

PERFORMANCE OPTIMIZATION OF SCIENTIFIC APPLICATIONS ON

EMERGING ARCHITECTURES

by

Hikmet Dursun

A Dissertation Presented to the
FACULTY OF THE USC GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the

Requirements for the Degree
DOCTOR OF PHILOSOPHY

(COMPUTER SCIENCE)

May 2012

Copyright 2012 Hikmet Dursun

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3513750
Copyright 2012 by ProQuest LLC.

UMI Number: 3513750

 ii

Dedication

To my family
Akif, Havva and Hilal Dursun

 iii

Acknowledgments

I am highly indebted to my advisor, Professor Aiichiro Nakano for his

tremendous contributions to my doctoral research. His infinite source of motivation and

creativity was the driving force of my Ph.D. research at the University of Southern

California (USC). Beyond research, it was also a great pleasure to know him personally

and discuss various topics from a multitude of disciplines. My personal and professional

development has significantly benefited from these discussions.

I wish to express my gratitude to Professor Priya Vashishta and Professor Rajiv

Kalia at USC, and Professor Fuyuki Shimojo from Kumamoto University for laying the

groundwork on which this work is based. I thank Dr. Darren Kerbyson for his financial

support and supervision during 2008 summer that I spent at Los Alamos National

Laboratory (LANL). I thank Dr. Kevin Barker and Dr. Adolfy Hoisie from Pacific

Northwest National Laboratory, and Dr. Scott Pakin from LANL for their collaboration

on performance modeling and analysis topics. I thank Dr. Robert Lucas, Dr. Pedro Diniz

and Dr. Jacqueline Chame from the Information Sciences Institute at USC, and Professor

Mary Hall from the University of Utah for their contributions to our research on

performance tuning technologies. I wish to express my gratitude to the members of

 iv

Collaboratory for Advanced Computing and Simulations at USC for providing an

academically challenging environment that made this work possible. I thank the

Department of Computer Science, and the Department of Physics and Astronomy at USC

for giving me the chance to pursue my Ph.D. I would like to thank the Argonne National

Laboratory and Lawrence Livermore National Laboratory for the use of their BlueGene/P

and BlueGene/L supercomputers. I thank the United States Department of Energy and

Department of Defense for funding my research.

I cannot thank Dr. Özgür Kalenci and Dr. Mert Gürbüzbalaban enough, whose

enduring friendship and highly inspirational discussions helped me shape my academic

career so far. I owe an equally large debt of gratitude to Mr. Mustafa Öncel and

Mr. Şerafettin Yılmaz, who greatly stimulated my intellectual curiosity to pursue this

doctoral journey. Last but not the least, I thank my family and friends for their love,

encouragement and patience during my studies. None of my achievements would have

been possible without their support.

 v

Table of Contents

Dedication .. ii	

Acknowledgments ... iii	

List of Tables .. viii	

List of Figures ... ix	

Abstract .. xii	

CHAPTER 1: INTRODUCTION .. 1	

1.1	
 Significance of the Research .. 1	

1.2	
 Motivation and Challenges .. 2	

1.3	
 Background .. 3	

1.3.1	
 Performance Monitoring ... 3	

1.3.2	
 Multilevel Optimization .. 5	

1.3.3	
 Metascalable Computing ... 6	

1.3.4	
 Density Functional Theory Method .. 7	

1.4	
 Problem Statement ... 9	

1.5	
 Contributions ... 10	

1.6	
 Structure of This Thesis ... 14	

CHAPTER 2: MPI PERFORMANCE MONITORING INTERFACE 15	

2.1	
 Architectural Background and Testbed ... 16	

2.1.1	
 Cell Broadband Engine and IBM PowerXCell 8i 16	

2.1.2	
 Testbed .. 17	

2.1.3	
 Cell Messaging Layer .. 18	

2.2	
 Software Design Details .. 19	

2.2.1	
 Data Structures .. 20	

2.2.2	
 Implementation .. 22	

2.3	
 Analysis ... 25	

2.3.1	
 Performance Overhead Analysis ... 26	

 vi

2.3.1.1	
 Cell BE ... 27	

2.3.1.2	
 PowerXCell 8i .. 30	

2.3.2	
 Cluster-wide Profiling ... 32	

2.3.2.1	
 Communication Analysis ... 32	

2.3.2.2	
 Call-stack Analysis .. 38	

2.4	
 Conclusion and Future Work ... 39	

CHAPTER 3: MULTILEVEL OPTIMIZATION OF STENCIL
 COMPUTATIONS .. 41	

3.1	
 High-Order Stencil Computation ... 42	

3.1.1	
 Stencil Computation .. 42	

3.1.2	
 A High-Order Stencil Application for Seismic Wave Propagation 44	

3.2	
 Hierarchical Parallelization .. 46	

3.2.1	
 Inter-node Parallelism by Spatial Decomposition 46	

3.2.2	
 Intra-node Parallelism by Multithreading ... 48	

3.2.3	
 In-Core Optimizations ... 49	

3.2.3.1	
 Loop Unrolling and Tiling ... 50	

3.2.3.2	
 Register Blocking ... 54	

3.2.3.3	
 Prefetching ... 55	

3.3	
 Performance Evaluation ... 56	

3.3.1	
 Strong Scaling ... 57	

3.3.2	
 Weak Scaling ... 59	

3.3.3	
 Multithreading ... 60	

3.3.4	
 Single-core Performance ... 62	

CHAPTER 4: A METASCALABLE COMPUTING FRAMEWORK 67	

4.1	
 A Metascalable Dwarf ... 68	

4.1.1	
 Embedded Divide-and-Conquer (EDC) Algorithmic Framework 68	

4.1.2	
 Tunable Hierarchical Cellular Decomposition (HCD) for Algorithm-

Hardware Mapping .. 70	

4.2	
 Scalability Tests ... 75	

4.2.1	
 Inter-node (Message-Passing) Spatial Scalability 76	

4.2.2	
 Intra-node (Multithreading) Spatial Scalability 79	

CHAPTER 5: OPTIMIZING O(N) DENSITY FUNCTIONAL THEORY 83	

5.1	
 Application Description ... 84	

5.2	
 Systematic Optimization .. 85	

5.2.1	
 Performance Evaluation .. 85	

5.2.2	
 Model-Guided Optimization ... 90	

5.2.2.1	
 Optimization of Domain Size .. 92	

5.2.2.2	
 Optimization of Buffer Depth .. 93	

5.2.3	
 Profiling-Guided Optimization ... 94	

5.2.3.1	
 Performance Libraries .. 95	

5.2.3.2	
 Loop Blocking and Scalar Replacement .. 95	

 vii

5.2.3.3	
 SIMD Processing ... 97	

5.2.3.4	
 Memory Latency Hiding .. 99	

5.2.3.5	
 Register and Cache Blocking ... 100	

CHAPTER 6: CONCLUSION .. 102	

6.1	
 Summary of Contributions .. 102	

6.2	
 Future Work ... 106	

BIBLIOGRAPHY .. 107	

 viii

List of Tables

Table 2.1: Definitions of the data structures .. 21	

Table 2.2: CML point-to-point performance ... 34	

Table 3.1: Pseudocode of the high-order stencil kernel. .. 45	

Table 3.2: Pseudocode for spatial decomposition. ... 47	

Table 3.3: Pseudocode for the threaded code section. Since threads store their
data in the u(t+1) array, they avoid possible race conditions to exploit
thread-level parallelism (TLP). .. 48	

Table 3.4: Pseudocode for unrolled code. Function f represents stencil
computation. ... 51	

Table 3.5: Pseudocode for tiling implementation .. 52	

Table 3.6: Performance comparison of original and tiled codes 62	

Table 3.7: Comparison of original and optimized code at the assembly level 65	

Table 4.1: Pseudo-code of the critical section-free force computation algorithm 73	

Table 5.1: A sample code snippet from conjugate gradient relaxation subroutine
optimization is shown. The first section represents the original
implementation; bottom code snippet shows our scalar replacement and
loop blocking implementation. .. 96	

Table 5.2: Original Fortran 90 code for linear mixing of wavefunctions
subroutine and corresponding C variant written with explicit SSE3
intrinsics ... 98	

 ix

List of Figures

Figure 2.1: Operation of the double-buffering design ... 20	

Figure 2.2: Performance overheads of the profiler (6 SPE run on a single
Cell BE) .. 27	

Figure 2.3: Performance overheads of the profiler for varying message sizes (6
SPE run on a single Cell BE) ... 28	

Figure 2.4: Performance overhead of the profiler for varying SPE buffer sizes
on the Cell BE .. 29	

Figure 2.5: Performance overheads of the profiler (8 SPE run on a single
PowerXCell 8i) .. 31	

Figure 2.6: Communication pattern of the original Sweep3D 33	

Figure 2.7: Communication pattern of the modified Sweep3D 35	

Figure 2.8: Communication pattern of MD ... 35	

Figure 2.9: Heavy communications of LB ... 36	

Figure 2.10: Function call graph for LB .. 38	

Figure 3.1: 3rd order, 13-point SC, whose footprint is 72 on a 2-dimensional
lattice .. 43	

Figure 3.2: Memory access pattern of register blocking compared to the original
access pattern ... 55

 x

	

Figure 3.3: Strong-scaling benchmark on BlueGene/P, Intel Xeon E5420 and
AMD Opteron 270 based clusters. (a) The wall-clock time as a function of
the number of processors (up to 32,768) of BlueGene/P. (b) Speedup over
512 cores. (c) Speedup over a single core on the Xeon E5420 and Opteron
270 platforms. The Xeon E5420 exhibits superlinear speedup for relatively
small number of processors. ... 58	

Figure 3.4: Weak-scaling performance on (a) BlueGene/P with 2003 grid points
per process and (b) a dual quadcore Intel Xeon E5345 cluster with 1003
grid points per process. .. 60	

Figure 3.5: (a) The wall-clock time per iteration for non-SIMD and SIMDized
codes as a function of the number of threads on quadcore Intel Nehalem.
(b) Breakdown of the speedups due to multithreading and data-level
parallelism along with the combined intra-node speedup. The best
observed intra-node speedup is 5.83 with 8 threads on 4 cores. 61	

Figure 3.6: Floating-point operations per second performance at Intel Nehalem.
(a) Comparison of the original and tiled codes. (b) The performance of
tiling for TLB, cache and registers with SIMD implementation. The best
single core performance is 5.9 GFlops. .. 64	

Figure 4.1: Schematic of embedded divide-and-conquer (EDC) algorithms. The
physical space is subdivided into spatially localized cells, with local atoms
constituting subproblems, which are embedded in a global field solved
with tree-based algorithms. .. 68	

Figure 4.2: Flow chart of the critical section-free MD algorithm. At the
beginning of simulation, a master thread computes complete force and
energy before creating worker threads. Worker threads wait until master
updates atomic coordinates

€

{ri} and velocities

€

{vi} (Dt is one MD time
step). After receiving a signal from the master thread, the worker threads
start computing two-body forces and neighbor-list, and then send a signal
back to the master. Subsequently, three-body forces are computed
following the same signaling scheme. ... 74	

Figure 4.3: Total execution (circles) and communication (squares) times per
MD time step as a function of the number of processors P of BlueGene/L
(open symbols) and BlueGene/P (solid symbols) for three MD simulation
algorithms: (a) MRMD for 2,044,416P atom silica systems; (b) F-ReaxFF
MD for 16,128P atom RDX systems; and (c) EDC-DFT MD for 180P
atom alumina systems. ... 76	

 xi

Figure 4.4: (a) Speed of MRMD on BlueGene/L as a function of the granularity
N/P, for different numbers of processors P. (b) Speed of MRMD on
BlueGene/L as a function of P for various granularities ranging from N/P =
117,912 to 2,044,416. ... 79	

Figure 4.5: Speedup of the multithreaded MRMD algorithm over a single-
threaded counterpart for the total program (circles), the two-body force
calculation (diamonds), and three-body force calculation (squares). The
solid line shows the ideal speedup. .. 80	

Figure 4.6: Spatiotemporal scales NT accessible by direct molecular-dynamics
(white background) and approximate accelerated-dynamics (gray)
simulations with a petaflops•day of computing. The lines are the NT
achieved per petaflops•day of computing for MD (MRMD), chemically
reactive MD (F-ReaxFF), and quantum-mechanical MD (EDC-DFT)
simulations, respectively. ... 81	

Figure 5.1: Weak-scaling performance .. 85	

Figure 5.2: Strong-scaling performance .. 86	

Figure 5.3: Percentage exclusive times .. 87	

Figure 5.4: Percentage exclusive times across a 64-process run on BlueGene/P 88	

Figure 5.5: Schematic of the divide-and-conquer algorithm in 2D. The physical
space Ω is a union of overlapping domains,

€

Ω =∪αΩα . Each domain

€

Ωα
is further decomposed into the non-overlapping core Ω0α, and the buffer
layer Γα (see the shaded area). The depth of the buffer layer is b. 90	

Figure 5.6: Potential energy as a function of the buffer length b for an
amorphous CdSe system (512 atoms in a cubic cell of side length, 45.664
a.u.). The domain size is fixed as 11.416 a.u. The atomic units are used for
both energy and length. Numerals in the figure indicate the number of self-
consistent iterations required for the convergence of the electron density
within ρi (

r)− ρi−1(
r)() / ρ0{ }

2
≤10−4 , where ρi (

r) is the electron density

at ith iteration, ρ0 is the average electron density, 0.0215 a.u., and the
brackets denote the average over the grid for the entire system. 94	

Figure 6.1: Systematic optimization process flow ... 105	

 xii

Abstract

The shift to many-core architecture design paradigm in computer market has

provided unprecedented computational capabilities. This also marks the end of the free-

ride era—scientific software must now evolve with new chips. Hence, it is of great

importance to develop large legacy-code optimization frameworks to achieve an optimal

system architecture-algorithm mapping that maximizes processor utilization and thereby

achieves higher application performance.

To address this challenge, this thesis studies and develops scalable algorithms for

leveraging many-core resources optimally to improve the performance of massively

parallel scientific applications. This work presents a systematic approach to optimize

scientific codes on emerging architectures, which consists of three major steps: (1)

Develop a performance profiling framework to identify application performance

bottlenecks on clusters of emerging architectures; (2) explore common algorithmic

kernels in a suite of real world scientific applications and develop performance tuning

strategies to provide insight into how to maximally utilize underlying hardware; and (3)

unify experience in performance optimization to develop a top-down optimization

 xiii

framework for the optimization of scientific applications on emerging high-performance

computing platforms.

This thesis makes the following contributions. First, we have designed and

implemented a performance analysis methodology for Cell-accelerated clusters. Two

parallel scientific applications—lattice Boltzmann (LB) flow simulation and atomistic

molecular dynamics (MD) simulation—are analyzed and valuable performance insights

are gained on a Cell processor based PlayStation3 cluster as well as a hybrid

Opteron+Cell based cluster similar to the design of Roadrunner—the first petaflop

supercomputer of the world. Second, we have developed a novel parallelization

framework for finite-difference time-domain applications. The approach is validated in a

seismic-wave propagation simulation code on BlueGene/L, BlueGene/P and x86 quad-

core processor based clusters. In addition, we have developed strategies for in-core

optimization of the algorithmic kernel of this application, which is a high-order stencil

computation—a common kernel to a spectrum of finite-differences based applications.

Third, we have applied this systematic approach to a production level first-principles

molecular-dynamics application, which has achieved a record of 2.58×1012 electronic

degrees of freedom on 163,840 BlueGene/P processors. Finally, we have devised a

systematic end-to-end performance optimization scheme for large-scale scientific

applications on emerging high-performance computing platforms.

 1

Chapter 1

Introduction

1.1 Significance of the Research

Computer simulation is the third mode of scientific research that bridges the gap

between analytical theory and laboratory experiment. Experiments search for patterns in

complex natural phenomena. Theories encode the discovered patterns into mathematical

equations that provide predictive laws for the behavior of nature. Computer simulations

solve these equations numerically in their full complexity, where analytical solutions are

prohibitive due to a large number of degrees of freedom, nonlinearity, or lack of

symmetry. In computer simulations, environments can be controlled with any desired

accuracy and extreme conditions are accessible far beyond the scope of laboratory

experiments.

This extraordinary new tool in the hands of the scientists, the computer

simulation, is tightly connected to the exponential increase in the power of computers on

which the computations are carried out in parallel. In order to meet the increasing

 2

performance requirements of parallel applications and to follow Moore’s Law,

chipmakers such as Intel, IBM, and AMD have shifted their production line towards

multicore chips. Homogenous collection of such architectural innovations are being used

in parallel systems such as the Intel Xeon and AMD Opteron clusters at the High

Performance Computing and Communications (HPCC) [44] facility of the University of

Southern California (USC). Furthermore, hybrid systems combining conventional

general-purpose central processing units (CPUs) with specialized processors such as Cell

BE processors, e.g., Roadrunner [7], and also recently graphical processing units (GPUs),

e.g., Tianhe-1A [98], are among the fastest supercomputers of the world [99]. Achieving

high application performance on today’s complex petascale (1015 calculations per second)

systems containing more than a hundred thousand computing nodes that include variety

of accelerators is tightly coupled with designing an optimal architecture-algorithm

mapping framework. Otherwise, while the peak performance of parallel machines

increases, the gap between the peak and actual performance of the codes becomes wider.

1.2 Motivation and Challenges

The shift to multicore architecture design has provided unprecedented floating-

point performance on a single chip, however often extra cores in such architectures go

underutilized on modern systems. Also, it is a challenge to efficiently program on

distributed systems featuring different flavors of memory hierarchy, CPUs or high

performance interconnects produced by different vendors.

 3

The recent advances also mark the end of the free-ride era—scientific software

must now evolve with new chips. Consequently, legacy software needs to be

systematically and efficiently ported to new hardware. Our goal is to allow scientists to

maximally exploit the computational potential of high-end parallel machines to tackle

larger problems with finer resolution. For this purpose, our research [23-26, 72, 77, 78]

focuses on a variety of application contexts yet strives towards a general and flexible

framework for systematic performance optimization on large-scale supercomputing

platforms.

1.3 Background

In this section, we provide background information on our research. First, we

introduce the use of performance monitoring at system and on-chip levels for detection of

performance bottlenecks. Second, we discuss our multilevel optimization scheme for a

representative scientific application without loss of generality. Third, we consider our

metascalable computing framework. Forth, we provide background information on our

production-level density functional theory based simulation.

1.3.1 Performance Monitoring

Application developers at the forefront of high-performance computing (HPC)

have been investigating the use of hybrid architectures to improve application

performance. Hybrid architectures attempt to improve application performance by

combining conventional, general-purpose CPUs with any of a variety of more specialized

processors such as GPUs, FPGAs, and Cells. The complexity stemming from hybrid

 4

architectures make understanding and reasoning about application performance difficult

without appropriate tool support. An example to the recent hybrid architecture based

supercomputers and the focus of our profiling efforts is Cell-based clusters, such as

petascale Roadrunner supercomputer [7] (comprising 6,120 dual-core Opterons plus

12,240 PowerXCell 8i processors) in Los Alamos National Laboratory.

The Cell processor’s complex architecture—eight synergistic processing elements

(SPEs) managed by a single power processor element (PPE)—makes profiling tools

essential for performance optimization. Traditional tools merely monitor performance

events on PPEs, which provide less than 6% of PowerXCell 8i flops performance and are

usually used for solely controlling SPE processes instead of computing. The IBM Cell

Software Development Kit (SDK) [46] includes a Cell performance-debugging tool

(PDT) that helps analyze the performance of a single Cell board (up to two Cell

processors) with two PPEs that share the main memory, run under the same Linux

operating system, and share up to 16 SPEs. PDT can trace only a specific set of SDK

library functions such as SPE activation, DMA transfers, synchronization, signaling, and

user-defined events. Because PDT involves the slow PPE on the critical path of tracing,

the PPE can easily become a performance bottleneck and may even influence application

performance. Another tool for analyzing Cell performance is Vampir [10], which Nagel

et al. used to visualize intra-Cell events such as mailbox communication and DMA

transfers [41].

 5

1.3.2 Multilevel Optimization

As hierarchical multicore processors with complex computational and memory

organizations emerge as a result of the quest for simultaneous performance and power-

efficiency improvement, a challenge faced by software developers and application

scientists is the adaptation of algorithms to effectively utilize this underlying hardware

for broad computational applications. The emerging multicore paradigm has given us

unprecedented supercomputing power [7], such as IBM BlueGene L and P, Roadrunner,

and Cray Jaguar, through scaling at multiple levels, and in particular, multiple cores per

node, interconnected into hierarchical systems of up to more than 100,000 cores. All have

complex memory hierarchies, where some memory is shared across cores, some is

dedicated, and some requires explicit management in software. While at different scales,

the features of these architectures are mirrored in commercial microprocessors, which

represent their constituent nodes, and are often combined into clusters of nodes as targets

of high-end applications. From an application programmer's perspective, we hypothesize

that such architectures can be viewed as hierarchical computational units with

corresponding hierarchical storage that is explicitly or implicitly managed by software.

