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Abstract 

The shift to many-core architecture design paradigm in computer market has 

provided unprecedented computational capabilities. This also marks the end of the free-

ride era—scientific software must now evolve with new chips. Hence, it is of great 

importance to develop large legacy-code optimization frameworks to achieve an optimal 

system architecture-algorithm mapping that maximizes processor utilization and thereby 

achieves higher application performance.  

To address this challenge, this thesis studies and develops scalable algorithms for 

leveraging many-core resources optimally to improve the performance of massively 

parallel scientific applications. This work presents a systematic approach to optimize 

scientific codes on emerging architectures, which consists of three major steps: (1) 

Develop a performance profiling framework to identify application performance 

bottlenecks on clusters of emerging architectures; (2) explore common algorithmic 

kernels in a suite of real world scientific applications and develop performance tuning 

strategies to provide insight into how to maximally utilize underlying hardware; and (3) 

unify experience in performance optimization to develop a top-down optimization 



 xiii 

framework for the optimization of scientific applications on emerging high-performance 

computing platforms. 

This thesis makes the following contributions. First, we have designed and 

implemented a performance analysis methodology for Cell-accelerated clusters. Two 

parallel scientific applications—lattice Boltzmann (LB) flow simulation and atomistic 

molecular dynamics (MD) simulation—are analyzed and valuable performance insights 

are gained on a Cell processor based PlayStation3 cluster as well as a hybrid 

Opteron+Cell based cluster similar to the design of Roadrunner—the first petaflop 

supercomputer of the world. Second, we have developed a novel parallelization 

framework for finite-difference time-domain applications. The approach is validated in a 

seismic-wave propagation simulation code on BlueGene/L, BlueGene/P and x86 quad-

core processor based clusters. In addition, we have developed strategies for in-core 

optimization of the algorithmic kernel of this application, which is a high-order stencil 

computation—a common kernel to a spectrum of finite-differences based applications. 

Third, we have applied this systematic approach to a production level first-principles 

molecular-dynamics application, which has achieved a record of 2.58×1012 electronic 

degrees of freedom on 163,840 BlueGene/P processors. Finally, we have devised a 

systematic end-to-end performance optimization scheme for large-scale scientific 

applications on emerging high-performance computing platforms. 
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Chapter 1 

Introduction 

1.1 Significance of the Research 

Computer simulation is the third mode of scientific research that bridges the gap 

between analytical theory and laboratory experiment. Experiments search for patterns in 

complex natural phenomena. Theories encode the discovered patterns into mathematical 

equations that provide predictive laws for the behavior of nature. Computer simulations 

solve these equations numerically in their full complexity, where analytical solutions are 

prohibitive due to a large number of degrees of freedom, nonlinearity, or lack of 

symmetry. In computer simulations, environments can be controlled with any desired 

accuracy and extreme conditions are accessible far beyond the scope of laboratory 

experiments. 

This extraordinary new tool in the hands of the scientists, the computer 

simulation, is tightly connected to the exponential increase in the power of computers on 

which the computations are carried out in parallel. In order to meet the increasing 
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performance requirements of parallel applications and to follow Moore’s Law, 

chipmakers such as Intel, IBM, and AMD have shifted their production line towards 

multicore chips. Homogenous collection of such architectural innovations are being used 

in parallel systems such as the Intel Xeon and AMD Opteron clusters at the High 

Performance Computing and Communications (HPCC) [44] facility of the University of 

Southern California (USC). Furthermore, hybrid systems combining conventional 

general-purpose central processing units (CPUs) with specialized processors such as Cell 

BE processors, e.g., Roadrunner [7], and also recently graphical processing units (GPUs), 

e.g., Tianhe-1A [98], are among the fastest supercomputers of the world [99]. Achieving 

high application performance on today’s complex petascale (1015 calculations per second) 

systems containing more than a hundred thousand computing nodes that include variety 

of accelerators is tightly coupled with designing an optimal architecture-algorithm 

mapping framework. Otherwise, while the peak performance of parallel machines 

increases, the gap between the peak and actual performance of the codes becomes wider.  

1.2 Motivation and Challenges 

The shift to multicore architecture design has provided unprecedented floating-

point performance on a single chip, however often extra cores in such architectures go 

underutilized on modern systems. Also, it is a challenge to efficiently program on 

distributed systems featuring different flavors of memory hierarchy, CPUs or high 

performance interconnects produced by different vendors.  
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The recent advances also mark the end of the free-ride era—scientific software 

must now evolve with new chips. Consequently, legacy software needs to be 

systematically and efficiently ported to new hardware. Our goal is to allow scientists to 

maximally exploit the computational potential of high-end parallel machines to tackle 

larger problems with finer resolution. For this purpose, our research [23-26, 72, 77, 78] 

focuses on a variety of application contexts yet strives towards a general and flexible 

framework for systematic performance optimization on large-scale supercomputing 

platforms.  

1.3 Background 

In this section, we provide background information on our research. First, we 

introduce the use of performance monitoring at system and on-chip levels for detection of 

performance bottlenecks. Second, we discuss our multilevel optimization scheme for a 

representative scientific application without loss of generality. Third, we consider our 

metascalable computing framework. Forth, we provide background information on our 

production-level density functional theory based simulation.  

1.3.1 Performance Monitoring 

Application developers at the forefront of high-performance computing (HPC) 

have been investigating the use of hybrid architectures to improve application 

performance. Hybrid architectures attempt to improve application performance by 

combining conventional, general-purpose CPUs with any of a variety of more specialized 

processors such as GPUs, FPGAs, and Cells. The complexity stemming from hybrid 
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architectures make understanding and reasoning about application performance difficult 

without appropriate tool support. An example to the recent hybrid architecture based 

supercomputers and the focus of our profiling efforts is Cell-based clusters, such as 

petascale Roadrunner supercomputer [7] (comprising 6,120 dual-core Opterons plus 

12,240 PowerXCell 8i processors) in Los Alamos National Laboratory. 

The Cell processor’s complex architecture—eight synergistic processing elements 

(SPEs) managed by a single power processor element (PPE)—makes profiling tools 

essential for performance optimization. Traditional tools merely monitor performance 

events on PPEs, which provide less than 6% of PowerXCell 8i flops performance and are 

usually used for solely controlling SPE processes instead of computing. The IBM Cell 

Software Development Kit (SDK) [46] includes a Cell performance-debugging tool 

(PDT) that helps analyze the performance of a single Cell board (up to two Cell 

processors) with two PPEs that share the main memory, run under the same Linux 

operating system, and share up to 16 SPEs. PDT can trace only a specific set of SDK 

library functions such as SPE activation, DMA transfers, synchronization, signaling, and 

user-defined events. Because PDT involves the slow PPE on the critical path of tracing, 

the PPE can easily become a performance bottleneck and may even influence application 

performance. Another tool for analyzing Cell performance is Vampir [10], which Nagel 

et al. used to visualize intra-Cell events such as mailbox communication and DMA 

transfers [41]. 
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1.3.2 Multilevel Optimization 

As hierarchical multicore processors with complex computational and memory 

organizations emerge as a result of the quest for simultaneous performance and power-

efficiency improvement, a challenge faced by software developers and application 

scientists is the adaptation of algorithms to effectively utilize this underlying hardware 

for broad computational applications. The emerging multicore paradigm has given us 

unprecedented supercomputing power [7], such as IBM BlueGene L and P, Roadrunner, 

and Cray Jaguar, through scaling at multiple levels, and in particular, multiple cores per 

node, interconnected into hierarchical systems of up to more than 100,000 cores. All have 

complex memory hierarchies, where some memory is shared across cores, some is 

dedicated, and some requires explicit management in software. While at different scales, 

the features of these architectures are mirrored in commercial microprocessors, which 

represent their constituent nodes, and are often combined into clusters of nodes as targets 

of high-end applications. From an application programmer's perspective, we hypothesize 

that such architectures can be viewed as hierarchical computational units with 

corresponding hierarchical storage that is explicitly or implicitly managed by software. 

The computation hierarchy includes support for fine-grain data-parallelism, through 

SIMD multimedia extensions such as Streaming SIMD Extensions 3 (SSE3) for Intel and 

AMD platforms and Altivec for PowerPC, through the SPEs of the IBM Cell, or through 

the streaming processors of an NVIDIA GTX 280. Across cores, thread-level parallelism 

permits potentially independent computation on related data, while across nodes, coarse-

grain parallelism on independent data can be exploited. Data locality is critical to 



 6 

achieving high performance on such architectures, so memory structures including 

registers, multilevel caches and storage buffers should be carefully managed to match the 

hierarchical parallel constructs. 

As a common computational kernel in a variety of scientific and engineering 

applications [52, 67], stencil computation (SC) has extensively been studied. For 

example, Datta et al. have used both cache-aware and cache-oblivious approaches to 

perform comprehensive SC optimization and auto-tuning on a variety of state-of-the-art 

architectures, including NVIDIA GTX280 [19]. Williams et al. [103] have optimized a 

lattice Boltzmann application on leading multicore platforms, including Intel Itanium2, 

Sun Niagara2, and STI Cell. Other approaches to SC optimization include tiling [84] and 

iteration skewing [32, 83, 104]. However, there has been little research on performance 

optimization of high-order stencil computations (HOSC), which are characterized by a 

large memory footprint of each stencil, spanning multiple levels of parallelization ranging 

from data to inter-core to inter-node levels. The pivotal role of HOSC in broad 

applications and the emergence of a wide landscape of heterogeneous multicore 

architectures have motivated us to develop a unified parallelization strategy that scales on 

massively parallel multicore supercomputers and perform systematic performance 

optimization on each of its hierarchical levels. 

1.3.3 Metascalable Computing 

The ever-increasing capability of high-end computing platforms is enabling 

unprecedented scales of first-principles based simulations to predict system-level 

behavior of complex systems [27]. An example is large-scale molecular-dynamics (MD) 
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simulations involving multibillion atoms [63]. Such simulations can couple chemical 

reactions at the atomistic scale and mechanical processes at the mesoscopic scale to solve 

broad mechano-chemistry problems such as nanoenergetic reactions, in which reactive 

nanojets catalyze chemical reactions that do not occur otherwise [70]. A hard problem is 

to predict long-time dynamics, because the sequential bottleneck of time precludes 

efficient parallelization [79, 88]. 

