,000
@ g0 - *—"‘/P':
) .
1 L] T 1
3 6 9
Query Size

Figure 3.11: Query time analysis of ProMiSH algorithms for retrieving top-
1 results for queries of varying sizes ¢ on 25-dimensional synthetic datasets of
varying sizes N. Values of t=1 and U=200 were used for each dataset.

for retrieving top-1 results for queries of varying sizes g on 25-dimensional datasets
of varying sizes N. ProMiSH-E had a query time of 29 seconds and ProMiSH-A
had a query time of 6 seconds for queries of size 9 on a dataset of 10 million points.
We observed that ProMiSH-A is an order of magnitude faster than ProMiSH-E
for queries of all sizes. We see from Figure 3.11 that ProMiSH scales linearly with
the query size and the dataset size.

Figure 3.12 shows the query times of ProMiSH-E and ProMiSH-A for retrieving
top-1 results for queries of varying sizes on 3 million size datasets of varying
dimensions. ProMiSH-E had a query time of 4.7 seconds and ProMiSH-A had a
query time of 0.3 seconds for queries of size ¢=9 on a 100-dimensional dataset
having N=3 million points. ProMiSH-A is an order of magnitude faster than

ProMiSH-E on datasets of all dimensions. We observed that both algorithms scale

113

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

10000

== ProMiSH-E, g=3
E =" a-ProMiSH-E, q=6
o ~+ProMiSH-E, g=9
E — ProMIiSH-A, g=3
> 1000 - , =
] —=ProMiSH-A, q=6
o -»-ProMiSH-A, q=9
oo
3 ‘_—Q——O—ﬁ

100 T T T ,

10 25 50 100
#Dimensions

Figure 3.12: Query time analysis of ProMiSH algorithms for retrieving top-1 re-
sults for queries of varying sizes ¢ on large synthetic datasets of varying dimensions
d. Values of N=3 million, t=1, and U=200 were used for each dataset.

~+-ProMiSH-E, q=3 *ProMiSH-E, q=6
-+ProMiSH-A, q=3-—ProMiSH-A, g=6

—. 10000 -

£

. =:—-_—-.

Q

E

> 1000 -

(1]

-

d .

> .

o

100 L 1 1

1 3 5

#Top Results, k

Figure 3.13: Query time analysis of ProMiSH algorithms for retrieving top-£
results for queries of sizes 3 and 6 on a 50-dimensional synthetic dataset of size
N=3 million. Values of t=1 and U=200 were used for the dataset.

114

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

linearly with dimension d of the dataset. Figure 3.13 shows the query times for
retrieving top-k results for queries of varying sizes ¢ on a 50-dimensional dataset
having 3 million points. It reveals a linear performance of both algorithms for
increasing k. ProMiSH-A is an order of magnitude better than ProMiSH-E for
any result size k. All these tests show that the query time of ProMiSH scales
linearly with the dataset size, the dataset dimension, the query size, and the

result size.

3.9.3 [Efficiency on Real Datasets

We evaluated the efficiency and the scalability of ProMiSH on multiple real
datasets. We first discuss query time comparisons of alternative algorithms for
varying dataset dimensions d, query sizes ¢, and dataset sizes N. We observed
that ProMiSH is at least four orders of magnitude better than Virtual bR*-Tree.
We also discuss scalability tests of ProMiSH-E and ProMiSH-A for varying values
of ¢, d, and the result size k. These scalability results on a dataset of size 1 million
reveal a linear query time performance of ProMiSH with ¢, d. and k. All the query
times were measured in milliseconds (ms) and are shown in log scale in all the
figures.

We show the query times of all the three algorithms on N=50,000 size real

datasets of varying dimensions d for retrieving top-1 results for queries of size g=4

115

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

1000000 -
£ 100000 -
E 10000 - ProMiSH-E
= 1000 - =Virtual bR*-Tree
E 100 - “ProMiSH-A
=1 '/_‘p——ﬁ——'
o 10 -
& 14 * ST
—

0.1 I] I I 1

2 4 8 16 32
#Dimensions

Figure 3.14: Query time comparison of algorithms for retrieving top-1 results for
queries of size g=4 on real datasets of varying dimensions d and size N=50,000.

100000000 -
- 10000000 -
£ 1000000 -
.E lggggg : =ProMiSH-E
'E, 1000 - =Virtual bR*-Tree
g 100 4 “+ProMiSH-A
& = &
ED 10 K/‘r——w”‘“
1 -
0.1 T T T \
2 3 4 5
Query Size

Figure 3.15: Query time comparison of algorithms for retrieving top-1 results
for queries of varying sizes ¢ on a 16-dimensional real dataset of size N=70,000.

in Figure 3.14. ProMiSH-A had a query time of 3 ms, ProMiSH-E had a query
time of 55 ms, and Virtual bR*-Tree had a query time of 210 seconds for 32-
dimensional dataset. The comparison of query times for retrieving top-1 results

for queries of varying sizes ¢ on a 16-dimensional real dataset of size N=70,000

is shown in Figure 3.15. ProMiSH-A had a query time of 5 ms, ProMiSH-E had

116

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

= 1000000 A
£ 100000 -
Q
.E 10000 1 “-ProMiSH-E
> 1000 - «\/irtual bR*-Tree
g 100 - “=ProMiSH-A
g
) 10 -
§ B —
1 — 1 T T 1

10 30 50 70

Dataset Size (Thousands)

Figure 3.16: Query time comparison of algorithms for retrieving top-1 results
for queries of size g=4 on 16-dimensional real datasets of varying sizes N.

a query time of 54 ms, and Virtual bR*-Tree had a query time of 13,352 seconds
for queries of size ¢=5. The comparison of query times on 16-dimensional real
datasets of varying sizes N for retrieving top-1 results for queries of size g=4 is
shown in Figure 3.16. ProMiSH-A had a query time of 3 ms, ProMiSH-E had a
query time of 49 ms, and Virtual bR*-Tree had a query time of 608 seconds for a
dataset of size N=70,000.

The above results show that ProMiSH significantly outperforms state-of-the-
art Virtual bR*-Tree on real datasets of all dimensions and sizes and on queries of
all sizes. ProMiSH-E is five orders of magnitude faster than Virtual bR*-Tree for
queries of size g=5 on a 16-dimensional real dataset of size 70,000. ProMISH-E is
also at least four orders of magnitude faster than Virtual bR*-Tree for a queries
of size g=4 on a 32-dimensional real dataset of size 50,000. ProMiSH-A always

has an order of magnitude better performance than ProMiSH-E. Similar to the

117

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

observations on synthetic datasets, we find that the difference in query time of
ProMiSH and Virtual bR*-Tree grows to multiple orders of magnitude with an
increase in the dataset size N, the dataset dimension d, and the query size q.
In addition, the query time performance of ProMiSH-A and ProMiSH-E is linear
with the dataset size, the dataset dimension, and the query size, unlike Virtual
bR*-Tree whose performance deteriorates sharply. This again confirms that the
pruning criteria of Virtual bR*-Tree is ineffective for high dimensional datasets.

10000

E 1000 - '__d_____-—“""""”
2 +ProMiSH-E, d=32
= =ProMiSH-E, d=64
2 100 - .
> +ProMiSH-A, d=32
é —ProMiSH-A, d=64_——
W 10 -
-l
1 L] T L] 1
2 4 6 8
Query Size

Figure 3.17: Query time analysis of ProMiSH algorithms for retrieving top-1
results for queries of varying sizes ¢ on real datasets of varying dimensions and
size N=1 million.

We performed stress tests of ProMiSH on real datasets having 1 million points
of dimensions 32 and 64. Figure 3.17 shows the query times of ProMiSH-A and

ProMiSH-E for varying query sizes. ProMiSH-A had a query time of 58 ms and

ProMiSH-E had a query time of 1,592 ms for queries of size ¢=8 on 64-dimensional

118

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

10000 -
>
E 1000 { p——y
2 +ProMiSH-E, d=32
E 100 4 #ProMiSH-E, d=64
e -+ProMiSH-A, d=32
§ —ProMiSH-A, d=64
w 104 =
S
1 T L] 1

#Top Results, k

Figure 3.18: Query time analysis of ProMiSH algorithms for retrieving top-k
results for queries of size g=4 on real datasets of varying dimensions and size
N=1 million.

real datasets. Figure 3.18 shows the query times of ProMiSH for retrieving top-
k results for queries of size g=4. ProMiSH-A had a query time of 18 ms and
ProMiSH-E had a query time of 1,084 ms for top-5 results on 64-dimensional
datasets. Figures 3.17 and 3.18 verify that the query time of ProMiSH increases
linearly with d, ¢, and k.
Our evaluations on large real datasets of high dimensions establish that ProMiSH

scales linearly with the dataset size, the dataset dimension, the query size, and
the result size. ProMiSH also yields practical query times on large datasets of

high dimensions, and is therefore useful for answering real time queries.

119

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

3.9.4 Space Efficiency

We evaluated the space efficiency of ProMiSH by computing the memory foot-
print of its index. For ProMiSH-E and ProMiSH-A, we used the space cost formu-
lation from Section 3.8. Here, we first describe the space cost of Virtual-bR* Tree
in terms of the dataset and the index parameters. Then we give the ratio of the
index space to the dataset space for all the three algorithms for varying dataset
parameters. Let the space cost of a point’s identifier, a dimension of a point. and
a keyword be E bytes individually. Let D be a dataset having N d-dimensional
points each of which is tagged with ¢ keywords. Let U be the number of unique
keywords in D. The dataset has a space cost of S(D)=((d+t)x N x E) bytes.

The index structure of Virtual bR*-Tree comprises of a R*-Tree, an inverted
index, and a query specific bR*-Tree. Let the number of children per node in
R*-Tree be z. Let the total number of nodes in R*-Tree be Ng. The space cost
of R*-Tree is ((2 x d + x) x £ x Ng) bytes. The inverted index stores a point’s
identifier and its path from the root node in R*-Tree. Therefore, the space cost
of the inverted index is ((log:N + 1) x t x E' x N) bytes. For a query of size g,
the space cost of bR*-Tree is (2 X dX F+2Xxdx Ex g+ x x E+U/8) x Ng)
bytes.

We investigated the ratio of the index space to the dataset space for all the

three algorithms using their space cost formulation. We used the following values

120

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

of the parameters: E=4 bytes, m=2, M=10,000, L=>5, =100, ¢=5, and t=1. We
show the ratios for varying values of d, N, and U in Table 3.4 for ProMiSH-E,
Table 3.5 for ProMiSH-A, and Table 3.6 for Virtual bR*-Tree. For datasets of low
dimensions, e.g., d=8, we observe that ProMiSH-E has the highest ratios, whereas
ProMiSH-A has the lowest ratios. For datasets of high dimensions, e.g., d=128, we
observe that ProMiSH-E and Virtual bR*-Tree have comparable ratios, whereas
ProMiSH-A again has the lowest ratios.

The index space of ProMiSH is independent of the dimension of the dataset,
whereas the dataset space grows linearly with the dimension. Therefore, the space
ratio of ProMiSH decreases with dimension. The index space of Virtual bR*-Tree
also grows with dimension. Therefore, ProMiSH has a lower space ratio than

Virtual bR*-Tree for a high dimensional dataset.

N=10 million N=100 million
d | U=100 | U=1,000 | U=100 | U=1,000
8 2.8 3.0 2.8 2.8
16 1.4 1.6 1.5 1.5
32 0.7 0.8 0.8 0.8
64 0.4 0.4 0.4 0.4
128 0.2 0.2 0.2 0.2

Table 3.4: Ratio of the index space to the dataset space for ProMiSH-E for
varying N, d, and U.

121

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

N=10 million N=100 million
d | U=100 | U=1,000 | U=100 | U=1.000
8 0.7 0.9 0.7 0.7
16 0.4 0.5 0.4 0.4
32 0.2 0.2 0.2 0.2
64 0.09 0.1 0.09 0.09
128 0.05 0.06 0.05 0.05

Table 3.5: Ratio of the index space to the dataset space for ProMiSH-A for
varying N, d, and U.

N=10 million N=100 million
d | U=100 | U=1,000 | U=100 | U=1,000
8 0.9 0.9 0.9 0.9
16 0.5 0.5 0.6 0.6
32 0.3 0.3 0.4 0.4
64 0.2 0.2 0.3 0.3
128 0.2 0.2 0.2 0.2

Table 3.6: Ratio of the index space to the dataset space for Virtual bR*-Tree
for varying N, d, and U.

3.10 Conclusions

In this chapter, we proposed solutions for the problem of top-£ nearest keyword
set search in multi-dimensional datasets. We developed an exact (ProMiSH-E) and
an approximate (ProMiSH-A) methods using hashtables and inverted indices. We
also proposed an efficient solution to find results from a subset of data points. Our
empirical results show that ProMiSH is faster than state-of-the-art tree-based
technique, having performance improvements of multiple orders of magnitude.

These performance gains are further emphasized as dataset size and dimension are

122

Chapter 3. Querying Patterns by Keywords in Multi-Dimensional Datasets

increased, as well as for large query sizes. ProMiSH-A has the fastest query time
among all the compared algorithms. We empirically observed a linear scalability
of ProMiSH with the dataset size, the dataset dimension, the query size, and the
result size. We also observed that ProMiSH yield practical query times on large

datasets of high dimensions for queries of large sizes.

123

Chapter 4

Querying Spatial Patterns

Spatial data are common in many scientific and commercial domains such as
geographical information systems and gene/protein expression profiles. Querying
for distribution patterns on such data can discover underlying spatial relationships
and suggest avenues for further scientific exploration. In this chapter, we study
querying spatial patterns by example. Given a spatial pattern, the task here is to
retrieve similar patterns from the dataset.

Supporting spatial pattern retrieval requires not only the formulation of an
appropriate scoring function for defining relevant connected subregions, but also
the design of new access methods that can scale to large databases. In this chapter,
we propose a solution to this problem of querying significant subregions on spatial
data provided as raster images. We design a scoring scheme to measure the
similarity of subregions. All the raster images are tiled and each alignment of

the query and a database image produces a tile score matrix. We show that

124

Chapter 4. Querying Spatial Patterns

the problem of finding the best connected subregion from this matrix is NP-
hard and develop a dynamic programming heuristic. With this heuristic, we
develop two index-based scalable search strategies, TARS and SPARS, to query
patterns in large data repositories. Experimental results on real image datasets
show that TARS offers an 87% improvement for small queries, and SPARS a
52% improvement for large queries in running time, as compared to linear search.

Qualitative tests on real datasets achieve precision of more than 80%.

4.1 Motivation

Spatial data arise in various domains such as geographical information systems,
biology, environmental management, and 1C fabrication. Often, the distribution
of a spatial attribute of interest (e.g., population density, contamination rate,
vegetation growth, protein expression, etc.) is captured using a raster image [906,
112, 108]. Such an example is shown in Figure 4.1 which displays the population
density map of Afghanistan!. The color of each pixel is associated with a particular
value of the population density. In biological and medical images, pixel intensity
represents the distribution of tissues, gene, or proteins. Figure 4.2 shows the
fluorescent microscopy image of a cross section of a feline retina [43]. The intensity

of a pixel reveals the distribution of peanut-agglutinin, a lectin found in the retina.

thttp:/ /sedac.ciesin.columbia.edu/gpw/

125

Chapter 4. Querying Spatial Patterns

Afghanistan: Po pulation Density, 2000 GPW [v3]

Gridded Population of the World
Persons per km”

»

— CIESIN

Figure 4.1: Population density map of Afghanistan.

Ever since John Snow’s analysis of cholera outbreaks that resulted in finding
a contaminated water pump in London in 1854 [125], the analysis of spatial data
distributions has been a popular avenue of scientific inquiry. Revelation of similar-
ity in demographic patterns helps us correlate and understand various geographic
factors affecting population growth. Similarity in vegetation pattern discovered
by querying aerial images can help relate climate cycle and land formation at
various places on Farth. In retinal images, the similarity in spatial patterns may

offer new insights into biological processes.

126

Chapter 4. Querying Spatial Patterns

Figure 4.2: Example of a biologically interesting spatial pattern (best viewed
in color). The marked pattern highlights a fold of the retinal tissue labeled with
peanut-agglutinin conjugated to a fluorescent probe. Yellow dots are the point of
interests detected using affine covariant region technique [93] of computing local
descriptor.

In this chapter, we propose to search for a specified pattern in a database
of spatial distributions represented as raster images. A query pattern can be
described either by specifying a local distribution or by marking a rectangular
region of interest on a given image as shown in Figure 4.2. The database may
consist of population density maps, biological images, remote sensing images, or
raster images of any other domain. The task is to find sub-regions of images in
the database that are similar to the specified query pattern and are meaningful.

Our problem statement is close to sub-image search for natural images [106].
The methods developed in this domain use local descriptors [94] that are computed
around few key points of interest as shown by yellow circles in Figure 4.2. These

descriptors are obtained from a small number of neighborhood pixels around de-

127

Chapter 4. Querying Spatial Patterns

tected points of interest and are designed to provide robustness for photometric,
scale, viewpoint and affine changes for natural image matching. State-of-the-
art SIFT descriptors [86] are histograms of the gradients of the sampled points
around the key point. Sampled points are divided into 4 x4 grids. Gradients of the
sampled points in each grid are summarized using 8 bin orientation histograms.
Histograms of all the grids are concatenated to yield a SIF'T descriptor of size 128
for the key point. Local descriptors till now have had only limited success (around
66% precision [106]) because of the difficulty of coping with all the image varia-
tions. Raster images do not have challenges of photometric, viewpoint and affine
changes. For spatial distributions in raster images, the resolution is known, and
this permits easy normalization. Points of interest in natural images are computed
using pixel intensity gradient and, therefore, may be absent in a large portion of
an image as seen in Figure 4.2 making it impossible to carry out sub-image search
for those regions. These points are also less than sufficient to summarize all the
useful information in an image. Instead of just focusing on key points as for nat-
ural images, a solution to the proposed problem needs to capture the information
over the entire useful part of an image (foreground), e.g., summarize each pixel
representing population density in Figure 4.1 using a histogram.

Our method tiles the query image and database images into atomic units.

Then, a domain-based scoring function is used to score an alignment of two atomic

128

Chapter 4. Querying Spatial Patterns

units. Finally, the score is aggregated over a connected region to find the best
match. The idea of a match is illustrated in Figure 4.3. A query is aligned
with each image in the database under all possible translations. Each alignment
generates a matrix of scores, both positive and negative, between corresponding
tiles. Positive scores denote foreground matches while a negative score means
that a background tile of the query is matched to a database tile. A connected
subregion over the matrix identifies a meaningful matching subregion. Scores
over all possible connected subregions can be used to define answers to range and
nearest-neighbor queries. The generality of the solution and the identification of

best connected subregions are the unique aspects of our design.

Tiled query 4x4
Overlap: 4+ 1+ 1
t } 71615 ‘ 7 ‘ 615
P — | 4| =5] 1| — -1
) -1 2|3 213
Score matrix from Subregion obtained by
pairwise scores of dynamic programming
Tiled database image overlapping tiles

Figure 4.3: A 4 x 4 query is overlapped with a database map. For each tile
in the 3 x 3 overlapped region, a score for the match is computed. Dynamic
programming is run on the score matrix to obtain the maximal scoring connected
subregion.

Once we adopt the score and subregion based idea for retrieval of high-quality
answers, the next challenge is one of scalability. How to identify the best subre-

gions over millions of alignments? Clearly, a region-by-region search design will

129

Chapter 4. Querying Spatial Patterns

not work. So, how to develop access methods and index structures that can find
the best subregions without examining all of them? Our solution to the scalabil-
ity problem is two-fold: (i) development of an index structure that works with
our definition of score, and (ii) design of two new algorithms that use the index
structure to find the best subregions in an efficient manner.

The idea of finding the best connected subregion in a matrix that maximizes
the sum of piecemeal scores is itself of theoretical and practical interest. We
show that this problem is NP-hard. This necessitates appropriate heuristics that
examine not all but a subset of connected subregions. We develop a dynamic
programming based solution and characterize the class of subregions that is ex-
amined by this heuristic. Our access methods are unaffected by how the best
connected subregions in an alignment are identified; they work correctly with any
such heuristic.

In a nutshell, our contributions in this chapter are as follows:

e We develop a score-based framework for identifying the best connected sub-

regions for a given query region with tile-based decomposition (Section 4.3).

e We develop index structure based access methods to query the best matching
subregions efficiently. The first method, TARS, is instance optimal but

traverses the index multiple times and, therefore, performs better for small

130

Chapter 4. Querying Spatial Patterns

queries. The second method, SPARS, makes a single pass through the index

and is suited for large queries (Section 4.4).

e We study the computational complexity of finding the highest scoring subre-
gion. We show that this problem is NP-hard by reduction from the Thumb-
nail Rectilinear Steiner Tree problem [45]. We develop an efficient dynamic
programming heuristic and characterize the class of subregions explored by

this heuristic (Section 4.3).

e We empirically show scalability (Section 4.5) and quality (Section 4.5.4) of

our methods on two real datasets.

4.2 Related Work

Query by example for images, called Content-Based Image Retrieval (CBIR),
has been extensively studied. Region-Based Image Retrieval (RBIR) systems
extend CBIR by making the search sensitive to different regions of an image. A
survey on the recent methods of CBIR and RBIR can be found in [32]. Most
of the RBIR systems use automatic or manual region segmentation in order to
characterize regions and then compute a one-to-one or many-to-one mapping to
match query regions to those in the database [7, 21, 98, 126, 127]. Weakness of the

segmentation based methods lies is their incapability to handle region queries that

131

Chapter 4. Querying Spatial Patterns

partially extend across various segments or regions of an image. Malki et al. [88]
avoided segmentation by using a multi-resolution quadtree [41] to organize images.
Their method had no constraint of connected pattern and had equal weight for
foreground and background. Sub-image retrieval using local descriptors [94] has
been addressed recently for natural images [70, 106] but cannot be extended for
querying patterns in raster images as discussed in Section 4.1.

Tiling is the most common way of storing raster data [124] in spatial DBMS.
Image tiling at varying scales was used by Svetlana et al. [77] for recognizing
natural scene categories using full image matching. Tiles were also used by [14]
to partition images into clusters in the color space.