The computation hierarchy includes support for fine-grain data-parallelism, through

SIMD multimedia extensions such as Streaming SIMD Extensions 3 (SSE3) for Intel and

AMD platforms and Altivec for PowerPC, through the SPEs of the IBM Cell, or through

the streaming processors of an NVIDIA GTX 280. Across cores, thread-level parallelism

permits potentially independent computation on related data, while across nodes, coarse-

grain parallelism on independent data can be exploited. Data locality is critical to

 6

achieving high performance on such architectures, so memory structures including

registers, multilevel caches and storage buffers should be carefully managed to match the

hierarchical parallel constructs.

As a common computational kernel in a variety of scientific and engineering

applications [52, 67], stencil computation (SC) has extensively been studied. For

example, Datta et al. have used both cache-aware and cache-oblivious approaches to

perform comprehensive SC optimization and auto-tuning on a variety of state-of-the-art

architectures, including NVIDIA GTX280 [19]. Williams et al. [103] have optimized a

lattice Boltzmann application on leading multicore platforms, including Intel Itanium2,

Sun Niagara2, and STI Cell. Other approaches to SC optimization include tiling [84] and

iteration skewing [32, 83, 104]. However, there has been little research on performance

optimization of high-order stencil computations (HOSC), which are characterized by a

large memory footprint of each stencil, spanning multiple levels of parallelization ranging

from data to inter-core to inter-node levels. The pivotal role of HOSC in broad

applications and the emergence of a wide landscape of heterogeneous multicore

architectures have motivated us to develop a unified parallelization strategy that scales on

massively parallel multicore supercomputers and perform systematic performance

optimization on each of its hierarchical levels.

1.3.3 Metascalable Computing

The ever-increasing capability of high-end computing platforms is enabling

unprecedented scales of first-principles based simulations to predict system-level

behavior of complex systems [27]. An example is large-scale molecular-dynamics (MD)

 7

simulations involving multibillion atoms [63]. Such simulations can couple chemical

reactions at the atomistic scale and mechanical processes at the mesoscopic scale to solve

broad mechano-chemistry problems such as nanoenergetic reactions, in which reactive

nanojets catalyze chemical reactions that do not occur otherwise [70]. A hard problem is

to predict long-time dynamics, because the sequential bottleneck of time precludes

efficient parallelization [79, 88].

The hardware environment is becoming challenging as well. Emerging sustained

petaflops computers involve multicore processors [2], while the computer industry is

facing a historical shift, in which Moore’s law due to ever increasing clock speeds has

been subsumed by increasing numbers of cores in microchips [22]. Thus scientific

application programmers need to develop reusable “design once, scale on new

architectures” (or metascalable) applications.

1.3.4 Density Functional Theory Method

There is growing interest in large-scale MD simulations involving multimillion

atoms [1, 33, 66], in which interatomic forces are computed quantum mechanically [12,

29] in the framework of the density functional theory (DFT) [43, 50, 51] to accurately

describe chemical reactions. Such large DFT-based MD simulations would provide

requisite coupling of chemical reactions, atomistic processes, and long-range stress

phenomena for broad applications. Examples are energetic materials, in which chemical

reactions sustain shock waves, and stress corrosion, where chemical reactions at the crack

tip need to be coupled with long-range stress fields. Unfortunately, DFT-based MD

 8

simulations are rarely performed over N ~ 102 atoms because of their O(N3)

computational complexity, which severely limits their applicability.

Our computational approach toward density functional theory calculations is to

perform a number of small DFT calculations “on the fly” to compute interatomic forces

quantum mechanically during an MD simulation. The concurrent DFT-based MD

approach is realized using an EDC density functional theory (EDC-DFT) algorithm [90,

105]. The DFT reduces the exponential complexity to O(N), by solving Nel one-electron

problems self-consistently instead of one Nel-electron problem (the number of electrons,

Nel, is on the order of N). The DFT problem can be formulated as the minimization of an

energy functional with respect to electronic wave functions. In the EDC-DFT algorithm,

the physical space is a union of overlapping domains, , and physical

properties are computed as linear combinations of domain properties that in turn are

computed from local electronic wave functions. For example, the electronic density

€

ρ(r)

is calculated as

€

ρ(r) = Σα pα (r) Σn f (εnα) |ψn
α (r) |2 , where the support function

€

pα (r)

vanishes outside domain and satisfies the sum rule,

€

Σα pα (r) =1, and

€

f(εnα) is the

Fermi distribution function corresponding to the energy

€

εn
α of the n-th electronic wave

function (or Kohn-Sham orbital)

€

ψn
α (r) in . For DFT calculation within each domain,

we use a real-space approach based on high-order finite differencing [14], where iterative

solutions are accelerated using the multigrid preconditioning [30]. The multigrid is

augmented with high-resolution grids that are adaptively generated near the atoms to

 9

accurately operate atomic pseudopotentials [90]. The numerical core of EDC-DFT thus

represents an HOSC [19, 25, 26].

1.4 Problem Statement

Today, HPC platforms depend on diverse processor architectures to meet

computational demands of scientific simulations. Energy-efficient load-store

architectures (e.g., PowerPC), complex instruction set pipelining processors (e.g., Intel

Xeon, AMD Opteron), and computational throughput optimized accelerators (e.g., IBM

Cell BE) provide bulk of the computational power for most supercomputers. To realize

new levels of computing performance, the application developers must adapt their

software to rapidly increasing heterogeneity and scale of new generation computing

platforms. It is for this reason that we believe developing parallelization and optimization

methodologies is a critical challenge to sustain exponential speed up of legacy software.

This dissertation research addresses the problem of developing a systematic end-

to-end parallelization and optimization framework for high performance computer

simulations on emerging computing platforms. Specifically, we will:

1. Develop productivity tools at system level to aid program optimization. In this

context, we will focus on devising a memory efficient dynamic program

analysis methodology for the new generation of hybrid computing clusters.

2. Design a parallelization framework that captures the organizational and

architectural properties of the HPC platforms at the application level while

enabling sustained scalability on emerging parallel computing systems.

 10

3. Devise a systematic optimization scheme for broad scientific applications and

verify the effectiveness for a production-level scientific code on available

HPC architectures.

1.5 Contributions

So as to profile application performance on Cell-based clusters, we have

developed a profiling method [23, 24]. We employ a reverse acceleration programming

model in which the hybrid cluster architecture is presented to the programmer as a logical

cluster of Cell SPE processors by using the Cell Messaging Layer (CML) [74]. CML

provides a subset of the functions and semantics of the MPI standard [93] including

point-to-point communication, broadcasts, barriers, and global reductions. Therefore it

constitutes a key insertion point for profiler events.

Our approach can trace not only intra-Cell direct memory access (DMA) events

but also inter-Cell message passing. Our implementation is efficient in terms of resource

consumption (only 12 KiB of SPE local store memory is required) and has an overhead

of less than 0.3 µs per profiler call for a typical scientific application executing on the

Cell BE.

The key difference between our profiler [23, 24] and the earlier research

mentioned in section 1.3.1 which targets profiling on Cell processor is that we perform

cluster-level analysis for MPI programs running on compute nodes featuring a hybrid

architecture comprising AMD Opterons/PowerXCell 8i processors such as Roadrunner

and PlayStation3 (PS3) commercial gaming consoles featuring Cell BE processors. The

 11

underlying message-passing model of CML, which treats an entire cluster of

Opterons+Cells (or PS3s) as a homogenous collection of SPEs, has a central importance

to our cluster-wide analysis. In addition to monitoring the same types of intra-Cell events

as existing Cell profilers, our implementation can log inter-Cell, inter-blade, and inter-

node communication. We have tested our implementation on up to 256 SPEs, although

there is nothing limiting us from scaling up to thousands or even tens of thousands of

SPEs. To test the use and quantify the overhead of our profiler, we have ported two

parallel scientific applications—lattice Boltzmann (LB) flow simulation and atomistic

molecular dynamics (MD) simulation—to the PS3 and hybrid Opteron+Cell Roadrunner

architecture using CML. We have also demonstrated two sample uses of the profiler (1)

communication analysis; and (2) call-stack analysis.

We have developed a hierarchical scalable parallelization scheme for HOSC [25,

26] that features in-core level optimization techniques to exploit the floating-point

performance of the computational units through efficient use of the hierarchical memory

levels in modern multicore processors. Our multilevel approach combines: (1) data

locality optimizations through auto-tuned tiling for efficient use of hierarchical memory;

(2) register blocking and data parallelism via single-instruction multiple-data (SIMD)

techniques to utilize registers and exploit data locality; (3) software prefetching to hide

memory latency; (4) inter-core parallelization via multithreading; and (5) inter-node

parallelization via spatial decomposition. We have illustrated the hierarchical scalable

parallelization scheme by applying it to a 6th-order stencil based seismic wave

propagation application. Our intra-node optimization using multithreading and SIMD

 12

parallelization has achieved a speedup of 5.83 for 8 threads on a single quadcore Intel

Nehalem node. Our approach has reduced last level cache miss rate by 7.7×, and

achieved 55% of the theoretical peak performance of at a single core of Intel Nehalem by

incorporating loop tiling for Translation Lookaside Buffer (TLB), caches and registers,

and explicit use of SSE instructions. We have obtained good overall strong scalability on

all platforms, with even superlinear speedups on the Intel architecture. Excellent weak-

scalability has been also achieved on the 256 processor Clovertown-based cluster and

32,768 processors of BlueGene/P.

To address metascalability challenge, we have developed key technologies for

parallel computing with portable scalability [72]. These include an embedded divide-and-

conquer (EDC) algorithmic framework to design linear-scaling algorithms for broad

scientific and engineering applications (e.g. equation solvers, constrained optimization,

search, visualization, and graphs involving massive data) based on spatial locality

principles [62]. This, combined with a tunable hierarchical cellular decomposition (HCD)

parallelization framework, maximally exposes concurrency and data locality, thereby

achieving reusable “design once, scale on new architectures” (or metascalable)

applications. It is expected that such metascalable algorithms will continue to scale on

future multicore architectures. The “seven dwarfs” (a dwarf is an algorithmic method that

captures a pattern of computation and communication), which were first identified by

Phillip Colella, have been used widely to develop scalable parallel programming models

and architectures [2]. We expect that the EDC-HCD framework will serve as a

 13

“metascalable dwarf” to represent broad large-scale scientific and engineering

applications.

We have applied the EDC-HCD framework to a hierarchy of atomistic simulation

methods. In MD simulation, the system is represented by a set of N point atoms whose

trajectories are followed to study material properties [34, 65, 79]. Quantum mechanical

(QM) simulation further treats electronic wave functions explicitly to describe chemical

reactions [40, 68, 90]. To seamlessly couple MD and QM simulations, we have found it

beneficial to introduce an intermediate layer, a first principles-based reactive force field

(ReaxFF) approach [69, 100], in which interatomic interaction adapts dynamically to the

local environment to describe chemical reactions. The ReaxFF is trained by performing

thousands of small QM calculations.

Finally, we have unified our experience in performance optimization to develop a

systematic end-to-end performance optimization scheme for large-scale scientific

applications on emerging high-performance computing platforms. We expect that the

optimization of production level scientific codes on high-end machines, such as our first

principles MD application on BlueGene/P, can potentially save one-to-two orders of

magnitude of petaflops•days of computing resources for a typical run or can extend the

time and length scale of real-life MD simulations at the same computational cost, and

contribute in scientific discovery through computer computation.

 14

1.6 Structure of This Thesis

The rest of this text is organized as follows. An MPI performance-monitoring

interface is examined in Chapter 2. A multilevel optimization scheme for HOSC is

detailed in Chapter 3. A metascalable computing framework is discussed in Chapter 4.

Our systematic approach to optimizing a production-level density functional theory code

is described in Chapter 5. We summarize our conclusions and discuss the direction of the

future work in Chapter 6.

 15

Chapter 2

MPI Performance Monitoring Interface

In this chapter, we present a methodology for profiling parallel applications

executing on the family of architectures commonly referred as the “Cell” processor.

Specifically, we examine Cell-centric MPI programs on hybrid clusters containing

multiple Opteron and IBM PowerXCell 8i processors per node such as those used in the

petascale Roadrunner system. We analyze the performance of our approach on a

PlayStation3 console based on Cell Broadband Engine—the CBE—as well as an IBM

BladeCenter QS22 based on PowerXCell 8i. Our implementation incurs less than 0.5%

overhead and 0.3 µs per profiler call for a typical molecular dynamics code on the Cell

BE while efficiently utilizing the limited local store of the Cell’s SPE cores. Our worst-

case overhead analysis on the PowerXCell 8i costs 3.2 µs per profiler call while using

only two 5 KiB buffers. We demonstrate the use of our profiler on a cluster of hybrid

nodes running a suite of scientific applications. Our analyses of inter-SPE communication

 16

(across the entire cluster) and function call patterns provide valuable information that can

be used to optimize application performance.

2.1 Architectural Background and Testbed

In this section, we describe the architecture of the Cell Broadband Engine and

PowerXCell 8i that provides the bulk of the performance of our target cluster and the

focus of our profiler study. We then briefly summarize the overall architecture of our

testbed. Finally, we describe the Cell Messaging Layer, which is an enabling technology

for exploiting hybrid (or completely cell based) clusters and therefore a key insertion

point for profiler events.

2.1.1 Cell Broadband Engine and IBM PowerXCell 8i

Cell BE has a heterogeneous architecture incorporating a power processor

element (PPE) and eight synergetic processing elements (SPEs) on the same chip. SPEs

are connected via an element interconnect bus (EIB), which supports a peak bandwidth of

204.8 GB/s for intra-chip data transfers among the PPE, SPEs, the memory, and the I/O

interface controllers [16]. A single Cell BE has a peak single-precision performance of

217.6 Gflops/s for which it took attention of the high performance computing community

in the recent years [37], whereas its double-precision peak is limited to 21 Gflops/s.

The IBM PowerXCell 8i (also referred as the Cell extended Double-Precision,

Cell-eDP) is the latest implementation of the Cell BE featuring 108.8 Gflops/s on double-

precision operations. It drives one of the fastest supercomputers at the time of this

writing, Roadrunner at Los Alamos [7]. Each SPE of PowerXCell 8i contains a 3.2 GHz

 17

synergetic processing unit (SPU) core, 256 KB of a private, program-managed local store

(LS) in place of a cache, and a memory flow controller (MFC) that provides DMA access

to main memory. The SPE uses its LS for efficient instruction and data access, but it also

has full access (via DMA) to the coherent shared memory, including the memory-mapped

I/O space.

To make efficient use of the EIB and to interleave computation and data transfer,

the PPE and 8 SPEs are equipped with a DMA engine. Since an SPE’s load/store

instructions can access only its private LS, each SPE depends exclusively on DMA

operations to transfer data to and from the main memory and other SPEs’ local memories.

The use of DMAs as a central means of intra-chip data transfer maximizes asynchrony

and concurrency in data processing inside a Cell processor [38].

2.1.2 Testbed

The PS3 features an identical Cell BE to the ones in IBM BladeCenter QS20.

Recently the gaming console has been used as a low-cost computing platform by

scientists [71]. However, one of the SPEs is disabled in PS3s for chip yield reasons and

another SPE is reserved for use by GameOS operating system that acts as a hypervisor,

and virtualizes the system resources. Out of 256 MB Rambus Extreme Data Rate (XDR)

memory on PS3, only 200 MB is accessible to Linux OS and applications. Even though

PS3s are not crafted for high performance cluster computing [11], they offer a valuable

testing platform for tools targeting Cell based architectures. In our study we use a PS3

console to quantify the overhead that our profiling library incurs.

 18

Our second testing platform comprises 8 nodes, called tri-blades, where each tri-

blade has two IBM QS22 Cell blades and one IBM LS21 AMD Opteron blade. The QS22

contains two PowerXCell 8i processors running at 3.2 GHz and each with an associated 4

GB of DDR2 memory. The LS21 blade includes two dual-core Opteron cores clocked at

1.8 GHz. Each tri-blade has a single connection to a Mellanox 4x DDR InfiniBand

network. Typically, the Opterons handle mundane processing (e.g., file system I/O) while

mathematically intensive elements are directed to the Cell processors. Each tri-blade in

our testbed is architecturally identical to the tri-blades used in Roadrunner.

2.1.3 Cell Messaging Layer

CML is an implementation of common MPI functions for SPE-to-SPE

communication in Cell-based clusters. The programming model underlying the CML is

that applications run entirely on the SPEs. The SPE-centric model of CML assigns unique

MPI ranks to each SPE assigned to an application. By means of using PPE (and possibly

conventional CPUs like Opterons if they exist in the cluster) primarily for shuttling

messages to SPEs in other blades (or PS3s) instead of computation, the abstraction

provided by CML allows each SPE to communicate with other SPEs regardless of

whether the SPEs are in the same socket, the same blade, the same node, or different

nodes. On a cluster of Cells, CML implements a mechanism for forwarding data from a

SPE to its PPE then across a network to a remote PPE and finally to the target SPE. The

PPE needs to be involved because a SPE cannot interact directly with I/O-bus devices

such as network interface cards (NICs). In addition to handling communication

operations, PPE, also initializes CML, starts SPE programs and waits until all SPEs

 19

invoke MPI_Finalize(), and finally shuts down the CML. Therefore both SPE/PPE

programs need definitions of CML functions and should be linked with CML libraries,

whereas SPE program can run an existing MPI application with only minor modifications

that are necessary due to architectural requirements of the Cell. In effect, we have ported

our scientific applications relatively easily to both of our testing platforms.

CML also provides Programmer’s Message Passing Interface (PMPI) functions

[56] which have a one-to-one correspondence to MPI calls. This interface enables any

calls made to the MPI functions, by the SPEs, to be intercepted and thus recorded.

Section 2.2.2 discusses the use of PMPI calls within our profiler.

CML also offers a remote procedure call (RPC) mechanism through which SPEs

can invoke a function on the PPE (PPEs can subsequently call a function on the

accompanying host CPU if it exists) and receive any results. This capability is

particularly useful for our profiler, where local SPEs need to call a PPE malloc() to

allocate space in PPE memory to hold the entire list of recorded events.

2.2 Software Design Details

Our implementation of the tracing library targets clusters of Cell processors. Each

PPE within a Cell processor is responsible for synchronizing the program run on its

SPEs. CML enables the total number of SPEs, as seen by an application, to scale: from a

single processor containing eight SPEs to clusters of PS3s [71], or to Roadrunner that

contains 97,920 SPE cores. The remainder of this section outlines the design and

implementation of the profiler including its memory use, and events that are profiled.

 20

2.2.1 Data Structures

The buffers that are used in the profiler implementation, along with the double-

buffering operation of the buffers in the LS, are shown in Fig. 2.1. This is discussed

further in section 2.2.2.

Figure 2.1: Operation of the double-buffering design

A cyclical pattern is used in Fig. 2.1 to illustrate the allocation of buffers in LS.

They switch roles repeatedly—while one is being used to record newly created events,

the other is being dumped to PPE main memory. In comparison, the PPE memory layout

is linear, where each small section, or event page, corresponds to the size of a single

buffer in LS.

Table 2.1 summarizes the structure of profile events and of event pages that hold

a number of events. It is crucial that the events and the buffers are allocated to fit the 16-

byte boundary required for DMA transactions. ALIGNED16 is a short-hand notation for

the __attribute__((aligned (16))) attribute, which specifies to the compiler to allocate the

 21

data structure to be 16 byte aligned. It is also important that 16 byte aligned profile data is

structured the same both on SPE and PPE memories.

Table 2.1: Definitions of the data structures

#define PAGE_SIZE 64
#define ALIGNED16
__attribute__((aligned (16)))

 typedef enum { PROFILE_START,
PROFILE_STOP, E, X, MPI_SEND,
MPI_RECV, MPI_ALLREDUCE, MPI_REDUCE,
MPI_BARRIER, MPI_BCAST, MFC_PUT,
MFC_PUT64, MFC_GET64, MFC_PUT32,
MFC_GET32} event_type_t;

typedef struct {
 double time_stamp;
double duration;
event_type_t type;
unsigned long long enx;
unsigned long long exx;
short output_flag;
int data[8] ALIGNED16;
 }ALIGNED16 event_record_t;

typedef struct page_tag {
struct page_tag* next_page;
event_record_t events[PAGE_SIZE];
 }ALIGNED16 event_page_t;

The enumerator lists the type of events our implementation can currently monitor.

We record calls to the profiler start/stop functions, SPE function entry/exit (E, X), calls to

the MPI functions implemented in CML (MPI_SEND, MPI_RECV, MPI_ALLREDUCE,

MPI_REDUCE, MPI_BARRIER, MPI_BCAST) and various DMA put/get transactions

which are issued by functions spu_mfcdma32() and spu_mfcdma64() defined in libspe2—

 22

the standard SPE library included in the IBM Cell/B.E. SDK. We have limited our

implementation to cover only relevant DMA transaction types to our test applications.