The hardware environment is becoming challenging as well. Emerging sustained 

petaflops computers involve multicore processors [2], while the computer industry is 

facing a historical shift, in which Moore’s law due to ever increasing clock speeds has 

been subsumed by increasing numbers of cores in microchips [22]. Thus scientific 

application programmers need to develop reusable “design once, scale on new 

architectures” (or metascalable) applications. 

1.3.4 Density Functional Theory Method 

There is growing interest in large-scale MD simulations involving multimillion 

atoms [1, 33, 66], in which interatomic forces are computed quantum mechanically [12, 

29] in the framework of the density functional theory (DFT) [43, 50, 51] to accurately 

describe chemical reactions. Such large DFT-based MD simulations would provide 

requisite coupling of chemical reactions, atomistic processes, and long-range stress 

phenomena for broad applications.  Examples are energetic materials, in which chemical 

reactions sustain shock waves, and stress corrosion, where chemical reactions at the crack 

tip need to be coupled with long-range stress fields. Unfortunately, DFT-based MD 
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simulations are rarely performed over N ~ 102 atoms because of their O(N3) 

computational complexity, which severely limits their applicability. 

Our computational approach toward density functional theory calculations is to 

perform a number of small DFT calculations “on the fly” to compute interatomic forces 

quantum mechanically during an MD simulation. The concurrent DFT-based MD 

approach is realized using an EDC density functional theory (EDC-DFT) algorithm [90, 

105]. The DFT reduces the exponential complexity to O(N), by solving Nel one-electron 

problems self-consistently instead of one Nel-electron problem (the number of electrons, 

Nel, is on the order of N). The DFT problem can be formulated as the minimization of an 

energy functional with respect to electronic wave functions. In the EDC-DFT algorithm, 

the physical space is a union of overlapping domains, , and physical 

properties are computed as linear combinations of domain properties that in turn are 

computed from local electronic wave functions. For example, the electronic density 

€ 

ρ(r ) 

is calculated as 

€ 

ρ(r ) = Σα pα (r ) Σn f (εnα ) |ψn
α (r ) |2 , where the support function 

€ 

pα (r ) 

vanishes outside domain  and satisfies the sum rule, 

€ 

Σα pα (r ) =1, and 

€ 

f(εnα ) is the 

Fermi distribution function corresponding to the energy 

€ 

εn
α  of the n-th electronic wave 

function (or Kohn-Sham orbital) 

€ 

ψn
α (r ) in . For DFT calculation within each domain, 

we use a real-space approach based on high-order finite differencing [14], where iterative 

solutions are accelerated using the multigrid preconditioning [30]. The multigrid is 

augmented with high-resolution grids that are adaptively generated near the atoms to 
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accurately operate atomic pseudopotentials [90]. The numerical core of EDC-DFT thus 

represents an HOSC [19, 25, 26]. 

1.4 Problem Statement 

Today, HPC platforms depend on diverse processor architectures to meet 

computational demands of scientific simulations. Energy-efficient load-store 

architectures (e.g., PowerPC), complex instruction set pipelining processors (e.g., Intel 

Xeon, AMD Opteron), and computational throughput optimized accelerators (e.g., IBM 

Cell BE) provide bulk of the computational power for most supercomputers. To realize 

new levels of computing performance, the application developers must adapt their 

software to rapidly increasing heterogeneity and scale of new generation computing 

platforms. It is for this reason that we believe developing parallelization and optimization 

methodologies is a critical challenge to sustain exponential speed up of legacy software. 

This dissertation research addresses the problem of developing a systematic end-

to-end parallelization and optimization framework for high performance computer 

simulations on emerging computing platforms. Specifically, we will: 

1. Develop productivity tools at system level to aid program optimization. In this 

context, we will focus on devising a memory efficient dynamic program 

analysis methodology for the new generation of hybrid computing clusters. 

2. Design a parallelization framework that captures the organizational and 

architectural properties of the HPC platforms at the application level while 

enabling sustained scalability on emerging parallel computing systems.  
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3. Devise a systematic optimization scheme for broad scientific applications and 

verify the effectiveness for a production-level scientific code on available 

HPC architectures.  

1.5 Contributions 

So as to profile application performance on Cell-based clusters, we have 

developed a profiling method [23, 24]. We employ a reverse acceleration programming 

model in which the hybrid cluster architecture is presented to the programmer as a logical 

cluster of Cell SPE processors by using the Cell Messaging Layer (CML) [74]. CML 

provides a subset of the functions and semantics of the MPI standard [93] including 

point-to-point communication, broadcasts, barriers, and global reductions. Therefore it 

constitutes a key insertion point for profiler events. 

Our approach can trace not only intra-Cell direct memory access (DMA) events 

but also inter-Cell message passing. Our implementation is efficient in terms of resource 

consumption (only 12 KiB of SPE local store memory is required) and has an overhead 

of less than 0.3 µs per profiler call for a typical scientific application executing on the 

Cell BE. 

The key difference between our profiler [23, 24] and the earlier research 

mentioned in section 1.3.1 which targets profiling on Cell processor is that we perform 

cluster-level analysis for MPI programs running on compute nodes featuring a hybrid 

architecture comprising AMD Opterons/PowerXCell 8i processors such as Roadrunner 

and PlayStation3 (PS3) commercial gaming consoles featuring Cell BE processors. The 
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underlying message-passing model of CML, which treats an entire cluster of 

Opterons+Cells (or PS3s) as a homogenous collection of SPEs, has a central importance 

to our cluster-wide analysis. In addition to monitoring the same types of intra-Cell events 

as existing Cell profilers, our implementation can log inter-Cell, inter-blade, and inter-

node communication. We have tested our implementation on up to 256 SPEs, although 

there is nothing limiting us from scaling up to thousands or even tens of thousands of 

SPEs. To test the use and quantify the overhead of our profiler, we have ported two 

parallel scientific applications—lattice Boltzmann (LB) flow simulation and atomistic 

molecular dynamics (MD) simulation—to the PS3 and hybrid Opteron+Cell Roadrunner 

architecture using CML. We have also demonstrated two sample uses of the profiler (1) 

communication analysis; and (2) call-stack analysis. 

We have developed a hierarchical scalable parallelization scheme for HOSC [25, 

26] that features in-core level optimization techniques to exploit the floating-point 

performance of the computational units through efficient use of the hierarchical memory 

levels in modern multicore processors. Our multilevel approach combines: (1) data 

locality optimizations through auto-tuned tiling for efficient use of hierarchical memory; 

(2) register blocking and data parallelism via single-instruction multiple-data (SIMD) 

techniques to utilize registers and exploit data locality; (3) software prefetching to hide 

memory latency; (4) inter-core parallelization via multithreading; and (5) inter-node 

parallelization via spatial decomposition. We have illustrated the hierarchical scalable 

parallelization scheme by applying it to a 6th-order stencil based seismic wave 

propagation application. Our intra-node optimization using multithreading and SIMD 
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parallelization has achieved a speedup of 5.83 for 8 threads on a single quadcore Intel 

Nehalem node. Our approach has reduced last level cache miss rate by 7.7×, and 

achieved 55% of the theoretical peak performance of at a single core of Intel Nehalem by 

incorporating loop tiling for Translation Lookaside Buffer (TLB), caches and registers, 

and explicit use of SSE instructions. We have obtained good overall strong scalability on 

all platforms, with even superlinear speedups on the Intel architecture. Excellent weak-

scalability has been also achieved on the 256 processor Clovertown-based cluster and 

32,768 processors of BlueGene/P. 

To address metascalability challenge, we have developed key technologies for 

parallel computing with portable scalability [72]. These include an embedded divide-and-

conquer (EDC) algorithmic framework to design linear-scaling algorithms for broad 

scientific and engineering applications (e.g. equation solvers, constrained optimization, 

search, visualization, and graphs involving massive data) based on spatial locality 

principles [62]. This, combined with a tunable hierarchical cellular decomposition (HCD) 

parallelization framework, maximally exposes concurrency and data locality, thereby 

achieving reusable “design once, scale on new architectures” (or metascalable) 

applications. It is expected that such metascalable algorithms will continue to scale on 

future multicore architectures. The “seven dwarfs” (a dwarf is an algorithmic method that 

captures a pattern of computation and communication), which were first identified by 

Phillip Colella, have been used widely to develop scalable parallel programming models 

and architectures [2]. We expect that the EDC-HCD framework will serve as a 
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“metascalable dwarf” to represent broad large-scale scientific and engineering 

applications. 

We have applied the EDC-HCD framework to a hierarchy of atomistic simulation 

methods. In MD simulation, the system is represented by a set of N point atoms whose 

trajectories are followed to study material properties [34, 65, 79]. Quantum mechanical 

(QM) simulation further treats electronic wave functions explicitly to describe chemical 

reactions [40, 68, 90]. To seamlessly couple MD and QM simulations, we have found it 

beneficial to introduce an intermediate layer, a first principles-based reactive force field 

(ReaxFF) approach [69, 100], in which interatomic interaction adapts dynamically to the 

local environment to describe chemical reactions. The ReaxFF is trained by performing 

thousands of small QM calculations.  

Finally, we have unified our experience in performance optimization to develop a 

systematic end-to-end performance optimization scheme for large-scale scientific 

applications on emerging high-performance computing platforms. We expect that the 

optimization of production level scientific codes on high-end machines, such as our first 

principles MD application on BlueGene/P, can potentially save one-to-two orders of 

magnitude of petaflops•days of computing resources for a typical run or can extend the 

time and length scale of real-life MD simulations at the same computational cost, and 

contribute in scientific discovery through computer computation. 
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1.6 Structure of This Thesis 

The rest of this text is organized as follows. An MPI performance-monitoring 

interface is examined in Chapter 2. A multilevel optimization scheme for HOSC is 

detailed in Chapter 3. A metascalable computing framework is discussed in Chapter 4. 

Our systematic approach to optimizing a production-level density functional theory code 

is described in Chapter 5. We summarize our conclusions and discuss the direction of the 

future work in Chapter 6.  