Methods for querying similar images based on full image matching has also
been developed for aerial [89, 115] and biomedical [105, 35] images separately.
Baumann et al. [8] proposed a web-enabled service over a multidimensional DBMS,
used as storage, for interactive navigation and SQL based querying on raster
images. Their system does not support pattern querying. Vinhas et al. [124] also
proposed DBMS system for handling raster image in spatial databases. OLAP
techniques were exploited by [50] to speed up aggregate query processing in raster
image databases. New geo-raster operations with array algebra is proposed in [51].
Zhang et al. [138] developed index structure for spatio-temporal aggregation over

streaming raster images for a given query region. They first split the images

132

Chapter 4. Querying Spatial Patterns

into tiles and then computed aggregate for each tiles. Gertz et al. [47] proposed
a data and query model by extending Image Algebra to formulate and answer
queries over geospatial image data. Pajarola et al. [100] provides a compression
technique for large raster images and designs methods to support spatial range
queries directly over compressed images. Hadjieleftheriou et al. [53] address the
problem of querying a user defined movement patterns in space and time from a
large collection of spatiotemporal trajectories. Yankov et al. [132] develop best-
match searching algorithm for two-dimensional shapes.

Our work is the first to support pattern querying on geographic maps like
demography, pollution, etc. The technique is generic enough to be extended to
raster images of other domains like biology, medicine, etc. It differs from image
retrieval techniques by supporting pattern querying without image segmentation
into regions or objects, developing score based similarity measure, finding the
best connected match, and discriminating between foreground and background to

discover meaningful patterns.

4.3 Sub-Region Similarity

In this section, we discuss feature extraction from images, define similarity

measure between a pair of image tiles, and then extend the idea of similarity

133

Chapter 4. Querying Spatial Patterns

between tiles to regions. Then, we show that the computation of the optimal score
between two sub-regions is NP-hard. Finally, we develop a dynamic programming
heuristic to compute a good alignment.

Each raster image in the database is split into tiles [124]. All the pixel values
in a tile is summarized as a histogram. Dimension of the histogram equals the
number of discrete levels of pixel values which is later reduced by a dimensionality
reduction technique (PCA [104]) for efficiency. Finally, our database DB consists
of the feature vectors of these tiles. We also tile the query image) and obtain
feature vectors similar to a database image tile. We search for similar regions for
a given query image in a feature vector space. We use L; norm as the measure of
distance between a pair of histograms. Raster images can be of varying resolution
or scale. In this chapter, we assume that a given database consists of raster images
of the same scale. If the images are of varying resolution, they can be preprocessed

and normalized to the same resolution as scale is known.

4.3.1 Scoring Function

We measure similarity between a pair of tiles using a scoring function. Our
scoring function is a monotonically decreasing function of the distance between

the feature vectors of a query tile ¢ and an image tile ¢t. Scoring function is defined

134

Chapter 4. Querying Spatial Patterns

b

Figure 4.4: Scoring a query tile ¢ against a database tile . b denotes the perfect
“background” tile. score(q,t) = s — Ar — c.

score(q.t) = f(q) — g(d(q.t)) — c (4.1)

where f is a function based on domain knowledge, ¢ is a monotonically increasing
function, d is the distance between tiles and ¢ is a constant. The score can be
positive or negative. The intent of the scoring function is to discriminate between
foreground (region of interest) and background. A query tile with little or no
information forms the background and, therefore, should get a negative or low
score no matter how good the match is. A tile with more pattern information is
a part of region of interest (ROT) and should get a high score when matched with
a similar database image tile. The function f(q) measures whether the tile ¢ is in

a ROL.

135

Chapter 4. Querying Spatial Patterns

4.3.2 Instance of Scoring Function

The scoring function template described in Section 4.3.1 is broadly applicable
to a number of scoring functions. Here, we give a specific instance based on
the idea of log-odds. For this model, we assume that the tile space consists of
two distributions. The first distribution is that of foreground tiles from database
which we call the true distribution. We model this as an exponential distribution?.
For a database tile ¢ and a query tile ¢ (Figure 4.4), if » = d(q,t) = the distance
between the feature values of ¢ and ¢, then we can characterize this distribution

as

P(q|true distribution) = \je™". (4.2)

The second distribution is that of background tiles in the database, which we call
the background distribution. We postulate a perfect background tile b (Figure 4.4)

and an exponential background distribution centered at b. If s = d(q,b) then
P(q|background distribution) = Age™*2°. (4.3)

The score of a query tile ¢ matching a database tile t is given by the log-odds ratio:

P(q|true distribution)

t
score(q,) P(q|background distribution)

=)\25 —)\17’ + ln()\l/)\g) (44)

2The reasons for choosing this distribution are three-fold: first, data observation, second, its
simplicity, and third, its utility in capturing small variations over related images.

136

Chapter 4. Querying Spatial Patterns

Since scoring is only used to discriminate between foreground and background
matches and the actual value is not important, the scores can be conveniently
translated and scaled with constants. Denoting A\;/A\y by a constant A, then

scaling by A9, and finally translating the score gives

score(q,t) = s—Ar—c (4.5)

= d(gq,b) — N\d(gq,t) — ¢ (4.6)

where A and ¢ are independent constants. Comparing Eq. (4.6) with Eq. (4.1),
we see that f(q) = d(q,b) and g(d(q,t)) = Ad(q,1).

We name the above scoring function Discriminator Function. We can make
the following observations from Eq. (4.6): (i) When distance to a database tile
is kept invariant, a query tile with less background has a higher score, (ii) For a
particular query tile, a more distant database tile has a lower score. We show the

advantage of this scoring function over simple distance measures in Section 4.3.5.

4.3.3 Score of an Overlapping Region

Once we have a model to measure the similarity between a pair of tiles, we
next consider how to measure similarity between two regions. The alignment or
the overlap of a query image () with a database image produces a score matrix

of pairwise aligned tiles, as depicted in Figure 4.3. The score of the alignment

137

Chapter 4. Querying Spatial Patterns

is defined as the score of a connected subregion that has the maximal possible
cumulative score. We are interested in the alignment of a single pattern and,
hence, the justification for finding a single connected region. The maximal scoring
subregion may include negative scores and may not be rectangular in shape, as
shown in Figure 4.3.

The best match in a database of images is found by considering all possible
alignments, i.e., translations of the query image over each database image. This

is illustrated in Figure 4.5 where three alignments are shown.

Tiled 3x3 Query Image Q
! Overlapping Regions

7% 7/
7

7|\
|

Tiled 6x6 Database Image I 3 l

AN

N
N

N\
\

,,,,,,,,

Figure 4.5: Overlapping regions found by translation of a query image) on a
database image [at 3 alignments.

138

Chapter 4. Querying Spatial Patterns

4.3.4 NP-Completeness Proof

We next prove that the problem of finding the maximal scoring subregion
in a score matrix is NP-hard. We prove this by showing that the corresponding
decision problem is NP-complete. We first define the “graph” analog of the matrix
problem as follows: Given a graph representation G = (V. E) of a matriz, with
weight w(v) on each vertex v € V corresponding to the entry in the matriz, is
there a connected subgraph of weight > W ¢ We denote this problem by MAXIMAL

WEIGHTED CONNECTED SUBGRAPH or MWCS.

Theorem 1. MAXIMAL WEIGHTED CONNECTED SUBGRAPH (MWCS) is NP-

complete, for a matriz graph of degree at most 4.

Proof. MWCS is in NP since the weight of a connected subgraph can be computed
in polynomial time.

For reduction, we use the RECTILINEAR STEINER TREE (RST) problem that
is known to be NP-complete [46]. The RST problem asks: Given a set of n terminal
points that are embedded in an integer grid in a plane, is there a spanning tree
of total length at most [such that the vertices of the spanning tree are the input
points of the set and the grid points, where the length of an edge is the I.; distance

between the corresponding vertices?

139

Chapter 4. Querying Spatial Patterns

There is a special case of the RST problem known as the THUMBNAIL REC-
TILINEAR STEINER TREE (TRST) problem [45]. The TRST problem restricts
the terminal points to an m x m grid. The TRST problem remains NP-complete
even when m is bounded by a polynomial of n [46].

Given an instance of the TRST, we construct an instance of the MWCS as
follows: We first find the bounding box of the points of the TRST, i.e., the m x m
grid. Then, we replace each terminal point by a vertex of weight w > [. At
each grid point that is not already occupied by the n terminal points, we place a
vertex with weight 0. Between a pair of consecutive vertices on the same grid line
(e.g., on the half-grid positions), we place a vertex with weight —1. Fach vertex is
connected to only to its horizontal and vertical neighbors, thus producing a matrix
graph. Figure 4.6 shows an example of the construction. The original points are
shown by double circles. The construction takes time polynomial in m, and hence
polynomial in n, and the graph GG thus constructed is planar with degree at most
4.

We claim that the original TRST on n points has a rectilinear Steiner tree of
length < [if and only if the MWCS graph has a connected subgraph of weight
>W =nw-—1L.

Only if: Assume that there is a Steiner tree of length at most {. By definition,

it spans all the terminal points and is connected. Note that for a length [path

140

Chapter 4. Querying Spatial Patterns

between two points, there are exactly [vertices of weight —1. The vertices corre-
sponding to the n terminal points have a weight of w each. Therefore, the weight
of this tree is at least n.w — [. Figure 4.6 shows such a Steiner tree in solid lines.

If: Any connected subgraph of weight at least n.w — [in G must include all
the n vertices of weight w and at most [vertices of weight —1. There is no way
to connect two vertices of weight > 0 without passing through a vertex of weight
—1. Therefore, the length of this path is at most [, since otherwise, the connected
subgraph would have included more than [vertices of weight —1. Also, if the
subgraph has the maximal weight, it is a tree, since, if it is not, at least one pair
of vertices has more than one path between them. Removing that path increases
the weight of the tree by the absolute weight of the negatively-weighted vertices in
the path. Therefore, this subgraph defines a Steiner tree for the original n points.

An example of such a subgraph is shown in Figure 4.6 in solid lines. O]

4.3.5 Dynamic Programming Heuristic

Now, we design a dynamic programming (DP) heuristic as an alternative to
examining all possible subregions for finding the maximal score. Assume that the
score in cell C'(4, j) of the score matrix is denoted by s(i, 7). The DP starts from
one of the corner cells of the score matrix. For discussion purposes, assume that it

starts at cell C'(0,0) in Figure 4.7. Next, it proceeds by first moving towards the

141

Chapter 4. Querying Spatial Patterns

Figure 4.6: Construction from Thumbnail Rectilinear Steiner Tree instance to
Maximal Weighted Connected Subgraph (MWCS) instance. The double lined
vertices are the original terminal points. The solid lines represent the optimal
solution of both the problems.

right (—) and calculates a subregion corresponding to each cell in 0" row. Then
it goes to 1°¢ row 0 cell C'(1,0) by moving in the top (1) direction in the score
matrix (akin to a row-scan order). DP completes this iteration when it reaches
the top-most and right-most cell in the matrix. In Figure 4.7, this cell is C'(2, 2).

Suppose, R(i,j) is a maximal scoring sub-region that has its top-right corner
at the cell C(4,5). Also, suppose s(i,7) denotes the score of C(7,7) and S(i,j)
denotes the maximal score for the subregion R(i, 7). DP examines 4 possibilities
to find the maximal score of R(7,j): (i) the score of the cell itself, (ii) the score

of the cell plus the maximal score for the bottom subregion, (iii) the score of the

142

Chapter 4. Querying Spatial Patterns

cell plus the maximal score for the left subregion, and (iv) the score of the cell
plus the maximal scores for the bottom and the left subregions. Since the bottom
and the left subregions can intersect, the score of the intersecting region should
be subtracted from the cumulative scores of the two subregions so that it is not
counted twice.

The DP algorithm computes the following recurrence relation to find all the

subregions in the score matrix and their scores:

s(i, J)

s(i,7) + S(i,j —1)
S(i,J) =max ¢ s(i,j) + S(i — 1,7) (4.7)

s(i,)+ S, 5 — 1)+ S(i —1,5)

—S(R(i,j —1)NR(i — 1,7))

\

The corresponding subregions maintained for the 4 cases are, respectively:

.

C(i, 5)
C(i,j)UR(®,j—1)

C(i,j)UR(i—1,7)

C(i,j) U R(i,j — 1) UR(i - 1,5)
\
To improve the overall score, DP executes the above logic starting from all the

4 corner cells with the following combinations of moves: (i) Starting at bottom-

left cell and moving in T and — direction, (ii) Starting at bottom-right cell and

143

Chapter 4. Querying Spatial Patterns

moving in | and « direction, (iii) Starting at top-left cell and moving in | and
— direction, (iv) Starting at top-right cell and moving in | and « direction. It
returns the subregion having the maximum score of all these 4 possibilities. Such

a subregion explored by DP on a score matrix is illustrated by Figure 4.3.

Running Time: For a score matrix of size m x n, for each cell, the DP computes
the maximal score for the subregion ending at that cell. Calculating the scores for
each cell requires finding an intersection of the largest scoring subregions on its
bottom and left. This requires a running time of O(mn) in the worst case. Thus,
the total running time of the DP algorithm is O(m?n?). For a particular score
matrix, the DP needs to be run from all the 4 corners, which is constant. Thus,

the worst case running time for the DP is quadratic in the size of the score matrix.

Class of Subregions Examined: The DP algorithm does not (and cannot!)
investigate all the possible connected subregions; it chooses the maximal scoring
connected subregion from only a certain class of shapes. Next, we analyze the
class of such shapes. Consider only right (—) and top (T) moves starting at left-
bottom corner. The maximal scoring subregion R(i,j) for cell C(i, 7) will include
another cell C(7,j") only if C'(¢’, 5') is included in either R(i,7 —1) or R(i — 1, 7).

Similarly, the subregions R(i,j — 1) and R(i — 1,j) contain only those cells that

144

Chapter 4. Querying Spatial Patterns

Cell(i,j)

2 C(2,2)

R@,j-1) RGyj)

1
Left
"o |coo | "o
R(@-1,))
Bottom
0 1 2
—_— =
J

Figure 4.7: DP forms sub-region R(i, j) by looking at scores of C(i,j), R(i—1,7)

and R(i,j — 1).
3.1 32 2/// 3.4
D | D (-90)

N

%

\&

: /%)
A et ///j p
1) % 1)

Figure 4.8: Example of a shape not captured by DP. The scores are shown in
brackets. The optimal solution consists of the cells (3,3), (2,2), (2,3), (2,4) and
(1,3) having scores 40, 10, 1, 35 and 10 respectively.

145

Chapter 4. Querying Spatial Patterns

are towards the left and bottom of them. Therefore, by induction, if cell C(7', j")
is included in R(7,j), then C(7',j") must be at the left and bottom of C(i, 7). No
cell which is towards the right or top of C(7, j) will be included in R(7,j). As an
example, consider the cell (2,4) in Figure 4.8. Tt can consider only the cells (i,)
where 7 < 2 and 7 < 4, i.e., all cells to its left and bottom. It cannot consider
any other cell (e.g., cell (3,3) in the figure). The DP ends at the top-right corner.
However, the maximal scoring subregion may end at any cell, and not necessarily
at the top-right corner cell. Thus, for example, if the maximal scoring sub-region
ends at (3,3), then the nature of DP forbids it to consider cells (1,4), (2,4) and
(3,4) (Figure 4.8). Hence, even though the optimal solution for the example in
Figure 4.8 consists of all the five shaded cells, this DP will find only the region
consisting of cells (1,3), (2,2), (2,3) and (3,3) as the answer. The shaded region
given in Figure 4.8 cannot be obtained by DP starting from any corner.

Since the DP is run from the four corners in four sets of moves, the subre-
gions captured are of four types: containing cells (i) towards bottom and left,
(ii) towards bottom and right, (iii) towards top and left, and (iv) towards top and
right.

Formally, the shapes for the class of such subregions can be characterized in
the following way. For a particular shape P, a cell C(i,7) sinks another cell

C(i',7"), denoted by C(i, 7)< C(7,j"), it C(i,j) can be reached from C(¢',j") in P

146

Chapter 4. Querying Spatial Patterns

by taking one of the four combinations of moves described earlier. For example,
in Figure 4.8, cell (3,3) sinks cell (2,3) for right and top moves since it can be
reached from (2, 3) by this move combination. For the same move combination, it
does not sink cell (2,4) as it cannot reached from (2,4) using only right and top
moves. A cell C(i,7) sinks a shape P, denoted by C(i, 7)< P, if and only if for all

cells C'(4', 7') belonging to P, C(i, j) sinks C(7', j), i.e.,
Cli,j)< P < YO, j)e P, C(i,j)<C(,j") (4.9)

A particular shape P can be captured by DP if and only if there exists a cell
C(i,j) € P that sinks P. Combining all the 4 sets of moves as mentioned ear-
lier characterizes the entire set of shapes captured by DP. Examples of shapes
captured are: M,[, etc. Shapes that cannot be captured include 4+, x. We also
present few examples of the count of the shapes captured by DP for varying num-
ber of grids. DP captures all the possible 14 shapes for a 2 x 4 grid. DP captures

31 of the 38 possible shapes for a 3 x 3 grid.

Advantages of Score Based Similarity: We performed quality experiments
to compare our score based similarity measure with distance based measures. We
used the Discriminator scoring function, described in Section 4.3.2, to measure
the similarity between a pair of tiles. We compared the first result retrieved by

our similarity measure to the sum of I.,; distance measured between correspond-

147

Chapter 4. Querying Spatial Patterns

ing histogram of tiles of the overlapping region. One such result over biological
images is shown in Figure 4.9. We can see that a simple distance measure fails
to discriminate between foreground and background and hence generates more
false matches. Our similarity measure maximizes the score of the best matching

subregion and performs better.

4.4 Query Algorithms

In this section, we discuss linear search and two new query algorithms to
find the top-k similar regions from a database. These strategies are general
enough to work with other scoring schemes and heuristics. The first algorithm is
a naive linear search through the database. The other two algorithms use a multi-
dimensional index structure to prune the search space to achieve efficiency and
scalability. In the ensuing discussion, the size of a query image () and a database
image [is defined in terms of the number of constituent tiles. We take the size of
Q@ to be n.

The Linear Search algorithm searches through all the possible overlaps to find
the top-£ matching regions. It translates the query image over all the database
images and computes a score for each of them. It maintains a priority queue of

the results to find the k£ highest scoring regions. Since the number of possible

148

Chapter 4. Querying Spatial Patterns

(b) Result with distance-based scheme (¢) Result with scoring-based scheme
on entire region and sub-region finding

Figure 4.9: (a) Example of a biologically interesting pattern. The marked pat-
tern highlights a fold of the retinal tissue labeled with peanut-agglutinin conju-
gated to a fluorescent probe. (b) Retrieved result when distance-based matching
on entire region is used. (c¢) Retrieved result when score-based matching on sub-
regions is used.

149

Chapter 4. Querying Spatial Patterns

Root
| (mbrup) (mbrp) (mbryp) |
mbr, mbr, mbr,
Iy ley, ey | Ic, le, g ‘ I, le, g
v Yy 4 N v N
ty L | e b 4 {1) /|1 b =9
n, n; n n, % n, ng
rL n,
Image |, & Ns

Figure 4.10: Index structure. Image [; maintains pointers to leaf nodes of its
tiles. Leaf nodes maintain pointer to I;.

overlaps increases linearly with increase in image and database size, this method
does not scale and is impractical for large queries and database sizes.

To make the search scalable and efficient, we next propose two algorithms
TARS and SPARS. Both algorithms use an index on the feature vectors of the
image tiles to query nearest neighbors for a given tile. We can use any R-tree [52]
(data-partitioning) like index structure for this. We choose bulk loadable STR-
Tree [80] as the index because of its simplicity and availability. Each leaf node
of the index is an entry of the form Imbr(t, I) where t is the feature vector of
an image tile and [is a pointer to its parent image. FEach non-leaf node has a

list containing an entry per child of type (MBR, child-pointer) where MBR is

150

Chapter 4. Querying Spatial Patterns

Algorithm 7 TARS

In: T: tree root, @Q: list of query tiles
In: k: number of top results
Out: RQ: priority queue of top-k matches

—_
_ O

H
&

,_.
@

H
=

—
o

,_.
=2

—
I~

18:
19: end while

RQ — [(—, —oc)]
T «— 4oc
BS «— ¢ : bit-vector for explored overlap region
while T > GetHead(RQ).s do
for all ¢; € Q do
nnTile[i] « GetNextNN(q;)
end for
for all ¢; € Q do
org < FindOverlapRegion(nnTile[i],q;)
if org not flagged in BS then
sm «— GetScoreMatrix(Q,org)
e(rg,s) < DP(sm)
flag org in BS
Insert(RQ, e(rg,s))
end if
sm «+— score matrix of overlapping Q with nnTile
T « score of DP(sm)
end for

the minimum bounding box and child-pointer is the pointer to the child node

respectively. Each database image [is a two-dimensional array of pointers to the

Imbrs containing its tiles as shown in Figure 4.10. This structure allows for full

access from a tile to its parent image and vice versa. We can easily find the row

and column position of a tile from the image array to find an overlap.

151

Chapter 4. Querying Spatial Patterns

4.4.1 TARS (Threshold Algorithm for Regionbased Search)

The algorithm TARS formulates the region retrieval query as a top-k aggregate
query. It views the given query image as a multi-component object where each of
its tile ¢; € Q,Vi = 1, ..., n constitutes its independent components. Similarly, it
views DB as a list of multi-component objects. Each DB object is a set of con-
nected tiles from a DB image. It uses sub-region similarity function as aggregate
function. Query image (query object) is overlapped with a connected set of tiles
from an image (DB object), a score matrix is obtained by computing pairwise tile
similarity, and then maximum similarity score is computed using DP on the score
matrix. The goal in this setting now is to retrieve the top-k maximum scoring DB
objects.

Algorithm TARS adopts a strategy similar to the Threshold Algorithm (TA) [40]
to solve this aggregate query. For each ¢;, TARS views that all the database tiles
are ranked in a decreasing order of their scores with ¢;. Overlapping regions are
determined by the tiles from the ranked lists. Table 4.1 shows a sorted view of
the database for a query image consisting of two tiles. Maximum similarity score
computed using DP is monotonic. For two score matrices a and b obtained by
overlapping a query object with two different DB objects, if a has tile-wise larger
scores than b, then the score of DP on a will be larger than 6. This monotonic

property is used to terminate TARS.

152

Chapter 4. Querying Spatial Patterns

a1 42
(t37]2710) (t171179)
(ta.11.8) | (ta,11,7)
(t1,1,,2) | (t3,15,6)

Table 4.1: Sorted access of tiles for a given query (g1, g2) in TARS.

TARS performs incremental nearest-neighbor searches for each ¢; on the index
structure to get sorted access to the database tiles. It starts by accessing the first
nearest neighbor ¢;, for each ¢; (steps 5-7 of Algorithm 7). Then, for each g;, it
finds the overlapping region of () with a database image I (t;, € I) such that g;
aligns with ¢;, in the overlap. Figure 4.11 shows how () having 4 tiles overlaps

with an image [also having 4 tiles such that ¢; aligns with ¢;.