In addition to recording the type of event, event_record_t also records a time

stamp and the duration of an event, address of the called SPE function and its caller (enx

,exx), an output flag to indicate that an event has happened and data array which includes

destination/source, send/receive size and send/receive counts for MPI events. Effective

addresses (enx, exx) are stored as an unsigned long long on both the SPE and PPE, so that

they can be treated in a unified fashion no matter if the PPE code is compiled for 32-bit

or 64-bit execution. One event record uses 80 bytes in memory.

A single buffer, or event page, is defined by event_page_t. The size of a page was

set to be 64 in our testing (using 5,120 bytes). A pointer to the next page to use is a part

of event_page_t in case the current page fills up. Contrary to the SPE, which has two

event pages, the PPE allocates a far greater number of event pages. For our analysis on

the PowerXCell 8i based hybrid cluster, the PPE allocates 10,000 event pages per SPE

giving a total PPE memory footprint of 400 MiB (=8×10,000×64×80). However, in our

PS3 benchmarks we had to limit the PPE memory allocation to less than 200 MB due to

20 times less PPE addressable memory in PS3. In fact, we have observed that as long as

enough PPE memory is reserved, the performance of the profiler is not affected.

2.2.2 Implementation

CML based applications first start on the PPEs, which subsequently launch code

on the SPEs. When the profiler is enabled, an instrumented SPE program, once launched,

immediately invokes an allocation function on the PPE, using the CML’s RPC

 23

mechanism, for event pages in main memory. Each SPE is returned the base address of

the reserved memory via the same RPC mechanism. Before a SPE proceeds with actual

application execution, it allocates two event buffers in its LS. However, this allocation is

much smaller than its counterpart in main memory due to the limited size of the LS. In

our tests the profiler statically allocates only two small event buffers of size 5,120 bytes,

which holds up to 64 events, in SPE memory. Apart from the 10 KiB required for the two

buffers, the profiler code requires less than an additional 2 KiB in LS but is dependent on

the actual number of CML functions used by an application. This is ~30,000 times

smaller than the memory used by our profiler in the main memory of the PPE of a

PowerXCell 8i.

 Profiler initialization is followed by the execution of the actual MPI application.

Throughout the application run, the instrumented functions are called to record events.

The instrumented operations, as provided by the profiler, create event logs. For instance,

an SPE-to-SPE message-passing request invokes the corresponding instrumented MPI

communication operation, which populates the event data structure with the relevant

information, e.g., type, source/target, size of the message, and secondly calls the

corresponding PMPI routine, which is implemented by CML, to send the actual message.

The profiler library provides similar instrumented functions to profile other events

including DMA operations and SPE function call activities.

SPE LS memory is limited to 256 KB. If it were to be filled with trace data, it

would inhibit the execution of the SPE code. In order to circumvent this possibility, we

use a double-buffering approach [86] to log trace events. Instead of continuously pushing

 24

events to a dynamically increasing allocation in LS, SPU writes profile event logs as they

appear to one of the two small buffers allocated during profiler initialization. Once the

buffer being used is full, previous buffer-dump operation is checked for completion (Step

1 in Fig. 2.1), by using mfc_write_tag_mask and mfc_read_tag_status_al, in order to

avoid overwriting data being transferred. If the preceding dump has been completed, a

non-blocking DMA (mfc_put) is issued to transfer the buffer to main memory (Step 2 in

Fig. 2.1). Each SPE sends the data to a privately reserved address, which it determines by

using the memory base address received through the RPC mechanism during

initialization, its local rank and number of previous dumps it has performed up to then.

The SPE also switches the trace buffers and uses the available buffer to record new

events (Step 3 in Fig. 2.1). Meanwhile, the SPE execution continues without interruption

as a non-blocking DMA is used. Once the second buffer is filled, the SPE switches

buffers again and continues with recording events to the first buffer as it issues a DMA

transfer (mfc_put) to dump the second buffer to the end of the preceding dump in the

main memory (Step 4 in Fig. 2.1). If the speed of event generation is faster than the time

taken to transfer a single LS buffer to main memory then the application execution will

pause. In such a case the size of the LS buffers can be increased but clearly at a reduction

in the size of the LS store available to the application.

The double-buffering implementation not only overlaps data dumping with

program execution, but also gives the capability of logging in excess of 104 times more

events than the LS could have stored by using just two small buffers, and leaves more LS

available for program and data in each SPE.

 25

Upon the termination of tracing, the SPE program dumps the last buffer,

regardless of how full it is, to main memory. Once all of the SPEs terminate the PPE

writes the profile data from main memory to several files, one per SPE, which contains

the events that are ordered in terms of their time of occurrence. The output files can be

post-processed for numerous performance analysis studies.

2.3 Analysis

In this section, we first provide detailed analysis of the overhead incurred by the

profiling activity on a single Cell BE processor of the PS3. Secondly, we compare the

overhead on a single PowerXCell 8i to that on Cell BE and finally delineate cluster-wide

use of the profiler.

Three applications were chosen to both quantify the overheads of the profiler use

and also to illustrate its usefulness. The first application is Sweep3D, which solves a

single-group time-dependent discrete ordinates neutron-transport problem. It processes a

regular three-dimensional data grid, which is partitioned onto a logical two-dimensional

processor array. Its computation consists of a succession of 3D wave fronts (sweeps), in

which each processor receives boundary data from upstream neighbors, performs a

computation on its local sub-grid, and produces boundaries for downstream neighbors.

All communications use MPI to transfer boundary data to neighboring processors.

The second application is molecular-dynamics (MD) [63]. The MD simulation

follows the time evolution of the positions of N atoms by solving coupled ordinary

differential equations. For parallelization, the MD code uses a 3-D spatial domain that is

 26

partitioned in all three dimensions into P sub-grids of equal volume. Each step in the

simulation requires the processing of the local sub-grid as well as boundary exchanges in

each of 6 neighboring directions (i.e. the lower and higher neighbor subsystems in the x,

y and z directions).

The third application is a lattice Boltzmann (LB) method for fluid flow

simulations. The cellular-automata like application represents fluid by a density function

on of the grid points on a regular 3D lattice [71]. LB exhibits the same 3D

communication pattern as for MD where each time step involves DF updates and inter-

sub-grid density migrations.

2.3.1 Performance Overhead Analysis

In effect, the performance overhead of the profiler is dependent on the application

as the mixture of communication and computation operations vary from code to code.

Therefore in this section we use an overhead metric by considering a worst-case scenario

by using a kernel application containing only communication calls and no computation.

Additionally, by executing the kernel on a single Cell processor we ensure that only fast

on-chip communications over the EIB are used. The kernel application simply contains

the communication pattern of the Sweep3D application thus resulting in a maximum rate

of event generation. We provide the results first on Cell BE and second on PowerXCell 8i

in the remainder of this section.

 27

2.3.1.1 Cell BE

In order to quantify the profiling overhead we have performed a suite of tests on

the Cell BE of the PS3, which represents typical node of our target cluster.

An equal number of MPI send and receive calls, using a fixed size of 600 doubles

(4,800 bytes), for the 6 functional SPEs on the single Cell BE of the PS3 were used for

the results shown in Fig. 2.2. Fig. 2.2(a) shows the average overhead for each profiler call

as a function of the number of events and Fig. 2.2(b) shows the slowdown when varying

the number of events (the x-axis shows the logarithm of the number of events). It can be

seen that the average time required to record a single event is less than 6.3 µs. This

corresponds to a slowdown of a factor of 6.8 for large numbers of events as shown in Fig.

2.2(b).

 (a) Average cost per profiler call (b) Slowdown due to the profiler
Figure 2.2: Performance overheads of the profiler (6 SPE run on a single Cell BE)

In order to quantify the effect of message size on profiling overhead, we have

performed benchmarks on the Cell BE, and the results are shown in Fig. 2.3. Here, we fix

 28

the event count at 36,000, which is the point where saturation starts in Fig. 2.2(b), and

keep the buffer size at 5 KiB while varying the sizes of the sent/received messages.

 (a) Average cost per profiler call (b) Slowdown due to the profiler
Figure 2.3: Performance overheads of the profiler for varying message sizes (6 SPE run
on a single Cell BE)

Fig. 2.3(a) shows that the smallest per profiler call overhead is less than 5.6 µs for

12.5 KiB sized messages, whereas Fig. 2.3(b) shows 4× slowdown factor. In comparison

to Fig. 2.2, which used 4,800-bytes messages, profiler shows a better performance for

12.5 KiB messages. This can be attributed to the fact that larger transfers take longer time

to complete, which is overlapped by keeping record of profile events, thereby reducing

the profiler overhead.

 29

 (a) Slowdown in worst-case kernel (b) Slowdown in MD application
Figure 2.4: Performance overhead of the profiler for varying SPE buffer sizes on the Cell
BE

In Fig. 2.4, we study the effect of changing the sizes of the double buffers

reserved for profile events at SPEs of the Cell BE processor. In Fig. 2.4(a), we fix the

event count at the saturation point of Fig. 2.2(b), i.e. 36,000, the message size at 12.5 KiB

and vary the buffer size. It is observed that increasing the buffer size decreases the

slowdown factor to as low as 3.7. As the buffer size at SPE increases, it takes less DMA

transfers to PPE to dump the filled buffers, thereby increasing the performance of the

profiler. However, it should be noted that there is a trade off between increasing the

buffer size to achieve better profiler performance and the application performance itself

because of the limited local store of SPEs. In selecting the buffer size, the memory

requirements of application for its instructions and data should also be considered.

In order to quantify the profiling overhead for a typical scientific application, we

port our parallel molecular-dynamics (MD) code [63] to PS3 using CML for handling

MPI operations. Fig. 2.4(b) shows the overhead incurred by profiling of the message

 30

passing events of the MD application on a single PS3. The MD application implements a

velocity-Verlet scheme, and calls several small functions at each time step for calculating

atomic positions and velocities besides communication functions. Therefore, in Fig.

2.4(b), we turn off the function entry/exit tracing feature of the profiler in order to

analyze MPI calls only, which are mainly for exchanging boundary-atom information.

The results are the averages over a 100-time step simulation. Similar to Fig. 2.4(a),

increasing the buffer size decreases profiling overhead. However, it should be noted that

the y-axis of Fig. 2.4(b) is in percentages, i.e., profiler overhead is less than 0.5% for 10

KiB buffers. In effect, the cost of a single profiler call is less than 0.3 µs when 10 KiB

buffers are used. The MPI messages in the benchmark shown in Fig. 2.4(b) are on-chip

communications and use the EIB of the Cell processor, which is much faster in

comparison to current high performance computing interconnects. Therefore in a cluster-

wide analysis of an MPI-centric scientific application, the overhead incurred by logging

MPI events will be extremely low.

2.3.1.2 PowerXCell 8i

Here, we compare the overhead of the profiler on PowerXCell 8i to that on Cell

BE before we proceed with PowerXCell 8i based cluster-wide experiments in the next

section.

The overhead evaluation benchmark we described in the experiment of Fig. 2.2 is

repeated on 8 SPEs of a single PowerXCell 8i processor, and the results are shown in Fig.

2.5. Fig. 2.5(a) shows that the average time required to record a single event is less than

 31

3.2 µs and slowdown factor rises up to 4.2 for larger numbers of events as shown in Fig.

2.5(b). Recall however that intra-cell communications take full advantage of the EIB

which has a total bandwidth of 204.8 GB/s. Intra-cell communications using CML

actually achieve a bandwidth of ~23 GB/s and latency of ~0.3 µs as shown in Table 2.2.

And hence a SPE-to-SPE message of size 4,800 bytes takes less than 1 µs within a single

Cell.

 (a) Average cost per profiler call (b) Slowdown due to the profiler
Figure 2.5: Performance overheads of the profiler (8 SPE run on a single PowerXCell 8i)

It should be noted that the x-axis is linear in Fig. 2.5 as opposed to the logarithmic

scale in Fig. 2.2. This is because the saturation of slowdown factor happens faster in

comparison to Cell BE benchmark. The drop down in the average cost per profiler call

and the slowdown factor in Fig. 2.5 in comparison to Fig. 2.2 can be explained by the fact

that the Linux kernel in Cell BE of PS3 is running on top of a hypervisor which uses one

SPE and also the EIB. On the PS3, the SPUs are hidden behind the hypervisor and every

access happens in cooperation with the hypervisor. As a result writing to the local store or

 32

shuttling messages results in writing into kernel memory that represents the local store,

which affects I/O of a given process and incurs additional overhead.

For a typical application running on a cluster of Cells, or on a hybrid processor

configuration like Roadrunner, SPE-to-SPE communications can be significantly more

costly than the ones considered in the worst-case discussed above. For instance, on

Roadrunner, communications between SPEs on different nodes have a latency of over

11.7 µs at small message bandwidth of 161 MB/s. Therefore, in practice, the profiling

overhead is much lower due to the increasing cost of communications as demonstrated in

Fig. 2.4(b).

2.3.2 Cluster-wide Profiling

In this section we illustrate the usefulness of our profiling implementation for LB,

MD and Sweep3D applications. We perform our tests on 8 nodes (32 SPEs per node) of a

Roadrunner-like PowerXCell 8i based cluster.

2.3.2.1 Communication Analysis

The information that is generated by the profiler is analyzed off-line. One log-file

is generated for each SPE used by the application. Fig. 2.6 shows an example of the SPE-

to-SPE communication pattern of the original Sweep3D code.

 33

Figure 2.6: Communication pattern of the original Sweep3D

In Fig. 2.6, a larger square surrounded by thick lines and denoted by a node

number, which contains 4×4 small squares, represents a tri-blade in the cluster. Each

smaller square represents one Cell processor with 8 SPEs. The vertical and horizontal

axes represent the sender and receiver SPE MPI ranks, and a colored pixel on the graph

indicates a pair of communicating SPEs. The pixels are color coded to distinguish intra-

node (blue) and inter-node (red) communications respectively.

The decomposition of Sweep3D’s global grid onto a logical 2-D processor array

can be seen in Fig. 2.6. Each processor communicates with its neighbor in the logical x

and y directions. For a 256 processor run, the 2-D processor array consists of 16×16 SPE

processors. Each processor communicates with its x neighbors (±1) as illustrated by the

two sub-diagonals, and with its y neighbors (±16) indicated by the outermost two off-

diagonals. Message passing for the two x neighbors is performed on the same chip

through high-bandwidth (25.6 GB/s) EIB; whereas communication with the y neighbors

 34

corresponds to 1 message passing to another SPE residing within the same node but on

the other Opteron and performed over PCIe via DaCS; and 1 message passing to an SPE

on another node which adds InfiniBand in the path. These different inter-SPE

communications incur different latency and bandwidth costs as shown in Table 2.2,

which shows both the latency and bandwidth measured by ping-pong communication

tests for CML.

Table 2.2: CML point-to-point performance

Configuration Latency Bandwidth
Same Cell 0.272 µs 22,994.2 MB/s
Same node 0.825 µs 4,281.3 MB/s
Different nodes 11.771 µs 161.2 MB/s

The high latency of inter-node communication in comparison to intra-cell

communication stems from the involvement of PPEs and Opterons in the former. To

achieve higher performance, parallel algorithms should be designed to exploit the low

latency and high bandwidth of EIB connecting intra-cell SPEs and avoid inter-node

communication wherever possible. Fig. 2.7 shows the communication pattern of a

modified version of Sweep3D, which performs much of the message passing activity

over the EIB.

 35

Figure 2.7: Communication pattern of the modified Sweep3D

In the modified version of Sweep3D, one SPE of each Cell acts as a root and

exclusively handles inter-node message passing by gathering messages from the other

SPEs on the same chip and sending it to the root on the destination Cell. This reduces the

number of inter-cell messages significantly and promises an increase in performance. For

comparison, Fig. 2.8 shows the communication pattern of MD for 256 SPE run.

Figure 2.8: Communication pattern of MD

 36

In Fig. 2.8, the logical arrangement of processors is in an 8×8×4 processor array.

Each SPE performs two intra-cell communications with x neighbors. Communications to

y neighbors is comparably slower with half of the SPEs requiring inter-node

communications. For example, in the first node, SPEs 1–8 and SPEs 25–32 have one of

their y neighbors in the next node, while for SPEs 9-24 the communications to y

neighbors only involves intra-node communications. For all SPEs, message passing with

z neighbors is inter-node communication with a high communication cost. This suggests

a possible optimization, to increase the number of communications over the EIB, as with

Sweep3D.

The volume of messages in MD is fairly regular. However, for applications where

message send/receive activities and message sizes vary, heavier communication paths

should be paid more attention. This is demonstrated with another application—LB in Fig

2.9.

Figure 2.9: Heavy communications of LB

 37

LB and MD have the same 3D communication pattern, however for LB, some

message passing events are an order-of-magnitude smaller than the others. Therefore, in

Fig. 2.9, instead of plotting all communications, we have drawn only heavier

communications. It should be noted that Fig. 2.9 has equal numbers of blue and red dots,

indicating that 50% of message passing activity is inter-node. The other half of the

communication is intra-node, of which 1/3 happens among SPEs on different Cells of the

node. Therefore, only 1/3 of heavier communication is taking advantage of the fast EIB.

This suggests that LB suffers a larger communication cost in comparison with MD and

that there is more room for optimization through the rearrangement of messages.

As a matter of fact, event data structure as described in section 2.2.1 has enough

data to provide finer details on message passing events. For example inter-SPE and/or

SPE-to-PPE communications can be analyzed in finer detail. Function use, duration, type

of message passing activity, size of the message, type of data being sent (and/or

received), count of a certain data type, and source/destination, can be analyzed to provide

more insight into the program flow. As we can extract point-to-point communication

matrix from an application execution, it is also possible to automatically identify the

communication pattern by measuring the degree of match between point-to-point

communication matrix and predefined communication templates for regularly occurring

communication patterns in scientific applications [47].

 38

2.3.2.2 Call-stack Analysis

The profiler library can also keep track of function entry and exits. This section

illustrates the use of this functionality by a call-stack analysis as another use of our

profiler.

Fig. 2.10 shows the function call graph for the execution at the first SPE of a 256-

SPE run for LB code. Instrumentation for 10 iterations is visualized and only a portion of

call graph is provided for the clarity of presentation. The node shown as the root is the

main function, which calls collision, streaming and communication functions once during

every iteration. The nodes for these 3 functions include the source file name and the

source code line information, which are looked up from a symbol table during post-

processing. The node, which calls the MPI_SEND/MPI_RECEIVE implementation of

CML, represents calls to the communication functions. Its children nodes show

source/destination and data count of the message in parenthesis. The edges of the graph

are marked with the number of times a particular event is observed. For instance, the

node MPI_SEND(0,56,132) represents SPE 0 sends a message to SPE 56 of 132 bytes

and it has occurred 10 times during the profiling.

Figure 2.10: Function call graph for LB

 39

The instrumentation is also done for functions expanded inline in other functions.

The profiling calls indicate where the inline function is entered and exited. This requires

that addressable versions of such functions must be available. A function may be given

the attribute no_instrument_function, in which case this instrumentation will not be done.

This can be used, for example, for high priority interrupt routines, and any function from

which the profiling functions cannot safely be called, for example signal handlers.

The function call graph provides insight into program execution on a particular

SPE on a cluster contributing to optimizations at the SPE level. In Fig. 2.10, we have

weighted the edges with function call numbers. Instead, operation completion time could

be used as an alternative for weighting as the profiler keeps durations of events as well. A

call graph can be used to identify bottlenecks of performance at the SPE level and shed a

light on required algorithm modifications for improvement.

2.4 Conclusion and Future Work

We have developed a low-memory-footprint (12 KiB of local store), minimally

intrusive profiling library for parallel applications running on clusters of Cell processors.

Our library overlaps computations and DMA transfers to reduce application perturbation

and efficiently utilizes the small amount of SPE local store available on Cell processors.

We have analyzed the performance of our profiler on the Cell BE processor of a

PlayStation3 and explored profiler performance for varying design and application

specific parameters, such as buffer and message size. We have used our profiler library to

analyze the performance of parallel scientific applications that run across multiple Cell

 40

processors, Cell blades, and cluster nodes. Inter-blade communication analysis for

Sweep3D has shown how communication structure can affect application performance.

We have ported two additional applications, LB and MD, to a hybrid Opteron+Cell

cluster, and our profiler data suggests possible optimization opportunities. In order to

demonstrate other uses of our library, we have analyzed the function-call pattern of a

single SPE’s program flow and used that to determine performance bottlenecks on the

level of a SPE core.

While our study demonstrates high-speed, low-memory-overhead profiling for

clusters augmented with Cell processors, it is certainly possible to optimize the profiler to

further reduce its profiling cost and memory footprint. For example, the various types of

profile events have different memory requirements (e.g., call-stack address records use

only 16 bytes out of the 80 bytes allocated for the general event type). Therefore,

restructuring the data types to be event-specific and adding compile-time options to

customize the desired performance report may result in lower intrusion to program flow

and reduce the post-processing effort for profile data.