 15 

 

Chapter 2 

MPI Performance Monitoring Interface 

In this chapter, we present a methodology for profiling parallel applications 

executing on the family of architectures commonly referred as the “Cell” processor. 

Specifically, we examine Cell-centric MPI programs on hybrid clusters containing 

multiple Opteron and IBM PowerXCell 8i processors per node such as those used in the 

petascale Roadrunner system. We analyze the performance of our approach on a 

PlayStation3 console based on Cell Broadband Engine—the CBE—as well as an IBM 

BladeCenter QS22 based on PowerXCell 8i. Our implementation incurs less than 0.5% 

overhead and 0.3 µs per profiler call for a typical molecular dynamics code on the Cell 

BE while efficiently utilizing the limited local store of the Cell’s SPE cores. Our worst-

case overhead analysis on the PowerXCell 8i costs 3.2 µs per profiler call while using 

only two 5 KiB buffers. We demonstrate the use of our profiler on a cluster of hybrid 

nodes running a suite of scientific applications. Our analyses of inter-SPE communication 
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(across the entire cluster) and function call patterns provide valuable information that can 

be used to optimize application performance. 

2.1 Architectural Background and Testbed 

In this section, we describe the architecture of the Cell Broadband Engine and 

PowerXCell 8i that provides the bulk of the performance of our target cluster and the 

focus of our profiler study. We then briefly summarize the overall architecture of our 

testbed. Finally, we describe the Cell Messaging Layer, which is an enabling technology 

for exploiting hybrid (or completely cell based) clusters and therefore a key insertion 

point for profiler events. 

2.1.1 Cell Broadband Engine and IBM PowerXCell 8i 

Cell BE has a heterogeneous architecture incorporating a power processor 

element (PPE) and eight synergetic processing elements (SPEs) on the same chip. SPEs 

are connected via an element interconnect bus (EIB), which supports a peak bandwidth of 

204.8 GB/s for intra-chip data transfers among the PPE, SPEs, the memory, and the I/O 

interface controllers [16]. A single Cell BE has a peak single-precision performance of 

217.6 Gflops/s for which it took attention of the high performance computing community 

in the recent years [37], whereas its double-precision peak is limited to 21 Gflops/s.  

The IBM PowerXCell 8i (also referred as the Cell extended Double-Precision, 

Cell-eDP) is the latest implementation of the Cell BE featuring 108.8 Gflops/s on double-

precision operations. It drives one of the fastest supercomputers at the time of this 

writing, Roadrunner at Los Alamos [7]. Each SPE of PowerXCell 8i contains a 3.2 GHz 
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synergetic processing unit (SPU) core, 256 KB of a private, program-managed local store 

(LS) in place of a cache, and a memory flow controller (MFC) that provides DMA access 

to main memory. The SPE uses its LS for efficient instruction and data access, but it also 

has full access (via DMA) to the coherent shared memory, including the memory-mapped 

I/O space. 

To make efficient use of the EIB and to interleave computation and data transfer, 

the PPE and 8 SPEs are equipped with a DMA engine. Since an SPE’s load/store 

instructions can access only its private LS, each SPE depends exclusively on DMA 

operations to transfer data to and from the main memory and other SPEs’ local memories. 

The use of DMAs as a central means of intra-chip data transfer maximizes asynchrony 

and concurrency in data processing inside a Cell processor [38]. 

2.1.2 Testbed 

The PS3 features an identical Cell BE to the ones in IBM BladeCenter QS20. 

Recently the gaming console has been used as a low-cost computing platform by 

scientists [71]. However, one of the SPEs is disabled in PS3s for chip yield reasons and 

another SPE is reserved for use by GameOS operating system that acts as a hypervisor, 

and virtualizes the system resources. Out of 256 MB Rambus Extreme Data Rate (XDR) 

memory on PS3, only 200 MB is accessible to Linux OS and applications. Even though 

PS3s are not crafted for high performance cluster computing [11], they offer a valuable 

testing platform for tools targeting Cell based architectures. In our study we use a PS3 

console to quantify the overhead that our profiling library incurs.  



 18 

Our second testing platform comprises 8 nodes, called tri-blades, where each tri-

blade has two IBM QS22 Cell blades and one IBM LS21 AMD Opteron blade. The QS22 

contains two PowerXCell 8i processors running at 3.2 GHz and each with an associated 4 

GB of DDR2 memory. The LS21 blade includes two dual-core Opteron cores clocked at 

1.8 GHz.  Each tri-blade has a single connection to a Mellanox 4x DDR InfiniBand 

network. Typically, the Opterons handle mundane processing (e.g., file system I/O) while 

mathematically intensive elements are directed to the Cell processors. Each tri-blade in 

our testbed is architecturally identical to the tri-blades used in Roadrunner. 

2.1.3 Cell Messaging Layer 

CML is an implementation of common MPI functions for SPE-to-SPE 

communication in Cell-based clusters. The programming model underlying the CML is 

that applications run entirely on the SPEs. The SPE-centric model of CML assigns unique 

MPI ranks to each SPE assigned to an application. By means of using PPE (and possibly 

conventional CPUs like Opterons if they exist in the cluster) primarily for shuttling 

messages to SPEs in other blades (or PS3s) instead of computation, the abstraction 

provided by CML allows each SPE to communicate with other SPEs regardless of 

whether the SPEs are in the same socket, the same blade, the same node, or different 

nodes. On a cluster of Cells, CML implements a mechanism for forwarding data from a 

SPE to its PPE then across a network to a remote PPE and finally to the target SPE. The 

PPE needs to be involved because a SPE cannot interact directly with I/O-bus devices 

such as network interface cards (NICs). In addition to handling communication 

operations, PPE, also initializes CML, starts SPE programs and waits until all SPEs 
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invoke MPI_Finalize(), and finally shuts down the CML. Therefore both SPE/PPE 

programs need definitions of CML functions and should be linked with CML libraries, 

whereas SPE program can run an existing MPI application with only minor modifications 

that are necessary due to architectural requirements of the Cell. In effect, we have ported 

our scientific applications relatively easily to both of our testing platforms.  

CML also provides Programmer’s Message Passing Interface (PMPI) functions 

[56] which have a one-to-one correspondence to MPI calls. This interface enables any 

calls made to the MPI functions, by the SPEs, to be intercepted and thus recorded. 

Section 2.2.2 discusses the use of PMPI calls within our profiler. 

CML also offers a remote procedure call (RPC) mechanism through which SPEs 

can invoke a function on the PPE (PPEs can subsequently call a function on the 

accompanying host CPU if it exists) and receive any results. This capability is 

particularly useful for our profiler, where local SPEs need to call a PPE malloc() to 

allocate space in PPE memory to hold the entire list of recorded events. 

2.2 Software Design Details 

Our implementation of the tracing library targets clusters of Cell processors. Each 

PPE within a Cell processor is responsible for synchronizing the program run on its 

SPEs. CML enables the total number of SPEs, as seen by an application, to scale: from a 

single processor containing eight SPEs to clusters of PS3s [71], or to Roadrunner that 

contains 97,920 SPE cores. The remainder of this section outlines the design and 

implementation of the profiler including its memory use, and events that are profiled. 
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2.2.1 Data Structures 

The buffers that are used in the profiler implementation, along with the double-

buffering operation of the buffers in the LS, are shown in Fig. 2.1. This is discussed 

further in section 2.2.2. 

 
Figure 2.1: Operation of the double-buffering design 

 

A cyclical pattern is used in Fig. 2.1 to illustrate the allocation of buffers in LS. 

They switch roles repeatedly—while one is being used to record newly created events, 

the other is being dumped to PPE main memory. In comparison, the PPE memory layout 

is linear, where each small section, or event page, corresponds to the size of a single 

buffer in LS.  

Table 2.1 summarizes the structure of profile events and of event pages that hold 

a number of events. It is crucial that the events and the buffers are allocated to fit the 16-

byte boundary required for DMA transactions. ALIGNED16 is a short-hand notation for 

the __attribute__((aligned (16))) attribute, which specifies to the compiler to allocate the 
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data structure to be 16 byte aligned. It is also important that 16 byte aligned profile data is 

structured the same both on SPE and PPE memories. 

Table 2.1: Definitions of the data structures 

#define PAGE_SIZE 64 
#define ALIGNED16 
__attribute__((aligned (16))) 
 
  typedef enum    { PROFILE_START, 
PROFILE_STOP, E, X, MPI_SEND, 
MPI_RECV, MPI_ALLREDUCE, MPI_REDUCE, 
MPI_BARRIER, MPI_BCAST, MFC_PUT, 
MFC_PUT64, MFC_GET64, MFC_PUT32, 
MFC_GET32} event_type_t; 
 
typedef struct    { 
     double time_stamp; 
double duration; 
event_type_t type; 
unsigned long long enx; 
unsigned long long exx;  
short output_flag;   
int data[8] ALIGNED16; 
       }ALIGNED16 event_record_t; 
 
typedef struct page_tag {   
struct page_tag* next_page;   
event_record_t events[PAGE_SIZE];                                               
       }ALIGNED16 event_page_t; 

 

The enumerator lists the type of events our implementation can currently monitor. 

We record calls to the profiler start/stop functions, SPE function entry/exit (E, X), calls to 

the MPI functions implemented in CML (MPI_SEND, MPI_RECV, MPI_ALLREDUCE, 

MPI_REDUCE, MPI_BARRIER, MPI_BCAST) and various DMA put/get transactions 

which are issued by functions spu_mfcdma32() and spu_mfcdma64() defined in libspe2—
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the standard SPE library included in the IBM Cell/B.E. SDK. We have limited our 

implementation to cover only relevant DMA transaction types to our test applications. 

In addition to recording the type of event, event_record_t also records a time 

stamp and the duration of an event, address of the called SPE function and its caller (enx 

,exx), an output flag to indicate that an event has happened and data array which includes 

destination/source, send/receive size and send/receive counts for MPI events. Effective 

addresses (enx, exx) are stored as an unsigned long long on both the SPE and PPE, so that 

they can be treated in a unified fashion no matter if the PPE code is compiled for 32-bit 

or 64-bit execution. One event record uses 80 bytes in memory.  