]
: s e g
& TEH
L Lz
d
d4 .--""? 3..--":?
é‘,/z,/
Ga bE]

Figure 4.11: Overlap of query image () with database image I such that ¢; aligns

The algorithm then uses DP to find the maximum scoring subregion rg and its
score s for each such overlap org (steps 11-12). It inserts all the results e(rg,s) in

a priority queue R() of size at most k. The entries in R() are sorted based on their

153

Chapter 4. Querying Spatial Patterns

scores. Once R() has k regions, a result is inserted only if its score is more than the
k" current region with the least score. In order to prevent multiple processing
of the same database region, TARS flags the explored overlapping regions in a
bit-vector BS.

At the end of the first iteration, TARS builds a score matrix by aligning each
q; with t;,. The DP score on this score matrix is the threshold score T. The
threshold score is an upper bound on the scores of all the regions that have not
yet been explored; this is because all the tiles to be accessed in the next iteration
by each g; have scores lower or at best equal to the current ¢;’s and the DP score is
monotonic. This threshold score is updated after every iteration of the algorithm.
The algorithm proceeds to the next iteration only if T is greater than the least
score in R(). As TARS proceeds, T decreases and the algorithm terminates with
optimal results.

The performance of algorithm TARS worsens with increase in query size. It is
instance optimal but it traverses the index structure separately for each ¢; € @ to
access the database tiles in sorted order. The cost of this multiple nearest-neighbor
traversal grows quickly with increasing query size. To avoid this scalability prob-
lem, we next propose a technique SPARS that finds the top-k regions by per-
forming a single traversal through the index structure and has better performance

than TARS for large queries.

154

Chapter 4. Querying Spatial Patterns

4.4.2 SPARS (Single Pass Region-based Search)

Algorithm SPARS is a novel top-k aggregate query algorithm which makes
a single traversal through the index tree. It finds the top scoring regions by
performing a best-first search [56]. It maintains a priority queue BQ to find the
next best node to process. When the algorithm encounters a leaf node, it explores
an actual region in the database corresponding to its image tile. Similar to TARS,

it maintains a priority queue R(@) of the top-k regions.

MBR3

Figure 4.12: MBR and its nearest query tile. ¢; is nearest to M BR, with
distance dp,n.

The search for top-k regions starts at the root node of the index, which is
the first entry in B(@) with +o00 score. The algorithm next processes each of its
children. If the child is a non-leaf index node mbr, then it computes a score for
it as follows (outlined in steps 8-12 of Algorithm 8). It determines the minimum
distance between any query tile and the node d,,;, = min; d(g;, mbr), as shown

in Figure 4.12. Then, it computes a score matrix by aligning each ¢; € @) with

155

Chapter 4. Querying Spatial Patterns

Algorithm 8 SPARS

In: T: tree root, @Q: list of query tiles

In: k: number of top results

Out: RQ: priority queue of top-k matches

1: n «— size(Q)
2 RQ — [(—, —o0)
3: BQ: queue of intermediate entities«— [(T, +00)]
4: e(mbr,s) «— GetHead(BQ)
5: while e.s > GetHead(RQ).s do
6: if e is of type (mbr,s) then
7 for all child node cn in e.mbr do
8: if cn is mbr then
0: dmin — GetMinDistance(Q,mbr)
10: sm «— GetScoreMatrix(Q,[dnin])
11: e(rg,s) < DP(sm)
12: Insert(BQ,e(mbr,s))
13: else
14: /¥if en is a lmbr*/
15: gj < query tile nearest to Imbr
16: e(rg.s) «— GetMaxSubRg(Imbr,q;,Q)
17: RQ.Insert(e(rg,s))
18: for all ¢; in Q and 7 # j do
19: dmin — GetMinDistance(q;,Imbr)
20: sm «— GetScoreMatrix(Q,[dmin])
21: e(Imbr.q;,s) < DP(sm)
22: Insert(BQ,e(Imbr,q;,s))
23: end for
24: end if
25: end for
26: else
27: /¥if e is of type (g;,lmbr,s)*/
28: e(rg,s) «— GetMaxSubRg(Ilmbr,q,Q)
29: TInsert(RQ,e(rg,s))
30: end if

31: e(mbr,s) «— GetHead(BQ)
32: end while
33: return RQ

virtual image tiles having a distance d,,;, from g; as shown in Figure 4.13. The

score s of the node is the score of the maximum scoring subregion found using DP

156

Chapter 4. Querying Spatial Patterns

|
Q viy vi,
a7 >
e] e
& &
vi, vi;
91 9z > do
d . -
é.—'"y—-é,—-—
Qa M E]

Figure 4.13: Overlap of query image @ with virtual tiles (vty, vito, ...) at distance

dmin .

on this score matrix. SPARS inserts the mbr along with the score s as an element
e(mbr,s) in BQ. It inserts e into BQ only if RQ has less than k elements or s is
greater than the minimum score in R(Q).

If the child is a leaf node Imbr, then the algorithm finds the nearest query tile
¢; to tile ¢t of Imbr and computes the minimum distance d,,;,, = min; d(g;, lmbr).
It explores the actual image region for the (g¢;,t) alignment using Algorithm 9
as illustrated in steps 15-17 of Algorithm 8. Algorithm GetMazSubRg finds the
overlap of query () with image I pointed by Imbr by aligning ¢; with ¢. Since the
same overlapping region can be encountered later for a query and image tile pair,
GetMaxSubRg maintains a bit-vector BS to flag the explored regions; this prevents
multiple processing of the same database region. Algorithm GetMazSubRg returns

the maximum scoring subregion r¢ of the overlap and the corresponding score s

157

Chapter 4. Querying Spatial Patterns

using DP. The result e(rg,s) is inserted into R(Q) only if RQ) has less than k elements
or s is greater than the minimum score in RQ).

After processing the alignment of ¢; with ¢, we still need to process the other
alignments corresponding to other query tiles and ¢. The SPARS algorithm delays
exploring these alignments in order to save computation cost. It calculates a score
s of the Imbr for each ¢;, j # i using the same method discussed for a mbr (outlined
by the steps 18-23 of Algorithm 8). It finds the minimum distance d; between g¢;
and tile ¢ in Imbr. It overlaps the query image with a virtual image such that
the distance between each aligned pair of tiles is d;. DP is run on this score
matrix to compute score s of the maximum scoring subregion for the overlap.
SPARS inserts elements e(Ilmbr.q;,s) in BQ for each g; only if R() has less than k
elements or s is greater than the minimum score in R({). The algorithm explores
these regions during the access of the elements from B(Q as outlined by steps 28-29
of Algorithm 8.

SPARS proceeds by accessing the current highest scoring element from B(@)

and terminates when the lowest score in R() is greater than the highest score in

BQ.

Pruning Strategy: The scoring function s(g,?) is a monotonically decreasing

function of d(g,t), as discussed in Section 4.3.1. The aggregate score of an overlap

158

Chapter 4. Querying Spatial Patterns

Algorithm 9 GetMaxSubRg (SPARS)

In: Imbr: leaf node, ¢;: query tile, Q: query tiles list
Out: e: entity of maxsubregion and score
: BS: bit-vector for explored overlap region
: org «— FindOverlapRegion(Imbr,q;)
: if org not flagged in BS then
dm «— GetDistanceMatrix(org)
sm « GetScoreMatrix(Q,dm)
e(rg,s) < DP(sm)
flag org in BS
end if
return e(rg,s)

© 2> wy

~@——__ ™

Figure 4.14: Tiles of the overlapping region for ¢; aligning with ¢; lie at distances
greater than d,,;,.

is also monotonic with respect to individual scores of the score matrix of an
overlap. With this monotonicity property, the following lemma holds. SPARS

uses this lemma to prune the search space.

Lemma 4. The score S(Q,I) of the overlap of a query image @ with an image
I with d(g;,t;) = r, Yi, is an upper bound on the score S(Q,1") of all possible

overlaps of Q with image 1" provided d(q;,t;) > r, Vi.

159

Chapter 4. Querying Spatial Patterns

From this lemma, we see that the score s of a node (mbr or Imbr) at a minimum
distance d,,;, from the query tiles is an upper bound on the score of all nodes
whose minimum distance is greater than d,,;,. We visualize such an example
in Figure 4.12 where M BRs is at a distance of d,,;, but M BR3 is at a greater
(minimum) distance from all the query tiles. Therefore, score of M BR3 will be
less than M BR,. The score s is also an upper bound on the score of an actual
overlapping region if the distance between the corresponding tiles of () and [have
distance greater than d,,;,. We have such a scenario in Figure 4.14 in which tile
t; finds ¢; as its nearest neighbor. All the tiles of the corresponding overlap as
shown in Figure 4.11 lie at a distance greater than d,,;,. Therefore, the score of
this overlap is less than the score s of a node. These facts justify that the score
of an element in B(@) is an upper bound on all the nodes and regions that have
not been explored and are ranked lower in B(@. At any point during the search,
SPARS has already explored a hypersphere of radius d,,;, centered at each query
tile if the next candidate from B() has a minimum distance d,,;, from all the
query tiles.

SPARS processes the nodes in decreasing order of their scores. It explores all
nodes having score greater than the least score in R(@) since they are potential

candidates to yield regions with higher score. It terminates the search once the

160

Chapter 4. Querying Spatial Patterns

minimum score in R() becomes more than the highest score in B(@. Thus, this

pruning strategy ensures an optimal result for SPARS.

4.5 Experimental Studies

In this section, we first empirically analyze the performance and efficiency
of our access methods. Then, we present detailed quality analysis of our new
similarity measure with visual results. We used Java 5.2 as our implementation
language. We performed experiments on a 3.2 GHz, 4 GB memory PC running

Debian Linux4.0.

4.5.1 Dataset Preparation

We used two large real image datasets belonging to raster image family to em-
pirically analyze the efficiency and scalability of our algorithms. The first dataset
consists of 112,045 gray-scale images of various tissues and layers of retina [43]
from different experimental conditions. Multiple molecular probes such as lectins
and antibodies were used to examine the localizations of specific protein expres-
sion in retinal cells and the expression patterns of these proteins in different layers
of retina. The fluorescence tagged probes were imaged by immunohistochemistry

using confocal microscopes. We used the magnification of these images to scale

161

Chapter 4. Querying Spatial Patterns

them to a standard magnification using the CubicFilter from GraphicsMagick?.
Our second dataset consists of 82,282 gray-scale aerial images from the Alexandria
Digital Library?. These are satellite images and air photos of different regions of

California. The size of the images in both datasets varied from 320 x 160 pixels

to 640 x 480 pixels.

Reduced Energy retained
dimension || Retinal dataset ‘ Aerial dataset
3 85.73% 81.21%

6 96.14% 93.38%
13 98.94% 97.55%

Table 4.2: Percentage energy remaining after PCA.

Retinal dataset

Aerial dataset

Image count ‘ Region count

Image count ‘ Region count

112,045 10,004,850 82,282 10,625,200
56,241 5,000,050 37,037 5,000,000
33,762 3,000,000 21,744 3,000,000
11,112 1,000,100 5,560 1,000,000

Table 4.3: Database sizes of retinal and aerial images.

We split the images into non-overlapping tiles of size 32x 32 pixels and compute

feature vector for each tile. The feature

values similar to CSD feature vector [90]. To enhance efficiency, we performed

PCA [104] on these feature vectors to

Shttp://www.graphicsmagick.org/
‘http://www.alexandria.ucsb.edu/

vector of each tile is a histogram of its pixel

reduce the dimensionality. The number of

162

Chapter 4. Querying Spatial Patterns

principal components retained and the corresponding energy preserved is shown
in Table 4.2. The index structure was built on this transformed data. We used
the Discriminator scoring function, described in section 4.3.2, to measure the
similarity between a pair of tiles. We discuss the choice of parameters for the
scoring function later in Section 4.5.4.

The parameters that are crucial to the performance of the access methods are:
(i) Query size, n (ii) Database size, N, and (iii) Dimensionality of the feature
vector, dim. Query size n is defined as the number of constituent tiles in the
query image. Database size N is defined as the number of images. The number of
images and possible overlapping regions obtained by translation for varying N is
described in Table 4.3 for both retinal and aerial datasets. For each experiment,
we used 100 randomly picked queries from the dataset. All the reported time

measurements are averaged over these 100 queries for top-10 results.

4.5.2 Performance Comparison of the Algorithms

We experimented with varying query sizes to compare the performance of the
algorithms. We use the largest datasets of size N = 112, 045 for retinal images and
N = 82,282 for aerial images with dim = 6 for this experiment. Our results show
that both TARS and SPARS outperformed linear search on both the datasets,

as shown by Figures 4.15 and 4.16. Comparing TARS with SPARS on the aerial

163

Chapter 4. Querying Spatial Patterns

Retinal Dataset

SPARS —— DBSize=112045 '

100 f "TARS —=— Dimension=6 s
Linear -

Computation Time(s)

10 15 20 25 30 35 40
Query Size

Figure 4.15: Effect of query size on the performance of the algorithms for retinal
images.

Aerial Dataset

90 | SPARS' —— DBSize 82282
TARS -~ Dimension=6
80 | Linear - =

70 | T
60 L //’/]

Computation Time(s)

10 15 20 25 30 35 40
Query Size

Figure 4.16: Effect of query size on the performance of the algorithms for aerial
images.

dataset, we found TARS to be 3 times faster for query size 10 but slower by 2

times for query size of 40 than SPARS (Figure 4.16). The same behavior was

164

Chapter 4. Querying Spatial Patterns

noticed for the retinal dataset where TARS was faster by 3.6 times for n = 10 but

slower by 1.4 times for n = 40 than SPARS (Figure 4.15).

Aerial Dataset

188
a8
fil:]
78
1]
58
48
38
28
18

TARS SPARS TARS SPARS TARS SPARS TARS SPARS
Query Size 10 Query Size 20 Query Size 30 Query Size 40
- Nearest Neighbor Search Cost - Dynamic Programming Cost

Figure 4.17: Percentage split of NN and DP time for varying query sizes for
TARS and SPARS for aerial images.

SPARS performs better than TARS for query sizes of more than 20. We
attribute this change in performance of TARS to its multiple traversal through
the index structure, as discussed in Section 4.4.1. We measured the average of total
nearest-neighbor search cost NN and dynamic programming DP cost for varying
query sizes for both the algorithms TARS and SPARS. We present the percentage
of time spent by each algorithm on NN and DP in Figure 4.17. We observe that
the NN cost increases faster in TARS compared to SPARS as query size increases.
TARS is instance optimal [40] and, therefore, it performs better than linear search

and SPARS for smaller query sizes when the cost of this multiple traversal is not

165

Chapter 4. Querying Spatial Patterns

high. As this cost increases with increase in query size, its performance is poorer

as compared to SPARS.

Retinal Dataset

30 | SPARS —— Query Size=10
TARS —— Dimension=6
Linear -

25 | 1

Computation Time(s)

J

20000 40000 60000 80000 100000
Database Size

Figure 4.18: Performance of algorithms for varying database sizes of retinal
images for query size 10.

Retinal Dataset

80 [SPARS —— Query Size=30
TARS - Dimension=6

70 - Linear - *ooee

60
50
40
30

Computation Time(s)

20

10

20000 40000 60000 80000 100000
Database Size

Figure 4.19: Performance of algorithms for varying database sizes of retinal
images for query size 30.

166

Chapter 4. Querying Spatial Patterns

We next experimented with varying database sizes for the retinal dataset to
confirm the above behavior of the algorithms. For a query size of n = 10 and
dim = 6, we found TARS to be more than 2.7 times faster than SPARS across
the database sizes as shown Figure 4.18. SPARS is more than 1.5 times faster
than linear search. The performance difference increases with increase in database
size. Our other experiment with n = 30 and dim = 6 found SPARS to be 1.3 time
better than TARS and more than 1.3 times better than linear search (Figure 4.19).

We see from the results discussed above that TARS is a better algorithm than
the other two for n < 20 whereas SPARS is better for n > 20. TARS saves more
than 87% of the query time for n = 10 on both the datasets for the largest size.
SPARS has a saving of 34% on retinal and 52% on aerial for n = 40 on the largest
datasets. The average query time of TARS is approximately 4 s on a database of
size N = 112,045 and a query size of n = 10. The average query time for SPARS

on the same database is 70 s for query size of 40.

4.5.3 Performance Analysis of SPARS

We next performed detailed analysis of the behavior of the algorithm SPARS
for varying n (query size), N (database size) and dim (dimension) on both the
datasets. The performance results of SPARS on both datasets for varying N and

dim are shown in Figures 4.20 and 4.21. The dataset size is 56,241 for retinal

167

Chapter 4. Querying Spatial Patterns

45

Dimension=3 —+— Retinal Dataset

Dimension=6 ------- e =
40 | Dimension=13 - Query Size = 30

30 |]

Computation Time(s)

15000 20000 25000 30000 35000 40000 45000 50000 55000
Database Size

Figure 4.20: Effect of database size and dimension on the performance of SPARS
on retinal images.

Aerial Dataset

Yl

35 F Dimension=3 —— e —
Dimension=6 ---x--- Query Size = 30
30 | Dimension=13 -

. x A

15 +

Computation Time(s)

10 |

10000 15000 20000 25000 30000 35000
Database Size

Figure 4.21: Effect of database size and dimension on the performance of SPARS
on aerial images.

images and 37,037 for aerial images. SPARS scales linearly for a given query size
across varying database sizes and dimensions. The performance of SPARS on both

datasets for varying n and dim is shown in Figure 4.22. SPARS exhibited linear

168

Chapter 4. Querying Spatial Patterns

Computation Time(s)

Figure 4.22: Effect of query size and dimension on the performance of SPARS

40 t

Retinal Dimension=3 —+— Retinal DB Size = 56241 e
Retinal Dimension=6 -—-x--- Aerial DB Size = 37037 .-~
Retinal Dimension=13 - T
Aerial Dimension=3 &
Aerial Dimension=6 --=a--
Aerial Dimension=13 - -~

15 20 25 30 35 40
Query Size

on retinal and aerial images.

Computation Time(s)

35

30

25 -

Retinal DB Size = 11112 —+— Dimension =6 A
Retinal DB Size = 33762 -
Retinal DB Size = 56241 - oo e
Aerial DB Size = 5560 o B
Aerial DB Size = 21744 --=-—-
Aerial DB Size = 37037 -~ ¥

15 20 25 30 35 40
Query Size

Figure 4.23: Performance of SPARS for varying query sizes and database sizes

of retinal and aerial images.

scalability for a given database size across varying query sizes and dimensions.

Experiments with varying N and n for dim = 6 on both datasets also revealed a

linear scalability performance as shown in Figure 4.23.

169

Chapter 4. Querying Spatial Patterns

The exhaustive set of empirical results discussed above confirms a sub-linear
scalability for SPARS across varying query size and database size compared to a
linear scan of the database. Its scalability is also sub-linear for low dimensions
compared to linear scan. This establishes the scalability and efficiency of our

algorithm.

4.5.4 Quality Analysis

’ Dataset \ Images \ Queries \ A \ c \ Precision ‘
PA Retinal 80 18 1| 23000 80.3%
NF Retinal 37 8 1| 23000 82.5%

Aerial 550 7 1 | 115000 88%

Table 4.4: Datasets used for quality analysis, corresponding parameter values
for scoring function, and precision measures.

In this section we analyze the quality of our similarity measure and describe

the datasets used for experiments.

Dataset Preparation: We used 3 different datasets to verify the quality of
our new similarity measure. From each dataset, we chose interesting regions for
querying. For each query, regions in images were manually tagged as a true or
a false match. Since the process is manually intensive, we used small datasets

as shown in Table 4.4. PA and NF datasets are confocal microscopic images of

170

Chapter 4. Querying Spatial Patterns

cross-sections of feline retina labeled with the lectin peanut-agglutinin and anti-
neurofilament antibody respectively. Aerial dataset consists of satellite images of

Beverly Hills in California.

Parameter Learning and Precision: Here, we discuss the choice of parameters
for the Discriminator scoring function described in Section 4.3.2. We use pure
black as background for retinal images which is true for the most of the real
microscopic images. We use pure black for aerial images also for the purpose of
simplicity, though, it can have other backgrounds. Background for other domains
need to be determined from knowledge and training. We take the sum of all the
pixels in a tile as its distance from background. Distance between tiles is measured
using L, norm.

We learn the parameter A and ¢ using manual training with an approach similar
to Walrus [98]. For each query, we measured top-k precision where k = 5 and
precision is the ratio of true matches to total matches. We trained the PA dataset
on 10 queries. Highest precision (82.0%) was achieved for A = 1 and ¢ = 23000.
These parameters gave an accuracy of 78.6% for 8 other queries over PA dataset.
For the same parameter values, 8 queries on NF dataset gave precision of 82.5%.
Training and testing on 7 aerial image queries had a precision of 88% for A = 1

and ¢ = 115000. We summarize the results in Table 4.4. The same parameter

171

Chapter 4. Querying Spatial Patterns

values were used for scalability and efficiency measurements in Section 4.5.2. Our
size of the training set was limited by the manually intensive nature of the task.

Finally, we present results for a set of queries from these three datasets in
Figure 4.24. All the match for retinal images have been validated by domain
scientists and found to be significantly interesting. As shown in the first row of
Figure 4.24 | query and the results are examples of biologically interesting fold of

retinal tissues labeled with peanut-agglutinin.

4.6 Conclusions

In this chapter, we addressed the problem of querying significant subregions
in raster images. We designed a generic scoring scheme to measure similarity
between a query image and an image region. We tiled the images to represent a
region as a collection of tiles, and each overlap between a query and a database
image as a matrix of scores. We proved that the problem of finding a connected
subregion of maximal score in a score matrix is NP-hard and then developed a
dynamic programming heuristic to score an overlapping region. With this simi-
larity measure, we proposed two index-based scalable search strategies TARS and
SPARS for querying in a large repository. These strategies are general enough to

work with any scoring scheme and heuristic. We empirically analyzed the perfor-

172

Chapter 4. Querying Spatial Patterns

mance of these algorithms on datasets of 112,045 retinal images and 82,282 aerial
images. We save more than 87% search time on small queries using TARS and up
to 52% search time on large queries with SPARS on these datasets as compared to
linear search. It should be noted that our heuristic for finding the best connected
subregions and our access methods for top-k queries (TARS and SPARS) are inde-
pendent of each other. We demonstrate the quality of our similarity measure (more
than 80% precision) with analysis over two real datasets. The ability to extract
significant subregions (connected regions with highest score) can have a significant
impact on analyzing raster images. Future work includes the formulation of other
heuristics for finding similar subregions that have bounded approximation errors

on quality and the formulation of other domain-specific scoring functions.

173

Chapter 4. Querying Spatial Patterns

PA Retinal Query Top-1 Result

’ ";‘.. - '-L'Iﬁ.‘-

Aerial Query 1 op-1 Result
A 4, *... ‘7 h p [5 - 4, * B

Aerial Query 2 Top-1 Result

Figure 4.24: Top-1 result for various queries from three real datasets.