 41

Chapter 3

Multilevel Optimization of Stencil Computations

In this chapter, we present a scalable parallelization scheme for high-order stencil

computations that also optimizes memory behavior on multicore clusters. Our multilevel

approach combines: (1) data locality optimizations through auto-tuned tiling for efficient

use of hierarchical memory; (2) register blocking and data parallelism via single-

instruction multiple-data (SIMD) techniques to utilize registers and exploit data locality;

(3) software prefetching to hide memory latency; (4) inter-core parallelization via

multithreading; and (5) inter-node parallelization via spatial decomposition. The scheme

is applied to a 6th-order stencil based seismic wave propagation code. Tiling

optimizations achieve 7.7-fold reduction of last level cache miss rate of Intel Nehalem,

whereas register blocking increases data parallelism and thereby achieves 5.9 Gflops

performance on a single core, which is over 55% of its peak performance. Register

blocking+multithreading optimizations achieve 5.8-fold speedup on a single quadcore

 42

Nehalem. Weak-scaling parallel efficiency is over 98% on 32,768 BlueGene/P

processors.

3.1 High-Order Stencil Computation

This section first introduces HOSC, and then provides a detail of our application

and experimental kernel used in the subsequent sections.

3.1.1 Stencil Computation

Accuracy of SC generally depends on the order of its stencil. Applications

employing SC mostly involve partial differential equation solvers, which are based on

finite-difference and multigrid methods, to study a vast array of phenomena including

electromagnetic [89] and acoustic [76] wave propagation, and quantum dynamics [64].

Due to its pivotal role in computational sciences, SC is included in a number of

benchmark suites such as PARKBENCH [75] and NAS Parallel Benchmarks [5].

Implementation of special purpose stencil compilers [8, 9, 85] and development of

compiler optimizations [82] highlight the common use of SC based methods.

In SC, values u(t)(r) are assigned to a set of discrete grid points Ω = {r} for a

number of simulation time steps t ∈ [1, Nstep]. SC routine sweeps over Ω iteratively to

compute values of the grid points at next iteration, u(t+1)(r), as a function of the values of

the neighboring nodal set at time t, Ωʹ′ = {rʹ′ ⎢ rʹ′ ∈ neighbor(r)}, determined by the

stencil geometry. According to the geometric arrangement of the nodal group

neighbor(r), SC may be classified as follows: First, the order of a stencil, n, is defined as

the distance between the grid point of interest, r, and the farthest grid point in

 43

neighbor(r) along a certain axis. (In a finite-difference application, the order increases

with required level of precision.) Second, we define the size of a stencil as the cardinality

⎢{rʹ′ ⎢ rʹ′ ∈ neighbor(r)}⎢ , i.e., the number of grid points involved in each stencil

iteration. Third, the footprint of a stencil is defined by the cardinality of minimum

bounding orthorhombic volume, which includes all involved grid points per stencil. For

example, Fig. 3.1 shows a 3rd order, 13-point SC, whose footprint is 72 = 49 on a 2-

dimensional lattice. Such stencil is widely used in high-order finite-difference

calculations [90, 94]. In Fig. 3.1, the grid point of interest, r, is shown as a large solid

circle while the set of neighbor points, excluding r, {rʹ′ ⎢ rʹ′ ∈ neighbor(r)} – {r}, is

illustrated as small solid circles. Open circles show the other lattice sites within the

stencil footprint, which are not used for calculation of u(t+1)(r).

Figure 3.1: 3rd order, 13-point SC, whose footprint is 72 on a 2-dimensional lattice

A typical computation for updating the value of the central grid point shown in

Fig. 3.1 is

 44

ui, j
(t+1) = c−3 *ui−3, j

(t) + c−2 *ui−2, j
(t) + c−1 *ui−1, j

(t) + c3 *ui+3, j
(t)

+c2 *ui+2, j
(t) + c1 *ui+1, j

(t) + c−3 *ui, j−3
(t) + c−2 *ui, j−2

(t)

+c−1 *ui, j−1
(t) + c3 *ui, j+3

(t) + c2 *ui, j+2
(t) + c1 *ui, j+1

(t) + c0 *ui, j
(t)

 (1)

where the subscripts i, j of u(t) represent the coordinates of grid points, and the

coefficients are denoted as c. Time dependency is not shown on coefficients c, as they are

constants in time but a function of the distance to the central grid point.

3.1.2 A High-Order Stencil Application for Seismic Wave Propagation

 Our experimental SC application simulates seismic wave propagation by

employing a 3D equivalent of the stencil in Fig. 3.1 to compute spatial derivatives on

uniform grids using a finite-difference method. The 3D stencil kernel is highly off-

diagonal (6th order) and involves 37 points (footprint is 133 = 2,197), i.e., each grid point

interacts with 12 other grid points in each of the x, y and z Cartesian directions.

A typical problem space may involve several hundreds of grid nodes in each

dimension amounting to millions of grid points in total. The seismic application reported

here uses 3843 = 56.62 million points. For each grid point, the code allocates 5 floats to

hold temporary arrays and intermediate physical quantities and the result, therefore its

memory footprint is 5 × 4 bytes × 3843 = 1.13 GBytes. Thus, the application not only

involves heavy computations, but also needs a large amount of memory in comparison to

the cache size offered by multicore architectures in the current HPC literature.

Table 3.1 shows the pseudocode of a computational kernel of the seismic

application. In the kernel, the triply-nested loop in 3D Cartesian coordinates updates the

value of each target grid points,

€

u
(t+1), based on values of neighboring grid points at time

 45

t, i.e.,

€

u
(t) . Stride in memory space is a critical factor to optimize SC application. In our

kernel, the allocation for both

€

u
(t) and

€

u
(t+1) are 3 dimensional, 16-Bytes aligned,

dynamic arrays, where x is unit stride direction, y is nx stride, and z is the highest stride

nx×ny. The size of the problem domain is

€

(nx − 2n)× (ny − 2n)× (nz − 2n) , where n is the

stencil order and nx, ny, and nz are the numbers of grid points in the three Cartesian

coordinates. The scopes of each loop are reduced by 2n (n = 6 in our case) to avoid

complex boundary conditions from the experimental kernel.

Table 3.1: Pseudocode of the high-order stencil kernel.

 1: procedure

€

naiveHOSC(n,nx ,ny ,nz,c,u
(t)
,u
(t+1)

)
 2: for

€

i = n to

€

n
x
− n do

 3: for

€

j = n to

€

ny − n do
 4: for

€

k = n to

€

nz − n do
 5: for

€

in = −n to

€

n do //X sweep

 6:

€

ui, j,k
(t+1)

← ui, j,k
(t+1)

+ cin *ui+in , j,k
(t)

 7: end for
 8: for

€

jn = −n to

€

n do //Y sweep

 9:

€

ui, j,k
(t+1)

← ui, j,k
(t+1)

+ c jn *ui, j+ jn ,k
(t)

10: end for
11: for

€

kn = −n to

€

n do //Z sweep

12:

€

ui, j,k
(t+1)

← ui, j,k
(t+1)

+ ckn *ui, j,k+kn

(t)

13: end for
14: end for
15: end for
16: end for
17: end procedure

 46

3.2 Hierarchical Parallelization

This section outlines our top-down approach to application tuning at system-,

node- and microarchitecture-levels. We discuss our parallelization framework that

combines: (1) inter-node parallelization via spatial decomposition; (2) intra-node

parallelization via multithreading; (3) data locality optimizations through tiling; (4) RB

and data parallelism via SIMD techniques to utilize registers; and (5) software

prefetching to hide memory latency.

3.2.1 Inter-node Parallelism by Spatial Decomposition

Our parallel implementation essentially retains the computational methodology of

the original sequential code. All of the existing subroutines and the data structures are

retained. Our parallelization is based on spatial decomposition, where the 3D data space

is decomposed into a mutually exclusive and collectively exhaustive set of subdomains.

We distribute the data by assigning each subdomain to a compute node in the network,

and employ an owner-computes rule.

In a parallel processing environment, it is vital to consider the time complexity of

communication and computation dictated by the underlying algorithm, to achieve

efficient parallelism. For a d-dimensional stencil problem of order n and global grid size

nx × ny × nz to run on p processors, the communication complexity is O(n((nx × ny×

nz)/p)(d-1)/d), whereas computation associated by the subdomain is proportional to the

number of owned grid points, therefore its time complexity is O(n(nx × ny × nz)/p) (which

is linear in n, assuming a stencil geometrically similar to that shown in Fig. 3.1). For a 3D

 47

problem, they reduce to O(n((nx × ny × nz)/p)2/3) and O(n(nx × ny × nz)/p), which are

proportional to the surface area and volume of the underlying subdomain, respectively.

Accordingly, subdomains are chosen to be the optimal orthorhombic box in the 3D

domain minimizing the surface-to-volume ratio, O((p/(nx × ny × nz))1/3), for a given

number of processors (e.g., a cubic subvolume, if the processor count is cube of an

integer).

The pseudocode in Table 3.2 represents our spatial-decomposition approach. We

implement the message passing using Message Passing Interface (MPI) [93]. A typical

SC requires boundary grid points to be exchanged among processors. Therefore each

subdomain is augmented with a surrounding layers of buffer grids used for data transfer.

Table 3.2: Pseudocode for spatial decomposition.

 1: for

€

t =1 to

€

Nstep
 2: if

€

parity = sendfirst
 3:

€

send sendBuffer to neighbor
 4:

€

receive recvBuffer from neighbor
 5: else
 6:

€

receive recvBuffer from neighbor
 7:

€

send sendBuffer to neighbor
 8: end if
 9: forall

€

r ∈Ωp do
10:

€

compute stencil in owned space
11: end for
12: end for

In Table 3.2, the parity of a process determines if it first sends, i.e. a sendfirst, its

own grid points at the boundary, sendBuffer, or receives the neighboring grid points from

its neighbor process to update its receive buffer, recvBuffer. Once the buffer layers are

 48

exchanged, each process computes the stencil for their own grid points, i.e., r ∈

€

Ωp . Line

10 of Table 3.2 encapsulates the SC in lines 5-13 of Table 3.1.

3.2.2 Intra-node Parallelism by Multithreading

Our code is implemented based on hierarchical spatial decomposition: (1) inter-

node parallelization with the higher-level spatial decomposition into domains based on

message passing; and (2) intra-node parallelization with the lower-level spatial

decomposition within each domain through multithreading. We implement 3 subroutines

to handle x, y, and z directional sweeps inside the main loop shown in Table 3.1. The

procedure zSweepTh in Table 3.3 shows a thread spawned to perform z directional sweep.

Table 3.3: Pseudocode for the threaded code section. Since threads store their data in the
u(t+1) array, they avoid possible race conditions to exploit thread-level parallelism (TLP).

 1: procedure zSweepTh(n,ntx,ny,nz,c,u
(t),u(t+1))

 2: for j = n to ny − n do
 3: for i = ntx,l to ntx,u do
 4: for k = n to nz − n do
 5: packed _uk

(t)←ui, j,k
(t)

 6: end for
 7: for k = n to nz − n do
 8: ui, j,k

(t+1)← f (c,neighbor(packed _uk
(t)))

 9: end for
10: end for
11: end for
12: end procedure

In Table 3.3, the zSweepTh thread receives ntx as a parameter, which has lower

and upper bounds of its assigned block, ntx,l and ntx,u, respectively. This divides the global

grid domain in the x direction. Recall that x is the unit-stride direction, y has nx stride,

 49

and z has the highest stride of nx×ny. Other threads reuse the method in zSweepTh, i.e.,

their innermost loop of the triply nested loop body is the direction of computation, second

loop is the direction that has the lower stride among the other two Cartesian coordinates,

and the outermost loop being the higher stride dimension. Notice that in line 5 of Table

3.3, we pack the grid points

€

u
(t) into

€

packed _u
(t) . This is in order to pay the non-

contiguous memory access penalty only once for higher-stride dimensions, i.e., y and z.

Therefore x thread does not implement this packing loop. In line 8, we represent the

stencil to be a function f of coefficients c and the neighbor points of the grid point

€

packed _uk
(t) . Here, the accessed neighbors are naturally the z neighbors since zSweepTh

only implements the z-directional computation. Threads of the same direction can

independently execute and perform updates on their assigned subdomain without

introducing any locks until finally they are joined.

3.2.3 In-Core Optimizations

While it is possible to employ divide-and-conquer strategies for structured grid

problems and perfectly scale such algorithms on massively parallel computers, utilizing

in-core level optimization techniques is essential to exploit flops performance of the

underlying computational units. In this section, we explore in-core optimization

techniques addressing high-order stencil computations. Our tests include (1) loop

unrolling and tiling targeting efficient L2 cache use; (2) register blocking (RB) and data-

level parallelism via single-instruction multiple-data (SIMD) techniques to increase L1

cache efficiency; and (3) software prefetching to hide memory latency.

 50

3.2.3.1 Loop Unrolling and Tiling

The stencil code in Table 3.1 has data reuse in all loops but traverses a very large

memory footprint, which prevents the reuse to be fully exploited in the core’s memory

hierarchy. In this section, we discuss locality optimizations for exploiting data reuse.

To compute a single value,

€

ui, j,k
(t+1), the stencil code reads 2n elements from each

dimension of the 3-dimensional array

€

u
(t) . The computation of

€

ui, j,k
(t+1) in one of the

dimensions reuses 2n-1 elements in that dimension and reads 2n new values in each of

the other two dimensions. For example, the computation of

€

ui+1, j,k
(t+1) reuses 2n–1 elements

in x, and reads 2n new elements in y and z (plus a new element in x,

€

ui+1+n, j,k
(t)). Therefore

each of the loops z, y and x reuses data across iterations. However, the data reused by

different iterations of the outer loops may not be in cache(s) because of the large amount

of data accessed in between.

The size of the memory footprint traversed by a stencil code is another factor

preventing data locality. The memory footprint of

€

u
(t) in one iteration of loop x spans a

memory region of (2n−1)×576 KBytes, or 6.336 MBytes for n = 6, which is on the order

of the shared data cache of most quadcore architectures. Assuming that each 3-

dimensional array is allocated in a contiguous region of memory, two elements

€

ui, j,k
(t) and

€

ui, j,k+1
(t) are 576 KBytes apart. A few iterations of loop z touch more than a memory page,

even for the large page size of the Nehalem.

 51

To take advantage of the reuse available in the SC, we use code transformations

that improve locality. Loop tiling is a code transformation that reorders loop iterations to

bring accesses to the same data, cache line and memory pages closer together in time. We

apply loop tiling to SC targeting different levels of memory hierarchy: TLB, last level

cache (LLC), and SIMD register file. Before tiling, we apply loop unrolling to the three

loops at the innermost level (in, jn and kn) of Table 3.1 with a factor of 2n, i.e., we fully

unroll the loops. Line 5 in Table 3.4 represents the computation in the loop body after

unrolling. Fully unrolling these loops eliminates loop overhead and exposes more data

reuse in the loop body that we will exploit using SIMD registers. The resulting code is a

3-deep loop nest, as shown in Table 3.4.

Table 3.4: Pseudocode for unrolled code. Function f represents stencil computation.

1: procedure

€

unrollHOSC(n,nx ,ny,nz,c,u
(t)
,u
(t+1)

)
2: for

€

k = n to

€

nz − n do
3: for

€

j = n to

€

ny − n do
4: for

€

i = n to

€

n
x
− n do

5:

€

ui, j,k
(t+1)← f (c,neighbor(ui, j,k

(t)))
6: end for
7: end for
8: end for
9: end procedure

TLB: To reuse more data in each memory page and decrease the number of TLB

misses, we apply tiling to loop k. Tile size zTile should be chosen such that the number of

pages touched by loop iterations within the tile is smaller than the number of TLB entries.

LLC: The 8 MB L3 cache of our experimental platform (Intel Nehalem) can keep

13 “planes” of grid points, where a plane is a region of 384×384 elements (576 KBytes)

 52

along dimensions y and x (each value of z corresponds to a plane in (y, x)). However, to

exploit reuse in all three dimensions, we tile loop j so that the data accessed within a tile

of size zTile × yTile fits in the L3 cache (the data includes elements of

€

u
(t) ,

€

u
(t+1) and

other temporary data required by the computation). Note that, although in this section we

discuss locality optimizations in the context of a single thread on a single core, when

combining these optimizations with parallelism, the tile sizes should be chosen carefully

to prevent conflicts in the shared cache, i.e., L3 in 3-level cache Nehalem (L2 in earlier

quadcore architectures).

Table 3.5 shows the SC after loop tiling is applied to loops k and j. In Table 3.5,

macro MIN returns the smaller of its parameters, so that the two higher-stride directional

loops, i.e., y and z, are subdivided into smaller loops of size zTile and yTile.

Table 3.5: Pseudocode for tiling implementation

 1: procedure

€

tiledHOSC(n,nx ,ny,nz ,c,u
(t)
,u
(t+1)

)
 2: for

€

k = n to

€

nz − n by

€

zTile do
 3: for

€

j = n to

€

ny − n by

€

yTile do
 4: for

€

kk = k to

€

MIN((kk + zTile),(nz − n)) do
 5: for

€

jj = j to

€

MIN((jj + yTile),(ny − n)) do
 6: for

€

ii = n to

€

n
x
− n do

 7:

€

uii, jj,kk
(t+1) ← f (c,neighbor(uii, jj,kk

(t)))
 8: end for
 9: end for
10: end for
11: end for
12: end for
13: end procedure

The tiling parameters, zTile and yTile, should be large enough to amortize the cost

of the added loops but the size of the tiles should not exceed physically available cache

 53

size. In fact, for a 3-dimensional SC with m physical quantities (e.g., pressure and/or

temperature) of type datatype per grid point, the tiling parameters should be chosen such

that yTile × zTile × m × n × sizeof(datatype) ≤ effective cache size, where we refer to

effective cache size instead of physical size to account for memory mapping rules.

In contrast to some existing tiling approaches that tile all three loops [53], the

pseudocode in Table 3.5 does not apply tiling to the unit-stride dimension. Our tests have

shown that tiling the two high-stride dimension loops is enough to have most reuse across

tiles. In fact, tiling all three loops expands tile boundaries and cannot amortize the

increased number of tile execution. This comes from the fact that in stencil codes, it is

only required to preserve the group reuse at 2n+1 distance.

Code generation and tuning: We use a code transformation tool, CHiLL [15], to

generate optimized code variants of the SC. CHiLL is a transformation framework that

allows the user to specify code transformations using a high-level script interface. CHiLL

supports code transformations such as loop tiling, interchanging, unrolling, fusion and

distribution, data copying and data prefetching. CHiLL takes as input the original code

and a script specifying code transformations, and automatically generates a transformed

code. Optimization parameters such as tile sizes can be specified as integer values or as

unbound parameters to be determined later. In our optimized code variant

(stencil_2dTiling) loops z and y are tiled with unbound parameters zTile and yTile. We

use empirical search to determine the optimum tile sizes zTile and yTile, RB and SIMD

parallelization.

 54

3.2.3.2 Register Blocking

In SC, it is not possible to have small strides for all directions of computation at

the same time. For example, the stride in the z direction is 576 KBytes in our kernel,

whereas the x direction has a unit stride, i.e. 4 Bytes.

To exploit SIMD parallelism and spatial reuse in the x direction, we rearrange the

computation to perform updates to grid points that are contiguous in the SIMDized code.

Fig. 3.2 schematically represents our approach to RB for HOSC. In the original kernel in

Fig. 3.2(a), the red square indicates target grid points to be updated at certain time. Blue,

yellow and green squares respectively show memory locations of the nearest neighbor

points in x, y, and z Cartesian coordinates. During each iteration of loop ii (in Table 3.5),

the red square is updated by accessing all neighbors (not necessarily the nearest

neighbors, and the stencil order determines the distance of the furthest accessed

neighbor.) Memory stride for each direction is 1,

€

n
x
, and

€

n
x
×

€

ny , respectively, using the

same notation as in Table 3.5. In contrast to the original access pattern shown in Fig.

3.2(a), RB deals with a chunk of target grid points contiguous in the x direction. The

same size of neighboring cells is fetched to update the block of target grids, which

maximally utilize registers (see Fig. 3.2(b)).

 55

Figure 3.2: Memory access pattern of register blocking compared to the original access
pattern

More specifically, with the RB technique, instead of computing ui, j,k
(t+1) one by one,

we accumulate the contributions of ui, j,k+n
(t) , ui+1, j,k+n

(t) , ui+2, j,k+n
(t) , ui+3, j,k+n

(t) on

ui, j,k
(t+1), ui+1, j,k

(t+1) , ui+2, j,k
(t+1) , ui+3, j,k

(t+1) , where both of 4 float blocks are contiguous and 16 Bytes

aligned in memory, and can be packed into 16 Bytes SIMD registers. We manually

implement RB using Intel SSE3 intrinsics. RB eliminates 3 memory accesses to

neighboring grid points per 16-Byte block and accordingly increases performance. It

should also be noted that the compiler fails to generate code using Intel SSE instructions

for floating point operations in the tiling mode due to the complex loop body of high-

order stencil. Therefore, RB enhances opportunity for better instruction scheduling with

increased instruction level parallelism.