A single buffer, or event page, is defined by event_page_t. The size of a page was 

set to be 64 in our testing (using 5,120 bytes). A pointer to the next page to use is a part 

of event_page_t in case the current page fills up. Contrary to the SPE, which has two 

event pages, the PPE allocates a far greater number of event pages. For our analysis on 

the PowerXCell 8i based hybrid cluster, the PPE allocates 10,000 event pages per SPE 

giving a total PPE memory footprint of 400 MiB (=8×10,000×64×80). However, in our 

PS3 benchmarks we had to limit the PPE memory allocation to less than 200 MB due to 

20 times less PPE addressable memory in PS3. In fact, we have observed that as long as 

enough PPE memory is reserved, the performance of the profiler is not affected. 

2.2.2 Implementation 

CML based applications first start on the PPEs, which subsequently launch code 

on the SPEs. When the profiler is enabled, an instrumented SPE program, once launched, 

immediately invokes an allocation function on the PPE, using the CML’s RPC 
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mechanism, for event pages in main memory. Each SPE is returned the base address of 

the reserved memory via the same RPC mechanism. Before a SPE proceeds with actual 

application execution, it allocates two event buffers in its LS. However, this allocation is 

much smaller than its counterpart in main memory due to the limited size of the LS. In 

our tests the profiler statically allocates only two small event buffers of size 5,120 bytes, 

which holds up to 64 events, in SPE memory. Apart from the 10 KiB required for the two 

buffers, the profiler code requires less than an additional 2 KiB in LS but is dependent on 

the actual number of CML functions used by an application. This is ~30,000 times 

smaller than the memory used by our profiler in the main memory of the PPE of a 

PowerXCell 8i. 

 Profiler initialization is followed by the execution of the actual MPI application. 

Throughout the application run, the instrumented functions are called to record events. 

The instrumented operations, as provided by the profiler, create event logs. For instance, 

an SPE-to-SPE message-passing request invokes the corresponding instrumented MPI 

communication operation, which populates the event data structure with the relevant 

information, e.g., type, source/target, size of the message, and secondly calls the 

corresponding PMPI routine, which is implemented by CML, to send the actual message. 

The profiler library provides similar instrumented functions to profile other events 

including DMA operations and SPE function call activities.  

SPE LS memory is limited to 256 KB. If it were to be filled with trace data, it 

would inhibit the execution of the SPE code. In order to circumvent this possibility, we 

use a double-buffering approach [86] to log trace events. Instead of continuously pushing 
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events to a dynamically increasing allocation in LS, SPU writes profile event logs as they 

appear to one of the two small buffers allocated during profiler initialization. Once the 

buffer being used is full, previous buffer-dump operation is checked for completion (Step 

1 in Fig. 2.1), by using mfc_write_tag_mask and mfc_read_tag_status_al, in order to 

avoid overwriting data being transferred. If the preceding dump has been completed, a 

non-blocking DMA (mfc_put) is issued to transfer the buffer to main memory (Step 2 in 

Fig. 2.1). Each SPE sends the data to a privately reserved address, which it determines by 

using the memory base address received through the RPC mechanism during 

initialization, its local rank and number of previous dumps it has performed up to then. 

The SPE also switches the trace buffers and uses the available buffer to record new 

events (Step 3 in Fig. 2.1). Meanwhile, the SPE execution continues without interruption 

as a non-blocking DMA is used. Once the second buffer is filled, the SPE switches 

buffers again and continues with recording events to the first buffer as it issues a DMA 

transfer (mfc_put) to dump the second buffer to the end of the preceding dump in the 

main memory (Step 4 in Fig. 2.1). If the speed of event generation is faster than the time 

taken to transfer a single LS buffer to main memory then the application execution will 

pause. In such a case the size of the LS buffers can be increased but clearly at a reduction 

in the size of the LS store available to the application. 

The double-buffering implementation not only overlaps data dumping with 

program execution, but also gives the capability of logging in excess of 104 times more 

events than the LS could have stored by using just two small buffers, and leaves more LS 

available for program and data in each SPE. 
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Upon the termination of tracing, the SPE program dumps the last buffer, 

regardless of how full it is, to main memory. Once all of the SPEs terminate the PPE 

writes the profile data from main memory to several files, one per SPE, which contains 

the events that are ordered in terms of their time of occurrence. The output files can be 

post-processed for numerous performance analysis studies. 

2.3 Analysis 

In this section, we first provide detailed analysis of the overhead incurred by the 

profiling activity on a single Cell BE processor of the PS3. Secondly, we compare the 

overhead on a single PowerXCell 8i to that on Cell BE and finally delineate cluster-wide 

use of the profiler. 

Three applications were chosen to both quantify the overheads of the profiler use 

and also to illustrate its usefulness. The first application is Sweep3D, which solves a 

single-group time-dependent discrete ordinates neutron-transport problem. It processes a 

regular three-dimensional data grid, which is partitioned onto a logical two-dimensional 

processor array. Its computation consists of a succession of 3D wave fronts (sweeps), in 

which each processor receives boundary data from upstream neighbors, performs a 

computation on its local sub-grid, and produces boundaries for downstream neighbors. 

All communications use MPI to transfer boundary data to neighboring processors. 

The second application is molecular-dynamics (MD) [63]. The MD simulation 

follows the time evolution of the positions of N atoms by solving coupled ordinary 

differential equations. For parallelization, the MD code uses a 3-D spatial domain that is 
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partitioned in all three dimensions into P sub-grids of equal volume. Each step in the 

simulation requires the processing of the local sub-grid as well as boundary exchanges in 

each of 6 neighboring directions (i.e. the lower and higher neighbor subsystems in the x, 

y and z directions). 

The third application is a lattice Boltzmann (LB) method for fluid flow 

simulations. The cellular-automata like application represents fluid by a density function 

on of the grid points on a regular 3D lattice [71]. LB exhibits the same 3D 

communication pattern as for MD where each time step involves DF updates and inter-

sub-grid density migrations. 

2.3.1 Performance Overhead Analysis 

In effect, the performance overhead of the profiler is dependent on the application 

as the mixture of communication and computation operations vary from code to code. 

Therefore in this section we use an overhead metric by considering a worst-case scenario 

by using a kernel application containing only communication calls and no computation. 

Additionally, by executing the kernel on a single Cell processor we ensure that only fast 

on-chip communications over the EIB are used. The kernel application simply contains 

the communication pattern of the Sweep3D application thus resulting in a maximum rate 

of event generation. We provide the results first on Cell BE and second on PowerXCell 8i 

in the remainder of this section. 
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2.3.1.1 Cell BE 

In order to quantify the profiling overhead we have performed a suite of tests on 

the Cell BE of the PS3, which represents typical node of our target cluster.  

An equal number of MPI send and receive calls, using a fixed size of 600 doubles 

(4,800 bytes), for the 6 functional SPEs on the single Cell BE of the PS3 were used for 

the results shown in Fig. 2.2. Fig. 2.2(a) shows the average overhead for each profiler call 

as a function of the number of events and Fig. 2.2(b) shows the slowdown when varying 

the number of events (the x-axis shows the logarithm of the number of events). It can be 

seen that the average time required to record a single event is less than 6.3 µs. This 

corresponds to a slowdown of a factor of 6.8 for large numbers of events as shown in Fig. 

2.2(b).  

 
                (a) Average cost per profiler call          (b) Slowdown due to the profiler 
Figure 2.2: Performance overheads of the profiler (6 SPE run on a single Cell BE) 
 

In order to quantify the effect of message size on profiling overhead, we have 

performed benchmarks on the Cell BE, and the results are shown in Fig. 2.3. Here, we fix 
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the event count at 36,000, which is the point where saturation starts in Fig. 2.2(b), and 

keep the buffer size at 5 KiB while varying the sizes of the sent/received messages. 

 
                (a) Average cost per profiler call           (b) Slowdown due to the profiler 
Figure 2.3: Performance overheads of the profiler for varying message sizes (6 SPE run 
on a single Cell BE) 

 

Fig. 2.3(a) shows that the smallest per profiler call overhead is less than 5.6 µs for 

12.5 KiB sized messages, whereas Fig. 2.3(b) shows 4× slowdown factor. In comparison 

to Fig. 2.2, which used 4,800-bytes messages, profiler shows a better performance for 

12.5 KiB messages. This can be attributed to the fact that larger transfers take longer time 

to complete, which is overlapped by keeping record of profile events, thereby reducing 

the profiler overhead.  
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                 (a) Slowdown in worst-case kernel        (b) Slowdown in MD application 
Figure 2.4: Performance overhead of the profiler for varying SPE buffer sizes on the Cell 
BE 

 

In Fig. 2.4, we study the effect of changing the sizes of the double buffers 

reserved for profile events at SPEs of the Cell BE processor. In Fig. 2.4(a), we fix the 

event count at the saturation point of Fig. 2.2(b), i.e. 36,000, the message size at 12.5 KiB 

and vary the buffer size. It is observed that increasing the buffer size decreases the 

slowdown factor to as low as 3.7. As the buffer size at SPE increases, it takes less DMA 

transfers to PPE to dump the filled buffers, thereby increasing the performance of the 

profiler. However, it should be noted that there is a trade off between increasing the 

buffer size to achieve better profiler performance and the application performance itself 

because of the limited local store of SPEs. In selecting the buffer size, the memory 

requirements of application for its instructions and data should also be considered.  

In order to quantify the profiling overhead for a typical scientific application, we 

port our parallel molecular-dynamics (MD) code [63] to PS3 using CML for handling 

MPI operations. Fig. 2.4(b) shows the overhead incurred by profiling of the message 
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passing events of the MD application on a single PS3. The MD application implements a 

velocity-Verlet scheme, and calls several small functions at each time step for calculating 

atomic positions and velocities besides communication functions. Therefore, in Fig. 

2.4(b), we turn off the function entry/exit tracing feature of the profiler in order to 

analyze MPI calls only, which are mainly for exchanging boundary-atom information. 

The results are the averages over a 100-time step simulation. Similar to Fig. 2.4(a), 

increasing the buffer size decreases profiling overhead. However, it should be noted that 

the y-axis of Fig. 2.4(b) is in percentages, i.e., profiler overhead is less than 0.5% for 10 

KiB buffers. In effect, the cost of a single profiler call is less than 0.3 µs when 10 KiB 

buffers are used. The MPI messages in the benchmark shown in Fig. 2.4(b) are on-chip 

communications and use the EIB of the Cell processor, which is much faster in 

comparison to current high performance computing interconnects. Therefore in a cluster-

wide analysis of an MPI-centric scientific application, the overhead incurred by logging 

MPI events will be extremely low. 