174

Chapter 5

Querying Patterns in
Multi-Dimensional Temporal
Datasets

Querying patterns in temporal datasets can reveal interesting temporal behav-
iors and suggest avenues for further scientific exploration. This chapter discusses
pattern queries in video datasets. A video is a time series of images. We specifi-
cally study the problem of duplicate video detection in this chapter.

We present an efficient and accurate method for duplicate video detection
in a large database using video fingerprints. We have empirically chosen the
Color Layout Descriptor, a compact and robust frame-based descriptor, to create
fingerprints which are further encoded by vector quantization. We propose a
new non-metric distance measure to find the similarity between the query and a
database video fingerprint and experimentally show its superior performance over

other distance measures for accurate duplicate detection. Efficient search can not

175

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

be performed for high dimensional data using a non-metric distance measure with
existing indexing techniques. Therefore, we develop novel search algorithms based
on pre-computed distances and new dataset pruning techniques yielding practical
retrieval times. We perform experiments with a database of 38000 videos, worth
1600 hours of content. For individual queries with an average duration of 60
seconds (about 50% of the average database video length), the duplicate video is
retrieved in 0.032 seconds, on Intel Xeon with CPU 2.33GHz, with a very high

accuracy of 97.5%.

5.1 Introduction

Copyright infringements and data piracy have recently become serious concerns
for the ever growing online video repositories. Videos on commercial sites e.g.,
www. youtube. com, www. metacafe. com, are mainly textually tagged. These
tags are of little help in monitoring the content and preventing copyright infringe-
ments. Approaches based on content-based copy detection (CBCD) and water-
marking have been used to detect such infringements [64, 75]. The watermarking
approach tests for the presence of a certain watermark in a video to decide if it is
copyrighted. The other approach (CBCD) finds the duplicate by comparing the

fingerprint of the query video with the fingerprints of the copyrighted videos. A

176

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

fingerprint is a compact signature of a video which is robust to the modifications
of the individual frames and discriminative enough to distinguish between videos.
The noise robustness of the watermarking schemes is not ensured in general [75],
whereas the features used for fingerprinting generally ensure that the best match
in the signature space remains mostly unchanged even after various noise attacks.
Hence, the fingerprinting approach has been more successful.

We define a “duplicate” video as the one consisting entirely of a subset of
the frames in the original video - the individual frames may be further modified
and their temporal order varied. The assumption that a duplicate video contains
frames only from a single video has been used in various copy detection works,
e.g., [85],[114],[130]. In [130], it is shown that for a set of 24 queries searched in
YouTube, Google Video and Yahoo Video, 27% of the returned relevant videos are
duplicates. In [23], each web video in the database is reported to have an average
of five similar copies - the database consisted of 45000 clips worth 1800 hours of
content. Also, for some popular queries to the Yahoo video search engine, there
were two or three duplicates among the top ten retrievals [85].

In Figure 5.1, we present the block diagram of our duplicate video detection
system. The relevant symbols are explained in Table 5.1. The database videos are
referred to as “model” videos in the chapter. Given a model video V;, the decoded

frames are sub-sampled at a factor of 5 to obtain 7T; frames and a p dimensional

177

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

feature is extracted per frame. Thus, a model video V; is transformed into a T; X p
matrix Z°. We empirically observed in Section 5.3 that the Color Layout Descrip-
tor (CLD) [68] achieved higher detection accuracy than other candidate features.
To summarize Z°, we perform k-means based clustering and store the cluster cen-
troids {X;}f’zl as its fingerprint. The number of clusters F; is fixed at a certain
fraction of T}, e.g., a fingerprint size of 5x means that F; = (5/100)7;. Therefore,
the fingerprint size varies with the video length. K-means based clustering gener-
ally produces compact video signatures which are comparable to those generated
by sophisticated summarization techniques as discussed in [99]. In [1], we have
compared different methods for keyframe selection for creating the compact video
signatures.

The duplicate detection task is to retrieve the best matching model video fin-
gerprint for a given query fingerprint. The model-to-query distance is computed
using a new non-metric distance measure between the fingerprints as discussed in
Section 5.4. We also empirically show that our distance measure results in signif-
icantly higher detection accuracy than traditional distance measures (L;, partial
Hausdorff distance [54, 57], Jaccard [25] and cosine distances). We design access
methods for fast and accurate retrieval of duplicate videos. The challenge in de-
veloping such an access method is two-fold. Firstly, indexing using such distances

has not been well-studied till date - the recently proposed distance based hashing

178

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

Model Yideo Feature Set per Video Fingerprint VQ Model Symbols
processing .
R0 ik Cluster video «~—P— VQ design
the decoded «—P — . X! Tl am F,
video . feature set Zi for T ‘ PR | B
s T video V, F, l {X,. XN} | —
T, l » o
«—P i g i
T<_ —— t X2 X : Sx F.
) 7 |- I '
m) 21l] ‘T F,
Extract S =S
features Store the cluster : Compute 2
for these 0 centers, X! as . dista.nce
Video frames ’ video fingerprint D — matrices
Datab «—P — T N based on
atabase T ZN F VQ design Fy
i l h l Crrrrrrr 1
Offline Cost
N |
Query «— P — «— P — M VQ based
Video T T - Pruned
TQl M } Search
E— T Query Symbols
ub-Sampling
Feature Cluster Q,,, and Vector
. Extraction 5
Online Cost store cluster centers Quantizer
Decide whether the q q Return Top
Naive Linear Search on Top <=
best match is a Return best quums . . K Neighbors
duplicate _ match V,, K Neighbors using Q,;,

Figure 5.1: Block diagram of the proposed duplicate detection framework - the
symbols used are explained in Table 5.1.

6] performs dataset pruning for arbitrary distances. Secondly, video fingerprints
are generally of high dimension and varying length. Current indexing structures
(M-tree [26], R-tree [52], kd tree [11]) are not efficient for high-dimensional data.

To perform efficient search, we propose a two phase procedure. The first phase
is a coarse search to return the top-K nearest neighbors (NN) which is the focus
of the chapter. We perform vector quantization (VQ) on the individual vectors

in the model (or query) fingerprint X* (or Q) using a codebook of size U (=

179

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

Notation Definition

N Number of database videos

Vi it" model video in the dataset

Vi Best matched model video for a given query

P Dimension of the feature vector computed per video frame

7' e RT>*P T, | Z% is the feature vector matrix of V;, where V; has T; frames
after temporal sub-sampling
X' e RFXP F; | X' is the k-means based signature of V;, which has F;

keyframes
XJ’: 4t vector of video fingerprint X*
U Size of the vector quantizer (VQ) codebook used to encode

the model video and query video signatures

Qorig € RTe*P | Query signature created after sub-sampling, where Tq refers
to the number of sub-sampled query frames

Q € RMx»p Keyframe based query fingerprint, where M is the number of
query keyframes

C; it" VQ codevector

T, q Z; is VQ based signature of V;, while ¢ is VQ based query
signature

S X VQ symbol index to which X; is mapped

A Set of N “model signature to query signature” distances

D € RUXV Inter VQ-codevector distance matrix, for I,; distance between
VQ codevectors

D* € RVXU Lookup table of shortest distance values from each VQ-based
model signature to each VQ codevector

C(1) Cluster containing the video indices whose VQ-based signa-
tures have the i*” dimension as non-zero

|71 — aTg)Hp L, norm of the vector (77 — Z3).

|E| Cardinality of the set F

14 Fractional query length = (number of query frames/number

of frames in the original model video)

Table 5.1: Glossary of notations

8192) to generate a sparse histogram-based signature z; (or ¢’). This is discussed
in Section 5.5.2. Coarse search is performed in the VQ-based signature space.

Various techniques proposed to improve the search are the use of pre-computed

180

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

information between V(symbols, partial distance based pruning, and the dataset
pruning as discussed in Section 5.5. The second phase uses the unquantized
features (X?) for the top-K NN videos to find the best matching video V;«. The
final module (Section 5.7) decides whether the query is indeed a duplicate derived
from V.

The computational cost for the retrieval of the best matching model video has
two parts (Figure 5.1).
1) Offline cost (model related) - consists of the un-quantized model fingerprint
generation, VQ design and encoding of the model signatures, and computation
and storing of appropriate distance matrices.
2) Online cost (query related) - the query video is decoded, sub-sampled, keyframes
are identified, and features are computed per keyframe - these constitute the query
pre-processing cost. In this chapter, we report the query time - this com-
prises of the time needed to obtain k-means based compact signatures, perform
VQ-based encoding on the signatures to obtain sparse histogram-based represen-
tations, compute the relevant lookup tables, and then perform two-stage search
to return the best matched model video.

The chapter is organized as follows. Section 5.2 contains some relevant pre-
vious work. Feature selection for fingerprint creation is discussed in Section 5.3.

Section 5.4 introduces our proposed distance measure. The various search algo-

181

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

rithms, along with the different pruning methods, are presented in Section 5.5.
The dataset creation for this task is explained in Section 5.6.1. Section 5.6.2 con-
tains the experimental results while Section 5.7 describes the final decision module
which makes the “duplicate/non-duplicate decision”.

Main Contributions

e We propose a new non-metric distance function for duplicate video detection
when the query is a noisy subset of a single model video. It performs better than
other conventional distance measures.

e For the VQ-based model signatures retained after dataset pruning, we reduce
the search time for the top- K candidates by using suitable pre-computed distance
tables and by discarding many non-candidates using just the partially computed
distance from these model video signatures to the query.

e We present a dataset pruning approach, based on our distance measure in the
space of VQ-encoded signatures, which returns the top-K nearest neighbors (NN)
even after pruning. We obtain significantly higher pruning than that provided by
distance based hashing [6] methods, trained on our distance function.

In this chapter, the terms “signature” and “fingerprint” have been used inter-
changeably. “Fractional query length” (¢ in Table 5.1) refers to the fraction of the
model video frames that constitute the query. Also, for a VQ of codebook size U,

the 1-NN of a certain codevector is the codevector itself.

182

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

5.2 Literature Survey

A good survey for video copy detection methods can be found in [75]. Many
schemes use global features (e.g., color histogram computed over the entire video)
for a fast initial search for prospective duplicates [130]. Then, keyframe-based
features are employed for a more refined search.

Keypoint based features: In an early duplicate detection work by Joly et al.
[66], the keyframes correspond to extrema in the global intensity of motion. Lo-
cal interest points are identified per keyframe using the Harris corner detector
and local differential descriptors are then computed around each interest point.
These descriptors have been subsequently used in other duplicate detection works
(64, 65, 74, 75]. In [130], PCA-SIFT features [69] are computed per keyframe on
a host of local keypoints obtained using the Hessian-Affine detector [92]. Simi-
lar local descriptors are also used in [141], where near-duplicate keyframe (NDK)
identification is performed based on matching, filtering and learning of local inter-
est points. A recent system for fast and accurate large-scale video copy detection,
the Eff? Videntifier [29], uses Eff* descriptors [79] from the SIFT family [86]. In
[140], a novel measure called Scale-Rotation Invariant Pattern Entropy (SR-PE)
is used to identify similar patterns formed by keypoint matching of near-duplicate

image pairs. A combination of visual similarity (using global histogram for coarser

183

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

search and local point based matching for finer search) and temporal alignment is
used to evaluate video matching for duplicate detection in [121]. VQ based tech-
niques are used in [24] to build a SIFT-histogram based signature for duplicate
detection.

Global Image Features: In some approaches, the duplicate detection problem
involves finding the similarity between sets of time-sequential video keyframes.
A combination of MPEG-7 features such as the Scalable Color Descriptor, Color
Layout Descriptor (CLD) [68] and the Edge Histogram Descriptor (EHD) has been
used for video-clip matching [15], using a string-edit distance measure. For image
duplicate detection, the Compact Fourier Mellin transform (CFMT) [36] has also
been shown to be very effective in [48] and the compactness of the signature makes
it suitable for fingerprinting.

Entire Video based Features: The development of “ordinal” features [16] gave
rise to very compact signatures which have been used for video sequence matching
[95]. Li et al. [82] used a binary signature to represent each video, by merging
color histogram with ordinal signatures, for video clip matching. Yuan et al. [134]
also used a similar combination of features for robust similarity search and copy
detection. UQLIPS, a recently proposed real-time video clip detection system
[114], uses RGB and HSV color histograms as the video features. A localized

color histogram based global signature is proposed in [85].

184

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

Indexing Methods: Each keyframe is represented by a host of feature points,
each having a descriptor. The matching process involves comparison of a large
number of interest point pairs which is computationally intensive. Several indexing
techniques have been proposed for efficient and faster search. Joly et al. [66] use
an indexing method based on the Hilbert’s space filling curve principle. In [64],
the authors propose an improved index structure for video fingerprints, based
on Statistical Similarity Search (S%) where the “statistical query” concept was
based on the distribution of the relevant similar fingerprints. A new approximate
similarity search technique was proposed in [67] and later used in [74, 65] where the
probabilistic selection of regions in the feature space is based on the distribution
of the feature distortion. In [141], an index structure LIP-IS is proposed for fast
filtering of keypoints under one-to-one symmetric matching. For the Videntifier
[29] system, the approximate NN search in the high-dimensional database (of Eff*
descriptors) is done using the NV-tree [78], an efficient disk-based data structure.

Hash-based Index: The above mentioned indexing methods are generally com-
pared with locality sensitive hashing (LSH) [49, 31|, a popular approximate search
method for I, distances. Since our proposed distance function is non-metric, LSH
cannot, be used in our setup as the locality sensitive property holds only for met-

ric distances. Instead, we have experimented with the recently proposed distance

185

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

based hashing (DBH) [6] scheme, which can be used for arbitrary distance mea-
sures.

Final Duplicate Confirmation: From the top retrieved candidate, the dupli-
cate detection system has to validate whether the query has indeed been derived
from it. The keyframes for a duplicate video can generally be matched with the
corresponding frames in the original video using suitable spatio-temporal regis-
tration methods. In [65, 75|, the approximate NN results are post-processed to
compute the most globally similar candidate based on a registration and vote
strategy. In [74], Law-To et al. use the interest points proposed in [66] for tra-
jectory building along the video sequence. A robust voting algorithm utilizes the
trajectory information, spatio-temporal registration, as well as the labels com-
puted during the off-line indexing to make the final retrieval decision. In our
duplicate detection system, we have a “distance threshold based” (Section 5.7.1)
and a registration-based framework (Section 5.7.2) to determine if the query is
actually a duplicate derived from the best-matched model video.

The advantages of our method over other state-of-the-art methods are sum-
marized below.

e In current duplicate detection methods, the query is assumed to contain a
large fraction of the original model video frames. Hence, the query signature, com-

puted over the entire video, is assumed to be similar to the model video signature.

186

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

This assumption, often used as an initial search strategy to discard outliers, does
not hold true when the query is only a small fraction (e.g., 5%) of the original
video. For such cases, the query frames have to be individually compared with the
best matching model frames, as is done by our distance measure. As shown later
in Figures. 5.3 and 5.8, we observe that our proposed distance measure performs
much better than other distances for duplicate detection for shorter queries.

e We develop a set of efficient querying techniques with the proposed distance
measure which achieves much better dataset pruning than distance based hash
(DBH) - DBH is the state-of-the-art method for querying in non-metric space.

e In [65, 75|, the registration step is performed between query frames and
other model frames to confirm whether the query is a duplicate derived from the
model video. In our distance computation procedure, we also end up computing
which model vector serves as the best match for a query vector - this inter-vector
correspondence helps in faster identification of the best matching model keyframe
for a given query keyframe (discussed in Section 5.7.2). This frame-to-frame

correspondence is needed for effective registration.

187

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

5.3 Feature Extraction

Candidate Features

We performed duplicate video detection with various frame based features -
CLD, CFMT [36], Localized Color Histogram (LCH) [85] and EHD [129]. The
LCH feature divides the image into a certain number of blocks and the 3D color
histogram is computed per block. FE.g., if each color channel is quantized into
4 levels, the 3D histogram per image block has 43 = 64 levels. If the image is
divided into two partitions along each direction, the total LCH feature dimension
is 43%22=256. To study the variation of detection accuracy with signature size, we
have considered the LOH feature for dimensions 256 and 32 (22x2*=32). For the
frame-based features, we use our proposed distance measure, which is explained
in Section 5.4.

We also considered video features (computed globally, i.e. over the entire video
and not per key-frame). One such global feature used is the m-dimensional his-
togram obtained by mapping each of the 256-dimensional LCH vectors to one of
m codebook vectors (this signature creation is proposed in [85]), obtained after
k-means clustering of the LCH vectors. We have experimented with m = 20, 60,
256 and 8192, and L, distance is used. The other global feature is based on a

combination of the ordinal and color histograms [134]. Both the ordinal and color

188

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

histograms are 72-dimensional (24 dimensions along each of the Y, Cb and Cr
channels) and the distance measure used is a linear combination of the average
of the distance between the ordinal histograms and the minimum of the distance

between the color histograms, among all the 3 channels.

(a) Keyframe based signature (b) Entire video based signature |3 CH: m=20
0.2 1 .
- LCH: m=60
X ®-CLD: 18 dim 00 Q%N A CH: m=256
- \,.\ 4-CFMT: 36 dim —— #LCH: m=8192
o .) 0.8 ===/ ®Ordinal + Color
0.16, < A-LCH: 256 dim - :
0.14 . #LCH: 32 dim o7l B —
5 \ ~-EHD: 80 dim s | \
5 0.12 \ w 06 \‘\
§ o1 = S 05 2
° ©
£o0s e £o4-—=
[=] [=]
0.0 4 — 03 u
0.04 *\N \‘\< o \ \.\‘N
0.02- A 0.1 k\‘\\il\:\"\i

=)

0 0.1 0.2 0.3 0.4 0.5 0.4 0.5

Fractional Query Length °T " Fractianal Query %gngth
Figure 5.2: Comparison of the duplicate video detection error for (a) keyframe
based features and (b) entire video based features: the query length is varied
from 2.5% to 50% of the actual model video length. The error is averaged over
all the query videos generated using noise addition operations, as discussed later
in Section 5.6.1. The model fingerprint size used in (a) is 5x.
Experimental Setup and Performance Comparison

We describe the duplicate detection experiments for feature comparison. We
use a database of 1200 video fingerprints and a detection error occurs when the
best matched video is not the actual model from which the query was derived. The
query is produced using one of various image processing/noise addition methods,

discussed in Section 5.6.1. The query length is gradually reduced from 50% to 2.5%

of the model video length and the detection error (averaged over all noisy queries)

189

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

is plotted against the fractional query length (Figure 5.2). For our dataset, a
fractional query length of 0.05 corresponds, on an average, to 6 sec of video ~
30 frames, assuming 25 frames/sec and a sub-sampling factor of 5. Figure 5.2(a)
compares frame based features while Figure 5.2(b) compares video based features.

In our past work [111], we have shown that the CFMT features perform better
as video fingerprints than SIFT features for duplicate detection. Here, it is seen
that for duplicate detection, 18-dim CLD performs slightly better than 80-dim
EHD, which does better than 36-dim CFMT and 256-dim LCH (Figure 5.2(a)).
Due to the lower signature dimension and superior detection performance, we
choose 18-dim CLD feature per keyframe for fingerprint creation. It is seen that
for a short query clip, the original video histogram is often not representative
enough for that clip leading to higher detection error, as in Figure 5.2(b). Hence,
using a global signature with Lo distance works well only for longer queries.

We briefly describe the CLD feature vector and also provide some intuition as
to why it is highly suited for the duplicate detection problem. The CLD signature
[68] is obtained by converting the image to a 8x 8image, on averaging, along each
(Y/Cb/Cr) channel. The Discrete Cosine Transform (DCT) is computed for each
image. The DC and first 5 (in zigzag scan order) AC DCT coefficients for each
channel constitute the 18-dimensional CLD feature. The CLD feature is compact

and captures the frequency content in a highly coarse representation of the image.

190

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

As our experimental results suggest, different videos can be distinguished even
at this coarse level of representation for the individual frames. Also, due to this
coarse representation, image processing and noise operations, which are global in
nature, do not alter the CLD significantly so as to cause detection errors; thus,
the feature is robust enough. Significant cropping or gamma variation can distort
the CLD sufficiently to cause errors - a detailed comparison of its robustness
to various attacks is presented later in Table 5.7. Depending on the amount of
cropping, the 8x 8image considered for CLLD computation can change significantly,
thus severely perturbing the CLD feature. Also, significant variations in the image
intensity through severe gamma variation can change the frequency content, even
for an 8 x 8image representation, so as to cause detection errors.

Storage-wise, our system consumes much less memory compared to methods
which store key-point based descriptors [65, 29]. The most compact key-point
based descriptor is the 20-dim vector proposed in [65] where each dimension is
represented by 8 bits and 17 feature vectors are computed per second. The cor-
responding storage is 10 times that of our system (assuming 18-dimensional CLD
features per frame where each dimension is stored as a double, 25 frames/sec,
temporal sub-sampling by 5, 5% of the sub-sampled frames being used to create

the model signature).

191

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

5.4 Proposed Distance Measure

Our proposed distance measure to compare a model fingerprint X* with the
query signature @ is denoted by d(X*, Q) ' (5.1). This distance is the sum of the
best-matching distance of each vector in @ with all the vectors in X*. In (5.1),
X5 — Qp||, refers to the L, distance between X}, the gt feature vector of X* and
Qr, the k' feature vector of Q. Note that d(-,-) is a quasi-distance.

M

i) = Yo i 16~ @il | 5.1)

What is the motivation behind this distance function? We assume that each
query frame in a duplicate video is a tampered /processed version of a frame in the
original model video. Therefore, the summation of the best-matching distance of
each vector in @ with all the vectors in the signature for the original video (X7)
will yield a small distance. Hence, the model-to-query distance is small when
the query is a (noisy) subset of the original model video. Also, this definition
accounts for those cases where the duplicate consists of a reordering of scenes
from the original video.

A comparison of distance measures for video copy detection is presented in

A

[54]. Our distance measure is similar to the Hausdorff distance [57, 54]. For

our problem, the Hausdorff distance h(X*, Q) and the partial Hausdorff distance

'For ease of understanding, the quasi-distance measure d(,-) is referred to as a distance
function in subsequent discussions.

192

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

hp(X? Q) are interpreted as:

hp(Xi, Q) — pth]argest {ILIJI'LHFZ- HXJZ - Qk”l} (53)
1<k<M o

For image copy detection, the partial Hausdorff distance (5.3) has been shown to
be more robust than the Hausdorff distance (5.2) in [54]. We compare the perfor-
mance of hp(X* Q) (5.3) for varying P, with d(X",Q), as shown in Figure 5.3,
using the same experimental setup as in Section 5.3. It is seen that the results
using d(X*, Q) are better - the improved performance is more evident for shorter
qUETIES.