3.2.3.3 Prefetching

L2 data cache miss incurs the penalty of accessing to memory, which is

approximately 150 clock cycles, an order of magnitude more than L2 access penalty, on

 56

modern quad-core architectures such as Intel Xeon processors. Therefore, we use

software prefetching to hide memory latency.

We use Intel’s _mm_prefetch intrinsic to implement fetching data from

memory to second level cache. Since prefetch scheduling distance (PSD) is not a well-

defined metric, and to achieve better performance, we spread the prefetch instructions

inside the instruction sequence of the innermost loop rather than clustering prefetches

together and experiment with a variety of PSDs up to 3 full iterations of the innermost

loop. Considering high stride access due to the topology of stencil computation, we also

combine this by translation lookaside buffer (TLB) priming to preload the page table

entry for the z-neighboring grid points. This is similar to prefetch, but instead of a data

cache line, the page table entry is being loaded in advance of its use to avoid TLB miss.

3.3 Performance Evaluation

Inter-node scalability tests have been carried out on (1) Intel Xeon and AMD

Opteron platforms at the High Performance Computing and Communications (HPCC)

Center of the University of Southern California (USC) and (2) the IBM BlueGene/P at

Argonne National Laboratory. The Intel dual quadcore Xeon E5420 (Harpertown)

processors are clocked at 2.5 GHz, featuring a 4×32 KBytes 8-way set associative L1

data and instruction cache and 2×6144 KBytes 24-way set associative L2 cache. The

AMD dual dualcore Opteron 270 is clocked at 2 GHz with 1 MB L2 cache per core. The

Xeon platform deploys 12 GB memory and 10-gigabit Myrinet interconnects, and the

Opteron platform 4GB memory with 2-gigabit Myrinet. The BlueGene/P has four nodes

 57

on a chip, where each node has 2 GB DDR2 DRAM and four 450 POWER PC

processors clocked at 850 MHz, featuring a 32 KBytes instruction and data cache, a 2

KBytes L2 cache and a shared 8 MB L3 cache. BlueGene/P also allows users to specify

arrangement of MPI processes to make use of its 3D torus network topology. We have

examined TXYZ and XYZT mapping orders, where XYZ represents 3D indices in the

torus network while T (= 0, 1, 2, 3) corresponds the number of cores on one node. For a

spatial decomposition scheme, though the best performance is expected by mapping

process arrangement exactly on the torus structure [45], TXYZ mapping often performs

better, retaining more communications locally.

We perform our single-processor and single-core benchmarks on Intel Nehalem

(core i7 920), which is clocked at 2.67 GHz. On a single-die, quadcore Nehalem CPU,

there is 8 MB of shared L3 cache, 256 KBytes of L2 cache per core and 64 KBytes of L1

cache (divided into a 32 KBytes instruction cache and a 32 KBytes data cache). Nehalem

drops the front side bus (FSB) in favor of Intel QuickPath Interconnect (QPI) and, in

doing so, brings the memory controller on-die. Cores on the Nehalem die communicate

through QPI that offers 25.6 GB/s of bandwidth, which is more than twice the theoretical

bandwidth of Harpertown’s FSB. Nehalem’s cores are capable of Simultaneous Multi-

Threading (SMT), i.e., each core can execute 2 threads simultaneously, opposed to single

thread per core on Harpertown.

3.3.1 Strong Scaling

Algorithms harnessing sound strong scalability may accelerate overall application

performance by increasing the number of processors, and are desirable to fully utilize

 58

many-core architectures. Here, we define the strong-scaling speedup as the ratio of the

time to solve a problem on one processor to that on p processors. Fig. 3.3(a) shows the

total execution and communication times on BlueGene/P with TXYZ and XYZT network

mappings as a function of the number of processors. Fig. 3.3(b) and Fig. 3.3(c) plot

strong-scaling speedup on the three platforms described above. Measurements are done

with a fixed global problem size of 4003 grid points. We obtain good overall strong

scalability by increasing processor count on all platforms. Furthermore, we observe

superlinear speedups on the Intel architecture. This may be explained as an effect of

aggregate cache size as discussed below.

Figure 3.3: Strong-scaling benchmark on BlueGene/P, Intel Xeon E5420 and AMD
Opteron 270 based clusters. (a) The wall-clock time as a function of the number of
processors (up to 32,768) of BlueGene/P. (b) Speedup over 512 cores. (c) Speedup over a
single core on the Xeon E5420 and Opteron 270 platforms. The Xeon E5420 exhibits
superlinear speedup for relatively small number of processors.

Sequential or shared-memory implementations suffer from a large memory

footprint per process. For example, our seismic application uses 3843 grid points (1.13

GBytes data in total), which is well beyond the current cache sizes. The spatial

decomposition scheme avoids this problem by increasing the processor count, and thus

 59

decreasing the volume of each subdomain. Substantial performance gain is expected,

when the sub-domain size becomes small enough to fit into the cache. We use the Intel

Vtune Performance Analyzer to monitor cache and TLB misses in the original seismic

code. We find that high-stride computation accounts for more than 25% of core cycles

throughout the thread execution during page-walks, indicating that a high TLB miss rate

results in greater effective memory access time. The cache effect is most pronounced in

the benchmark on Intel Xeon E5420 (Harpertown) architecture that features a shared 6

MBytes L2 cache per chip that accommodates two cores. This amounts to 12 MBytes of

cache per multi-chip module (MCM), 6 times more than 2 MBytes (2×1 MBytes) L2

cache on AMD Opteron. Therefore, Harpertown outperforms AMD Opteron and shows

the superlinear-scaling with the processor counts over 32 (see Fig. 3.3(c)).

3.3.2 Weak Scaling

Next, we test weak-scaling parallel efficiency of our parallel SC. We define the

weak-scaling parallel efficiency as the running time on 1 processor divided by that on p

processors. Fig. 3.4(a) and Fig. 3.4(b) plot the total execution time and communication

time per SC step on the BlueGene/P and Intel Xeon E5345 (Clovertown) platforms.

 60

Figure 3.4: Weak-scaling performance on (a) BlueGene/P with 2003 grid points per
process and (b) a dual quadcore Intel Xeon E5345 cluster with 1003 grid points per
process

In the Fig. 3.4, the number of grid points per process (i.e. grain size) is 2003 (160

MBytes/process) for BlueGene/P and 1003 (20 MBytes/process) for the Clovertown

cluster. We observe excellent weak scalability, nearly constant performance up to 256

processors on the Clovertown-based cluster and 32,768 processors on BlueGene/P with

TXYZ network mapping. The XYZT network mapping shows fluctuations in the total

and communication times, which may be due to higher possibility of interference with

other processes.

3.3.3 Multithreading

In addition to the massive inter-node scalability demonstrated above, our

parallelization strategy involves the lower levels of optimization: First, we use

multithreading explained in section 3.2.2, implemented with POSIX thread. Next, we

vectorize the loop for construction of packed _uk
(t) and computation of the stencil

 61

f (c,neighbor(packed _uk
(t))) inside the triply nested for loops in Table 3.3 by using

SSE3 intrinsics on the Intel Nehalem platform. We use Intel C compiler (icc) version 11

with O3 optimization level for our benchmarks.

Fig. 3.5(a) shows the reduction in clock time spent per simulation step due to

multithreading and SIMD optimizations. Corresponding speedups are shown in Fig.

3.5(b).

Figure 3.5: (a) The wall-clock time per iteration for non-SIMD and SIMDized codes as a
function of the number of threads on quadcore Intel Nehalem. (b) Breakdown of the
speedups due to multithreading and data-level parallelism along with the combined intra-
node speedup. The best observed intra-node speedup is 5.83 with 8 threads on 4 cores.

So as to delineate the performances of multithreading and SIMDization, we define

a performance metric as follows. We use the clock time for one simulation step of the

single threaded, non-vectorized code to be the sequential run time Ts. We denote the

parallel run time, Tp(NUM_THREADS), to be the clock time required for execution of

one time step of the algorithm as a function of spawned thread number, in presence of

both multithreading and SIMD optimizations. Then combined speedup, Sc, shown in Fig.

 62

3.5(b) is the ratio Ts/Tp as a function of the number of threads. We remove SIMD

optimizations to quantify the effect of multithreading only, and measure the parallel

running times for a variety of thread numbers, and state the multithreading speedup, St,

with respect to Ts. Finally, we attribute the excess speedup, Sc/St, to SIMD optimizations.

Fig. 3.5(b) shows the best speedup of 5.83 for 8 threads on a single quadcore Intel

Nehalem node. It should be noted that multithreading speedup continues to increase until

8 threads on 4 cores. This is because Nehalem cores feature simultaneous multi-threading

technology (SMT) that enables each core to run two threads at the same time. Increased

L3 cache sharing and thread management cost dominates at 16 threads to yield moderate

performance degradation.

3.3.4 Single-core Performance

We use empirical search to determine the best values of tile sizes yTile and zTile

for stencil_2dTiling and its variant featuring RB, using a simple search on a 2-

dimensional parameter space. The parameter space is defined by tile sizes <yTile, zTile>,

bounded by cache and TLB capacity constraints. Our tiling approach essentially keeps

cachelines closer to the core (in cache). All measurements are performed using one core

of Intel Core i7 920 CPU. Table 3.6 summarizes the improved cache utilization by tiling.

Table 3.6: Performance comparison of original and tiled codes

Per 1000
instructions

Original 2dTiling Improvement

LLC_MISS 0.42 0.054 7.77
Local DRAM 0.54 0.115 4.69

DTLB 0.41 0.084 4.88

 63

As a reference, Table 3.6 lists the performance of the experimental kernel that

incorporates loop-unrolling transformations labeled as original. Each row shows the

number of CPU events per 1,000 retired instructions. The data in the rows are normalized

with respect to 1,000 retired instructions during the code execution. The first row shows

the number of retired loads that miss the LLC per 1,000 retired instructions at Nehalem

core. We observe a 7.7-fold improvement in the LLC miss rate for the tiling

implementation with the best tile sizes used. The second row shows number of memory

load instructions retired where the memory reference missed the L1, L2 and LLC caches

and required a local socket memory reference per 1,000 retired loads during the

execution. We see that the tiling version of the code shows improvement by decreasing

local memory access rate by a factor of 4.6. The third row shows the number of retired

loads that missed the DTLB per 1,000 retired instructions. We also observe that tiling

improves DTLB miss per 1,000 instructions by 4.8-fold.

Fig. 3.6(a) shows the variation of the performance (in terms of the floating-point

operations per second) of stencil_2dTiling with tile sizes compared with that of the

original loop-unrolling transformation code. We observe the dominant effect of y tile

size, with the smaller y tile size achieving the better performance. The best observed

performance is 2.72 Gflops, whereas the theoretical peak performance is 2.67×109

cycles/second × 4 flops/cycle = 10.68 Gflops. This corresponds to 25% of the peak

performance. Auto-tuning through CHiLL generates similar flops performance.

 64

Figure 3.6: Floating-point operations per second performance at Intel Nehalem. (a)
Comparison of the original and tiled codes. (b) The performance of tiling for TLB, cache
and registers with SIMD implementation. The best single core performance is 5.9
GFlops.

Fig. 3.6(b) shows the tile-size dependency of the performance of the code variant

incorporating both tiling and RB optimizations with the explicit use of SSE instructions.

The best performance we have achieved is 5.9 Gflops, which corresponds to over 55% of

the theoretical peak performance.

The above results show more than 2-fold improvement by the SSE featuring code

variant with respect to the tiling version. This performance enhancement may be

attributed to the effective use of Intel SSE instructions for floating-point operations. In

fact, we use Intel C compiler (icc) version 11 for all codes with the best optimization

level (-O3), but the compiler fails to vectorize the nested loop body for the HOSC. Our

analysis with Vtune reveals that the SIMD variant reduces the number of instructions that

retire the execution by more than 2-fold with respect to both original and tiling versions

of the same code. To better understand this, we have examined the assembly codes for

floating-point operations inside the loop body. Table 3.7 shows a typical assembly code

 65

for a single floating-point multiply generated from the original code and vector multiply

of a four packed single-precision floating-point values in the SIMD code variant. Both

codes load coefficient c and grid value

€

ui, j,k
(t) and perform a multiply operation. Original

code executes extra instructions to calculate array indices whereas SIMD variant uses 1

array index calculation per 4 floats multiply. Note the use of unpcklps and movlhps in the

original code to unpack and move single-precision floating-point values, and use of

movups for moving unaligned data. Also one single-precision floating-point multiply is

performed by mulss instruction. In the SIMD code variant, movaps is used to load a 128-

bit memory location to an XMM register at once, i.e., aligned load operation loads 4 float

values at a time, then performs a packed multiply, mulps, to concurrently multiply 4

packed floats.

Table 3.7: Comparison of original and optimized code at the assembly level

Assembly for 1 float multiply from original code:
 1: movss 0160(%rsp), %xmm14
 2: mulss %xmm14, %xmm13
 3: addss %xmm13, %xmm10
 4: unpcklps %xmm8, %xmm8
 5: movlhps %xmm8, %xmm8
 6: movups 010(%rax, %r13, 4), %xmm11
 7: mulps %xmm8, %xmm11
 8: addps %xmm11, %xmm14
 9: movss 0210(%rsp), %xmm6
 10: mulss %xmm6, %xmm8

Assembly for 4 float vector multiply in SIMD code variant:
 1: movaps (%rdx), %xmm10
 2: movaps 010(%rbp, %rax, 4), %xmm0
 3: mulps %xmm0, %xmm10

 66

Lastly, we have explored performance enhancement thanks to software

prefetching through micro-architecture level analysis of second-level cache utilization.

Our results indicate that prefetching does not provide significant speedup. This is because

the innermost loop in stencil kernel is predominately memory bandwidth-bound and

already features competing techniques such as tiling and loop unrolling. It should also be

noted that RB technique improves cache performance and this also contributes in less

effectiveness of prefetching the data to L2 cache. Similar results were reported by Datta

et al. for similar memory bound problems [18].

 67

Chapter 4

A Metascalable Computing Framework

In the preceding chapter, we presented a scalable parallelization scheme for high-

order stencil computations. In this chapter, we discuss a metascalable (or “design once,

scale on new architectures”) parallel computing framework that has been developed for

large spatiotemporal-scale atomistic simulations of materials based on spatiotemporal

data locality principles, which is expected to scale on emerging multipetaflops

architectures. The framework consists of (1) an embedded divide-and-conquer (EDC)

algorithmic framework based on spatial locality to design linear-scaling algorithms for

high complexity problems; (2) a tunable hierarchical cellular decomposition (HCD)

parallelization framework to map these O(N) algorithms onto a multicore cluster based on

hybrid implementation combining message passing and critical section-free

multithreading. The EDC-HCD framework exposes maximal concurrency and data

locality, thereby achieving: (1) inter-node parallel efficiency well over 0.95 for 218

billion-atom molecular-dynamics and 1.68 trillion electronic-degrees-of-freedom

 68

quantum-mechanical simulations on 212,992 IBM BlueGene/L processors

(superscalability); and (2) high intra-node, multithreading parallel efficiency

(nanoscalability).

4.1 A Metascalable Dwarf

4.1.1 Embedded Divide-and-Conquer (EDC) Algorithmic Framework

In the embedded divide-and-conquer (EDC) algorithms, the physical system is

divided into spatially localized computational cells [63]. These cells are embedded in a

global field that is computed efficiently with tree-based algorithms (Fig. 4.1).

Figure 4.1: Schematic of embedded divide-and-conquer (EDC) algorithms. The physical
space is subdivided into spatially localized cells, with local atoms constituting
subproblems, which are embedded in a global field solved with tree-based algorithms.

Within the EDC framework, we have designed a number of O(N) algorithms (N is

the number of atoms). For example, we have designed a space-time multiresolution MD

(MRMD) algorithm to reduce the O(N2) complexity of the N-body problem to O(N) [65].

MD simulation follows the trajectories of N point atoms by numerically integrating

 69

coupled ordinary differential equations. The hardest computation in MD simulation is the

evaluation of the long-range electrostatic potential at N atomic positions. Since each

evaluation involves contributions from N−1 sources, direct summation requires O(N2)

operations. The MRMD algorithm uses the octree-based fast multipole method (FMM)

[36, 73] to reduce the computational complexity to O(N) based on spatial locality. We

also use multiresolution in time, where temporal locality is utilized by computing forces

from further atoms with less frequency [64].

We have also designed a fast ReaxFF (F-ReaxFF) algorithm to solve the O(N3)

variable N-charge problem in chemically reactive MD in O(N) time [69]. To describe

chemical bond breakage and formation, the ReaxFF potential energy is a function of the

positions of atomic pairs, triplets and quadruplets as well as the chemical bond orders of

all constituent atomic pairs [100]. To describe charge transfer, ReaxFF uses a charge-

equilibration scheme, in which atomic charges are determined at every MD step to

minimize the electrostatic energy with the charge-neutrality constraint. This variable N-

charge problem amounts to solving a dense linear system of equations, which requires

O(N3) operations. The F-ReaxFF algorithm uses the FMM to perform the matrix-vector

multiplications with O(N) operations. It further utilizes the temporal locality of the

solutions to reduce the amortized computational cost averaged over simulation steps to

O(N). To further speed up the solution, we use a multilevel preconditioned conjugate

gradient (MPCG) method [60]. This method splits the Coulomb interaction matrix into

far-field and near-field matrices and uses the sparse near-field matrix as a preconditioner.

 70

The extensive use of the sparse preconditioner enhances the data locality, thereby

increasing the parallel efficiency.

To solve the exponentially complex quantum N-body problem, we use an EDC

density functional theory (EDC-DFT) algorithm mentioned in section 1.3.4.

4.1.2 Tunable Hierarchical Cellular Decomposition (HCD) for
Algorithm-Hardware Mapping

To map the O(N) EDC algorithms onto parallel computers, we have developed a

tunable hierarchical cellular decomposition (HCD) framework.

Massively distributed scalability via message passing—Superscalability: Our

parallelization in space is based on spatial decomposition, in which each spatial

subsystem is assigned to a compute node in a parallel computer. For large granularity (the

number of atoms per spatial subsystem, N/D > 102), simple spatial decomposition (i.e.,

each node is responsible for the computation of the forces on the atoms within its

subsystem) suffices, whereas for finer granularity (N/D ~ 1), neutral-territory [87, 88] or

other hybrid decomposition schemes [31, 79, 80, 92] can be incorporated into the

framework. Our parallelization framework also includes load-balancing capability. For

irregular data structures, the number of atoms assigned to each processor varies

significantly, and this load imbalance degrades the parallel efficiency. Load balancing

can be stated as an optimization problem [13, 20, 102]. We minimize the load-imbalance

cost as well the size and the number of messages. Our topology-preserving spatial

decomposition allows message passing to be performed in a structured way in only 6

steps, so that the number of messages is minimized. To minimize the load imbalance cost

 71

and the size of messages, we have developed a computational-space decomposition

scheme [61]. The main idea is that the computational space shrinks in a region with high

workload density, so that the workload is uniformly distributed. The sum of load-

imbalance and communication costs is minimized as a functional of the computational

space using simulated annealing. We have found that wavelets allow compact

representation of curved partition boundaries and thus speed up the optimization

procedure [59].

Multicore scalability via multithreading—Nanoscalablity: In addition to the

massive inter-node scalability, “there is plenty of room at the bottom,” as Richard

Feynman noted. At the finest level, EDC algorithms consist of a large number of

computational cells (Fig. 4.1), such as linked-list cells in MD [65] and domains in EDC-

DFT [90], which are readily amenable to parallelization. On a multicore compute node, a

block of cells is assigned to each thread for intra-node parallelization. Our EDC

algorithms are thus implemented as hybrid message passing + multithreading programs.

Here, we use the POSIX thread standard, which is supported across broad architectures

and operating systems. In addition, our framework [63] includes the optimization of data

and computation layouts [55, 96], in which the computational cells are traversed along

various spacefilling curves [57] (e.g. Hilbert or Morton curve). To achieve high

efficiency, special care must be taken also to make the multithreading free of critical

sections. This is illustrated below using MRMD as an example.