2.3.1.2 PowerXCell 8i 

Here, we compare the overhead of the profiler on PowerXCell 8i to that on Cell 

BE before we proceed with PowerXCell 8i based cluster-wide experiments in the next 

section. 

The overhead evaluation benchmark we described in the experiment of Fig. 2.2 is 

repeated on 8 SPEs of a single PowerXCell 8i processor, and the results are shown in Fig. 

2.5. Fig. 2.5(a) shows that the average time required to record a single event is less than 
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3.2 µs and slowdown factor rises up to 4.2 for larger numbers of events as shown in Fig. 

2.5(b). Recall however that intra-cell communications take full advantage of the EIB 

which has a total bandwidth of 204.8 GB/s. Intra-cell communications using CML 

actually achieve a bandwidth of ~23 GB/s and latency of ~0.3 µs as shown in Table 2.2. 

And hence a SPE-to-SPE message of size 4,800 bytes takes less than 1 µs within a single 

Cell.  

 
            (a) Average cost per profiler call               (b) Slowdown due to the profiler 
Figure 2.5: Performance overheads of the profiler (8 SPE run on a single PowerXCell 8i) 

 

It should be noted that the x-axis is linear in Fig. 2.5 as opposed to the logarithmic 

scale in Fig. 2.2. This is because the saturation of slowdown factor happens faster in 

comparison to Cell BE benchmark. The drop down in the average cost per profiler call 

and the slowdown factor in Fig. 2.5 in comparison to Fig. 2.2 can be explained by the fact 

that the Linux kernel in Cell BE of PS3 is running on top of a hypervisor which uses one 

SPE and also the EIB. On the PS3, the SPUs are hidden behind the hypervisor and every 

access happens in cooperation with the hypervisor. As a result writing to the local store or 



 32 

shuttling messages results in writing into kernel memory that represents the local store, 

which affects I/O of a given process and incurs additional overhead. 

For a typical application running on a cluster of Cells, or on a hybrid processor 

configuration like Roadrunner, SPE-to-SPE communications can be significantly more 

costly than the ones considered in the worst-case discussed above. For instance, on 

Roadrunner, communications between SPEs on different nodes have a latency of over 

11.7 µs at small message bandwidth of 161 MB/s. Therefore, in practice, the profiling 

overhead is much lower due to the increasing cost of communications as demonstrated in 

Fig. 2.4(b). 

2.3.2 Cluster-wide Profiling 

In this section we illustrate the usefulness of our profiling implementation for LB, 

MD and Sweep3D applications. We perform our tests on 8 nodes (32 SPEs per node) of a 

Roadrunner-like PowerXCell 8i based cluster. 

2.3.2.1 Communication Analysis 

The information that is generated by the profiler is analyzed off-line. One log-file 

is generated for each SPE used by the application. Fig. 2.6 shows an example of the SPE-

to-SPE communication pattern of the original Sweep3D code.  
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Figure 2.6: Communication pattern of the original Sweep3D 

 

In Fig. 2.6, a larger square surrounded by thick lines and denoted by a node 

number, which contains 4×4 small squares, represents a tri-blade in the cluster. Each 

smaller square represents one Cell processor with 8 SPEs. The vertical and horizontal 

axes represent the sender and receiver SPE MPI ranks, and a colored pixel on the graph 

indicates a pair of communicating SPEs. The pixels are color coded to distinguish intra-

node (blue) and inter-node (red) communications respectively. 

The decomposition of Sweep3D’s global grid onto a logical 2-D processor array 

can be seen in Fig. 2.6. Each processor communicates with its neighbor in the logical x 

and y directions. For a 256 processor run, the 2-D processor array consists of 16×16 SPE 

processors. Each processor communicates with its x neighbors (±1) as illustrated by the 

two sub-diagonals, and with its y neighbors (±16) indicated by the outermost two off-

diagonals. Message passing for the two x neighbors is performed on the same chip 

through high-bandwidth (25.6 GB/s) EIB; whereas communication with the y neighbors 
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corresponds to 1 message passing to another SPE residing within the same node but on 

the other Opteron and performed over PCIe via DaCS; and 1 message passing to an SPE 

on another node which adds InfiniBand in the path. These different inter-SPE 

communications incur different latency and bandwidth costs as shown in Table 2.2, 

which shows both the latency and bandwidth measured by ping-pong communication 

tests for CML.  

Table 2.2: CML point-to-point performance 

Configuration Latency Bandwidth 
Same Cell 0.272 µs 22,994.2 MB/s 
Same node 0.825 µs 4,281.3  MB/s 
Different nodes 11.771 µs 161.2  MB/s 

 

The high latency of inter-node communication in comparison to intra-cell 

communication stems from the involvement of PPEs and Opterons in the former. To 

achieve higher performance, parallel algorithms should be designed to exploit the low 

latency and high bandwidth of EIB connecting intra-cell SPEs and avoid inter-node 

communication wherever possible. Fig. 2.7 shows the communication pattern of a 

modified version of Sweep3D, which performs much of the message passing activity 

over the EIB. 
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Figure 2.7: Communication pattern of the modified Sweep3D 

 

In the modified version of Sweep3D, one SPE of each Cell acts as a root and 

exclusively handles inter-node message passing by gathering messages from the other 

SPEs on the same chip and sending it to the root on the destination Cell. This reduces the 

number of inter-cell messages significantly and promises an increase in performance. For 

comparison, Fig. 2.8 shows the communication pattern of MD for 256 SPE run.  

 
Figure 2.8: Communication pattern of MD 
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In Fig. 2.8, the logical arrangement of processors is in an 8×8×4 processor array. 

Each SPE performs two intra-cell communications with x neighbors. Communications to 

y neighbors is comparably slower with half of the SPEs requiring inter-node 

communications. For example, in the first node, SPEs 1–8 and SPEs 25–32 have one of 

their y neighbors in the next node, while for SPEs 9-24 the communications to y 

neighbors only involves intra-node communications. For all SPEs, message passing with 

z neighbors is inter-node communication with a high communication cost. This suggests 

a possible optimization, to increase the number of communications over the EIB, as with 

Sweep3D. 

The volume of messages in MD is fairly regular. However, for applications where 

message send/receive activities and message sizes vary, heavier communication paths 

should be paid more attention. This is demonstrated with another application—LB in Fig 

2.9.  

 
Figure 2.9: Heavy communications of LB 
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LB and MD have the same 3D communication pattern, however for LB, some 

message passing events are an order-of-magnitude smaller than the others. Therefore, in 

Fig. 2.9, instead of plotting all communications, we have drawn only heavier 

communications. It should be noted that Fig. 2.9 has equal numbers of blue and red dots, 

indicating that 50% of message passing activity is inter-node. The other half of the 

communication is intra-node, of which 1/3 happens among SPEs on different Cells of the 

node. Therefore, only 1/3 of heavier communication is taking advantage of the fast EIB. 

This suggests that LB suffers a larger communication cost in comparison with MD and 

that there is more room for optimization through the rearrangement of messages. 

As a matter of fact, event data structure as described in section 2.2.1 has enough 

data to provide finer details on message passing events. For example inter-SPE and/or 

SPE-to-PPE communications can be analyzed in finer detail. Function use, duration, type 

of message passing activity, size of the message, type of data being sent (and/or 

received), count of a certain data type, and source/destination, can be analyzed to provide 

more insight into the program flow. As we can extract point-to-point communication 

matrix from an application execution, it is also possible to automatically identify the 

communication pattern by measuring the degree of match between point-to-point 

communication matrix and predefined communication templates for regularly occurring 

communication patterns in scientific applications [47]. 
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2.3.2.2 Call-stack Analysis 

The profiler library can also keep track of function entry and exits. This section 

illustrates the use of this functionality by a call-stack analysis as another use of our 

profiler.  

Fig. 2.10 shows the function call graph for the execution at the first SPE of a 256-

SPE run for LB code. Instrumentation for 10 iterations is visualized and only a portion of 

call graph is provided for the clarity of presentation. The node shown as the root is the 

main function, which calls collision, streaming and communication functions once during 

every iteration. The nodes for these 3 functions include the source file name and the 

source code line information, which are looked up from a symbol table during post-

processing. The node, which calls the MPI_SEND/MPI_RECEIVE implementation of 

CML, represents calls to the communication functions. Its children nodes show 

source/destination and data count of the message in parenthesis. The edges of the graph 

are marked with the number of times a particular event is observed. For instance, the 

node MPI_SEND(0,56,132) represents SPE 0 sends a message to SPE 56 of 132 bytes 

and it has occurred 10 times during the profiling.  

 

 
Figure 2.10: Function call graph for LB 
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The instrumentation is also done for functions expanded inline in other functions. 

The profiling calls indicate where the inline function is entered and exited. This requires 

that addressable versions of such functions must be available. A function may be given 

the attribute no_instrument_function, in which case this instrumentation will not be done. 

This can be used, for example, for high priority interrupt routines, and any function from 

which the profiling functions cannot safely be called, for example signal handlers. 

The function call graph provides insight into program execution on a particular 

SPE on a cluster contributing to optimizations at the SPE level. In Fig. 2.10, we have 

weighted the edges with function call numbers. Instead, operation completion time could 

be used as an alternative for weighting as the profiler keeps durations of events as well. A 

call graph can be used to identify bottlenecks of performance at the SPE level and shed a 

light on required algorithm modifications for improvement. 

2.4 Conclusion and Future Work 

We have developed a low-memory-footprint (12 KiB of local store), minimally 

intrusive profiling library for parallel applications running on clusters of Cell processors. 

Our library overlaps computations and DMA transfers to reduce application perturbation 

and efficiently utilizes the small amount of SPE local store available on Cell processors. 