Intuitively, why does our distance measure perform better than the Hausdorff
distance? In (5.2) (or (5.3)), we first find the “minimum query frame-to-model
video” distance for every query frame and then find the maximum (or P largest)
among these distances. Thus, both h(X*, Q) and hp(X*, Q) effectively depend on
a single query frame and model video frame, and errors occur when this query (or
model) frame is not representative of the query (or model) video. In our distance
function (5.1), d(X", Q) is computed considering all the “minimum query frame-
to-model video” terms and hence, the effect of one (or more) mismatched query

feature vector is compensated.

193

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

Dynamic time warping (DTW) [107] is commonly used to compare two se-
quences of arbitrary lengths. The proposed distance function has been compared
to DTW in [1], where it is shown that DTW works well only when the query is a
continuous portion of the model video and not a collection of disjoint parts. This
1s because DTW considers temporal constraints and must match every data point
i both the sequences. Hence, when there is any mismatch between two sequences,
DTW takes that into account (thus increasing the effective distance), while the

mismatch is safely ignored in our distance formulation.

(a) Model fingerprint size = 1x (b) Model fingerprint size = 5x
o Ay A—4
0.25] 0.16] ——
\ 0.14 /
0.2]
» d w 0.1225°
g g &/d
i Ah,P=1 W og4
0.15 P : h :P=1
5 5 AN
= h, :P=90 © 0.08
3 s 8 hy 1 P=90
Q
3 o1 \ & 0.06
0.04
0.05 L L
3 OIOZW.:i\-\!ﬂ%.—
; j -
01 ‘ 04 % ¢ 0.1 0.4

=

05 0 0.5

0.2 0.3 0.2 0.3
Fractional Query Length Fractional Query Length

Figure 5.3: Comparison of the duplicate video detection error for the proposed
distance measure d(-, -) (5.1) and the Hausdorff distances: here, (h, : P = k) refers
to the partial Hausdorff distance (5.3) where the k£ maximum is considered.

5.5 Search Algorithms

In this section, we develop a two-phase approach for fast duplicate retrieval.

The proposed distance measure (5.1) is used in our search algorithms for duplicate

194

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

detection. First, we discuss a naive linear search algorithm in Section 5.5.1. Search
techniques based on the vector quantized representation of the fingerprints that
achieve speedup through suitable lookup tables are discussed in Section 5.5.2.
Algorithms for further speedup based on dataset pruning are presented in Sec-
tion 5.5.3.

We perform temporal sub-sampling of the query video to get a signature @ opiq
having Ty vectors (see Figure 5.1 and Table 5.1). The initial coarse search (first
pass) uses a smaller query signature @), having M (M < Tjy) vectors. @ consists
of the cluster centroids obtained after k-means clustering on Qorig. When M =
(5/100)Tg, we refer to the query fingerprint size as 5x. The first pass returns the
top-K NN from all the NV model videos. The larger query signature (Qor4) is used
for the second pass to obtain the best matched video from these K candidates
using a naive linear scan. As the query length decreases, the query keyframes may
differ significantly from the keyframes of the actual model video; hence, the first
pass needs to return more candidates to ensure that the actual model video is one
of them.

A naive approach for the search is to compute all the N model-to-query dis-
tances and then find the best match. This set of N distances is denoted by A (5.4).

We speedup the coarse search by removing various computation steps involved in

195

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

A. For the purpose of explaining the speedup obtained by various algorithms, we

provide the time complexity breakup in Table 5.2.

A= {d(X, Q) = {Z {12}1& | X} — Qk|1}} (5.4)

5.5.1 Naive Linear Search (NLS)

The Naive Linear Search (NLS) algorithm implements the two-pass method
without any pruning. In the first pass, it retrieves the top- K candidates based on
the smaller query signature @ by performing a full dataset scan using an ascending
priority queue L of length K. The priority queue is also used for the other coarse
search algorithms in this section to keep track of the top-K NN candidates. The
k™ entry in L holds the model video index (L) and its distance from the query
(Lg2). A model signature is inserted into L if the size of L is less than K or its
distance from the query is smaller than the largest distance in the queue. In the
second pass, NLS computes the distance of the K candidates from the larger query
signature (),rig 50 as to find the best matched candidate. The storage needed for
all the model signatures = O(NFp), where F denotes the average number of

vectors in a model fingerprint.

196

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

Time Operation involved Complexity
AT Computing L, distance between vectors | O(p)
X; and Q. ¢ || X} — Qll,
Tio = T11.F; Finding the best matched model vector for | O(F;p)
a query vector : 1%1‘1311& X5 — Qkll,
Ty = M. Tis Finding the best match for all M frames | O(M F;p)

in Q to compute d(X?, Q)
=N T Computing all N mocjlvel—to—query dis- | O(M N Fp)
tances : A= {d(X",Q)},_;

Ty Retrieve minimum K values from A to re- | O(N log K)

turn top-K videos using a priority queue
Ts Finding Vi« from top-K videos using | O(ToKFp+ K)
larger query signature Q)orig

Table 5.2: Time complexity of the various modules involved in computing A4 =
{d(X?, Q)}Z]\il (5.4), returning the top-K NN, and then finding the best matched
video Vj+ from them. F = Zf\il F;/N denotes the average number of vectors in a
model fingerprint. For the VQ-based schemes, the distance d(-,-) is replaced by
the distance dyg(-,-) (5.9), while the other operations involved remain similar.

5.5.2 Vector Quantization and Acceleration Techniques

From Table 5.2, it is observed that time T7; can be saved by pre-computing the
inter-vector distances. When the feature vectors are vector quantized, an inter-
vector distance reduces to an inter-symbol distance, which is fixed once the VQ
codevectors are fixed. Hence, we vector quantize the feature vectors and represent
the signatures as histograms, whose bins are the V(@ symbol indices. For a given
VQ, we pre-compute and store the inter-symbol distance matrix in memory.

We now describe the VQ-based signature creation. Using the CLD features
extracted from the database video frames, a VQ of size U is constructed using the

Linde-Buzo-Gray algorithm [84]. The distance d(-,-) (5.1) reduces to dyga(-,-)

197

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

(5.5) for the VQ-based framework, where D is the inter-VQ codevector distance

matrix (5.6). Cs,, refers to the SX;;th codevector, i.e. the codevector to which the
J

VQ maps X;
M M
dVQM(Xia Q)= z; 1£n1<nF ||CS - CSQk H1 = - 1§jll<nF D(S)o Sor) (5.5)
where D(kq, ko) = ||Ck, — Ciyll1, 1 < ki ko <U (5.6)
Let ¢ = [¢1,¢2, - ,qu] denote the normalized histogram-based query sig-
nature (5.7) and x; = [z;1, %9, -+ ,2;,y] denote the corresponding normalized

model signature (5.8) for video V;.

G = {j:Sq, =k 1<j<M}/M (5.7)

Tig = Hi:Sxi=k 1<j<FE}/F (5.8)

Generally, consecutive video frames are similar; hence, many of them will get
mapped to the same VQ codevector while many VQ codevectors may have no rep-
resentatives (for a large enough U). Let {t1, o, ,tn,} and {n; 1, ni2, - ,ni,in}
denote the non-zero dimensions in ¢ and z;, respectively, where N, and N, de-
note the number of non-zero dimensions in ¢ and z;, respectively.

The distance between the VQ-based signatures z; and ¢ can be expressed as:

dvo(Ti, q) thk { min D(, n”)} (5.9)

1<j<Ng,

198

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

It can be shown that the distances in (5.5) and (5.9) are identical, apart from

a constant factor.

dvon (X', Q) = M.dvg(,7q) (5.10)

The model-to-query distance (5.9) is same for different model videos if their
VQ-based signatures have the same non-zero dimensions. For our database of
38000 videos, the percentage of video pairs (among (38300) pairs) that have the
same non-zero indices is merely 3.2 x 107%% [1]. A note about our VQ-based
signature - since we discard the temporal information and are concerned with
the relative frequency of occurrence of the various VQ symbols (one symbol per
frame), the signature is similar to the “bag-of-words” model commonly used for
text analysis and computer vision applications.

The distance computation involves considering all possible pairs between the
N, non-zero query dimensions and the /N, non-zero model dimensions. We pro-
pose a technique where the distance computation can be discarded based on a
partially computed (not all N,.N,, pairs are considered) distance - we call it
“Partial Distance based Pruning” (PDP) (Section 5.5.2). We then present two
VQ-based techniques (VQLS-A in Section 5.5.2 and VQLS-B in Section 5.5.2)

which use different lookup tables, utilize PDP for faster search and significantly

outperform the NLS scheme.

199

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

Partial Distance Based Pruning (PDP)

We present a technique (PDP) that reduces time T3 (Table 5.2) by computing
only partially N model-to-query distances in A. This speedup technique is generic
enough to be used for both the un-quantized and the VQ-based signatures. We
insert a new distance in the priority queue L if it is smaller than the largest dis-
tance in the queue (Lg). The logic behind PDP is that if the partially computed
model-to-query distance exceeds Lk o, the full distance computation is discarded
for that model video.

Let J(Xi, Q. k') be the distance between X* and the first &’ vectors of @ - this is
a partially computed model-to-query distance for & < M. If J(Xi, Q, k') exceeds
L2, we discard the model video signature X* as a potential top-K NN candidate
and save time spent on computing d(X*, Q), its total distance from the query.
Though we spend additional time for comparison in each distance computation
(comparing dA(Xi, Q. k') to L), we get a substantial reduction in the search time
as shown later in Figure 5.6.

When PDP is used in the un-quantized feature space, we call that method
as Pruned Linear Search (PLS). The total storage space required for PLS is also
O(NFp), like NLS. Since we do not consider all the M vectors of @ in most of
the distance computations, we have m < M vectors participating, on an average,

in the distance computation. Therefore, the time required to compute A, T;

200

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

(Table 5.2) now reduces to O(mN Fp). The other computational costs are same

as that for NLS.

kl

d(X 0.k = Z{&%L“Fi X —Qk||1} (5.11)

For k' < M, d(X',Q,k) < d(X',Q.M), and d(X',Q, M) = d(X",Q)

A(X, Q. k) > L, = d(X*,Q) > Ly (5.12)

Vector Quantization based Linear Search - Method A (VQLS-A)

In VQLS-A, we pre-compute the inter-VQ codevector distance matrix D (5.6)
and store it in memory. We perform a full search on all the video signatures using
dvq(7i,) (5.9) to find the top-K NN signatures - however, it directly looks up
for a distance between two VQ symbols in the matrix D (e.g., D(tg, n; ;) in (5.9))
and hence saves time (73; in Table 5.2) by avoiding the L distance computation.
This method also uses PDP for speedup. PDP in NLS implies searching along a
lesser number of query frames. Here, it implies searching along a lesser number
of non-zero query dimensions. Sorting of the non-zero dimensions of the query
signature results in improved PDP-based speedup. As in NLS, we maintain an

ascending priority queue L.

dvo(z], ¢, k) Zq {1<I]n<1%z]D(tk,nm)} (5.13)

201

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

where g 2> qgz - > Qry,, represents the sorted query signature. After considering
the first &’ non-zero (sorted in descending order) query dimensions, we discard the
distance computation if dAVQ(E-), G,k (5.13) exceeds Ly .

The storage requirement for D is O(U?). Let the average number of non-zero
dimensions in the VQ-based model signatures be F’, where F' = (3% N,.)/N.
We need to encode @ before search which incurs a time of O(MU). Since this
algorithm uses a constant time lookup of O(1), the complexity of T5 is reduced to
O(N,F'"). The time T3 to compute all the N model-to-query distances, without
PDP, is O(MU + N,NF"). Using PDP, the average number of non-zero query
dimensions considered reduces to N,, where N; < N,. The corresponding reduced
value of Ty is O(MU + N, N F'). The time needed to sort the query dimensions is

O(N,log N,), which is small enough compared to (MU + NN F").

Vector Quantization based Linear Search - Method B (VQLS-B)

This method obtains higher speedup than VQLS-A by directly looking up
the distance of a query signature symbol to its nearest symbol in a model video
signature (e.g., {mini<;j<n, D(t, 7 ;)} in (5.9)). Thus, the computations involved
in both T1; and Ty, (Table 5.2) can be avoided, hence reducing the time to find a
model-to-query distance to O(N,). We pre-compute a matrix D* € RV*U where

D*(i, k) (5.15) denotes the minimum distance of a query vector, represented by

202

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

symbol k after the VQ encoding, to the i® model.

dvo(Zi.q) = thk (i, 1), using (5.9) (5.14)
where D*(i,¢,) = min D(t,n;;),l1 <i< N, 1<k<N, (5.15)
1<j<Ng,

VQLS-B differs from VQLS-A only in the faster distance computation using

D* instead of I; the distance CZVQ(E-), ¢, k') is now computed using (5.16) instead

dvo(z].q th*. (i,t%) (5.16)

There is an increase in the storage required for lookup - D* needs storage of
O(NU) but the time T3 to compute all the distances in A, without PDP, is now
reduced to O(MU+NN,). Using PDP, T reduces to O(MU+NN}), as explained
for VQLS-A in Section 5.5.2. Our experiments do confirm that this method has the
lowest query time among all proposed methods (Table 5.8), the only disadvantage
being that the storage cost (linear in V) may become prohibitively high for very

large datasets.

Storage Reduction for VQLS Methods

For a large codebook size U, the storage cost for the distance matrix D can be
significantly high. The solution is to perform a non-uniform scalar quantization

(SQ) on the elements in D. Suppose, we have used a SQ of codebook size Uy. In

203

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

that case, we just need to send the quantizer indices (each index needs [log,(U7)]
bits) and maintain a table of the U; SQ centroids. Depending on the codebook
size used, the memory savings can be substantial - without quantization, each
element is a double needing 8 bytes = 64 bits. Our experiments have shown
that we can do without very high resolution for the distance values and a 3-bit
quantizer also works well in general. A low-bit scalar quantizer has also been used

for the elements in D*, where the storage needed is O(NU).

VQLS-A VQLS-B
T, || O(MU + N'NF) O(MU + NN/
Storage U2.ng’A/2+NF,bVQ+64.KFp+ NUbSQJg +64.KFp+64.2bSQ’B —+
64.2b52.4 4 64.18.2v@ 64.18.20ve

Table 5.3: Runtime needed to compute all the model-to-query distances (73)
and storage (in bits) are compared for VQLS-A and VQLS-B.

We present a quick comparison of the two VQ-based search methods, VQLS-
A and VQLS-B, in Table 5.3. The time complexity has already been explained
while introducing the methods. Here, we elaborate on the storage complexity. For
VQLS-A, the storage cost for D is U?.bgg.a/2 where 2524 is the SQ codebook
size used to encode the elements in . The SQ codebook is stored with a cost
of 64.2°s@.4 bits. The storage cost for all the non-zero dimensions in the model
video signatures is NF'by g where the CLD features are quantized using a VQ of
size 2°vQ. The storage size for the V(Q that is used to encode the CLD features

= (64.2bv@.18) bits = 9.43 MB (for byg = 13). For VQLS-B, the storage cost for

204

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

D* is NUbgq g where 295Q.8 is the scalar quantizer size used to encode the NU
members in D*. The storage cost for the unquantized signatures of the top-K
model videos returned by the first pass is 64.K Fp, where the video signatures are

assumed to have F' feature vectors on an average.

5.5.3 Search Algorithms with Dataset Pruning

The VQLS schemes described above consider all the N model videos to return
the top-K NN videos. Further speedup is obtained by reducing the number of
model videos accessed during the search. We present two dataset pruning methods
for VQ-based signatures. The first method (VQ-M1) guarantees that the same
top-K NN videos are returned even after pruning, as using naive linear search.
The second method (VQ-M2) is an approzimation of the first and achieves much
higher pruning, though it is not guaranteed to return the correct top-K NN. The
model-to-query distance (for the videos retained after pruning) can be computed

using VQLS-A or VQLS-B (with PDP), for both VQ-M1 and VQ-M2.

Method VQ-M1

VQ-M1 uses a multi-pass approach for pruning. The logic is that for a given
query, the model videos which are nearest to it are likely to have some or all of

the non-zero dimensions, as the query signature itself, as non-zero.

205

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

The pre-computed information needed for VQ-M1 is listed below.

e We store a proximity matrix P € RY*Y which stores the U nearest neighbors,
in ascending order, for a certain VQ codevector, e.g., P(i,j) denotes the j%* NN
for the i'" VQ codevector. For U = 8192(2!3), the storage cost of P = U2.13 bits
(each of the U? terms represents an integer € [0,2' — 1] and hence, is represented
using 13 bits, giving a total storage cost of 109 MB).

e We also maintain a distance matrix D’ € RV*Y which stores the NN dis-
tances, in ascending order, for each VQ codevector. Here, D'(7, j) denotes the
distance of the {P(7, j)}'" codevector from the i VQ codevector, i.e. IV(i,]) =
D(i,P(4,5)). We do not need to store I’ explicitly as it can be computed using D
and P.

e We also store U clusters {C(i)}._,, where C(i) denotes the cluster which
contains those model video indices whose signatures have the i** dimension as
non-zero. The storage cost for 8192 clusters containing 38000 videos (the total

model video dataset size for our experiments as mentioned in Section 5.6.1) is

found to be equal to 6.3 MB.
Cli)={j:2;; >0, 1<j< N} (5.17)

We now provide a list of symbols used in VQ-M1 (Algorithm 10) along with
their definitions:

e S;: the set of distinct model videos considered in the 4t pass,

206

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

e (i the set of non-zero query dimensions, where G = {ty,t2,- -+ . tn,},
e d;: the minimum of the distances of all non-zero query dimensions to their

7" NN codevectors,

d? = min D (t, j) (5.18)

treG

e Aj: the set of distinct VQ indices which are encountered on considering the
first j NN for all the elements in G. Therefore, (A; \ A;_;) denotes the set of
distinct (not seen in earlier passes) VQ indices encountered in the j* pass, when
we consider the j* NN of the elements in G.

We maintain an ascending priority queue L of size K, for the K-NN videos,
which is updated after every iteration. In the first iteration, we consider the
union of the clusters which correspond to the non-zero query dimensions. We
consider all the model videos from this union for distance computation. For the
1%t iteration, df equals 0 and the second iteration is almost always required. In
the j* iteration, we find the j-NN codevector of the non-zero query dimensions
and the new codevectors (not seen in the earlier iterations) are noted. We obtain
the new model videos which have common non-zero dimensions with these newly
encountered dimensions and consider them for distance computation. For the j*
iteration, we terminate the search for top-K NN if df > Lo (or if all the N model
videos have already been considered). For a formal proof that we are assured of

finding the correct top-K NN if d5 > L, see [1]. If the terminating condition

207

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

is satisfied at iteration j=J, the sequence of model videos considered is given by
{S1,Sq,---,S;_1}.

We find that the maximum number of iterations (J) needed to obtain all the
K-NN for a given query increases with both K and the fractional query length
(¢), as shown in Table 5.4. For example, from Table 5.4, for K=10 and ¢ = 0.10,
the value of J is 500. Since we consider the j-NN for a VQ codevector at the j*
iteration, the number of NN that needs to be stored for each codevector equals
the maximum number of iterations (J). Hence, the corresponding storage cost
for P reduces to (500/8192).109 = 6.65 MB. We refer to this fraction (J/U) as
F(K,0) (a function of K and ¢) when referring to the effective storage cost of P,

as used later in Table 5.8.

K [Jawgl=] Tl = [Javg(t=] J(= [Jawg(b=] J(t =
0.05) |0.05) | 0.10) |0.10) | 0.50) |0.50)
10 |2 450 3 500 31 1300
50 || 4 750 9 850 62 1600
100 || 8 950 17 1000 || 82 1750

Table 5.4: Average Ju,, (averaging over all queries) and maximum number of
iterations J for varying fractional query lengths (¢, whose value is shown in paren-
theses) and K, for U = 8192. Both J,,, and J increase with K and /.

We compare the dataset pruning obtained using DBH [6], trained using our
distance function, with that of VQ-M1 (Table 5.5) 2. Tt is observed that the prun-

ing obtained using VQ-M1 is significantly higher than that obtained using DBH.

2The DBH implementation is courtesy Michalis Potamias, a co-author in [6].

208

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

Algorithm 10 Algorithm for VQ-MT1 - here, unique(F) returns the unique (with-
out repeats) elements in

In: N model video signatures, 7; € RV, 1 <i < N
In: the query signature ¢, and lookup matrices P and I’ (along with the lookup tables

needed by the distance computation method VQLS-A/B)

Out: Best sequence to search N videos for top-K NN and also top-K NN (model video

o

10:
11:
12:
13:

14:

15:
16:

17:

18:

19:
20:

indices)
Initialization: (1%¢ pass)
G = {t1,t2,--- ,tn,}, the non-zero query dimensions

A1 = G, set of 1-NN of elements in GG is G itself

S1 = Ui<i<n, C(ti), set of model videos having at least 1 non-zero dimension from
o <i<

di = ming, cc{D'(tg, 1)} =0

: We maintain an ascending priority queue L of length K, based on the elements in Sy,

where dyq(7;, ¢) is found using (5.9) or (5.14), depending on whether VQLS-A/B
is being used.
End of 1% pass
for j =2 to U do
d; = ming, e {D’(tx, j)}, minimum distance between non-zero query dimensions
to their j** NN
if Lgo <dj or Zi:l ISk| = N (all model videos have been considered) then
break;
end if
B;=P(t;,7), 1 <i < N,, B = set of VQ indices which are j*» NN of elements in
G
E =B\ Aj_1, E =unique(E), set of VQ indices that are j» NN of elements in
G and were not seen in earlier iterations
Sj = U1§i§|E| C(Ez)
S; =S5\ U1§i<j S;, set of all model videos not seen in earlier iterations and
having at least one element in F as a non-zero dimension
Aj = A;_1 UE, set of all VQ indices which belong to one of the top j-NN for
elements in G
Update the priority queue L based on the elements in S;
end for
return the sequences observed so far {S;,So, -+ ,Sy_1} (assuming that the search
terminates at iteration j = .J) and top-K NN from the priority queue L

209

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

For DBH, the pruning obtained depends on the allowed error probability (perror)
- we report results for p...., of 0.05. As mentioned earlier, we are guaranteed

(Perror=0) to return the top-K NN using VQ-MI.

¢ [VQ VQ- VQ- DBH(K | DBH(K = | DBH(K =
MUK = | MI(K = | MI(K = | = 10) 50) 100)
10) 50) 100)
0.05 || 15.03 20.52 23.90 71.85 78.37 81.97
0.10 || 21.22 27.23 30.83 73.64 80.93 82.13
0.50 || 42.04 4821 51.51 78.16 81.40 83.24

Table 5.5: Comparison of the percentage of model videos retained after dataset
pruning for VQ-M1 with that obtained using DBH, for different fractional query
lengths (¢) and K. For DBH, peyor = 0.05 is used.