In MRMD, the interatomic potential energy V consists of two-body (V2) and

three-body (V3) terms [65]. To compute interatomic forces, the Newton’s third law is

 72

usually used to reduce computation. However, for multithreading, a race condition occurs

when computed force values are sent back to memory due to the random memory access

pattern of MD application. We have designed a critical section-free algorithm to make all

interatomic force computations independent. For example, Eq. (1) shows a conventional

summation rule to compute the three-body interaction without duplicating the same

calculation (the two-body computation follows a similar but simpler procedure):

€

V3 = v(rj ,ri ,rk)
j<k

nbr(i)

∑
i=1

N

∑ , (1)

where ri is the coordinate of the i-th atom and nbr(i) is the list of neighbor atoms within

the three-body cutoff length from atom i. In order to avoid a race condition, we slightly

rewrite Eq. (1) and calculate the three-body force,

€

F
l

(3)
= −∂V3 /∂ri , on the l-th atom as

€

Fl
(3)

= −
∂v(ri ,rj ,rk)

∂rik≠i

nbr(j)

∑
j=1

nbr(i)

∑
i=1

N

∑ δi,l , (2)

where

€

δi,l = 1 (i = l) or 0 (else). Note that Eq. (1) has atom i as the center of atomic triplet

(j, i, k), whereas Eq. (2) has atom i as its head, (i, j, k). The modified three-body

interaction computation consists of a loop over atom i, each iteration of which traverses

atoms j in the neighbor list of atom i and subsequently neighbor atoms k in nbr(j). By

assigning different head atoms i to different threads, there cannot be any race condition.

Our multithreading is based on a master/worker model, in which a master thread

coordinates worker threads that actually perform force computations. We use POSIX

semaphores to signal between the master and worker threads to avoid the overhead of

thread creation and joining in each MD step. There are two check points at each MD time

 73

step, where all worker threads wait a signal from the master thread: (1) before the two-

body force calculation loop, which also constructs the neighbor-lists, after atomic

coordinates are updated; and (2) before three-body force calculation, after having all

atoms complete neighbor-list construction. Table 4.1 and Fig. 4.2 show a pseudo-code

and a flow chart of our algorithm, respectively.

Table 4.1: Pseudo-code of the critical section-free force computation algorithm

Master thread:
nstep = 0
compute 2-body and 3-body forces
spawn worker threads
while (nstep < Number_of_MD_steps)
 post semaphore1 to worker threads to begin neighbor-list
construction and
 2-body force calculation
 wait for semaphore1 signaled back from worker threads
 post semaphore2 to worker threads to begin 3-body force
calculation
 wait for semaphore2 signaled back from worker threads
 update atom positions
 nstep++
join all threads

Worker threads:
while (nstep < Number_of_MD_steps)
 wait for semaphore1 from master thread
 start neighbor-list and 2-body force calculation
 post semaphore1 to master thread
 wait for semaphore2 from master thread
 start 3-body force calculation
 post semaphore2 to master thread
 nstep++

 74

Figure 4.2: Flow chart of the critical section-free MD algorithm. At the beginning of
simulation, a master thread computes complete force and energy before creating worker
threads. Worker threads wait until master updates atomic coordinates

€

{ri} and velocities

€

{vi} (Dt is one MD time step). After receiving a signal from the master thread, the
worker threads start computing two-body forces and neighbor-list, and then send a signal
back to the master. Subsequently, three-body forces are computed following the same
signaling scheme.

Intelligent tuning: The hierarchy of computational cells provides an efficient

mechanism for performance optimization as well—we make both the layout and size of

the cells as tunable parameters that are optimized on each computing platform [63]. Our

EDC algorithms are implemented as hybrid message-passing + multithreading programs

in the tunable HCD framework, in which the numbers of message passing interface (MPI)

processes and POSIX threads are also tunable parameters. The HCD framework thus

maximally exposes data locality and concurrency. We are currently collaborating with

compiler and artificial intelligence (AI) research groups to use: (1) knowledge-

representation techniques for expressing the exposed concurrency; and (2) machine-

learning techniques for optimally mapping the expressed concurrency to hardware [6].

 75

4.2 Scalability Tests

The scalability of our EDC-HCD applications has been tested on various high-end

computing platforms including 212,992 IBM BlueGene/L processors at the Lawrence

Livermore National Laboratory and 131,072 IBM BlueGene/P processors at the Argonne

National Laboratory. The BlueGene/L comprises 106,496 compute nodes (CN), each

with two IBM PowerPC 440 processors (at 700 MHz clock frequency) and 512 MB of

shared memory. Each processor has a 32 KB instruction and data cache, a 2 KB L2

cache, and a 4 MB L3 cache, which is shared with the other processor on the CN. Each

CN has two floating-point units that can perform fused multiply-add operations. In its

default mode (co-processor mode), one of the processors in the CN manages the

computation, while the other processor manages the communication. In an alternative

mode of operation (virtual mode), both processors can be used for computation. A 3D

torus network connects nearest-neighbor CNs, and a collective global tree network

handles communications involving all nodes. The 163,840-processor BlueGene/P

consists of 40 racks each with 32 node-cards. On every node-card, there are 32 quadcore

nodes, each with 2 GB DDR2 DRAM and four 450 POWER PC processors sharing L3

cache. Compared to the BlueGene/L, the BlueGene/P has 20% higher clock frequency

(850 MHz) and 1.4 times larger communication bandwidth (5.1 GB/s). While the sizes of

the private L1 and L2 caches are the same on both platforms, the shared L3 cache of the

BlueGene/P (8 MB) is twice as large as that of the BlueGene/L. On the BlueGene/P,

hardware latency for nearest neighbors is less than 1 microsecond, and latency of one-

way tree traversal is 1.3 microseconds.

 76

4.2.1 Inter-node (Message-Passing) Spatial Scalability

Fig. 4.3 shows the execution and communication times of the MRMD, F-ReaxFF

and EDC-DFT algorithms as a function of the number of processors P on the IBM

BlueGene/L and P.

Figure 4.3: Total execution (circles) and communication (squares) times per MD time
step as a function of the number of processors P of BlueGene/L (open symbols) and
BlueGene/P (solid symbols) for three MD simulation algorithms: (a) MRMD for
2,044,416P atom silica systems; (b) F-ReaxFF MD for 16,128P atom RDX systems; and
(c) EDC-DFT MD for 180P atom alumina systems.

In Fig. 4.3, we use one processor per dual-processor chip on BlueGene/L and all

four cores per quadcore chip on BlueGene/P, so that 512 MB of memory is available per

process to test the same problem size on both systems. Fig. 4.3(a) shows the execution

time of the MRMD algorithm for silica material as a function of the number of processors

 77

P. We scale the problem size linearly with the number of processors, so that the number

of atoms N = 2,044,416P. In the MRMD algorithm, the interatomic potential energy is

split into the long- and short-range contributions, and the long-range contribution is

computed every 10 MD time steps. The execution time increases only slightly as a

function of P on both BlueGene/L and P, and this signifies an excellent parallel

efficiency. We define the speed of an MD program as a product of the total number of

atoms and time steps executed per second. The isogranular speedup is the ratio between

the speed of P processors and that of one processor. The weak-scaling parallel efficiency

is the speedup divided by P, and it is 0.975 on 131,072 BlueGene/P processors. Though

we have not completed all the benchmark runs, the measured weak-scaling parallel

efficiency on 212,992 BlueGene/L processors is 0.985 based on the speedup over 4,096

processors. Fig. 4.3(a) also shows that the algorithm involves very small communication

time.

Fig. 4.3(b) shows the execution time of the F-ReaxFF MD algorithm for RDX

material as a function of P, where the number of atoms is N = 16,128P. The computation

time includes 3 conjugate gradient (CG) iterations to solve the electronegativity

equalization problem for determining atomic charges at each MD time step. On 212,992

BlueGene/L processors, the isogranular parallel efficiency of the F-ReaxFF algorithm is

0.996.

Fig. 4.3(c) shows the performance of the EDC-DFT based MD algorithm for

180P atom alumina systems. The execution time includes 3 self-consistent (SC) iterations

to determine the electronic wave functions and the Kohn-Sham potential, with 3 CG

 78

iterations per SC cycle to refine each wave function iteratively. On 212,992 BlueGene/L

processors, the isogranular parallel efficiency of the EDC-DFT algorithm is 0.998 (based

on the speedup over 4,096 processors).

Our largest benchmark tests include 217,722,126,336-atom MRMD,

1,717,567,488-atom F-ReaxFF, and 19,169,280-atom (1,683,216,138,240 electronic

degrees-of-freedom) EDC-DFT calculations on 212,992 BlueGene/L processors. Though

the absolute strong scaling (i.e. solving the same problem from P = 1 to 212,992) is not

meaningful for such massive parallelism, the three algorithms exhibit excellent

differential strong scalability, i.e., insensitivity of the speed on the granularity N/P. To

quantify this effect, Fig. 4.4(a) plots the program speed (measured by the product of the

number of atoms and MD time steps executed per second) for the MRMD algorithms as a

function of the granularity (the number of atoms per processor, N/P) on BlueGene/L. The

program maintains the same speed over a wide range of granularity for each P. The same

data points are shown in Fig. 4.4(b) as a function of the number of processors, P. The

MRMD program thus achieves a nearly perfect linear speedup as a function of the

number of processors independent of the value of N/P.

 79

Figure 4.4: (a) Speed of MRMD on BlueGene/L as a function of the granularity N/P, for
different numbers of processors P. (b) Speed of MRMD on BlueGene/L as a function of
P for various granularities ranging from N/P = 117,912 to 2,044,416.

4.2.2 Intra-node (Multithreading) Spatial Scalability

We have tested the multithreading scalability of MRMD on a dual Intel Xeon

quadcore platform. Fig. 4.5 shows the speedup of the multithreaded code over the single-

thread counterpart as a function of the number of worker threads. In addition to the

speedup of the total program, Fig. 4.5 also shows the speedups of the code segments for

two-body and three-body force calculations separately. We see that the code scales quite

well up to 8 threads on the 8-core platform. We define the multithreading efficiency as

the speedup divided by the number of threads. The efficiency of two-body force

calculation is 0.927, while that for three-body force calculation is 0.436, for 8 threads.

The low efficiency of the three-body force calculation may be due to the redundant

computations introduced in Eq. (2) to eliminate critical sections. Nevertheless, the

efficiency of the total program is rather high (0.811), since the fraction of the three-body

calculation is about one third of the two-body force calculation. This result shows that the

semaphore-based signaling between master and worker threads is highly effective. In a

 80

test calculation for a 12,228-atom silica system, the running time is 13.6 milliseconds per

MD time step.

Figure 4.5: Speedup of the multithreaded MRMD algorithm over a single-threaded
counterpart for the total program (circles), the two-body force calculation (diamonds),
and three-body force calculation (squares). The solid line shows the ideal speedup.

We have thus developed high-end reactive atomistic simulation programs to

encompass large spatiotemporal scales with common algorithmic and computational

frameworks based on spatiotemporal data-locality principles. In fact, the metascalable

dwarf can reduce diverse applications (including all of the original seven dwarfs) to a

highly scalable form by common techniques of embedding and divide-and-conquer.

According to the scalability tests presented in this chapter, they are likely to scale on

future architectures beyond petaflops. The simulation algorithms are already enabling

million-to-billion atom simulations of mechano-chemical processes, which have

applications in broad areas such as energy and environment [17, 70, 97].

 81

Figure 4.6: Spatiotemporal scales NT accessible by direct molecular-dynamics (white
background) and approximate accelerated-dynamics (gray) simulations with a
petaflops•day of computing. The lines are the NT achieved per petaflops•day of
computing for MD (MRMD), chemically reactive MD (F-ReaxFF), and quantum-
mechanical MD (EDC-DFT) simulations, respectively.

A critical issue, however, is the time scale studied by MD simulations. We define

the spatiotemporal scale, NT, of an MD simulation as the product of the number of atoms

N and the simulated time span T. On petaflops computers, direct MD simulations can be

performed for NT = 1-10 atom•seconds (i.e. multibillion-atom simulation for several

nanoseconds or multimillion-atom simulation for several microseconds). More

specifically, a day of computing on a sustained petaflops computer (i.e. one petaflops•day

of computing) achieves NT = 2.14 (e.g. 1 million atoms for 2.14 microseconds) (Fig. 4.6),

according to the benchmark test in section 4.2 (i.e., extrapolated from the measured

MRMD performance on the BlueGene/L, which is rated as 0.478 petaflops according to

the Linpack benchmark). Accelerated-dynamics simulations [101] such as molecular-

kinetics simulations [58] will push the spatiotemporal envelope beyond NT = 10, but they

 82

need to be fully validated against direct MD simulations at NT = 1-10. Such large

spatiotemporal-scale atomistic simulations are expected to advance scientific knowledge.

 83

Chapter 5

Optimizing O(N) Density Functional Theory

In preceding chapters, we have presented our parallelization framework for

atomistic simulations and detailed our hierarchical optimization scheme for stencil

computations. In this chapter, we unify our preceding discussions in performance

analysis, multilevel parallelization and optimization to improve the computational

performance of a production level first-principles molecular-dynamics application [90,

91]. This scientific code implements a divide-and-conquer algorithm based MD

simulation that uses small DFT calculations “on the fly” for computing interatomic forces

[48]. Here, we particularly focus on improving the scalability and floating point

performance of this application on large-scale clusters, in particular on BlueGene/P and

Intel Xeon clusters.

 84

5.1 Application Description

The density functional theory (DFT) problem is formulated as a minimization of

the energy functional EQM[ψNel] with respect to electronic wave functions (or Kohn-Sham

orbitals) ψNel(r) = {ψn(r)|n = 1,...,Nel}, subject to orthonormality constraints (Nel is the

number of wave functions on the order of N, and r denotes a three-dimensional position

vector) [43]. The asymptotic computational complexity of the DFT problem is O(N3) for

the orthogonalization of the Kohn-Sham orbitals, while it is proportional to N2 for

iterative minimization methods for system sizes studied practically (N < 103, where the

orthogonalization computation is not dominant) [40]. The data locality principle called

quantum nearsightedness [49] in DFT is best implemented with a divide-and-conquer

(DC) algorithm [105, 106], which naturally leads to O(N) DFT calculations [35].

However, it is only in the past several years that O(N) DFT algorithms, especially with

large basis sets (> 104 unknowns per electron, necessary for the transferability of

accuracy), have attained controlled error bounds, robust convergence properties, and

energy conservation in its use in molecular dynamics (MD) simulations, to make large

DFT-based MD simulations practical [29, 91]. The embedded divide-and-conquer (EDC)

DFT algorithm considered in this research combines a hierarchical grid technique with

multigrid preconditioning and adaptive fine mesh generation [90, 91]. Our EDC-DFT

method is implemented as a ~38,500 lines Fortran 90 program that uses MPI for inter

process message shuttling.

 85

5.2 Systematic Optimization

In this section, we detail our systematic optimization approach. We first present

our system- and node-level performance evaluation of the EDC-DFT code, and then

detail our performance enhancement methodology.

5.2.1 Performance Evaluation

The performance analysis of our Density Functional Theory (DFT) based

Molecular Dynamics (MD) code on BlueGene/P has revealed that our implementation

has excellent weak- and strong-scaling properties.

Figure 5.1: Weak-scaling performance

Fig. 5.1 shows the weak-scaling performance of the DFT code. Here, the principal

x-axis shows the number of processors (P) used. The largest test case includes the whole

BlueGene/P system with 163840 processors at Argonne National Laboratory. The

 86

secondary x-axis shows the total number of the atoms in the system (N). Here, we scale N

linearly with P, where the grain size (N/P) is 60 atoms/process. We show both the

computation (or CPU) time and the communication time in Fig. 5.1, where the time is

measured by MPI_WTIME() thereby refers to the wall-clock time. The weak-scaling

parallel efficiency, which we define as the run time on the smallest benchmark divided by

that on increasing number of processors, is observed to be more than 98% on P =

163840. Thus our spatial decomposition implementation is highly effective in terms of

inter-node scalability of DFT computations up to 163840 processors.

Figure 5.2: Strong-scaling performance

Fig. 5.2 shows the strong-scaling performance of the DFT code. In this

benchmark, we keep N constant, and use different P to simulate the same physical

system. Figure 5.2 plots the CPU times as measured by MPI_WTIME() as a function of

P. The solid diagonal line shows the ideal strong-scaling behavior. We demonstrate two

test systems composed of 9.83 and 3.93 million atoms. The largest test case uses the

 87

whole BlueGene/P system with 163840 processors. The strong-scaling parallel

efficiency, which we define as the normalized ratio of the run times to solve the problem

using larger number of processors, is observed to be more than 97%. This result, together

with the weak-scaling performance, confirms that our spatial decomposition based

divide-and-conquer implementation for O(N) scaling DFT problem almost ideally scales

on BlueGene/P system and will continue to be scalable on the next generation

BlueGene/Q computer.

We used the Tuning and Analysis Utilities (TAU) toolkit to gather performance

information through the execution of our program on BlueGene/P.

Figure 5.3: Percentage exclusive times

In Fig. 5.3, we show percentages of the exclusive times spent in routines averaged

over a 64 processor run (in virtual-node mode, i.e., 4 MPI processes per node) with 60

atoms/processor grain size. In this figure, we demonstrate routines that have higher than

1% impact on the total execution time.

In Fig. 5.4, we present percentage exclusive times across each MPI process for

this 64 processor run. Here, we have observed that the normalized standard deviation of

 88

the individual times for the shown routines on different processes is less than 1%. This

shows that our spatial decomposition implementation divides the computational load

evenly among the processors.

Figure 5.4: Percentage exclusive times across a 64-process run on BlueGene/P

In order to evaluate intra-node performance, we have identified the top

performance bottleneck routines. Specifically, we have observed that the 4 most time-

consuming subroutines given below spend more than 60% of the total CPU time.

Therefore, in-core optimization of the corresponding subroutines could significantly

reduce computation time.

1. Conjugate gradient relaxation

 89

2. Sparse-matrix to vector multiplication

3. Linear mixing of wave functions with coefficients

4. Inner product of two wave functions

These subroutines mainly implement 2 computational kernels: (1) Nearest-

neighbor and high-order stencil computations; and (2) Basic linear algebra operations

such as vector dot product, and constant times a vector plus a vector.

In order to analyze the current floating point performance of these code sections,

we have used IBM Hardware Performance Monitoring (HPM) API on BlueGene/P

system. Our analysis with HPM revealed that the IBM XL Fortran compiler fails to

generate instructions to utilize the dual floating-point units (FPUs) of the PowerPC (PPC)

450 processor. Dual FPU instructions operate on pairs of double-precision (DP) floating-

point numbers, and perform single-instruction multiple data (SIMD) processing to deliver

two DP floating-point operations per cycle. If instructions are not SIMDized, attainable

performance is halved. In fact, our HPM analysis has shown that the floating-point

operations per second (flops) performance of our code is ~200 Mflops per core, i.e., ~6%

of the peak per-core flops performance of the PPC 450 processor. Finally, while we

present our performance evaluation on BlueGene/P using TAU and HPM in this section,

we have verified the validity of these results using Intel Vtune Performance Analyzer on

a quadcore Intel Xeon 5320 processor as well.

 90

5.2.2 Model-Guided Optimization

As mentioned in section 1.3.4, the EDC-DFT algorithm represents the physical

system as a union of overlapping spatial domains, Ω = ∪α Ωα (see Figure 5.5), and

physical properties are computed as linear combinations of domain properties [90, 91].

Figure 5.5: Schematic of the divide-and-conquer algorithm in 2D. The physical space Ω
is a union of overlapping domains, . Each domain is further decomposed
into the non-overlapping core Ω0α, and the buffer layer Γα (see the shaded area). The depth
of the buffer layer is b.

For example, the electronic density is expressed as ρ(r) = Σα pα(r) Σn fnα|ψnα(r)|2,

where pα(r) is a support function that vanishes outside the α-th domain Ωα, and fnα and

ψnα(r) are the occupation number and the wave function of the n-th Kohn-Sham orbital in

Ωα. The domains are embedded in a global Kohn-Sham potential, which is a functional of

ρ(r) and is determined self-consistently with {fnα,ψnα(r)}. We use the multigrid method to

compute the global potential in O(N) time. The DFT calculation in each domain is

 91

performed using a real-space approach [14, 95], in which electronic wave functions are

represented on grid points. The real-space grid is augmented with coarser multigrids to

accelerate the iterative solution. Furthermore, a finer grid is adaptively generated near

every atom, in order to accurately operate ionic pseudopotentials for calculating electron-

ion interactions.

Each domain Ωα is further decomposed into its sub-volumes,

 Ωα =Ω0α ∪Γα , (1)

where Ω0α is the non-overlapping core,

 Ω =∪
α
Ω0α ; Ω0α ∩Ω0β = 0 (α ≠ β) , (2)

and Γα is the buffer layer [21]. Boundary conditions on {ψn
α (r)} are imposed at the

boundary of domain Ωα. We use either the rigid-wall boundary condition, in which

the wave function vanishes at the boundary, or the periodic boundary condition. The

wave function values in the buffer layer Γα may be contaminated by the artificial

boundary conditions imposed at ∂Ωα . Thus, the domain support function pα (r) is made

zero near ∂Ωα within Γα [21], so that the contaminated wave function values do not

contribute to the density ρ(r) .