We have analyzed the performance of our profiler on the Cell BE processor of a 

PlayStation3 and explored profiler performance for varying design and application 

specific parameters, such as buffer and message size. We have used our profiler library to 

analyze the performance of parallel scientific applications that run across multiple Cell 
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processors, Cell blades, and cluster nodes. Inter-blade communication analysis for 

Sweep3D has shown how communication structure can affect application performance. 

We have ported two additional applications, LB and MD, to a hybrid Opteron+Cell 

cluster, and our profiler data suggests possible optimization opportunities. In order to 

demonstrate other uses of our library, we have analyzed the function-call pattern of a 

single SPE’s program flow and used that to determine performance bottlenecks on the 

level of a SPE core. 

While our study demonstrates high-speed, low-memory-overhead profiling for 

clusters augmented with Cell processors, it is certainly possible to optimize the profiler to 

further reduce its profiling cost and memory footprint. For example, the various types of 

profile events have different memory requirements (e.g., call-stack address records use 

only 16 bytes out of the 80 bytes allocated for the general event type). Therefore, 

restructuring the data types to be event-specific and adding compile-time options to 

customize the desired performance report may result in lower intrusion to program flow 

and reduce the post-processing effort for profile data. 
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Chapter 3 

Multilevel Optimization of Stencil Computations 

In this chapter, we present a scalable parallelization scheme for high-order stencil 

computations that also optimizes memory behavior on multicore clusters. Our multilevel 

approach combines: (1) data locality optimizations through auto-tuned tiling for efficient 

use of hierarchical memory; (2) register blocking and data parallelism via single-

instruction multiple-data (SIMD) techniques to utilize registers and exploit data locality; 

(3) software prefetching to hide memory latency; (4) inter-core parallelization via 

multithreading; and (5) inter-node parallelization via spatial decomposition. The scheme 

is applied to a 6th-order stencil based seismic wave propagation code. Tiling 

optimizations achieve 7.7-fold reduction of last level cache miss rate of Intel Nehalem, 

whereas register blocking increases data parallelism and thereby achieves 5.9 Gflops 

performance on a single core, which is over 55% of its peak performance. Register 

blocking+multithreading optimizations achieve 5.8-fold speedup on a single quadcore 
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Nehalem. Weak-scaling parallel efficiency is over 98% on 32,768 BlueGene/P 

processors. 

3.1 High-Order Stencil Computation 

This section first introduces HOSC, and then provides a detail of our application 

and experimental kernel used in the subsequent sections. 

3.1.1 Stencil Computation 

Accuracy of SC generally depends on the order of its stencil. Applications 

employing SC mostly involve partial differential equation solvers, which are based on 

finite-difference and multigrid methods, to study a vast array of phenomena including 

electromagnetic [89] and acoustic [76] wave propagation, and quantum dynamics [64]. 

Due to its pivotal role in computational sciences, SC is included in a number of 

benchmark suites such as PARKBENCH [75] and NAS Parallel Benchmarks [5]. 

Implementation of special purpose stencil compilers [8, 9, 85] and development of 

compiler optimizations [82] highlight the common use of SC based methods. 

In SC, values u(t)(r) are assigned to a set of discrete grid points Ω  = {r} for a 

number of simulation time steps t ∈  [1, Nstep]. SC routine sweeps over Ω  iteratively to 

compute values of the grid points at next iteration, u(t+1)(r), as a function of the values of 

the neighboring nodal set at time t, Ωʹ′  = {rʹ′  ⎢  rʹ′  ∈  neighbor(r)}, determined by the 

stencil geometry. According to the geometric arrangement of the nodal group 

neighbor(r), SC may be classified as follows: First, the order of a stencil, n, is defined as 

the distance between the grid point of interest, r, and the farthest grid point in 
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neighbor(r) along a certain axis. (In a finite-difference application, the order increases 

with required level of precision.) Second, we define the size of a stencil as the cardinality 

⎢{rʹ′  ⎢  rʹ′  ∈  neighbor(r)}⎢ , i.e., the number of grid points involved in each stencil 

iteration. Third, the footprint of a stencil is defined by the cardinality of minimum 

bounding orthorhombic volume, which includes all involved grid points per stencil. For 

example, Fig. 3.1 shows a 3rd order, 13-point SC, whose footprint is 72 = 49 on a 2-

dimensional lattice. Such stencil is widely used in high-order finite-difference 

calculations [90, 94]. In Fig. 3.1, the grid point of interest, r, is shown as a large solid 

circle while the set of neighbor points, excluding r, {rʹ′  ⎢  rʹ′  ∈  neighbor(r)} – {r}, is 

illustrated as small solid circles. Open circles show the other lattice sites within the 

stencil footprint, which are not used for calculation of u(t+1)(r). 

 
Figure 3.1: 3rd order, 13-point SC, whose footprint is 72 on a 2-dimensional lattice 

 

A typical computation for updating the value of the central grid point shown in 

Fig. 3.1 is 
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ui, j
(t+1) = c−3 *ui−3, j

(t ) + c−2 *ui−2, j
(t ) + c−1 *ui−1, j

(t ) + c3 *ui+3, j
(t )

+c2 *ui+2, j
(t ) + c1 *ui+1, j

(t ) + c−3 *ui, j−3
(t ) + c−2 *ui, j−2

(t )

+c−1 *ui, j−1
(t ) + c3 *ui, j+3

(t ) + c2 *ui, j+2
(t ) + c1 *ui, j+1

(t ) + c0 *ui, j
(t )

        (1) 

where the subscripts i, j of u(t) represent the coordinates of grid points, and the 

coefficients are denoted as c. Time dependency is not shown on coefficients c, as they are 

constants in time but a function of the distance to the central grid point.  

3.1.2 A High-Order Stencil Application for Seismic Wave Propagation 

 Our experimental SC application simulates seismic wave propagation by 

employing a 3D equivalent of the stencil in Fig. 3.1 to compute spatial derivatives on 

uniform grids using a finite-difference method. The 3D stencil kernel is highly off-

diagonal (6th order) and involves 37 points (footprint is 133 = 2,197), i.e., each grid point 

interacts with 12 other grid points in each of the x, y and z Cartesian directions. 

A typical problem space may involve several hundreds of grid nodes in each 

dimension amounting to millions of grid points in total. The seismic application reported 

here uses 3843 = 56.62 million points. For each grid point, the code allocates 5 floats to 

hold temporary arrays and intermediate physical quantities and the result, therefore its 

memory footprint is 5 × 4 bytes × 3843 = 1.13 GBytes. Thus, the application not only 

involves heavy computations, but also needs a large amount of memory in comparison to 

the cache size offered by multicore architectures in the current HPC literature. 

Table 3.1 shows the pseudocode of a computational kernel of the seismic 

application. In the kernel, the triply-nested loop in 3D Cartesian coordinates updates the 

value of each target grid points, 

€ 

u
(t+1), based on values of neighboring grid points at time 
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t, i.e., 

€ 

u
(t ) . Stride in memory space is a critical factor to optimize SC application. In our 

kernel, the allocation for both 

€ 

u
(t )  and 

€ 

u
(t+1) are 3 dimensional, 16-Bytes aligned, 

dynamic arrays, where x is unit stride direction, y is nx stride, and z is the highest stride 

nx×ny. The size of the problem domain is 

€ 

(nx − 2n)× (ny − 2n)× (nz − 2n) , where n is the 

stencil order and nx, ny, and nz are the numbers of grid points in the three Cartesian 

coordinates. The scopes of each loop are reduced by 2n (n = 6 in our case) to avoid 

complex boundary conditions from the experimental kernel.  

Table 3.1: Pseudocode of the high-order stencil kernel. 

 1: procedure 

€ 

naiveHOSC(n,nx ,ny ,nz,c,u
(t )
,u
(t+1)

) 
 2:       for 

€ 

i = n to 

€ 

n
x
− n do 

 3:          for 

€ 

j = n to 

€ 

ny − n do 
 4:             for 

€ 

k = n to 

€ 

nz − n do 
 5:                for 

€ 

in = −n to 

€ 

n do //X sweep 

 6:                  

€ 

ui, j,k
(t+1)

← ui, j,k
(t+1)

+ cin *ui+in , j,k
(t )  

 7:                end for             
 8:                for 

€ 

jn = −n to 

€ 

n do //Y sweep 

 9:                  

€ 

ui, j,k
(t+1)

← ui, j,k
(t+1)

+ c jn *ui, j+ jn ,k
(t )  

10:                end for                  
11:                for 

€ 

kn = −n to 

€ 

n do //Z sweep 

12:                  

€ 

ui, j,k
(t+1)

← ui, j,k
(t+1)

+ ckn *ui, j,k+kn

(t )  

13:                end for 
14:             end for 
15:          end for 
16:       end for 
17: end procedure 

 



 46 

3.2 Hierarchical Parallelization 

This section outlines our top-down approach to application tuning at system-, 

node- and microarchitecture-levels. We discuss our parallelization framework that 

combines: (1) inter-node parallelization via spatial decomposition; (2) intra-node 

parallelization via multithreading; (3) data locality optimizations through tiling; (4) RB 

and data parallelism via SIMD techniques to utilize registers; and (5) software 

prefetching to hide memory latency.   

3.2.1 Inter-node Parallelism by Spatial Decomposition 

Our parallel implementation essentially retains the computational methodology of 

the original sequential code. All of the existing subroutines and the data structures are 

retained. Our parallelization is based on spatial decomposition, where the 3D data space 

is decomposed into a mutually exclusive and collectively exhaustive set of subdomains. 

We distribute the data by assigning each subdomain to a compute node in the network, 

and employ an owner-computes rule. 

In a parallel processing environment, it is vital to consider the time complexity of 

communication and computation dictated by the underlying algorithm, to achieve 

efficient parallelism. For a d-dimensional stencil problem of order n and global grid size 

nx × ny × nz to run on p processors, the communication complexity is O(n((nx × ny× 

nz)/p)(d-1)/d), whereas computation associated by the subdomain is proportional to the 

number of owned grid points, therefore its time complexity is O(n(nx × ny × nz)/p) (which 

is linear in n, assuming a stencil geometrically similar to that shown in Fig. 3.1). For a 3D 
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problem, they reduce to O(n((nx × ny × nz)/p)2/3) and O(n(nx × ny × nz)/p), which are 

proportional to the surface area and volume of the underlying subdomain, respectively. 