Method VQ-M2

Based on empirical observations, we assume that the signature of the duplicate
video, created from a subset of frames in the original video with noise attacks
on the frames, will have common non-zero dimensions with the original model
video signature. Hence, the list of model videos considered for K-NN candidates
corresponds to S1, the sequence of videos returned by the first iteration of VQ-MT1.
Thus, VQ-M2 is a single iteration process.

This method introduces errors only if there is no overlap between the non-zero
dimensions of the query and the original model video, i.e. if the best matched
video index i* ¢ S;. When the noise attacks introduce enough distortion in the

feature vector space (so that non-zero query dimensions may not overlap with

210

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

the non-zero dimensions of the original model signature), a simple extension is to
consider P NN (P > 1) across each non-zero query dimension. Thus, P should
increase with the amount of distortion expected, and pruning gains decrease with
increasing P. The number of videos in §; and the storage cost for the proximity
matrix P (defined for VQ-M1) depend on P. For P > 1, the storage cost for P is
O(UP).

The sequence Sy, for P > 1, is obtained as follows (for VQ-M1, S; corresponds

to P=1):

Sy = U C(t;) using (5.17), for P =1

1<i<N,
S, = U C(j) using (5.17), where B = U P(t;, k), for P> 1
jeB 1<i<Ng,1<k<P

In Figure 5.4, we compare the dataset pruning obtained for different choices of
P, fractional query lengths, and using different number of keyframes for creating
the query signatures. Using a higher fraction of query keyframes (AM/Ty), the
pruning benefits are reduced, as more model videos are now considered due to the
higher number of non-zero query dimensions. The percentage of videos retained
after VQ-M2 based pruning is 3% and 7.5%, for 10% length queries, for P = 1 and
P = 3, respectively. From Table 5.5, the corresponding pruning obtained using

VQ-M1 varies from 21%-31% as K is varied from 10-100.

211

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

9

8| /
T X

0.5 & :

0.1

N

(a) pruning using P = 1 (b) pruning using P =3
6.5 15
/“

6| 14 /
- 5.5 #using 2% frames in query / - P me— #using 2% frames in query A
.GE’ 5| using 10% frames in query| _g 12 Au-:ing 10% frames in query
8) $ x
245 , s A

.5 11
o s . — 1
g4 810 k//“
c =
S35 S i
3 3
a o

5

0.4 0.5

0.2 0.3 0.2 0.3
Fractional Query Length Fractional Query Length

Figure 5.4: Comparison of the fraction of model videos retained after VQ-M2
based pruning, for varying fractional query lengths, and using different sized query
signatures. The number of cluster centers for the query is fixed at 2% and 10%
of the number of query frames, after temporal sub-sampling, i.e. M/Ty = 0.02
and 0.10 (notations as in Figure 5.1) for the 2 cases. (a) Pruning using P=1. (b)
Pruning using P=3.

For dataset pruning, we have presented two methods: VQ-M1 and VQ-M2. We
present a quick overview of these methods through Table 5.6, where we compare

heir runtime and storage requirements. 7T,,.1 an -0 refer to the time neede
th t 1 st ts. T, d Ty fer to the t ded

for dataset pruning for VQ-M1 and VQ-M2, respectively.

Tor T3 Ty Storage

VQLS- 0 O(MU + N/ NF’) O(NlogK) | U%bsg.a/2 +

A NF'byg + 64.KFp +
64.205@.4 + 64.18.2%ve

VQ- Tpr1 | O(MU + N)Npri F') | O(Nprplog K) | U213.f(K,0) + 6.3

M1(A) MB (for byg = 13) +
storage(VQLS-A)

VQ- Tpro | O(MU + N[NproF') | O(Npr2log K) | 6.3 MB (for byg = 13)

M2(A) + storage(VQLS-A)

Table 5.6: Comparison of query time (in terms of 7)., T3, and T) and storage
(in bits) for VQ-M1 and VQ-M2.

212

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

For VQ-M1(A), the additional costs, over that of VQLS-A, needed for pruning
are U2.13.f(K, () (the cost for maintaining the proximity matrix P) and 6.3 MB
(the cost for maintaining the 8192 clusters). For VQ-M2(B), the proximity matrix
P is not needed. The number of model videos retained after pruning are denoted
by N1 and Np.o for VQ-M1(A) and VQ-M2(A), respectively. This helps to
reduce T3 and Ty, which are defined in Table 5.2. The pruning obtained by VQ-
M1 and VQ-M2 are determined at runtime depending on the query and we have
numerically compared the pruning achieved using Figure 5.4 and Table 5.5. To
reiterate, VQ-M1 is an iterative process (e.g., we need J > 1 iterations) while

VQ-M2 is a one-pass process. Thus, in general, T}, ;1 > T}, o and N1 > Np.o.

5.6 Experimental Setup and Results

Section 5.6.1 explains the dataset creation for duplicate detection. We have
performed a variety of noise attacks and we empirically compare the duplicate
detection accuracy over these attacks. Section 5.6.2 presents the comparison of
the different speedup techniques proposed for improving the coarse search. Sec-
tion 5.6.3 shows how our distance measure outperforms other histogram-based

distances for VQ-based signatures.

213

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

5.6.1 Dataset Generation and Evaluation of Duplication

Attacks

Two online video repositories www. metacafe. com and www. youtube. com
are crawled to obtain a database of 38000 model videos, worth about 1600 hours
of video content. A randomly chosen subset of 1200 videos (=~ 50 hours of con-
tent), is used to generate the query videos. We perform various modifications on
the decoded query frames for each of these 1200 videos to generate 18 duplicates
per video. We empirically observe that the CLD feature is robust to the discussed
modifications. The number of duplicates for each noise class is shown in paren-
theses.

e Gaussian blurring using a 3 x 3 and 5 x 5 window, (2)

e Resizing the image along each dimension by a factor of 75% and 50%, re-
spectively, (2)

e Gamma correction by -20% and 20%, (2)

e Addition of AWGN (additive white Gaussian noise) using SNR of -20, 0, 10,
20, 30 and 40 dB, (6)

e JPEG compression at quality factors of 10, 30, 50, 70 and 90, (5)

e Cropping the frames to 90% of their size (1).

214

Chapter 5. Querying Patterns in Multi-Dimensional Temporal
Datasets

The frame drops that are considered can be random or bursty. We simulate
the frame drops by creating a query video as a fraction (2.5%-50%) of the model
video frames. The duplicate detection accuracy after the individual noise attacks
is shown in Table 5.7.

Re-encoding Attacks: The downloaded videos are originally in Flash Video
Player (FLV) format and they are converted to MPEG-1 format to generate the
query video. We have also re-encoded the video using MPEG-2, MPEG-4, and
Windows Media Video (WMV) formats. The CLD feature is robust against global
attacks induced by strong AWGN and JPEG compression attacks and hence, ro-
bustness is expected against video re-encoding attacks - this is also experimentally
verified. For MPEG-4 compressed videos, we experiment with varying frame rates
(5, 10, 20, 30, 40 and 80 frames/sec) and the average detection accuracy is 99.25%
- the results remain almost constant for different frame rates.

Color to Gray-scale Conversion: We have also converted the model video
frames from color to gray-scale to create the query - here, the Y component is
slightly modified. For gray-scale videos, we consider the first 6 dimensions of
the CLD feature, which correspond to the DCT terms for the Y channel, as
the effective signature. The decision to use 6 or 18 dimensions is made based on
whether dimensions 8-12 and 14-18 (AC DC'T coefficients for Cb and Cr channels)

are all zero, i.e. it is a gray-scale frame. If frames of a different video are added

215

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

to the query video, then as the percentage of inserted frames (from other videos)
increases, the detection accuracy decreases significantly as shown in Figure 5.5.
Logo and Caption Insertions: We have also experimented with logo and
caption insertions. The initial logo considered is a 60 x 90 binary patch with 700
pixels (they constitute the logo pattern) being set to 1. We then resize the logo
to 5%, 10%, 15% and 20% of the image size. We superimpose the logo pattern
on the bottom leftmost part of the image and the image pixels, whose positions
coincide with the 1’s in the logo, are set to zero (black logo). For the caption
insertion, the original block of text can be captured in a 50 x 850 binary patch
where 2050 pixels (constituting the caption) are set to 1. We then resize the
caption such that it can span a different number of columns (30%, 50%, 70% and
90% of the image size). The same principle is used to modify the image as in the
logo insertion example. The coarseness of the CLD feature explains its relative
robustness against logo and caption insertions. The averaging of the entire image

to an 8 x 8 representation dilutes the effect of local changes.

5.6.2 Empirical Evaluation of Various Proposed Algorithms

We analyze the performance of the proposed algorithms for duplicate detection.

The final detection accuracy, for a certain query length, is obtained by averaging

216

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

Attack Error Attack Error
blur 0.0114 resize 0.0111
JPEG 0.0125 crop 0.0145
(blur+resize) 0.0119 (AWGN+crop) | 0.0156
MPEG-2 0.0098 MPEG-4 0.0088
logo (5%) 0.0140 Togo (10%) 0.1780
caption (30%) 0.0155 caption (50%) 0.0190
Attack Error Attack Error
gamma 0.0221 AWGN 0.0113
(blur 4 crop) 0.0154 (resize + crop) | 0.0148
(gamma + crop) | 0.0243 | (AWGN + resize) | 0.0128
WMV 0.0076 gray-scale 0.0388
logo (15%) 0.0198 logo (20%) 0.0228
caption (70%) | 0.02301 caption (90%) 0.0288

Table 5.7: Detection error obtained using CLD features, for individual noise
attacks, averaged over fractional query lengths from 2.5%-50%. and over varying
parameters for a given attack, are shown.

over all the (1200 x 18) noisy queries, where the 18 duplication schemes were
introduced in Section 5.6.1.

e Firstly, we show the speedup obtained using PDP, by comparing PLS (NLS
+ PDP) with NLS, and comparing VQLS-A and VQLS-B schemes, with and
without PDP (Figure 5.6). It is also seen that the VQ-based schemes significantly
outperform NLS and PLS, that use un-quantized features.

e Secondly, we show the performance improvements obtained using VQ-M1(A)
and VQ-M2(A), in place of VQLS-A, and using VQ-M2(B) in place of VQLS-B -
these methods achieve additional speedup through dataset pruning (Figure 5.7(a)

and 5.7(b)).

217

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

Speedup Obtained Using PDP: We show the runtime needed (73+17} from
Table 5.2), with and without PDP for NLS, VQLS-A and VQLS-B schemes, in
Figure 5.6(b-1), (b-2) and (b-3), respectively, to return the top-K model videos. Tj
is reduced by using PDP. T, = O(N log K) increases with K and thus, the effective
runtime saving decreases as K increases. PDP provides significant runtime saving
so that “with pruning: K = 100" takes lesser time than “without pruning: K =
10”. Also, comparing (b-2) and (b-3) with (b-1) in Figure 5.6, we observe that the
runtime needed by VQLS-A and VQLS-B (with PDP) is much lower than that

for PLS and NLS.

(a) Model fingerprint size = 5x

el =

o

©

®
T

0 967./.’/‘\/- // #No insertion ||
50-94 =3 1% ?nsert?on f
5 @ 3% insertion
3092 |
g 0s /*/10/ A5% insertion |
g - /lk/ #10% insertion
% 0.88 20% insertion ||
3O L
& o086

0.84

0.82 *

0.8—%

0.2 0.3 0.5
Fractional Query Length

Figure 5.5: Variation of the detection accuracy with varying levels of video clip
(from a different video) insertion - a fractional query length of 0.1 means that the
query consists of 10% frames present in the (original query + inserted video clip).
Model fingerprint size = 5x.

Speedup Obtained through Dataset Pruning: We observe the runtime

saving obtained through dataset pruning (using VQ-M1 and VQ-M2) using VQLS-

218

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

Acwithout pruning: K=10| (b-1) Results using NLS and PLS
04 "'W|th pruning: K=1O ,,,,, S S S —— F— J [——
-#-with pruning: K=100 ‘ | ‘ | ‘ ‘

Time (sec)

0.2 ———§—— & — & —
. 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

(b-2) Results using VQLS-A: with and without pruning

\ \
0.3 0.4 0.45 0.5

. 0[3
<10° (b-3) Results using VQLS-B: with and without pruning

- \ \
0.1 0.15 0.2 0.25

Time (sec)

\ \ |
02 025 03 035 04
Fractional Query Length

Figure 5.6: Runtime improvements due to PDP are shown for the PLS and VQ-
based linear search schemes: (b-1) results using NLS and PLS; (b-2) results using
VQLS-A - with and without pruning; and (b-3) results using VQLS-B - with and
without pruning. “Pruning/ no pruning” indicates whether or not PDP has been
used. Here, runtime = (73 + Ty) is the time needed to return the top-K model
videos after the first pass.

A and VQLS-B for the model-to-query distance computation, in Figure 5.7(a) and
5.7(b), respectively. PDP is employed for all the methods and “prune/no prune”
denotes whether or not we employ dataset pruning methods (VQ-M1 or VQ-M2).

e For VQLS-A, the runtime comparison for the different methods is: VQLS-A >
VQ-M1(A) > VQ-M2(A). Hence, using dataset pruning results in significant

speedup (Figure 5.7(a)).

219

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

e For VQLS-B, the use of the lookup table D* reduces runtime significantly,
so that the time required for the iterative pruning technique (VQ-MT1) is higher
than the runtime without pruning, especially for higher values of K and longer
queries. Hence, for VQLS-B, for fractional query lengths exceeding 0.10, the run-
time comparison for the various methods is: VQ-M1(B) > VQLS-B > VQ-M2(B)
(Figure 5.7(b)).

Storage and Time Comparison: We present the variation of the detection
accuracy with query time, along with the associated storage costs, for the various
methods in Table 5.8. The query length (¢) considered is 10% of the actual
model video lengths. [t is seen that among methods with higher storage costs
(using D*, where storage < N), VQ-M2(B) has the minimum query time while
for methods with lower storage costs (using D, where storage o< U?), VQ-M2(A)
has the minimum query time. The various values used in Table 5.8 are F' = 25,
F' =18, byg = 13, bsga = 3, bsgz = 3, N = 38,000 (dataset size) and

U = 8,192 (VQ size).

5.6.3 Comparison of Other Histogram based Distances for

VQ-based Signatures

We compare our distance measure between the VQ-based signatures with the

L, distance (dr;), an intersection based distance (d;,;), the cosine distance (dgs)

220

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

Index Method K Storage (bits) Storage (MB) £ =0.10
Query Time(s) | Accuracy
1 NLS 10 64.NFp 133.47 0.42 0.989
NLS 50 0.43 0.994
2 PLS 10 64.N F'p 133.47 0.27 0.989
PLS 50 0.28 0.994
3 VQLS-A 10 64.18.2°vQ (9.43 22.91 0.096 0.883
MB) +
VQIS-A 50 | U2bsg.a/2 + 23.06 0.102 0.958
NF'by g
VQLS-A 100 | +64.KFp + 23.24 0.109 0.969
64.205Q.4
1 VQ-MI(A) | 10 | U%13.f(K,f) + | 35.86, 46.51 0.048 0.883
6.3 MB +
VQ-M1(A) 50 U2.bsQ7A/2 + 40.67, 50.65 0.065 0.958
NF’bVQ—i-
VQ-M1(A) | 100 | 64.KFp + | 42.85, 52.83 0.076 0.969
64.2b5Q,4 +
9.43 MB
5 VQ-M2(A) 10 9.43 MB + 29.21 0.014 0.883
cluster cost (6.3 MB)
VQM2(A) | 50 | +U%bso.a/2 + 29.36 0.020 0.958
NF'byq
VQ-M2(A) | 100 | +64.KFp + 29.54 0.024 0.969
64.2b5Q,4
6 VQLS-B 10 9.43 MB + 123.36 0.012 0.883
VQLS-B 50 NUbsq,B + 123.51 0.015 0.958
64.K F)p
VQLS-B 100 | +64.2%sQ.8 123.69 0.019 0.969
7 VQ-M2(B) 10 9.43 MB + 129.66 0.010 0.883
cluster cost (6.3 MB)
VQ-M2(B) 50 +NUbsq,B + 130.26 0.013 0.958
64.K Fp
VQ-M2(B) 100 | +64.2°s@.B 130.99 0.016 0.969

Table 5.8: Comparison of all the 3 parameters - detection accuracy, query time
(expressed in seconds), and storage, for the different methods, at varying K.
Query time equals (73 + Ty + T5) (along with the time for k-means-clustering
to obtain @ from @, and the time for sorting the query dimensions). Unless
otherwise mentioned, the elements are stored in ”double” format (=64 bits). The
storage cost of VQ-M1(A) depends on the fractional query length (¢): thus, for
K =10, the storage cost equals 35.86 MB for ¢ = 0.10.

221

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

(a) Results with and without pruning in model space for VQLS-A
0.2

W¥K=100 (no prune)
0.181/#&K=10 (no prune)
HK=100 VQ-M1(A]
0.16113%K-50 VQ-M1 (A
HK=10 VQ-M1(A
0147 9 K=100 VQ-M2(A
50.101#K=10_ VQ-M2(A
@

2 4 /)ll'/
' -

)
)
)
)
)

o

E 08
i 0.08

0.06]

0.04]

0.021 Ko

; i i
% 1 0.2 0.3
Fractional Query Length

(b) Results with and without pruning in model space for VQLS-B
0.012,

W¥K=100 (no prune)
AK=10 (no prune)
H¥K=100 VQ-M1(B
@K=50 VvQ-M1
B|K=10 VQ-M1
0.0084K=100 VQ-M2
#K=10 VQ-M2

0.0

TOT D

0.006

Time (sec)

.

0.004

0.0021--

0.2 0.3
Fractional Query Length

Figure 5.7: Runtime improvements due to pruning in the model video space,
for VQLS-A and VQLS-B, are shown. By “no prune’, we mean that pruning in
model video space (VQ-M1 or VQ-M2) is absent, while PDP is used for all the
methods. Significant runtime savings are obtained for VQ-M1(A) and VQ-M2(A)
over VQLS-A (Figure a) and for VQ-M2(B) over VQLS-B (Figure b).(a) Results
with and without dataset pruning for VQLS-A. (b) Results with and without
dataset pruning for VQLS-B.

and the Jaccard coefficient based distance (dj,.), which was used for copy detec-

tion in [25]. The different distance measures are defined here:

U U
dint(T,) = 1= min(@ig, @)y deos(T, T) = O 2505) /(T T []5)

k=1 j=1

222

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

U .
. min(z; j.
Jaccard coefficient Jeperr = Z M

, and dje. = —J,
1 max(a:i,k, qk)) Jac coef f

The performance comparison of the different distance measures (Figure 5.8)
shows that the detection accuracy using dy is significantly higher than the other
distances, especially for small query lengths. For our proposed measure, the effec-
tive distance is the sum of distances between “query vector to best matching vector
in model signature”. For traditional histogram-based distances, the effective dis-
tance is computed between corresponding bins in the model and query signatures
- this distance is small only when the query signature is similar to the entire model
signature, which is true mainly for longer queries. Hence, the advantage of using

our asymmetric distance is more obvious for shorter query lengths.

095 (a) Detection Accuracy for different distances (K = 10) (b) Detection Accuracy for different distances (K = 100)
e — — 095 4{/; X
..085 (/‘ *— / /l'/
S 08 */‘ _— § 0.9 /‘
g 0.75] § // _——9
< s Using dVO 2 085l ‘/
'§ 0.7 Ausingdegg |- _5_ /l'/ #using d,
‘§ 0.65 / @usingdy, || 8 os ‘/ Ausingd_
a 0 ./ Feusingd 8 / @usingd,
0.75 Jeusingd, |

. Jac
055 ? 1
0.5 5 0.7 3 3

-0 0.05 0.1 A . 0.25 0.3 o) 0.05 0.25 0.3
Fractional Query Length

0.1 0.15 0.2
Fractional Query Length

Figure 5.8: Comparison of the detection accuracy obtained using the different
VQ based distances, for K = 10 and K = 100, is shown. Results using d;,; and
dry are near-identical and so, only dr; based results are shown. Results using dy¢
are significantly better than that using d..s (which in turn performs better than
dr1 and dy,.) at smaller query lengths. (a) Detection results for various distances
(k=10). (b) Detection results for various distances (k=100).

223

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

5.7 Duplicate Confirmation

After finding the best matched video Vj«, we discuss a distance threshold
based (Section 5.7.1) and a registration-based (Section 5.7.2) approach to con-

firm whether the query is a duplicate derived from V.

5.7.1 Distance Threshold based Approach

The training phase to obtain the distance threshold involves finding the 1-NN
and 2-NN distances for 1200 query videos, over various noise conditions and query
lengths. The distance between X', the fingerprint of the 1-NN video Vj-, and the
larger query signature Quri4, is computed using (5.1) and is normalized by the
query length Ty, so as to make the threshold independent of the query length.
Thus, the effective 1-NN distance equals {d(X %", Qorig)/To}- Since the same 1200
videos were considered as the model videos, the 1-NN always refers to a duplicate
video and the 2-NN to a non-duplicate one. Ideally, the threshold §, should be
such that all the 1-NN (or 2-NN) distances are less (or greater) than it. By equally
weighing the probability of false alarm Pr4 (wrongly classifying the 2-NN retrieval
as a duplicate) and missed detection Pyp (failing to classify the 1-NN retrieval
as a duplicate), the threshold ¢, is empirically set at 230 - distribution of 1-NN

and 2-NN distances and illustrative explanation of threshold selection are shown

224

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

in [1]. The corresponding Pr4 and Pysp values equal 0.07. Depending on whether
the emphasis is on minimizing Pry or Pyp, 05 can be decreased or increased,
accordingly.

For verifying the effectiveness of the distance threshold, we repeat the duplicate
detection experiments on an unseen dataset of 1700 videos (= 75 hours of video),
all of which are different from the model videos. For each video, 18 duplicates are
created as in Section 5.6.1. Using a threshold d, of 230, 3% of the videos were
classified as “duplicates” - for them, the 1-NN distance is less than d;.

For those cases where the query-to-model distance is very close to the threshold
Jds, we use a registration-based approach (Section 5.7.2). The registration method
is computationally intensive but is more accurate in determining if the query is

indeed a duplicate of the retrieved candidate.