The EDC-DFT algorithm on the hierarchical real-space grids is implemented on

parallel computers based on spatial decomposition [90, 91]. Each compute node contains

one or more domains of the EDC algorithm. Then, only the global density but not

individual wave functions needs to be communicated. The resulting large

 92

computation/communication ratio makes this approach highly scalable. In the following,

we present our model-guided optimizations for the parallel EDC-DFT algorithm.

5.2.2.1 Optimization of Domain Size

We first optimize the spatial decomposition domain size in the EDC-DFT

algorithm, based on an analysis of its computational cost given in Theorem 1.

Theorem 1: Consider a cubic system of side length L, and let the side length and

the buffer depth of a domain in the DC-DFT algorithm be l and b, respectively. The

computational complexity of the DFT computation within each domain is denoted as ν.

Then, the optimal domain size l*, which incurs the minimal computational cost, is given

by

 l* =
2b
ν −1

. (3)

Proof: The number of domains is Ndomain = (L/l)3, and the computational cost per

domain can be written as

 Tdomain = c l + 2b()3ν , (4)

where c is a prefactor. The total computational cost is thus a function of l:

 Tcomp l() = Tdomain •Ndomain = c
L
l

!

"
#

$

%
&
3

l + 2b()3ν . (5)

The optimal domain size to minimize the computational cost is then given by

 l* = argmin Tcomp l()!" #$=
2b
ν −1

. (6)

QED.

 93

As mentioned earlier, the computational complexity of the DFT problem is N2 for

typical domain sizes, N < 100, and thus l* = 2b. (The asymptotic complexity, which has

rarely been encountered in practical DFT calculations [39], is O(N3), and accordingly, l*

= b.) Based on the analysis presented here, we select optimal l* in the b to 2b range in our

typical run.

5.2.2.2 Optimization of Buffer Depth

The choice of the buffer depth b is dictated by accuracy requirement. Namely, the

quantum nearsightedness principle [49] indicates that the error involved in the EDC-DFT

algorithm decays exponentially as a function of b [81]. This proposition is confirmed by

numerical experiments shown in Fig. 5.6 [90].

To test the convergence of calculation with respect to the buffer depth, Fig. 5.6

shows the calculated potential energy as a function of b for an amorphous CdSe system

containing 512 atoms in a cubic cell of length 45.664 a.u. (The domain size is fixed as

11.416 a.u.) The potential energy converges within 10-3 a.u. per atom above b = 4 a.u.

 94

Figure 5.6: Potential energy as a function of the buffer length b for an amorphous CdSe
system (512 atoms in a cubic cell of side length, 45.664 a.u.). The domain size is fixed as
11.416 a.u. The atomic units are used for both energy and length. Numerals in the figure
indicate the number of self-consistent iterations required for the convergence of the

electron density within ρi (
r)− ρi−1(

r)() / ρ0{ }
2
≤10−4 , where ρi (

r) is the electron

density at ith iteration, ρ0 is the average electron density, 0.0215 a.u., and the brackets
denote the average over the grid for the entire system.

Since the computational complexity of the EDC-DFT algorithm scales with the

buffer depth b asymptotically as b3
ν = b6 ~ b9 (see equation 5), the large b value required

for obtaining a sufficient accuracy in energy (e.g., 10-3 a.u. per atom) represents a major

computational bottleneck. Based on the analysis presented here, we select the buffer

depth parameter with respect to our accuracy requirements for different physical

simulations.

5.2.3 Profiling-Guided Optimization

In this section, guided by our performance evaluation given earlier in section 5.2,

we develop an efficient computation acceleration subsystem to reduce performance

 95

footprint of kernels mentioned earlier. The numerical core of DFT application represents

a HOSC as discussed in section 3.1.1 therefore we utilize some of the in-core

optimization methods that are detailed in section 3.2.3. More specifically, our approach

includes the following methods to efficiently harvest computer processor and memory

resources.

5.2.3.1 Performance Libraries

IBM Engineering and Scientific Subroutine Library (ESSL) and Intel Math

Kernel Library (MKL) provide a collection of high performance mathematical

subroutines for many common scientific and engineering applications. In our work, we

took advantage of such performance libraries whenever possible. Specifically, WFN_MIX

and OVLP subroutines shown in Fig. 5.3 implement linear mixing of wave functions

with coefficients and inner product of two wave functions (represented as a linear array

of float numbers), respectively. Both MKL and ESSL features subroutines that

implement such functionality. In particular, we used DAXPY and DDOT subroutines

provided by Intel MKL as an alternative to our existing WFN_MIX and OVLP

subroutines, respectively.

5.2.3.2 Loop Blocking and Scalar Replacement

Our percentage exclusive times plot, given in Fig. 5.3, revealed that the conjugate

gradient relaxation subroutine took %21.1 of the execution time averaged over our

experimental runs. Based on this evaluation, we developed code transformations that

improve data locality within the main loop inside this subroutine, as shown in Table 5.1.

 96

Table 5.1: A sample code snippet from conjugate gradient relaxation subroutine
optimization is shown. The first section represents the original implementation; bottom
code snippet shows our scalar replacement and loop blocking implementation.

Original implementation:
ndat = nx1*ny1*nz1
 …
do n = 1, ndat
 i = ncorsx(n)
 j = ncorsy(n)
 k = ncorsz(n)
 km1 = k - 1
 kp1 = k + 1
 jm1 = j - 1
 jp1 = j + 1
 im1 = i - 1
 ip1 = i + 1
 g(n) = g(n) &
& - dk(1,dpth)*(wrk(im1,j,k)+wrk(ip1,j,k)) &
& - dk(2,dpth)*(wrk(i,jm1,k)+wrk(i,jp1,k)) &
& - dk(3,dpth)*(wrk(i,j,km1)+wrk(i,j,kp1))
end do

Scalar replacement and loop blocking implementation:
n = 1
 tmp1 = dk(1,dpth)
 tmp2 = dk(2,dpth)
 tmp3 = dk(3,dpth)
do k = 1, nz1
 do j = 1, ny1
 af = wrk(0,j,k)
 bf = wrk(1,j,k)
 cf = wrk(2,j,k)
 do i = 1, nx1
 km1 = k - 1
 kp1 = k + 1
 jm1 = j - 1
 jp1 = j + 1
 im1 = i - 1
 ip1 = i + 1
 g(n) = g(n) &
& - tmp1*(af+cf) &
& - tmp2*(wrk(i,jm1,k)+wrk(i,jp1,k)) &
& - tmp3*(wrk(i,j,km1)+wrk(i,j,kp1))
 af = bf
 bf = cf
 cf = wrk(ip1+1,j,k)
 end do
 end do
 n = n + 1
end do

 97

5.2.3.3 SIMD Processing

It is of great importance to effectively use SIMD extensions since (1) most

modern computing platforms have incorporated SIMD capability in their processors, and

(2) non-SIMD operations can severely reduce the floating-point performance. For

example, BlueGene/P’s PowerPC (PPC) 450 processor features a double precision, dual

pipe, floating point unit (FPU). Dual FPU instructions operate on pairs of double-

precision (DP) floating-point numbers, and perform SIMD processing to deliver two DP

floating-point operations per cycle. If instructions are not SIMDized, attainable

performance will be halved. Therefore, recent work has focused on exploiting SIMD

capability of PPC 450 for petaflops applications on BlueGene/P [3].

In our earlier work, we used several code transformations for SIMDizing stencil

computations and molecular dynamics simulations on Intel quadcore based platforms [25,

26, 78]. Here, we use Intel C compiler’s SSE3 intrinsics to implement SIMD concepts for

DFT application. Since the original DFT code is written in Fortran 90, we first port

bottleneck subroutines to C language considering differences (e.g., array layout, variable

pass mechanism, internal compiler naming convention) in two languages. Then we

implement with SSE3 intrinsics to take advantage of XMM registers of Intel platform.

Table 5.2 shows a sample code snippet.

 98

Table 5.2: Original Fortran 90 code for linear mixing of wavefunctions subroutine and
corresponding C variant written with explicit SSE3 intrinsics

Original implementation:
subroutine wfn_mix0(wfn1,coe2,wfn2)

use mod_mgdc
 implicit real*8 (a-h,o-z)
 dimension wfn1(mshnum), & & wfn2(mshnum)

 do i = 1, mshnum
 wfn1(i) = wfn1(i) + &
 & coe2*wfn2(i)
 end do

 return
end

Explicit SSE3 implementation:
void wfn_mix0_(double * wfn1,const double * coe2,const double * wfn2){
unsigned int i;
__m128d mmcoe2;
mmcoe2 = _mm_loaddup_pd(coe2);

for (i = 0; i < mshnum / 2; i++)
 _mm_store_pd(&wfn1[2*i],
 _mm_add_pd(_mm_load_pd(&wfn1[2*i]),
 _mm_mul_pd(_mm_load_pd(&wfn2[2*i]),mmcoe2)));

if ((mshnum % 2) != 0) {
for (i = mshnum - mshnum % 2; i < mshnum; i++)
 wfn1[i] += (*coe2) * wfn2[i];}

return;}

In Table 5.2, first the _mm_loaddup_pd intrinsic loads the double-precision

floating-point coefficient coe2 into the lower and upper halves of the 16-byte long

XMM register. Second, 2 double precision (8 byte) numbers, which are consecutive on

16-byte boundary aligned double-precision floating-point arrays, wfn1 and wfn2, are

loaded to another register by _mm_load_pd intrinsic. Finally, SIMD multiply-add

operations are performed on XMM registers and results are stored back to computer

 99

memory. We will consider the memory latency hiding benefit of this implementation in

the next section.

5.2.3.4 Memory Latency Hiding

Memory structure is critical to achieving high performance on recent processors

featuring complex memory subsystems including registers, multilevel caches and storage

buffers. Performance can be easily limited by the speed at which data can be transferred

from system memory to processor and thus researchers recently developed several

memory optimization frameworks for emerging architectures [4, 28, 54].

To hide memory latency, we treat memory alignment carefully. In Table 5.2, it

should be noted that memory load/store operations are handled through _mm_store_pd

and _mm_load_pd intrinsics, which are equivalent to MOVAPD in x86 assembly

programming language. The use of MOVAPD to load an XMM register from a 128-bit

memory location (or to store the contents of an XMM register into a 128-bit memory

location) requires the operands to be aligned on a 16-byte boundary. We ensure 16-byte

boundary alignment at application level, using the keyword

__attribute__((aligned(16))). This avoids redundant alignment checks

during run time.

Similar to x86 microprocessor, the BlueGene/P architecture allows for two

double-precision values to be loaded in parallel in a single cycle, provided that the load

address is aligned such that the values loaded do not cross a cache-line boundary (which

is 32-bytes). If a non-aligned data is accessed or modified at application level, the

PowerPC hardware generates an alignment exception and the data is artificially aligned at

 100

the kernel level. Penalty for such context switch is in the order of thousands of cycles.

Thus for efficient data transfer, data must be word aligned and must fit in a quadword

aligned quadword. IBM XL Fortran compiler provides user level functions as compiler

hints to inform the compiler that the incoming data is aligned according to specific byte

boundary, so it can efficiently generate load and stores without alignment checks. At

BlueGene/P platform, we ensure proper alignment at the application level and provide

alignment guarantees to the compiler (using Fortran’s ALIGNX function) for efficient

load/store instruction generation.

5.2.3.5 Register and Cache Blocking

In section 3, we used blocking techniques targeting different levels of memory

hierarchy: TLB, last level cache (LLC), and SIMD register file to increase memory

performance on Intel quadcore based platforms [26]. Indeed these techniques has proven

successful, as a consequence there are recent efforts to integrate such optimizations into

performance tuning frameworks [15, 42].

In our DFT code, all of the top performance hotspot subroutines listed in section

5.2.1 feature large loops sweep the entire grid for wave functions. To increase spatial

locality and reduce effective memory access time of the DFT application, we have

implemented register and cache blocking methods mentioned in chapter 3.

In summary, the tangible benefit of our systematic optimization has been

achieving ~15% performance improvement for the DFT application. Such an

improvement for a production level application such as our DFT program can potentially

save one-to-two orders of magnitude of petaflops•days of computing resources for a

 101

typical run or can extend the time and length scale of real-life MD simulations at the

same computational cost. As the width of the SIMD register files increase in the

emerging processors (e.g., Intel Sandy Bridge, Intel Ivy Bridge), and with the

introduction of three-operand SIMD instruction format (e.g., advanced vector extensions

to x86 instruction set), we expect our optimization techniques to be increasingly more

effective on future computers.

 102

Chapter 6

Conclusion

The focus of our work has been efficient parallelization and optimization of

scientific computing applications on emerging parallel computer architectures. As high-

performance computing systems feature increasingly complex levels of parallel

computing hierarchy, it is imperative that application scientists overcome challenges

involved with using such systems. Our contributions to this challenge, as we summarize

in this chapter, enable effective use of emerging parallel computers to tackle vastly larger

computational problems. In this chapter, we also detail ideas for future work that will

make high performance computing systems play an even more important role in scientific

discoveries.

6.1 Summary of Contributions

Productivity Tools on Emerging Architectures: We devised an efficient

performance profiling methodology that targets hybrid computer systems. Based on Cell

 103

Messaging Layer communication library, we developed the first cluster level

performance profiler for the Roadrunner, which is the first hybrid supercomputer and the

first supercomputer to attain a sustained petaflop/second performance. We demonstrated

that our performance tool utilizes the Cell processor’s high-bandwidth on-chip

communication bus effectively to overlap collection of performance events with actual

program execution. In addition, we showed that our library design maintains a very low

memory footprint while it fully utilizes the exotic features of Cell architecture such as the

coherent direct-memory-access mechanism. To demonstrate the utility of our tool, we

ported several scientific applications to Cell platform. Experiments validated that our

productivity tool provides a key starting point on applications performance optimization

on Cell-based computing platforms.

Parallelization and Optimization Framework: We have presented

parallelization algorithms and optimization strategies that allow leveraging multicore

computer systems optimally for large-scale simulations. In particular, we have studied

high-order stencil computations, which is a computation-bound mathematical kernel at

the heart of most finite-difference time-domain (FDTD) method based simulations. We

have developed a multilevel optimization framework for high-order stencil computations

that combines: (1) data locality optimizations through auto-tuned tiling for efficient use

of hierarchical memory; (2) register blocking and data parallelism via single-instruction

multiple-data techniques to utilize registers and exploit data locality; (3) inter-core

parallelization via multithreading and explicit non-uniform memory access control; and

(4) inter-node parallelization via spatial decomposition. We have applied our

 104

optimization scheme to a 6th-order stencil based FDTD code. Our benchmarks on 32,768

BlueGene/P processors achieved over 98% weak-scaling parallel efficiency. We have

also observed superlinear strong scaling on a large-cache x86 architecture based cluster.

We have showed that our optimizations increase cache performance considerably. Our

experiments have achieved the highest reported percentage peak performance for this

computation pattern on general-purpose x86 architectures.

In a further effort to design scalable parallelization frameworks that would be

applicable to the future generation of multipetaflops supercomputers, we have outlined a

metascalable parallelization framework for atomistic simulations. In this study, we

combined (1) an embedded divide-and-conquer (EDC) algorithmic framework based on

spatial locality to design linear-scaling algorithms for high complexity problems; and (2)

a tunable hierarchical cellular decomposition (HCD) parallelization framework to map

these O(N) algorithms onto a multicore cluster based on hybrid implementation

combining message passing and critical section-free multithreading.

A Systematic Optimization Scheme: We have unified our experience in

performance optimization to improve the productivity of a real-world density functional

theory application. As the first step of our systematic optimization scheme, we

comprehensively evaluated the system level performance of this large-scale legacy code

on various high-end computing platforms. Following this scalability analysis, we adopted

a model-guided system-level optimization approach where we provided a theoretical

analysis of the total computational cost implied by the application and optimally tuned

algorithmic decomposition parameters such as the domain size and the buffer depth. As

 105

the second step of our optimization scheme, we used a profiling-guided node-level

optimization methodology to restructure our program and implement variety of processor

and memory optimizations. Based on the insights gained through performance analysis,

we developed code transformations that improve data locality, concurrency and the

floating-point performance in the original application where it is not efficient to use an

existing performance library⎯if one exists at the least. The flowchart in Fig. 6.1

summarizes our systematic optimization scheme.

Figure 6.1: Systematic optimization process flow

 106

To give a high-level description of our contributions, this thesis work develops a

systematic end-to-end optimization approach for scientific applications on emerging high

performance computing platforms. We underscore the significance of software

productivity tools, in particular efficient performance analysis libraries, to achieve high

application performance on new generation of supercomputers. To that end, we have

developed a cluster level performance analysis tool on the first generation of hybrid

supercomputers. On the application side, we effectively used such productivity tools to

carefully port legacy code to new computing platforms and tune our algorithms to mimic

architectural design decisions at the software level.

6.2 Future Work

As our study shows, it is imperative that application scientists are provided with a

mature software stack to ensure the productivity of future computing systems. While we

presented various memory efficient algorithms and processor optimizations in this

dissertation research, it is still possible to extend this work to adapt new architectures

beyond the ones discussed here.

 As higher performance computer systems emerge, the extent of scientific

computing is rapidly increasing. We believe our metascalable design paradigm will allow

future applications continue to scale efficiently on the new generation of multipetaflops

computers.

 107

Bibliography

[1] F. F. Abraham, R. Walkup, H. Gao, M. Duchaineau, T. D. D. L. Rubia, and M.
Seager, "Simulating materials failure by using up to one billion atoms and the
world's fastest computer: Work-hardening," Proceedings of the National Academy
of Sciences of the United States of America, vol. 99, pp. 5783-5787, 2002.

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D.
A. Patterson, W. L. Pishker, J. Shalf, S. W. Williams, and K. A. Yelick, "The
landscape of parallel computing research: a view from Berkeley," 2006.

[3] N. Attig, "Computational physics with petaflops computers," Computer Physics
Communications,, vol. 180, pp. 555-558, 2008.

[4] L. Bachega, S. Chatterjee, K. A. Dockser, J. A. Gunnels, M. Gupta, F. G.
Gustavson, C. A. Lapkowski, G. K. Liu, M. P. Mendell, C. D. Wait, and T. J. C.
Ward, "A high-performance SIMD floating point unit for BlueGene/L:
Architecture, compilation, and algorithm design," in Proceedings of the 13th
International Conference on Parallel Architectures and Compilation Techniques:
IEEE Computer Society, 2004.

[5] D. Bailey, J. Barton, T. Laninski, and H. Simon, "The NAS Parallel
Benchmarks," NASA Ames Research Center, Moffett Field, California, 1991.

[6] B. Bansal, U. Catalyurek, J. Chame, C. Chen, E. Deelman, Y. Gil, M. Hall, V.
Kumar, T. Kurc, K. Lerman, A. Nakano, Y. L. Nelson, J. Saltz, A. Sharma, and P.
Vashishta, "Intelligent optimization of parallel and distributed applications," in
Proceedings of the Next Generation Software Workshop, International Parallel
and Distributed Processing Symposium: IEEE, 2007.

 108

[7] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin, and J. C.
Sancho, "Entering the petaflop era: the architecture and performance of
Roadrunner," in Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing Austin, Texas: IEEE Press, 2008.

[8] R. Bordawekar, A. Choudhary, and J. Ramanujam, "Automatic optimization of
communication in compiling out-of-core stencil codes," in Proceedings of the
10th International Conference on Supercomputing Philadelphia, Pennsylvania:
ACM, 1996.

[9] M. Bromley, S. Heller, T. McNerney, and G. L. Steele, "Fortran at ten gigaflops:
the connection machine convolution compiler," in Proceedings of the ACM
SIGPLAN 1991 Conference on Programming Language Design and
Implementation Toronto, Ontario, Canada: ACM, 1991.

[10] H. Brunst and W. E. Nagel, "Scalable performance analysis of parallel systems:
Concepts and experiences," in Parallel Computing: Software, Algorithms,
Architectures Applications, pp. 737-744, 2003.

[11] A. Buttari, J. Dongarra, and J. Kurzak, "Limitations of the PlayStation 3 for high
performance cluster computing," University of Tennessee Computer Science,
Tech. rep. 2007.

[12] R. Car and M. Parrinello, "Unified approach for molecular dynamics and density-
functional theory," Physical Review Letters, vol. 55, pp. 2471-2474, 1985.

[13] U. V. Catalyurek, E. G. Boman, K. D. Devine, D. Bozdag, R. Heaphy, and L. A.
Riesen, "Hypergraph-based dynamic load balancing for adaptive scientific
computations," in Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS): IEEE, 2007.

[14] J. R. Chelikowsky, Y. Saad, S. Ogut, I. Vasiliev, and A. Stathopoulos, "Electronic
structure methods for predicting the properties of materials: Grids in space,"
Physica Status Solidi (b), vol. 217, pp. 173-195, 2000.

[15] C. Chen, J. Chame, and M. Hall, "CHiLL: A framework for composing high-level
loop transformations," USC Computer Science Technical Report June 2008.