Accordingly, subdomains are chosen to be the optimal orthorhombic box in the 3D 

domain minimizing the surface-to-volume ratio, O((p/(nx × ny × nz))1/3), for a given 

number of processors (e.g., a cubic subvolume, if the processor count is cube of an 

integer). 

The pseudocode in Table 3.2 represents our spatial-decomposition approach. We 

implement the message passing using Message Passing Interface (MPI) [93]. A typical 

SC requires boundary grid points to be exchanged among processors. Therefore each 

subdomain is augmented with a surrounding layers of buffer grids used for data transfer.  

Table 3.2: Pseudocode for spatial decomposition. 

 1: for 

€ 

t =1 to 

€ 

Nstep 
 2:     if 

€ 

parity = sendfirst 
 3:        

€ 

send sendBuffer to neighbor 
 4:        

€ 

receive recvBuffer from neighbor 
 5:     else 
 6:        

€ 

receive recvBuffer from neighbor 
 7:        

€ 

send sendBuffer to neighbor 
 8:     end if 
 9:     forall 

€ 

r ∈Ωp do 
10:        

€ 

compute stencil in owned space 
11:     end for 
12: end for 

 

In Table 3.2, the parity of a process determines if it first sends, i.e. a sendfirst, its 

own grid points at the boundary, sendBuffer, or receives the neighboring grid points from 

its neighbor process to update its receive buffer, recvBuffer. Once the buffer layers are 
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exchanged, each process computes the stencil for their own grid points, i.e., r ∈

€ 

Ωp . Line 

10 of Table 3.2 encapsulates the SC in lines 5-13 of Table 3.1. 

3.2.2 Intra-node Parallelism by Multithreading 

Our code is implemented based on hierarchical spatial decomposition: (1) inter-

node parallelization with the higher-level spatial decomposition into domains based on 

message passing; and (2) intra-node parallelization with the lower-level spatial 

decomposition within each domain through multithreading. We implement 3 subroutines 

to handle x, y, and z directional sweeps inside the main loop shown in Table 3.1. The 

procedure zSweepTh in Table 3.3 shows a thread spawned to perform z directional sweep.  

Table 3.3: Pseudocode for the threaded code section. Since threads store their data in the 
u(t+1)  array, they avoid possible race conditions to exploit thread-level parallelism (TLP). 

 1: procedure zSweepTh(n,ntx,ny,nz,c,u
(t ),u(t+1) ) 

 2:        for j = n  to ny − n  do 
 3:          for i = ntx,l  to ntx,u do 
 4:            for k = n to nz − n do 
 5:             packed _uk

(t )←ui, j,k
(t )  

 6:            end for 
 7:            for k = n to nz − n do 
 8:             ui, j,k

(t+1)← f (c,neighbor(packed _uk
(t ) )) 

 9:            end for 
10:          end for 
11:        end for 
12: end procedure 

 

In Table 3.3, the zSweepTh thread receives ntx as a parameter, which has lower 

and upper bounds of its assigned block, ntx,l  and ntx,u, respectively. This divides the global 

grid domain in the x direction. Recall that x is the unit-stride direction, y has nx stride, 
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and z has the highest stride of nx×ny. Other threads reuse the method in zSweepTh, i.e., 

their innermost loop of the triply nested loop body is the direction of computation, second 

loop is the direction that has the lower stride among the other two Cartesian coordinates, 

and the outermost loop being the higher stride dimension. Notice that in line 5 of Table 

3.3, we pack the grid points 

€ 

u
(t )  into

€ 

packed _u
(t) . This is in order to pay the non-

contiguous memory access penalty only once for higher-stride dimensions, i.e., y and z. 

Therefore x thread does not implement this packing loop. In line 8, we represent the 

stencil to be a function f of coefficients c and the neighbor points of the grid point 

€ 

packed _uk
(t) . Here, the accessed neighbors are naturally the z neighbors since zSweepTh 

only implements the z-directional computation. Threads of the same direction can 

independently execute and perform updates on their assigned subdomain without 

introducing any locks until finally they are joined. 

3.2.3 In-Core Optimizations 

While it is possible to employ divide-and-conquer strategies for structured grid 

problems and perfectly scale such algorithms on massively parallel computers, utilizing 

in-core level optimization techniques is essential to exploit flops performance of the 

underlying computational units. In this section, we explore in-core optimization 

techniques addressing high-order stencil computations. Our tests include (1) loop 

unrolling and tiling targeting efficient L2 cache use; (2) register blocking (RB) and data-

level parallelism via single-instruction multiple-data (SIMD) techniques to increase L1 

cache efficiency; and (3) software prefetching to hide memory latency. 
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3.2.3.1 Loop Unrolling and Tiling 

The stencil code in Table 3.1 has data reuse in all loops but traverses a very large 

memory footprint, which prevents the reuse to be fully exploited in the core’s memory 

hierarchy. In this section, we discuss locality optimizations for exploiting data reuse. 

To compute a single value, 

€ 

ui, j,k
(t+1), the stencil code reads 2n elements from each 

dimension of the 3-dimensional array 

€ 

u
(t ) . The computation of 

€ 

ui, j,k
(t+1) in one of the 

dimensions reuses 2n-1 elements in that dimension and reads 2n new values in each of 

the other two dimensions. For example, the computation of 

€ 

ui+1, j,k
(t+1)  reuses 2n–1 elements 

in x, and reads 2n new elements in y and z (plus a new element in x, 

€ 

ui+1+n, j,k
(t ) ). Therefore 

each of the loops z, y and x reuses data across iterations. However, the data reused by 

different iterations of the outer loops may not be in cache(s) because of the large amount 

of data accessed in between. 

The size of the memory footprint traversed by a stencil code is another factor 

preventing data locality. The memory footprint of 

€ 

u
(t )  in one iteration of loop x spans a 

memory region of (2n−1)×576 KBytes, or 6.336 MBytes for n = 6, which is on the order 

of the shared data cache of most quadcore architectures. Assuming that each 3-

dimensional array is allocated in a contiguous region of memory, two elements 

€ 

ui, j,k
(t )  and 

€ 

ui, j,k+1
(t )  are 576 KBytes apart. A few iterations of loop z touch more than a memory page, 

even for the large page size of the Nehalem. 
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To take advantage of the reuse available in the SC, we use code transformations 

that improve locality. Loop tiling is a code transformation that reorders loop iterations to 

bring accesses to the same data, cache line and memory pages closer together in time. We 

apply loop tiling to SC targeting different levels of memory hierarchy: TLB, last level 

cache (LLC), and SIMD register file. Before tiling, we apply loop unrolling to the three 

loops at the innermost level (in, jn and kn) of Table 3.1 with a factor of 2n, i.e., we fully 

unroll the loops. Line 5 in Table 3.4 represents the computation in the loop body after 

unrolling. Fully unrolling these loops eliminates loop overhead and exposes more data 

reuse in the loop body that we will exploit using SIMD registers. The resulting code is a 

3-deep loop nest, as shown in Table 3.4. 

Table 3.4: Pseudocode for unrolled code. Function f represents stencil computation. 

1: procedure 

€ 

unrollHOSC(n,nx ,ny,nz,c,u
(t )
,u
(t+1)

) 
2:        for 

€ 

k = n to 

€ 

nz − n do 
3:            for 

€ 

j = n to 

€ 

ny − n do 
4:                for 

€ 

i = n to 

€ 

n
x
− n do 

5:                

€ 

ui, j,k
(t+1)← f (c,neighbor(ui, j,k

(t ) ))  
6:                end for 
7:            end for 
8:        end for 
9: end procedure 

 

TLB: To reuse more data in each memory page and decrease the number of TLB 

misses, we apply tiling to loop k. Tile size zTile should be chosen such that the number of 

pages touched by loop iterations within the tile is smaller than the number of TLB entries. 

LLC: The 8 MB L3 cache of our experimental platform (Intel Nehalem) can keep 

13 “planes” of grid points, where a plane is a region of 384×384 elements (576 KBytes) 
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along dimensions y and x (each value of z corresponds to a plane in (y, x)). However, to 

exploit reuse in all three dimensions, we tile loop j so that the data accessed within a tile 

of size zTile × yTile fits in the L3 cache (the data includes elements of 

€ 

u
(t ) , 

€ 

u
(t+1) and 

other temporary data required by the computation). Note that, although in this section we 

discuss locality optimizations in the context of a single thread on a single core, when 

combining these optimizations with parallelism, the tile sizes should be chosen carefully 

to prevent conflicts in the shared cache, i.e., L3 in 3-level cache Nehalem (L2 in earlier 

quadcore architectures). 

Table 3.5 shows the SC after loop tiling is applied to loops k and j. In Table 3.5, 

macro MIN returns the smaller of its parameters, so that the two higher-stride directional 

loops, i.e., y and z, are subdivided into smaller loops of size zTile and yTile.  

Table 3.5: Pseudocode for tiling implementation 

 1: procedure 

€ 

tiledHOSC(n,nx ,ny,nz ,c,u
(t)
,u
(t+1)

) 
 2:        for 

€ 

k = n to 

€ 

nz − n by 

€ 

zTile do 
 3:        for 

€ 

j = n to 

€ 

ny − n by 

€ 

yTile do 
 4:           for 

€ 

kk = k to 

€ 

MIN((kk + zTile),(nz − n)) do 
 5:           for 

€ 

jj = j to 

€ 

MIN(( jj + yTile),(ny − n)) do 
 6:                 for 

€ 

ii = n to 

€ 

n
x
− n do 

 7:                  

€ 

uii, jj,kk
(t+1) ← f (c,neighbor(uii, jj,kk

(t ) )) 
 8:                 end for 
 9:             end for 
10:            end for 
11:        end for 
12:        end for 
13: end procedure 

 

The tiling parameters, zTile and yTile, should be large enough to amortize the cost 

of the added loops but the size of the tiles should not exceed physically available cache 
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size. In fact, for a 3-dimensional SC with m physical quantities (e.g., pressure and/or 

temperature) of type datatype per grid point, the tiling parameters should be chosen such 

that yTile × zTile  × m × n × sizeof(datatype) ≤ effective cache size, where we refer to 

effective cache size instead of physical size to account for memory mapping rules. 