5.7.2 Registration based Approach

In this approach, we need to know which model keyframe should be consid-
ered for registration for a given query keyframe. While computing the distance
d(X", Qurig) in the second pass of the search process, we have already obtained
the best matching vector in the model signature (X € RF#**P) for every query
vector in Qrig. What we now need is a way to map every model (query) vector

to its corresponding keyframe. This is done as follows. Considering the cluster

225

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

centers (X%) obtained after k-means clustering on the feature matrix (Z%"), we
can find which vector in Z%" best matches to a certain vector in X* - the frames
corresponding to the selected vectors in Z% constitute the model keyframes.
Registration method: First, a set of salient points is detected in the respec-
tive frames. Then the SIFT feature descriptor is computed locally around those
points followed by establishing correspondences between them by computing the
distance in the SIFT feature space. As this usually yields a lot of false matches
(more than 50% in some scenarios), RANSAC [42] is included in this framework
to filter out the bad point correspondences and to get a robust estimate of ho-
mography parameters. Finally, we conclude that the query video is a duplicate of
Vi« if majority of the query frames (approximately 70% in our case) can indeed
be registered with the best matching keyframes in V.. This fraction (70%) can
be increased or decreased depending on whether the emphasis is on minimizing

PFA or P]\/[D-

5.8 Discussion

Here we have addressed the duplicate video detection problem. We empiri-
cally selected CLD for fingerprinting as it was robust to the duplication attacks.

However, if there is extensive cropping, padding, or rotation/shear, salient point-

226

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

based descriptors can be more effective. We developed a new non-metric distance
measure which is very effective for short queries. This distance measure has high
computational complexity as it computes the distances between all model-to-query
keyframe pairs. We reduce the computational cost using pre-computed informa-
tion, partial distance based pruning and dataset pruning. This distance measure
can be explored in other domains which require subset matching. The proposed
dataset pruning method has been effective for our distance function and VQ his-
togram based signatures. It would be interesting to study how well the pruning

method generalizes for histogram-based distances.

5.9 Conclusions

The problem of fast and real-time duplicate detection in a large video database
is investigated through a suite of efficient algorithms. We retrieve the duplicate
video for about a minute long query in 0.03 sec with an average detection accuracy
of over 97%. Our proposed distance measure is shown to perform very well when
the query is a noisy subset of a model video and keyframe-based signatures are
used. In the future, we will explore how the duplicate detection system scales to

larger sized datasets.

227

Chapter 5. Querying Patterns in Multi-Dimensional Temporal Datasets

In our problem, we have assumed that the query is entirely constituted from
a model video. If, however, a query contains portions of multiple videos, the
same asymmetric distance will not be effective. In that scenario, one can con-
sider disjoint windows (of suitable length) of the query video and issue multiple
queries. The aim is to identify the model to which a certain query window can be

associated. This topic will be explored in future.

228

Chapter 6

Efficient Computation of
Statistical Significance of Query
Results in Databases

Queries such as database similarity searches return results satisfying certain
properties of distances or scores. However, for domain scientists, the absolute
values of scores are seldom sufficient. Statistical significance or p-value of the
result is a more useful criterion. Further, most database systems support queries
that have multiple attributes or objects. The score of the result is an aggregate of
the individual scores. The simple way of calculating the p-value by enumerating
all random possibilities fails for large database and query sizes. We propose an
efficient method to calculate the approximate p-value of a multi-attribute result
when the distribution of scores for the database objects is non-parametric. Exper-

imental evaluation on large databases shows that our method is practical, runs 5

229

Chapter 6. FEfficient Computation of Statistical Significance of Query Results in
Databases

orders of magnitude faster than the basic approach, and has an error of less than

5% in p-value computation.

6.1 Motivation and Problem Statement

Many database systems retrieve results based on some distance or score mea-
sure between the query object and the database objects. Score is a quantitative
measure of the similarity between objects based on multiple attributes. It has
been widely used for ranking results in content-based multimedia retrieval sys-
tems. However, with the growing interest in analyzing the results of a database
similarity query, computing rigorous statistical properties of the results is more
meaningful.

Statistical significance helps the domain scientists in understanding the nature
of the query and the statistical properties of the database objects. The most well
known example is BLAST [3]. A standard measure of statistical significance is
the p-value. The p-value of score s of a query result from a database is defined
as the probability of randomly obtaining a result from the database with a score
s or higher for the same query. It is the area under the probability distribution

function (pdf) of the scores of random objects greater than s.

230

Chapter 6. FEfficient Computation of Statistical Significance of Query Results in
Databases

For a database management system (DBMS) serving single object queries, the
score pdf can be characterized or calculated, and so, the p-value can be computed.
However, there are database systems of complex objects where each object consist
of multiple attributes or components. Such systems support queries with multiple
attributes or objects and the score of a result is some aggregate function (e.g.,
sum) of the individual scores of each query component against its corresponding
result component [40]. These queries are common for region based image retrieval
(RBIR) systems [32] and information retrieval systems [109]. For example, in
an RBIR system, a query region is composed of a number of sub-regions (e.g.,
tiles) [30, 117]. The database images are also split into sub-regions. Each compo-
nent sub-region has a corresponding score of its match with a query sub-region.
The score of a result is the sum of the individual scores.

For a given query object @ of size r, a random database for computing the p-
value can be modeled by considering all possible aggregates of size r composed of
components from the database. To find the p-value, we need to calculate the score
pdf for this random database. This simple method has a running time that grows
exponentially with database size and query size and is, therefore, impractical.
In this chapter, we propose and solve the following problem: “Given a query @
composed of v objects Q;,t = 1,--- ,r, database objects D;,j = 1,--+ ,n, scoring

functions f; : Q; x D — R, compute the p-value of obtaining a score s for a result

231

Chapter 6. FEfficient Computation of Statistical Significance of Query Results in
Databases

R = U_|R;, where s = Y ._, f(Qs, R;), for a random database of objects, each
having r component objects.”

Methods have been proposed for obtaining a single measure of statistical sig-
nificance by combining the individual p-values. For example, the method in [34]
requires finding the correlation among the attributes, which is done by sampling
for large datasets. We adopt a more direct approach. We find the sum pdf of the
individual pdfs of the components of the query. Then we calculate the p-value
from this sum score pdf. Since score pdf of each component is independent of the
other, this pdf is the convolution of all the individual pdfs. For most databases,
the nature and the parameters of this pdf cannot be computed. We consider
such cases where the probability distribution function of the cumulative scores is

non-parametric.

6.2 Algorithm

For a multiple object query, the p-value can be found from the sum pdf of its
components. The basic approach of calculating the sum pdf is to calculate the
pdf of each query component and then find their convolution. Two score pdfs
h; and hs can be convoluted to produce the sum score pdf h: the probability

corresponding to score s considers all possible scores s; and so from hy and hg

232

Chapter 6. FEfficient Computation of Statistical Significance of Query Results in
Databases

Algorithm PRUNE

Input: Query @ = U]_,Q;, Score s, Database D, Number of bins b
Output: P-value p

l.fori=1tor

2. D; := 1-NN(Q;, D)

3. h; := BinHistogram(D;, b)

4. end for

/* 0; is the sum pdf of bin histograms 1,--- i */

5. 01 := hy

6. fori=2tor

7. B(o;) == s = >, max(hy)

8. B(h;) := B(o;) — max(0;_1)

9. B(oi-1) := B(o;) — max(h;)

10. o, := Convolute(all bins 0,_4 ; > B(0;_1), all bins h; ;, > B(h;))
11. end for

12. p := Sum of probabilities in all bins o, ; > s

Figure 6.1: The PRUNE algorithm.

such that s = s; + so. The cost of computing this convolution is, thus, quadratic
in the number of distinct scores in the constituent pdfs. Hence, we can see that
the convolution of multiple pdfs incurs a multiplicative cost on the size of the
pdfs, and therefore, can be large. Assume that a query has r components, and
each component has b distinct score values. The convolution of the first two
components requires b x b = b operations and produces up to b* distinct scores.
Convoluting this result with the third component requires b? x b = b® operations,

and so on. The total running time, therefore, is b x b x -+ x b= O(b").

233

Chapter 6. FEfficient Computation of Statistical Significance of Query Results in
Databases

In order to speed up the p-value computation, we consider the two aspects
of the problem—computing the score distribution for each query component and
convoluting the distributions—separately. The first sub-problem is handled by
pre-processing and maintaining a separate score pdf for each object component
in the database. This can be done offline. For each component of the query, we
approximate its score pdf by the pdf corresponding to its nearest component in
the database. The nearest database component can be retrieved very efficiently
by indexing the feature vectors of the objects using R-trees [52].

To efficiently convolute the pdfs and compute the p-value, we developed an
approximation technique PRUNE (Figure 6.1). There are three main steps in the
algorithm: (i) Use histograms to approximate the score probability distribution
functions of each query object, (ii) Progressively cascade the convolution of query
object histograms to obtain the score histogram for the entire query, and (iii) Use

bounds to convolute the histograms. We next explain each step in detail.

6.2.1 Use of Histograms to Approximate Distributions

Since the cost of convoluting two pdfs is a quadratic function of the number of
distinct values in the pdfs, instead of using an actual score pdf, we approximate
it by a histogram with a fixed number of bins as shown in step 3 of Algorithm

PRUNE (Figure 6.1). For speed, simplicity, and convenience, we choose equi-

234

Chapter 6. FEfficient Computation of Statistical Significance of Query Results in
Databases

width histograms. The whole score range is divided into a fixed number of equi-
width bins. The accuracy of the approximation depends on the number of bins
maintained. More bins have less error, but higher running time. Section 6.3
considers the effect of the number of bins on the running time and the error in

calculating the p-value.

6.2.2 Cascaded Convolution of Histograms

As described earlier, the simple way of directly convoluting r histograms has a
time complexity which is exponential in . To avoid such high costs, we convolute
the histograms in a progressive fashion. Initially, the histograms of two query
component objects are convoluted to yield another score histogram, which is again
binned into b bins. Then, this histogram is convoluted with the next histogram
and so on till all the 7 histograms have been convoluted.

Denoting the i*" histogram by h; and the convolution of histograms up to i
components by o;, we compute o; = 0,1 & h; up to ¢« = r. Each histogram
convolution requires quadratic number of operations in terms of the number of
bins in the histograms. The total time complexity, therefore, is O(b*r). To make

it even more efficient, we apply a bounding procedure which is described next.

235

Chapter 6. FEfficient Computation of Statistical Significance of Query Results in
Databases

Gi_; N G;

25 55 80 Max of
17 72 h

'+1

%l o \/ Score S

-1 7 59

Bound onc; =100 — 40 = 60
Bound on h;= 60 — 25 = 35
Bound onG;_1=60-55=5

Figure 6.2: Efficient convolution of histograms. o; | @ h; = 0;. The bins below
the score thresholds (shown inside circles) can be pruned to save time.

6.2.3 Convolution of Bounded Histograms

The bounding method is based on the observation that computing the p-value
for a score s requires counting only those scores that are greater than or equal to
s. Scores in the histogram of a query object that cannot add up to s even when
combined with the best scores of the histograms of other query objects need not
be considered. Therefore, the bins in the histogram whose scores fall below this

threshold score can be deleted. The bounding method achieves this pruning of

236

Chapter 6. FEfficient Computation of Statistical Significance of Query Results in
Databases

histogram bins by evaluating the threshold score at each stage. This reduces the
number of bins, and thus, the running time.

Figure 6.2 shows an example of how such thresholds are computed. Assume
that the histogram o; ; is convoluted with h; to yield o;. Also, assume that the
score s for which the p-value is being calculated is 100. If the maximum score in
h;y1 is 40, then any score below 100 — 40 = 60 in o; cannot add up to s. This
is the threshold score for that histogram, and is highlighted in the figure. Thus,
all scores below 60 can be deleted from o;. By analyzing this bounding behavior
backwards for the histograms o; 1 and h;, it can be seen that such contributing
pairs of scores need not be calculated at all. The maximum score in h; is 55.
Since we do not need any score in ¢; that is below 60, all scores below 60 — 55 = 5
in 0; 1, when added to any score in h; will be less than 60, and hence, can be
deleted. Continuing this reasoning, all scores below 35 in h; can be deleted. The
threshold scores are highlighted in the figure.

In this example, the number of bins in ¢;_1 and h; are reduced from 6 to 4 and
3 respectively. This translates to a saving of 6 x 6 — 4 x 3 = 24 bin convolution
operations. Steps 7 to 10 of Algorithm PRUNE (Figure 6.1) apply bounding to
the cascaded convolution. As shown in the next section, the overall saving for r

histogram convolutions is significant.

237

Chapter 6. FEfficient Computation of Statistical Significance of Query Results in
Databases

Note that the two sources of error in the p-value computation are the use
of nearest neighbors and histogram binning. The bounding method does not

introduce any error.

6.3 Experiments

In this section, we demonstrate the effectiveness of our PRUNE method over
alternate approaches. We explain the empirical results in the context of region-
based image retrieval (RBIR) system for a biomedical image database of fluo-
rescent micrographs of feline retinas labeled with different antibodies [43]. The
dataset consists of 805,272 tiles. The score between two tiles is a decreasing func-
tion of the L; distance between the color histogram features of the tiles. The
tiles are the component objects in our system. The score of the alignment of a
query region to a database region is the sum of the scores of the alignment of the
individual tiles. The details of the dataset preparation, the features, the scoring

function, and the retrieval system are explained in [117].

6.3.1 Running Time

The basic approach of online computation of score pdfs of each query tile

and their convolution yields impractical time. Therefore, we do not consider

238

Chapter 6. FEfficient Computation of Statistical Significance of Query Results in
Databases

it. Instead, we maintain a database of the pre-computed pdf of each database
component. We use the following parameters for the analysis of running time:
(i) the number of bins in the score histograms, (ii) the query score for which the
p-value is computed, measured as a percentage of the maximum score that can
be achieved by the query, and (iii) the query size, which is the number of tiles in

the query image.

Comparison of 4 different computation approaches

No Biﬁning, No Pruningj —
100000 ¢ No Binning, Pruning - S
10000 Binning, No Pruning -
Binning, Pruning

o

@
o) L
£ 1000
= 100 |
o
E 0 7~ VR mmmmmmmmm B Memmmmmmmmmos 3
(3)_ 1 ¥ Lo
5 [V :
3 01 f e D ,
0.01 + e Number of bins = 100001
, ns = I
0.001 . Query score = 70%
Query size

Figure 6.3: Comparison of the various approaches of p-value computation.

First, we compare the four different approaches of computing the p-value:
(i) Using actual pdf without pruning, (ii) Using actual pdf with pruning, (iii) Using
binned pdf without pruning, and (iv) Using binned pdf with pruning (PRUNE).
Figure 6.3 shows their running times for different query sizes. The pruning strat-

egy shows a gain of about 102 for a query size of 8 without binning. Binning

239

Chapter 6. FEfficient Computation of Statistical Significance of Query Results in
Databases

improves the computation time by 2 orders of magnitude with pruning and 5 or-
ders of magnitude without pruning. In all cases, the PRUNE strategy finished in

practical times—at most 255 ms.

PRUNE and No Pruning time comparison

0.9 ‘ ‘ :
Pruning, 1000 bins —+—
08 I Pruning, 5000 bing <
w 07+ Pruning, 10000 bins -
> No Pruning, 1000 bins =
= 0.6 - No Pruning, 5000 bins =~ ~
= No Pruning, 10000 bins ---e--- ‘
c 0.5)
S P
© 04t
=
g 0.3 e]
O 0.2 rQuery score = 70%,—" "':‘f;‘;;:/
01 - O /;_‘/.7“/7‘//_";:",7, o
Q Mmoo e A
2 3 4 5 6 7 8
Query size

Figure 6.4: The effect of pruning on the running time of p-value computation.

Since the PRUNE strategy outperforms all other approaches we analyze it
further with respect to other parameters. Figure 6.4 shows that the efficiency of
pruning increases with the increase in query size across varying number of bins
in the histogram. Up to medium query sizes of 6, and number of bins 5000, the
scalability is linear or better.

The next experiment (Figure 6.5) shows that the pruning strategy performs
better when the query score increases, across varying number of bins. When the

query score is 80% of the maximum score, the pruning strategy is very effective

240

Chapter 6.
Databases

Efficient Computation of Statistical Significance of Query Results in

PRUNE and No Pruning time comparison

0.9

Pruning, Query score = 90% ———

0.8 " Pruning, Query score = 80%

% 0.7 | Pruning, Query score = 70% -]
b Pruning, Query score = 60% o -
e 06 No Pruning ——=-— -~ 1
c 05 g]
o
S 041 1
3
E 03 B /j/ m
S o2t]
© “ |Query size=8 - .

0.1 r B - e]

0 B Y- T)
0 2000 4000 6000 8000

Number of bins

10000

Figure 6.5: The effect of query score and number of bins on the running time of

p-value computation.

for all histogram bin sizes. The scalability is better for higher query scores. Thus,

the empirical results strongly suggest that our PRUNE method is efficient and

practical.

6.3.2 Error

We next performed experiments to measure the error in p-value computation

induced by binning. Figure 6.6 shows the error percentage across varying number

of bins. When the query size is large, using less number of bins accumulates the

error over more number of steps, resulting in more than 20% error. Increasing the

241

Chapter 6. FEfficient Computation of Statistical Significance of Query Results in
Databases

Error in p-value computation

35 ‘
Query score=80%, Query size=8 —+—
30 Query score=80%, Query size=6 - |
— Query score=80%, Query size=3 -
X o5k Query score=70%, Query size=8 =
° - Query score=70%, Query size=6 =~
3 20}
<
c 15}
2 10t
L
5 L
0 - o
100 1000 10000

Number of bins

Figure 6.6: The percentage error in p-value computation due to binning.

number of bins to 1000 reduces the error to at most 5%, irrespective of the query

size and the query score. This proves the effectiveness of our strategy.

6.4 Conclusions

In this chapter, we defined the problem of efficiently computing the p-value
for multi-object query results for non-parametric distributions. We proposed an
approximate bounding procedure PRUNE and showed that it is faster than the
alternate approaches by more than 5 orders of magnitude with the error in com-
putation less than 5%. Possible future avenues of work include sampling to obtain

the score histograms, computing bounds for other aggregate functions like max,

242

Chapter 6. FEfficient Computation of Statistical Significance of Query Results in
Databases

and examining the order in which the component object histograms should be

convoluted in order to minimize the number of operations.

243

Chapter 7

Conclusions

In this thesis, it was shown that patterns can be queried accurately and effi-
ciently in high-dimensional heterogenous datasets. Pattern queries were studied
in three types of datasets: (1) datasets of keyword-tagged objects; (2) datasets of
objects having spatial relationships; and (3) datasets of objects having temporal
relationships. Novel index structures and algorithms were presented to answer
these pattern queries. Multiple real datasets of sizes up to 100 million and dimen-
sions up to 256 were used for empirical evaluations. These evaluations showed
that the proposed algorithms are highly scalable and accurate.

A novel technique, SIMP, was described in Chapter 2 for accurately and effi-
ciently finding r-near neighbors in high dimensional spaces. Comparative studies
on three real datasets of dimensions between 32 and 256 and sizes up to 10 million
showed a superior performance of SIMP over the state-of-the-art methods. Em-

pirical studies on real datasets of sizes up to 100 million points and dimensions

244

Chapter 7. Conclusions

up to 256 showed that SIMP scales linearly with the query range, the dataset
dimension. and the dataset size.

Querying patterns by keywords in a dataset of keyword-tagged objects was
introduced in Chapter 3. The proposed algorithm, ProMiSH, queries a similar
set of objects containing a given set of query keywords accurately and efficiently.
Empirical evaluations, both on real and synthetic datasets, showed that ProMiSH
has a speed-up of more than four orders over the state-of-the-art tree-based tech-
niques. Empirical studies on datasets of sizes up to 10 million and dimensions up
to 100 for queries of sizes up to 9 established the scalability of ProMiSH.

Querying patterns by example in a spatial dataset was presented in Chap-
ter 4. A new algorithm, QUIP, was proposed for querying these patterns from
the dataset. QUIP has two index-based scalable search strategies: TARS and
SPARS. Experimental results on real raster image datasets showed that TARS
offers an 87% improvement for small queries, and SPARS a 52% improvement for
large queries in running time, as compared to linear search. Qualitative tests on
real datasets achieved precision of more than 80%.

Pattern queries in a temporal dataset were explored in Chapter 5. This chapter
specifically studied the problem of duplicate video retrieval. A new non-metric dis-
tance measure was proposed to find the similarity between a query and a database

video. Novel search algorithms based on pre-computed distances and pruning

245

Chapter 7. Conclusions

techniques were presented for efficiently querying duplicate videos. Experiments
showed that the proposed technique answers video queries of duration 60 seconds
in 0.032 seconds with a high accuracy of 97.5%.

Queries, such as database similarity searches, return results satisfying certain
properties of distances or scores. For domain scientists, the absolute values of
scores are seldom sufficient. Statistical significance or p-value of the result is a
more useful criterion. An efficient method to calculate the approximate p-value
of a multi-object result was discussed in Chapter 6. Experimental evaluations on
large databases showed that the method is practical, runs five orders of magni-
tude faster than the basic approach, and has an error of less than 5% in p-value

computation.

7.1 Impact

Near neighbor queries form a vital step in many querying and mining applica-
tions. The state-of-the-art methods for querying near neighbors fail to guarantee
both accuracy and efficiency for high-dimensional datasets. Therefore, these ap-
plications lack the desired performance for high-dimensional datasets. The avail-

ability of an efficient method for near neighbor search, like SIMP, will have a

246

Chapter 7. Conclusions

strong impact on the future success of these applications. SIMP will also acceler-
ate building of new applications for many emerging datasets.

The pattern querying techniques proposed in this thesis will encourage de-
velopment of many useful products. These techniques will also enhance human

capabilities to explore and analyze large repositories of heterogenous datasets.

7.2 Future work

A variety of new datasets, e.g., social networks, offer new opportunities for
querying patterns. A user in a social network is represented by her attributes and
relationships. This dataset is inherently heterogenous. It will be a challenging
future work to develop methods for querying patterns in social networks.

Recent times have also seen the availability of dynamic datasets, i.e., the
datasets which change with time. These kinds of datasets offer another venue

for designing and querying useful patterns.

247

Bibliography

1]
2]

3]

http://vision.ece.ucsb.edu/publications/Sarkar_tech_report_DTW_09.pdf.

R. Agrawal and R. Srikant. Fast algorithms for mining association rules in
large databases. In VLDB, pages 487-499, 1994.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic
Local Alignment Search Tool. .J. Molecular Biology, 215(3):403 410, 1990.

A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. Commun. ACM, 51(1):117 122, 2008.

S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An
optimal algorithm for approximate nearest neighbor searching. In SODA,
pages 573 582, 1994.

V. Athitsos, M. Potamias, P. Papapetrou, and G. Kollios. Nearest neighbor
retrieval using distance-based hashing. Proc. of ICDFE, pages 327-336, April
2008.