 109

[16] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata, "Cell broadband engine
architecture and its first implementation: a performance view," IBM J. Res. Dev.,
vol. 51, pp. 559-572, 2007.

[17] Y. C. Chen, Z. Lu, K. Nomura, W. Wang, R. K. Kalia, A. Nakano, and P.
Vashishta, "Interaction of voids and nanoductility in silica glass," Physical
Review Letters, vol. 99, p. 155506, 2007.

[18] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick, "Optimization
and performance modeling of stencil computations on modern microprocessors,"
SIAM Review (SIREV), vol. 51, pp. 129-159, 2009.

[19] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson,
J. Shalf, and K. Yelick, "Stencil computation optimization and auto-tuning on
state-of-the-art multicore architectures," in Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing Austin, Texas: IEEE Press, 2008.

[20] K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hendrickson, J. D. Teresco, J.
Faik, J. E. Flaherty, and L. G. Gervasio, "New challenges in dynamic load
balancing," Applied Numerical Mathematics, vol. 52, pp. 133-152, 2005.

[21] S. L. Dixon and K. M. Merz, "Fast, accurate semiempirical molecular orbital
calculations for macromolecules," Journal of Chemical Physics, vol. 107, p. 879,
1997.

[22] J. Dongarra, D. Gannon, G. Fox, and K. Kennedy, "The impact of multicore on
computational science software," CTWatch Quarterly, vol. 3, pp. 11-17, 2007.

[23] H. Dursun, K. J. Barker, D. J. Kerbyson, and S. Pakin, "Application profiling on
Cell-based clusters," in Proceedings of the 2009 IEEE International Symposium
on Parallel and Distributed Processing Rome, Italy: IEEE Computer Society,
2009.

[24] H. Dursun, K. J. Barker, D. J. Kerbyson, S. Pakin, R. Seymour, R. K. Kalia, A.
Nakano, and P. Vashishta, "An MPI performance monitoring interface for cell
based compute nodes," Parallel Processing Letters, vol. 19, pp. 535-552, 2009.

 110

[25] H. Dursun, K. Nomura, L. Peng, R. Seymour, W. Wang, R. K. Kalia, A. Nakano,
and P. Vashishta, "A multilevel parallelization framework for high-order stencil
computations," in Proceedings of the 15th International Euro-Par Conference on
Parallel Processing Delft, The Netherlands: Springer-Verlag, 2009.

[26] H. Dursun, K. Nomura, W. Wang, M. Kunaseth, L. Peng, R. Seymour, R. K.
Kalia, A. Nakano, and P. Vashishta, "In-core optimization of high-order stencil
computations," in Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA), Las Vegas,
Nevada, 2009.

[27] S. Emmott and S. Rison, "Towards 2020 Science," Microsoft Research,
Cambridge, UK 2006.

[28] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park, M.
Erez, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan, "Sequoia: programming
the memory hierarchy," in Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing Tampa, Florida: ACM, 2006.

[29] J. L. Fattebert and F. Gygi, "Linear scaling first-principles molecular dynamics
with controlled accuracy," Computer Physics Communications, vol. 162, pp. 24-
36, 2004.

[30] J. L. Fattebert and J. Bernholc, "Towards grid-based O(N) density-functional
theory methods: optimized nonorthogonal orbitals and multigrid acceleration,"
Physical Review B, vol. 62, pp. 1713-1722, 2000.

[31] B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, T. J. C. Ward, M. Giampapa, Y.
Zhestkov, M. C. Pitman, F. Suits, A. Grossfield, J. Pitera, W. Swope, R. Zhou, S.
Feller, and R. S. Germain, " Blue Matter: strong scaling of molecular dynamics on
BlueGene/L " Lecture Notes in Computer Science, vol. 3992, pp. 846-854, 2006.

[32] M. Frigo and V. Strumpen, "Cache oblivious stencil computations," in
Proceedings of the 2005 ACM/IEEE Conference on Supercomputing Cambridge,
Massachusetts: ACM, 2005.

 111

[33] T. C. Germann and P. S. Lomdahl, "Recent advances in large-scale atomistic
materials simulations," Computing in Science and Engineering, vol. 1, pp. 10-11,
1999.

[34] J. N. Glosli, D. F. Richards, K. J. Caspersen, R. E. Rudd, J. A. Gunnels, and F. H.
Streitz, "Extending stability beyond CPU millennium: a micron-scale atomistic
simulation of Kelvin-Helmholtz instability," in Proceedings of the 2007
ACM/IEEE Conference on Supercomputing Reno, Nevada: ACM, 2007.

[35] S. Goedecker, "Linear scaling electronic structure methods," Rev. Mod. Phys.,
vol. 71, pp. 1085-1123, 1999.

[36] L. Greengard and V. Rokhlin, "A fast algorithm for particle simulations," Journal
of Computational Physics, vol. 73, pp. 325-348, 1987.

[37] M. Gschwind, F. Gustavson, and J. F. Prins, "High performance computing with
the cell broadband engine," Scientific Programming vol. 17, pp. 1-2, 2009.

[38] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and T.
Yamazaki, "Synergistic processing in Cell's multicore architecture," IEEE Micro,
vol. 26, pp. 10-24, 2006.

[39] F. Gygi, E. Draeger, B. R. d. Supinski, R. K. Yates, F. Franchetti, S. Kral, J.
Lorenz, C. W. Ueberhuber, J. A. Gunneis, and J. C. Sexton, "Large-scale first-
principles molecular dynamics simulations on the BlueGene/L platform using the
Qbox code," Proceedings of Supercomputing 2005, ACM, 2005.

[40] F. Gygi, R. K. Yates, J. Lorenz, E. W. Draeger, F. Franchetti, C. W. Ueberhuber,
B. R. d. Supinski, S. Kral, J. A. Gunnels, and J. C. Sexton, "Large-scale first-
principles molecular dynamics simulations on the BlueGene/L platform using the
Qbox code," in Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing: IEEE Computer Society, 2005.

[41] D. Hackenberg, H. Brunst, and W. E. Nagel, "Event tracing and visualization for
Cell Broadband Engine systems," in Proceedings of the 14th International Euro-
Par Conference on Parallel Processing Las Palmas de Gran Canaria, Spain:
Springer-Verlag, 2008.

 112

[42] A. Hartono, B. Norris, and P. Sadayappan, "Annotation-based empirical
performance tuning using Orio," in Proceedings of the 2009 IEEE International
Symposium on Parallel and Distributed Processing, Rome, Italy, 2009.

[43] P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," Phys. Rev., vol. 136,
pp. B864-B871, 1964.

[44] HPCC/USC, http://www.usc.edu/hpcc.

[45] IBM, "IBM system Blue Gene solution: Blue Gene/P application development,"
IBM, 2008. http://www.redbooks.ibm.com/redbooks/pdfs/sg247287.pdf.

[46] IBM, Software Development Kit for Multicore Acceleration Version 3.0: IBM,
2007. http://www.ibm.com/developerworks/power/cell/.

[47] D. J. Kerbyson and K. J. Barker, "Automatic identification of application
communication patterns via templates," in 18th International Conference on
Parallel and Distributed Computing Systems, Las Vegas, Nevada, pp. 114-121,
2005.

[48] H. Kikuchi, R. K. Kalia, A. Nakano, P. Vashishta, H. Iyetomi, S. Ogata, T.
Kouno, F. Shimojo, K. Tsuruta, and S. Saini, "Collaborative simulation grid:
multiscale quantum-mechanical/classical atomistic simulations on distributed PC
clusters in the US and Japan," in Proceedings of the 2002 ACM/IEEE Conference
on Supercomputing Baltimore, Maryland: IEEE Computer Society Press, 2002.

[49] W. Kohn, "Density functional and density matrix method scaling linearly with the
number of atoms," Physical Review Letters, vol. 76, pp. 3168-3171, 1996.

[50] W. Kohn and L. J. Sham, "Self-consistent equations including exchange and
correlation effects," Phys. Rev., vol. 140, pp. A1133-A1138, 1965.

[51] W. Kohn and P. Vashishta, in Theory of the Inhomogeneous Electron Gas, N. H.
March and S. Lundqvist, Eds. New York: Plenum, pp. 79-184, 1983.

 113

[52] D. Komatitsch, G. Erlebacher, D. Göddeke, and D. Michéa, "High-order finite-
element seismic wave propagation modeling with MPI on a large GPU cluster," J.
Comput. Phys., vol. 229, pp. 7692-7714, 2010.

[53] M. S. Lam and M. E. Wolf, "A data locality optimizing algorithm," ACM
SIGPLAN Notices, vol. 39, pp. 442-459, 2004.

[54] M. Liu, W. Ji, Z. Wang, J. Li, and X. Pu, "High Performance Memory
Management for a Multi-core Architecture," in IEEE International Conference on
Computer and Information Technology, Xiamen, China, pp. 63-68, 2009.

[55] J. Mellor-Crummey, D. Whalley, and K. Kennedy, "Improving memory hierarchy
performance for irregular applications using data and computation reorderings,"
International Journal of Parallel Programming, vol. 29, pp. 217-247, 2001.

[56] S. Mintchev and V. Getov, "PMPI: High-Level Message Passing in Fortran 77
and C," in Proceedings of the International Conference and Exhibition on High-
Performance Computing and Networking: Springer-Verlag, 1997.

[57] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz, "Analysis of the clustering
properties of the Hilbert space-filling curve," IEEE Transactions on Knowledge
and Data Engineering, vol. 13, pp. 124-141, 2001.

[58] A. Nakano, "A space-time-ensemble parallel nudged elastic band algorithm for
molecular kinetics simulation," Computer Physics Communications, vol. 178, pp.
280-289, 2008.

[59] A. Nakano, "Multiresolution load balancing in curved space: the wavelet
representation," Concurrency: Practice and Experience, vol. 11, pp. 343-353,
1999.

[60] A. Nakano, "Parallel multilevel preconditioned conjugate-gradient approach to
variable-charge molecular dynamics," Computer Physics Communications, vol.
104, pp. 59-69, 1997.

 114

[61] A. Nakano and T. J. Campbell, "An adaptive curvilinear-coordinate approach to
dynamic load balancing of parallel multiresolution molecular dynamics," Parallel
Computing, vol. 23, pp. 1461-1478, 1997.

[62] A. Nakano, R. K. Kalia, K. Nomura, A. Sharma, P. Vashishta, F. Shimojo, A. C.
T. V. Duin, W. A. Goddard, R. Biswas, and D. Srivastava, "A divide-and-
conquer/cellular-decomposition framework for million-to-billion atom
simulations of chemical reactions," Computational Materials Science, vol. 38, pp.
642-652, 2007.

[63] A. Nakano, R. K. Kalia, K. Nomura, A. Sharma, P. Vashishta, F. Shimojo, A. C.
T. v. Duin, I. W. A. Goddard, R. Biswas, D. Srivastava, and L. H. Yang, "De
novo ultrascale atomistic simulations on high-end parallel supercomputers,"
International Journal of High Performance Computing Applications, vol. 22, pp.
113-128, 2008.

[64] A. Nakano, R. K. Kalia, and P. Vashishta, "Multiresolution molecular-dynamics
algorithm for realistic materials modeling on parallel computers," Computer
Physics Communications, vol. 83, pp. 197-214, 1994.

[65] A. Nakano, R. K. Kalia, P. Vashishta, T. J. Campbell, S. Ogata, F. Shimojo, and
S. Saini, "Scalable atomistic simulation algorithms for materials research," in
Proceedings of the 2001 ACM/IEEE Conference on Supercomputing Denver,
Colorado: ACM/IEEE, 2001.

[66] A. Nakano, R. K. Kalia, P. Vashishta, T. J. Campbell, S. Ogata, F. Shimojo, and
S. Saini, "Scalable atomistic simulation algorithms for materials research," Sci.
Program., vol. 10, pp. 263-270, 2002.

[67] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey, "3.5-D blocking
optimization for stencil computations on modern CPUs and GPUs," in
Proceedings of the 2010 ACM/IEEE Conference on Supercomputing New
Orleans, Louisiana: IEEE Computer Society, 2010.

[68] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, "Global arrays: a portable
'shared-memory' programming model for distributed memory computers," in
Proceedings of the 1994 Conference on Supercomputing Washington, D.C.: IEEE
Computer Society Press, 1994.

 115

[69] K. Nomura, R. K. Kalia, A. Nakano, and P. Vashishta, "A scalable parallel
algorithm for large-scale reactive force-field molecular dynamics simulations,"
Computer Physics Communications, vol. 178, pp. 73-87, 2008.

[70] K. Nomura, R. K. Kalia, A. Nakano, P. Vashishta, A. C. T. van Duin, and W. A.
Goddard, "Dynamic transition in the structure of an energetic crystal during
chemical reactions at shock front prior to detonation," Physical Review Letters,
vol. 99, p. 148303, 2007.

[71] K. Nomura, S. W. d. Leeuw, R. K. Kalia, A. Nakano, L. Peng, R. Seymour, L. H.
Yang, and P. Vashishta, "Parallel lattice Boltzman flow simulation on a low-cost
Playstation 3 cluster," International Journal of Computer Science, 2008.

[72] K. Nomura, R. Seymour, W. Wang, H. Dursun, R. K. Kalia, A. Nakano, P.
Vashishta, F. Shimojo, and L. H. Yang, "A metascalable computing framework
for large spatiotemporal-scale atomistic simulations," in Proceedings of the 2009
IEEE International Symposium on Parallel and Distributed Processing Rome,
Italy: IEEE Computer Society, 2009.

[73] S. Ogata, T. J. Campbell, R. K. Kalia, A. Nakano, P. Vashishta, and S.
Vemparala, "Scalable and portable implementation of the fast multipole method
on parallel computers," Computer Physics Communications, vol. 153, pp. 445-
461, 2003.

[74] S. Pakin, "Receiver-initiated message passing over RDMA networks," in
Proceedings of the 22nd International Parallel and Distributed Processing
Symposium (IPDPS) Miami, Florida, 2008.

[75] "PARKBENCH: PARallel Kernels and BENCHmarks," Available from
http://www.netlib.org/parkbench.

[76] M. Parker, S. Ketcham, and H. Cudney, "Acoustic wave propagation in urban
environments," in Proceedings of the 2007 DoD High Performance Computing
Modernization Program Users Group Conference: IEEE Computer Society, 2007.

 116

[77] L. Peng, M. Kunaseth, H. Dursun, K. Nomura, W. Wang, R. K. Kalia, A. Nakano,
and P. Vashishta, "Exploiting hierarchical parallelisms for molecular dynamics
simulation on multicore clusters," The Journal of Supercomputing, vol. 57, pp.
20-33, 2011.

[78] L. Peng, M. Kunaseth, H. Dursun, K. Nomura, W. Wang, R. K. Kalia, A. Nakano,
and P. Vashishta:, "A scalable hierarchical parallelization framework for
molecular dynamics simulation on multicore clusters," in Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA), Las Vegas, Nevada, pp. 97-103, 2009.

[79] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kal, "NAMD: biomolecular
simulation on thousands of processors," in Proceedings of the 2002 ACM/IEEE
Conference on Supercomputing Baltimore, Maryland: IEEE Computer Society
Press, 2002.

[80] S. J. Plimpton, "Fast parallel algorithms for short-range molecular dynamics," J.
Comput. Phys., vol. 117, p. 1, 1995.

[81] E. Prodan and W. Kohn, "Nearsightedness of electronic matter," Proceedings of
the National Academy of Sciences of the United States of America, vol. 102, pp.
11635-11638, 2005.

[82] J. Ramanujam, S. Krishnamurthy, J. Hong, and M. Kandemir, "Address code and
arithmetic optimizations for embedded systems," in Proceedings of the 2002
Conference on Asia South Pacific Design Automation/VLSI Design: IEEE
Computer Society, 2002.

[83] L. Renganarayana, M. Harthikote-Matha, R. Dewri, and S. V. Rajopadhye,
"Towards optimal multi-level tiling for stencil computations," in Proceedings of
the 21st IEEE International Parallel and Distributed Processing Symposium
Long Beach, California, 2007.

[84] G. Rivera and C. W. Tseng, "Tiling optimizations for 3D scientific
computations," in Proceedings of the 2000 ACM/IEEE Conference on
Supercomputing Dallas, Texas: IEEE Computer Society, 2000.

 117

[85] G. Roth, J. M. Crummey, K. Kennedy, and R. G. Brickner, "Compiling stencils in
high performance Fortran," in Proceedings of the 1997 ACM/IEEE Conference on
Supercomputing San Jose, California: ACM, 1997.

[86] J. C. Sancho and D. J. Kerbyson, "Analysis of double buffering on two different
multicore architectures: Quad-core Opteron and the Cell-BE," in Proceedings of
the 22nd International Parallel and Distributed Processing Symposium (IPDPS)
Miami, Florida, 2008.

[87] D. E. Shaw, "A fast, scalable method for the parallel evaluation of distance-
limited pairwise particle interactions," Journal of Computational Chemistry, vol.
26, pp. 1318-1328, 2005.

[88] D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson, J. K.
Salmon, C. Young, B. Batson, K. J. Bowers, J. C. Chao, M. P. Eastwood, J.
Gagliardo, J. P. Grossman, C. R. Ho, D. J. Ierardi, I. Kolossvary, J. L. Klepeis, T.
Layman, C. McLeavey, M. A. Moraes, R. Mueller, E. C. Priest, Y. Shan, J.
Spengler, M. Theobald, B. Towles, and S. C. Wang, "Anton, a special-purpose
machine for molecular dynamics simulation," SIGARCH Comput. Archit. News,
vol. 35, pp. 1-12, 2007.

[89] G. Shen and A. C. Cangellaris, "A new FDTD stencil for reduced numerical
anisotropy in the computer modeling of wave phenomena: Research Articles,"
International Journal of RF and Microwave Computer-Aided Engineering, vol.
17, pp. 447-454, 2007.

[90] F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashishta, "Divide-and-conquer
density functional theory on hierarchical real-space grids: parallel implementation
and applications," Physical Review B, vol. 77, p. 085103, 2008.

[91] F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashishta, "Embedded divide-and-
conquer algorithm on hierarchical real-space grids: parallel molecular dynamics
simulation based on linear-scaling density functional theory," Computer Physics
Communications, vol. 167, pp. 151-164, 2005.

[92] M. Snir, "A note on N-body computations with cutoffs," Theory of Computing
Systems, vol. 37, pp. 295-318, 2004.

 118

[93] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The
Complete Reference vol. 1: MIT Press, 1998.

[94] A. Stathopoulos, S. Öğüt, Y. Saad, J. R. Chelikowsky, and H. Kim, "Parallel
methods and tools for predicting material properties," Computing in Science and
Engineering, vol. 2, pp. 19-32, 2000.

[95] A. Stathopoulos, Y. Saad, and K. S. Wu, "Dynamic thick restarting of the
Davidson, and the implicitly restarted Arnoldi methods," SIAM Journal on
Scientific Computing, vol. 19, pp. 227-245, 1998.

[96] M. M. Strout and P. D. Hovland, "Metrics and models for reordering
transformations," in Proceedings of the Workshop on Memory System
Performance: ACM, 2004.

[97] I. Szlufarska, A. Nakano, and P. Vashishta, "A crossover in the mechanical
response of nanocrystalline ceramics," Science, vol. 309, pp. 911-914, 2005.

[98] Tianhe-1, National SuperComputer Center in Tianjin.
http://www.top500.org/system/10186.

[99] TOP500List, http://www.top500.org.

[100] A. C. T. Van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, "ReaxFF: a
reactive force field for hydrocarbons," Journal of Physical Chemistry A, vol. 105,
pp. 9396-9409, 2001.

[101] A. F. Voter, F. Montalenti, and T. C. Germann, "Extending the time scale in
atomistic simulation of materials," Annual Review of Materials Research, vol. 32,
pp. 321-346, 2002.

[102] R. D. Williams, "Performance of dynamic load balancing algorithms for
unstructured mesh calculations," Concurrency: Practice and Experience, vol. 3,
1991.

 119

[103] S. Williams, J. Carter, L. Oliker, J. Shalf, and K. Yelick, "Lattice Boltzmann
simulation optimization on leading multicore platforms," in Proceedings of the
22nd International Parallel and Distributed Processing Symposium (IPDPS)
Miami, Florida, 2008.

[104] D. Wonnacott, "Using time skewing to eliminate idle time due to memory
bandwidth and network limitations," in Proceedings of the 14th IEEE
International Parallel and Distributed Processing Symposium Cancun, Mexico,
2000.

[105] W. Yang, "Direct calculation of electron-density in density-functional theory,"
Physical Review Letters, vol. 66, pp. 1438-1441, 1991.

[106] W. Yang and T.-S. Lee, "A density-matrix divide-and-conquer approach for
electronic structure calculations of large molecules," Journal of Chemical
Physics, vol. 103, pp. 5674-5678, 1995.