[. Bartolini, P. Ciaccia, and M. Patella. A Sound Algorithm for Region-
Based Image Retrieval Using an Index. In DEXA Workshop, pages 930 934,
2000.

P. Baumann. Web-enabled raster gis services for large image and map
databases. In DEXA, page 870, 2001.

M. Bawa, T. Condie, and P. Ganesan. Lsh forest: self-tuning indexes for
similarity search. In WIWW, pages 651 660, 2005.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An
efficient and robust access method for points and rectangles. In SIGMOD,
pages 322 331, 1990.

248

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

J. L. Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509-517, 1975.

S. Berchtold, C. Bohm, D. A. Keim, and H.-P. Kriegel. A cost model for
nearest neighbor search in high-dimensional data space. In PODS, pages
78-86, 1997.

S. Berchtold, D. A. Keim, H.-P. Kriegel, and T. Seidl. Indexing the solution
space: A new technique for nearest neighbor search in high-dimensional
space. IEEE TKDE, 12(1):45-57, 2000.

S. Berretti, A. D. Bimbo, and E. Vicario. Spatial Arrangement of Color in
Retrieval by Visual Similarity. Pattern Recognition, 35(8):1661 1674, 2002.

M. Bertini, A. D. Bimbo, and W. Nunziati. Video clip matching using
MPEG-7 descriptors and edit distance. In Proc. of CIVR, pages 133 142,
2006.

D. N. Bhat and S. K. Nayar. Ordinal measures for image correspondence.
IEEE Transactions on Pattern Analysis and Machine Intelligence, pages
415-423, 1998.

C. Bohm. A cost model for query processing in high-dimensional data. ACM
TODS, 25:129-178, 2000.

J. Buhler. Efficient large-scale sequence comparison by locality-sensitive
hashing. Bioinformatics, 17:419 428, 2001.

X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k prestige-based relevant
spatial web objects. PVLDB, 3:373-384, 2010.

X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial keyword
querying. In SIGMOD, pages 373-384, 2011.

C. Carson, S. Belongie, H. Greenspan, and J. Malik. Blobworld: Image Seg-
mentation Using Expectation-Maximization and Its Application to Image
Querying. PAMI, 24(8):1026 1038, 2002.

M. S. Charikar. Similarity estimation techniques from rounding algorithms.
In ACM STOC, pages 380 388, 2002.

S. Cheung and A. Zakhor. Estimation of web video multiplicity. In Proc.
SPIE-Internet Imaging, volume 3964, pages 34-36, 1999.

249

Bibliography

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

[32]

[33]

[34]

[35]

C. Chiu, C. C. Yang, and C. S. Chen. Efficient and effective video copy
detection based on spatiotemporal analysis. In Ninth IEFE International
Symposium on Multimedia, pages 202—209, Dec 2007.

C. Y. Chiu, J. H. Wang, and H. C. Chang. Efficient histogram-based in-
dexing for video copy detection. Ninth IEEE International Symposium on
Multimedia Workshops, 2007., pages 265-270, Dec. 2007.

P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method
for similarity search in metric spaces. In VLDB, pages 426-435, 1997.

P. Ciaccia, M. Patella, and P. Zezula. A cost model for similarity queries in
metric spaces. In PODS, pages 59 68, 1998.

G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most
relevant spatial web objects. PVLDB, 2:337 348, 2009.

K. Dadason, H. Lejsek, F. Asmundsson, B. Jonsson, and L.. Amsaleg. Vi-
dentifier: identifying pirated videos in real-time. In Proc. of the 15th Inter-
national Conference on Multimedia, pages 471-472. ACM, 2007.

C. Dagli and T. S. Huang. A Framework for Grid-Based Image Retrieval.
In ICPR, volume 2, pages 1021 1024, 2004.

M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Symposium on Compu-
tational Geometry, pages 253 262, 2004.

R. Datta, J. Li, and J. Z. Wang. Content-Based Image Retrieval: Ap-
proaches and Trends of the New Age. In MIR ’05: Int. Workshop on Mul-
timedia Information Retrieval, pages 253 262, 2005.

I. De Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial
databases. In ICDFE, pages 656—665, 2008.

R. Delongchamp, T. Lee, and C. Velasco. A Method for Computing the
Overall Statistical Significance of a Treatment Effect Among a Group of
Genes. BMC' Bioinformatics, 7, 2006.

T. L. Department, M. Gld, C. Thies, and T. M. Lehmann. Content-based
image retrieval in medical applications. In Procs. Int. Society for Optical
Engineering (SPIE), pages 312-320, 2000.

250

Bibliography

[36]

[37]

[38]

[39]

[40]

[41]

[44]

[45]

[46]

[47]

S. Derrode and F. Ghorbel. Robust and efficient Fourier-Mellin transform
approximations for gray-level image reconstruction and complete invariant
description. Computer Vision and Image Understanding, 83(1):57-78, 2001.

W. Dong, 7. Wang, W. Josephson, M. Charikar, and K. Li. Modeling Ish
for performance tuning. In CIKM, pages 669-678, 2008.

Y. Du, D. Zhang, and T. Xia. The optimal-location query. In SSTD, pages
163 180, 2005.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In KDD, pages

226-231. AAAT Press, 1996.

R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation Algorithms for
Middleware. In PODS, pages 102 113, 2001.

R. Finkel and J. L. Bentley. Quad Trees: A Data Structure for Retrieval on
Composite Keys. Acta Informatica, 4(1):1 9, 1974.

M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartogra-
phy. Commun. ACM, 24(6):381 395, 1981.

S. K. Fisher, G. P. Lewis, K. A. Linberg, and M. R. Verardo. Cellular
Remodeling in Mammalian Retina: Results from Studies of Experimental
Retinal Detachment. Progress in Retinal and FEye Research, 24(3):395 431,
2005.

V. Gaede and O. Giinther. Multidimensional access methods. ACM Comput.
Surv., 30(2):170 231, 1998.

J. L. Ganley and J. P. Cohoon. The Rectilinear Steiner Tree on a Checker-
board. ACM Trans. Design Automation of Electronic Systems, 1(4):512-522,
1996.

M. R. Garey and D. S. Johnson. The Rectilinear Steiner Tree Problem is
N P-Complete. STAM J. on Applied Mathematics, 32(4):826-834, 1977.

M. Gertz, Q. Hart, C. Rueda, S. Singhal, and J. Zhang. A data and query
model for streaming geospatial image data. In EDBT Workshops, pages
687-699, 2006.

251

Bibliography

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[58]

[59]

[60]

P. Ghosh, E. D. Gelasca, K. Ramakrishnan, and B. Manjunath. Dupli-
cate Image Detection in Large Scale Databases. Book Chapter in Platinum

Jubilee Volume, Oct 2007.

A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions
via hashing. In VLDB, pages 518 529, 1999.

A. G. Gutierrez. Applying OLAP pre-aggregation techniques to speed up
query response times in raster image databases. In ICSOF'T, pages 259-266,
2007.

A. G. Gutierrez and P. Baumann. Modeling fundamental geo-raster opera-
tions with array algebra. In ICDM Workshops, page 607, 2007.

A. Guttman. R-trees: A dynamic index structure for spatial searching. In
Proc. of the ACM SIGMOD International Conference on Management of
Data, pages 47-57. 1984.

M. Hadjieleftheriou, G. Kollios, P. Bakalov, and V. J. Tsotras. Complex
spatio-temporal pattern queries. In VLDB, pages 877-888, 2005.

A. Hampapur and R. M. Bolle. Comparison of distance measures for video
copy detection. In Proc. of ICME, pages 737 — 740, Aug 2001.

R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing spatial-keyword
(SK) queries in geographic information retrieval (GIR) systems. In SSDBM,
pages 16-26, 2007.

G. R. Hjaltason and H. Samet. Distance Browsing in Spatial Databases.
ACM Trans. Database Syst., 24:265 318, 1999.

D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge. Compar-
ing images using the Hausdorff distance. [TEEFE Transactions on Pattern
Analysis and Machine Intelligence, 15(9):850-863, Sept 1993.

T. Ibaraki and T. Kameda. On the optimal nesting order for computing n-
relational joins. ACM Transactions on Database Systems, 9:482 502, 1984.

P. Indyk and R. Motwani. Approximate nearest neighbors: towards remov-
ing the curse of dimensionality. In STOC, pages 604—613, 1998.

H. V. Jagadish, B. C. Ooi, K.-I.. Tan, C. Yu, and R. Zhang. idistance: An
adaptive b+-tree based indexing method for nearest neighbor search. ACM
TDS, 30(2):364-397, 2005.

252

Bibliography

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[72]

[73]

H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest
neighbor search. I[FEE TPAMI, 33:117-128, 2010.

W. Johnson and J. Lindenstrauss. Extensions of lipschitz mappings into a
hilbert space. Contemporary Mathematics, 26:189-206, 1984.

A. Joly and O. Buisson. A posteriori multi-probe locality sensitive hashing.
In ACM MM, pages 209 218, 2008.

A. Joly, O. Buisson, and C. Frelicot. Statistical similarity search applied
to content-based video copy detection. [Int. Conf. on Data Engineering
Workshops, page 1285, 2005.

A. Joly, O. Buisson, and C. Frelicot. Content-based copy retrieval using
distortion-based probabilistic similarity search. IEEE Transactions on Mul-
timedia, 9(2):293-306, Feb. 2007.

A. Joly, C. Frelicot, and O. Buisson. Robust content-based video copy
identification in a large reference database. In Int. Conf. on Image and
Video Retrieval, pages 414-424, 2003.

A. Joly, C. Frelicot, and O. Buisson. Feature statistical retrieval applied
to content based copy identification. International Conference on Image
Processing, 2004., 1:681-684 Vol. 1, Oct. 2004.

E. Kasutani and A. Yamada. The MPEG-7 color layout descriptor: a com-
pact image feature description for high-speed image/video segment retrieval.
In Proc. of ICIP, volume 1, pages 674-677, 2001.

Y. Ke and R. Sukthankar. PCA-SIFT: A more distinctive representation
for local image descriptors. In Proc. of CVPR, pages 506 513, 2004.

Y. Ke, R. Sukthankar, and T.. Huston. An efficient parts-based near-
duplicate and sub-image retrieval system. In MM, pages 869-876, 2004.

A. Khodaei, C. Shahabi, and C. Li. Hybrid indexing and seamless ranking
of spatial and textual features of web documents. In DEXA, pages 450 466,
2010.

J. M. Kleinberg. Two algorithms for nearest-neighbor search in high dimen-
sions. In STOC, pages 599-608, 1997.

C. A. Lang and A. K. Singh. Faster similarity search for multimedia data
via query transformations. Int. J. Image Graphics, pages 3-30, 2003.

253

Bibliography

[74]

[75]

[76]

[77]

78]

[79]

[80]

[31]

[82]

J. Law-To, O. Buisson, V. Gouet-Brunet, and N. Boujemaa. Robust voting
algorithm based on labels of behavior for video copy detection. In Proc.
of the 14th annual ACM International Conference on Multimedia, pages
835-844. ACM, 2006.

J. Law-To, L. Chen, A. Joly, I. Laptev, O. Buisson, V. Gouet-Brunet,
N. Boujemaa, and F. Stentiford. Video copy detection: a comparative study.
In Proc. of CIVR, pages 371-378. ACM, 2007.

J. K. Lawder and P. J. H. King. Using space-filling curves for multi-
dimensional indexing. In BNCOD, pages 20-35, 2000.

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories. In C'VPR, pages
2169-2178, 2006.

H. Lejsek, F. H. Asmundsson, B. P. Jénsson, and L. Amsaleg. Nv-tree:
An efficient disk-based index for approximate search in very large high-
dimensional collections. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 31:869 883, 2009.

H. Lejsek, F. H. Asmundsson, B. T. Jonsson, and L.. Amsaleg. Scalability
of local image descriptors: a comparative study. In ACM MULTIMEDIA
06, pages 589 598, New York, NY, USA, 2006. ACM.

S. T. Leutenegger, J. M. Edgington, and M. A. Lopez. STR: A simple
and efficient algorithm for R-tree packing. Technical report, Institute for
Computer Applications in Science and Engineering (ICASE), 1997.

W. Li and C. X. Chen. Efficient data modeling and querying system for
multi-dimensional spatial data. In GIS, pages 58:1 58:4, 2008.

Y. Li, J. S. Jin, and X. Zhou. Matching commercial clips from TV streams
using a unique, robust and compact signature. In Digital Image Computing:
Techniques and Applications, 2005. DICTA’05. Proceedings 2005, pages 39
39, 2005.

Z. 1i, H. Xu, Y. Lu, and A. Qian. Aggregate nearest keyword search in
spatial databases. In Asia-Pacific Web Conference, pages 15 21, 2010.

Y. Linde, A. Buzo, R. Gray, et al. An algorithm for vector quantizer design.
IEEE Transactions on communications, 28(1):84 95, 1980.

254

Bibliography

[85]

[36]

[87]

3]

[89]

[90]

[91]

[92]

L. Liu, W. Lai, X. Hua, and S. Yang. Video Histogram: A Novel Video
Signature for Efficient Web Video Duplicate Detection. Lecture Notes in
Computer Science, 4352:94-103, 2007.

D. G. Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision, 60(2):91-110, 2004.

Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe Ish:
efficient indexing for high-dimensional similarity search. In VLDB, pages
950-961, 2007.

J. Malki, N. Boujemaa, C. Nastar, and A. Winter. Region Queries without
Segmentation for Image Retrieval by Content. In Visual Information and
Information Systems (VISUAL), pages 115-122, 1999.

B. S. Manjunath and W. Y. Ma. Browsing large satellite and aerial pho-
tographs. In ICIP, pages 765768, 1996.

B. S. Manjunath, P. Salembier, and T. Sikora. [Introduction to MPEG-7:
Multimedia Content Description Interface. Wiley, 2002.

B. Martins, M. J. Silva, and [.. Andrade. Indexing and ranking in geo-ir
systems. In workshop on GIR, pages 31 34, 2005.

K. Mikolajczyk and C. Schmid. An affine invariant interest point detector.
In Proc. European Conf. Computer Vision, pages 128 142. Springer Verlag,
2002.

K. Mikolajczyk and C. Schmid. Scale and affine invariant interest point

detectors. 1JCV, 60(1):63 86, 2004.

K. Mikolajezyk and C. Schmid. A performance evaluation of local descrip-
tors. PAMI, 27(10), 2005.

R. Mohan. Video sequence matching. In Proc. of ICASSP, pages 3697-3700,
1998.

S. Morain and S. L. Baros. Raster Imagery in Geographic Information Sys-
tems. ONWARD press, 1996.

R. Motwani, A. Naor, and R. Panigrahi. Lower bounds on locality sensitive
hashing. In SCG 06, pages 154—157, 2006.

255

Bibliography

[98]

[99]

100]

101]

[102]

103]

[104]

105

106]

107]

108

109]

[110]

A. Natsev, R. Rastogi, and K. Shim. WALRUS: A Similarity Retrieval
Algorithm for Image Databases. TKDF, 16:301-316, 2004.

P. Over, A. F. Smeaton, and P. Kelly. The TRECVID 2007 BBC rushes
summarization evaluation pilot. In TVS °07: Proc. of the International
Workshop on TRECVID Video Summarization, pages 1-15. ACM, 2007.

R. Pajarola and P. Widmayer. Spatial indexing into compressed raster
images: How to answer range queries without decompression. In [TW-
MMDBMS, page 94, 1996.

R. Panigrahy. Entropy based nearest neighbor search in high dimensions.

In SODA, pages 1186 1195, 2006.

D. Papadias, N. Mamoulis, and Y. Theodoridis. Processing and optimization
of multiway spatial joins using r-trees. In PODS, pages 44 55, 1999.

H.-H. Park, G.-H. Cha, and C.-W. Chung. Multi-way spatial joins using r-
trees: Methodology and performance evaluation. In Symposium on Advances
in Spatial Databases, pages 229-250, 1999.

K. Pearson. On lines and planes of closest fit to systems of points in space.
Philosophical Magazine, 2(6):559 572, 1901.

E. G. M. Petrakis and C. Faloutsos. Similarity searching in medical image
databases. TKDE, 9(3):435 447, 1997.

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval
with large vocabularies and fast spatial matching. In CVPR, pages 1-8,
2007.

L. Rabiner and B. H. Juang. Fundamentals of Speech Recognition. Prentice
Hall Signal Processing Series, N.J, 1993.

P. Rigaux, M. Scholl, and A. Voisard. Spatial Databases: With Application
to GIS. Morgan Kaufmann, 2001.

G. Salton. Automatic Text Processing: The Transformation Analysis and
Retrieval of Information by Computer. Addison-Wesley, 1988.

H. Samet. Foundations of Multidimensional and Metric Data Structures.
Morgan Kaufmann Publishers Inc., 2005.

256

Bibliography

111

112]
[113]

[114]

[115]

116]

117]

18]

[119]

[120]

121]

122]

A. Sarkar, P. Ghosh, E. Moxley, and B. S. Manjunath. Video fingerprinting:
Features for duplicate and similar video detection and query-based video
retrieval. In Proc. of SPIF, Multimedia Content Access: Algorithms and
Systems 11, volume 6820, pages 68200E-68200E—-12, 2008.

S. Shekhar and S. Chawla. Spatial Databases: A Tour. Prentice Hall, 2003.

S. Shekhar and Y. Huang. Discovering spatial co-location patterns: A sum-
mary of results. In Proceedings of the 7th International Symposium on Ad-
vances in Spatial and Temporal Databases, pages 236-256, 2001.

H. T. Shen, X. Zhou, 7. Huang, J. Shao, and X. Zhou. UQLIPS: a real-
time near-duplicate video clip detection system. In VLDB, pages 1374 1377.
VLDB Endowment, 2007.

M. Silva, G. Camara, R. Souza, D. Valeriano, and M. Escada. Mining
patterns of change in remote sensing image databases. In ICDM, page 8,
2005.

V. Singh, A. Bhattacharya, and A. K. Singh. Querying spatial patterns. In
EDBT, pages 418-429, 2010.

V. Singh, A. Bhattacharya, A. K. Singh, C. Banna, G. P. Lewis, and S. K.
Fisher. QUIP: Querying Significant Patterns from Image Databases. Tech-

nical report, Dept. of Computer Science, University of California, Santa
Barbara, 2007.

V. Singh and W. Jiang. An algorithm and hardware design for very fast
similarity search in high dimensional space. In IEFEE Granular Computing
(GrC), pages 426-431, 2010.

V. Singh and A. K. Singh. Profile based sub-image search in image
databases. Technical Report 2010-20, Dept. of Computer Science, University
of California, Santa Barbara, October 2010.

V. Singh, S. Venkatesha, and A. K. Singh. Geo-clustering of images with
missing geotags. In IEEE Granular Computing (GrC), pages 420 425, 2010.

H. Tan, X. Wu, C. Ngo, and W. Zhao. Accelerating near-duplicate video
matching by combining visual similarity and alignment distortion. In ACM

MULTIMEDIA °08, pages 861-864. ACM, 2008.

Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and efficiency in high
dimensional nearest neighbor search. In SIGMOD, pages 563576, 2009.

257

Bibliography

[123]

124]

[125]

126]

127]

[128]

[129]

[130]

[131]

[132]

133]

[134]

[135]

S. Vaid, C. B. Jones, H. Joho, and M. Sanderson. Spatio-textual indexing
for geographical search on the web. In SSTD, pages 218-235, 2005.

L. Vinhas, R. C. M. de Souza, and G. Camara. Image data handling in
spatial databases. In Brazilian Symposium on Geolnformatics, 2003.

P. Vinten-Johansen, H. Brody, N. Paneth, S. Rachman, M. Rip, and
D. Zuck. Cholera, Chloroform, and the Science of Medicine: A Life of
John Snow. Oxford University Press, 2003.

J. 7. Wang, J. Li, and G. Wiederhold. SIMPLIcity: Semantics-Sensitive
Integrated Matching for Picture LIbraries. PAMI, pages 947-963, 2001.

R. Weber and M. Milvoncic. Efficient Region-Based Image Retrieval. In
CIKM, pages 69-76, 2003.

R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and perfor-
mance study for similarity-search methods in high-dimensional spaces. In
VLDB, pages 194-205, 1998.

C. Won, D. Park, and S. Park. Efficient use of MPEG-7 edge histogram
descriptor. Etri Journal, 24(1):23-30, 2002.

X. Wu, A. G. Hauptmann, and C. Ngo. Practical elimination of near-
duplicates from web video search. In Proceedings of the 15th International
Conference on Multimedia, pages 218 227. ACM, 2007.

T. Xia, D. Zhang, E. Kanoulas, and Y. Du. On computing top-t most
influential spatial sites. In VLDB, pages 946-957, 2005.

D. Yankov, E. Keogh, L. Wei, X. Xi, and W. Hodges. Fast best-match
shape searching in rotation-invariant metric spaces. IEEE Transactions on
Multimedia, 10(2):230 239, 2008.

M. L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis. Top-k spatial preference
queries. In ICDFE, pages 1076-1085, 2007.

J. Yuan, L. Y. Duan, Q. Tian, and C. Xu. Fast and robust short video clip
search using an index structure. In Proceedings of the 6th ACM SIGMM
Int. Workshop on Multimedia Information Retrieval, pages 61-68, 2004.

D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M. Kitsuregawa.
Keyword search in spatial databases: Towards searching by document. In

ICDE, pages 688-699, 2009.

258

Bibliography

[136]

[137]

138

[139]

[140]

141]

142

D. Zhang, Y. Du, T. Xia, and Y. Tao. Progressive computation of the
min-dist optimal-location query. In VLDB, pages 643-654, 2006.

D. Zhang, B. C. Ooi, and A. K. H. Tung. Locating mapped resources in
web 2.0. In ICDE, pages 521 532, 2010.

J. Zhang, M. Gertz, and D. Aksoy. Spatio-temporal aggregates over raster
image data. In GIS, pages 39 46, 2004.

7. Zhang, M. Hadjieleftheriou, B. C. Ooi, and D. Srivastava. Bed-tree:
an all-purpose index structure for string similarity search based on edit

distance. In SIGMOD, pages 915 926, 2010.

W. Zhao and C. Ngo. Scale-Rotation Invariant Pattern Entropy for
Keypoint-Based Near-Duplicate Detection. [IEEE Transactions on Image
Processing, 18(2):412 423, 2009.

W. L. Zhao, C. W. Ngo, H. K. Tan, and X. Wu. Near-duplicate keyframe
identification with interest point matching and pattern learning. [FEFE
Transactions on Multimedia, 9:1037-1048, 2007.

Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma. Hybrid index structures
for location-based web search. In CIKM, pages 155 162, 2005.

259