In contrast to some existing tiling approaches that tile all three loops [53], the 

pseudocode in Table 3.5 does not apply tiling to the unit-stride dimension. Our tests have 

shown that tiling the two high-stride dimension loops is enough to have most reuse across 

tiles. In fact, tiling all three loops expands tile boundaries and cannot amortize the 

increased number of tile execution. This comes from the fact that in stencil codes, it is 

only required to preserve the group reuse at 2n+1 distance. 

Code generation and tuning: We use a code transformation tool, CHiLL [15], to 

generate optimized code variants of the SC. CHiLL is a transformation framework that 

allows the user to specify code transformations using a high-level script interface. CHiLL 

supports code transformations such as loop tiling, interchanging, unrolling, fusion and 

distribution, data copying and data prefetching. CHiLL takes as input the original code 

and a script specifying code transformations, and automatically generates a transformed 

code. Optimization parameters such as tile sizes can be specified as integer values or as 

unbound parameters to be determined later. In our optimized code variant 

(stencil_2dTiling) loops z and y are tiled with unbound parameters zTile and yTile. We 

use empirical search to determine the optimum tile sizes zTile and yTile, RB and SIMD 

parallelization.  
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3.2.3.2 Register Blocking 

In SC, it is not possible to have small strides for all directions of computation at 

the same time. For example, the stride in the z direction is 576 KBytes in our kernel, 

whereas the x direction has a unit stride, i.e. 4 Bytes.  

To exploit SIMD parallelism and spatial reuse in the x direction, we rearrange the 

computation to perform updates to grid points that are contiguous in the SIMDized code. 

Fig. 3.2 schematically represents our approach to RB for HOSC. In the original kernel in 

Fig. 3.2(a), the red square indicates target grid points to be updated at certain time. Blue, 

yellow and green squares respectively show memory locations of the nearest neighbor 

points in x, y, and z Cartesian coordinates. During each iteration of loop ii (in Table 3.5), 

the red square is updated by accessing all neighbors (not necessarily the nearest 

neighbors, and the stencil order determines the distance of the furthest accessed 

neighbor.) Memory stride for each direction is 1, 

€ 

n
x
, and 

€ 

n
x
×

€ 

ny , respectively, using the 

same notation as in Table 3.5. In contrast to the original access pattern shown in Fig. 

3.2(a), RB deals with a chunk of target grid points contiguous in the x direction. The 

same size of neighboring cells is fetched to update the block of target grids, which 

maximally utilize registers (see Fig. 3.2(b)). 
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Figure 3.2: Memory access pattern of register blocking compared to the original access 
pattern 
 

More specifically, with the RB technique, instead of computing ui, j,k
(t+1)  one by one, 

we accumulate the contributions of ui, j,k+n
(t ) ,  ui+1, j,k+n

(t ) ,  ui+2, j,k+n
(t ) ,  ui+3, j,k+n

(t )  on 

ui, j,k
(t+1),  ui+1, j,k

(t+1) ,  ui+2, j,k
(t+1) ,  ui+3, j,k

(t+1) , where both of 4 float blocks are contiguous and 16 Bytes 

aligned in memory, and can be packed into 16 Bytes SIMD registers. We manually 

implement RB using Intel SSE3 intrinsics. RB eliminates 3 memory accesses to 

neighboring grid points per 16-Byte block and accordingly increases performance. It 

should also be noted that the compiler fails to generate code using Intel SSE instructions 

for floating point operations in the tiling mode due to the complex loop body of high-

order stencil. Therefore, RB enhances opportunity for better instruction scheduling with 

increased instruction level parallelism. 

3.2.3.3 Prefetching 

L2 data cache miss incurs the penalty of accessing to memory, which is 

approximately 150 clock cycles, an order of magnitude more than L2 access penalty, on 
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modern quad-core architectures such as Intel Xeon processors. Therefore, we use 

software prefetching to hide memory latency.   

We use Intel’s _mm_prefetch intrinsic to implement fetching data from 

memory to second level cache. Since prefetch scheduling distance (PSD) is not a well-

defined metric, and to achieve better performance, we spread the prefetch instructions 

inside the instruction sequence of the innermost loop rather than clustering prefetches 

together and experiment with a variety of PSDs up to 3 full iterations of the innermost 

loop. Considering high stride access due to the topology of stencil computation, we also 

combine this by translation lookaside buffer (TLB) priming to preload the page table 

entry for the z-neighboring grid points. This is similar to prefetch, but instead of a data 

cache line, the page table entry is being loaded in advance of its use to avoid TLB miss.  

3.3 Performance Evaluation 

Inter-node scalability tests have been carried out on (1) Intel Xeon and AMD 

Opteron platforms at the High Performance Computing and Communications (HPCC) 

Center of the University of Southern California (USC) and (2) the IBM BlueGene/P at 

Argonne National Laboratory. The Intel dual quadcore Xeon E5420 (Harpertown) 

processors are clocked at 2.5 GHz, featuring a 4×32 KBytes 8-way set associative L1 

data and instruction cache and 2×6144 KBytes 24-way set associative L2 cache. The 

AMD dual dualcore Opteron 270 is clocked at 2 GHz with 1 MB L2 cache per core. The 

Xeon platform deploys 12 GB memory and 10-gigabit Myrinet interconnects, and the 

Opteron platform 4GB memory with 2-gigabit Myrinet. The BlueGene/P has four nodes 
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on a chip, where each node has 2 GB DDR2 DRAM and four 450 POWER PC 

processors clocked at 850 MHz, featuring a 32 KBytes instruction and data cache, a 2 

KBytes L2 cache and a shared 8 MB L3 cache. BlueGene/P also allows users to specify 

arrangement of MPI processes to make use of its 3D torus network topology. We have 

examined TXYZ and XYZT mapping orders, where XYZ represents 3D indices in the 

torus network while T (= 0, 1, 2, 3) corresponds the number of cores on one node. For a 

spatial decomposition scheme, though the best performance is expected by mapping 

process arrangement exactly on the torus structure [45], TXYZ mapping often performs 

better, retaining more communications locally. 

We perform our single-processor and single-core benchmarks on Intel Nehalem 

(core i7 920), which is clocked at 2.67 GHz. On a single-die, quadcore Nehalem CPU, 

there is 8 MB of shared L3 cache, 256 KBytes of L2 cache per core and 64 KBytes of L1 

cache (divided into a 32 KBytes instruction cache and a 32 KBytes data cache). Nehalem 

drops the front side bus (FSB) in favor of Intel QuickPath Interconnect (QPI) and, in 

doing so, brings the memory controller on-die. Cores on the Nehalem die communicate 

through QPI that offers 25.6 GB/s of bandwidth, which is more than twice the theoretical 

bandwidth of Harpertown’s FSB. Nehalem’s cores are capable of Simultaneous Multi-

Threading (SMT), i.e., each core can execute 2 threads simultaneously, opposed to single 

thread per core on Harpertown. 

3.3.1 Strong Scaling 

Algorithms harnessing sound strong scalability may accelerate overall application 

performance by increasing the number of processors, and are desirable to fully utilize 
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many-core architectures. Here, we define the strong-scaling speedup as the ratio of the 

time to solve a problem on one processor to that on p processors. Fig. 3.3(a) shows the 

total execution and communication times on BlueGene/P with TXYZ and XYZT network 

mappings as a function of the number of processors. Fig. 3.3(b) and Fig. 3.3(c) plot 

strong-scaling speedup on the three platforms described above. Measurements are done 

with a fixed global problem size of 4003 grid points. We obtain good overall strong 

scalability by increasing processor count on all platforms. Furthermore, we observe 

superlinear speedups on the Intel architecture. This may be explained as an effect of 

aggregate cache size as discussed below. 

 

 
Figure 3.3: Strong-scaling benchmark on BlueGene/P, Intel Xeon E5420 and AMD 
Opteron 270 based clusters. (a) The wall-clock time as a function of the number of 
processors (up to 32,768) of BlueGene/P. (b) Speedup over 512 cores. (c) Speedup over a 
single core on the Xeon E5420 and Opteron 270 platforms. The Xeon E5420 exhibits 
superlinear speedup for relatively small number of processors. 

 

Sequential or shared-memory implementations suffer from a large memory 

footprint per process. For example, our seismic application uses 3843 grid points (1.13 

GBytes data in total), which is well beyond the current cache sizes. The spatial 

decomposition scheme avoids this problem by increasing the processor count, and thus 
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decreasing the volume of each subdomain. Substantial performance gain is expected, 

when the sub-domain size becomes small enough to fit into the cache. We use the Intel 

Vtune Performance Analyzer to monitor cache and TLB misses in the original seismic 

code. We find that high-stride computation accounts for more than 25% of core cycles 

throughout the thread execution during page-walks, indicating that a high TLB miss rate 

results in greater effective memory access time. The cache effect is most pronounced in 

the benchmark on Intel Xeon E5420 (Harpertown) architecture that features a shared 6 

MBytes L2 cache per chip that accommodates two cores. This amounts to 12 MBytes of 

cache per multi-chip module (MCM), 6 times more than 2 MBytes (2×1 MBytes) L2 

cache on AMD Opteron. Therefore, Harpertown outperforms AMD Opteron and shows 

the superlinear-scaling with the processor counts over 32 (see Fig. 3.3(c)). 

3.3.2 Weak Scaling 

Next, we test weak-scaling parallel efficiency of our parallel SC. We define the 

weak-scaling parallel efficiency as the running time on 1 processor divided by that on p 

processors. Fig. 3.4(a) and Fig. 3.4(b) plot the total execution time and communication 

time per SC step on the BlueGene/P and Intel Xeon E5345 (Clovertown) platforms.  
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Figure 3.4: Weak-scaling performance on (a) BlueGene/P with 2003 grid points per 
process and (b) a dual quadcore Intel Xeon E5345 cluster with 1003 grid points per 
process 

 

In the Fig. 3.4, the number of grid points per process (i.e. grain size) is 2003 (160 

MBytes/process) for BlueGene/P and 1003 (20 MBytes/process) for the Clovertown 

cluster. We observe excellent weak scalability, nearly constant performance up to 256 

processors on the Clovertown-based cluster and 32,768 processors on BlueGene/P with 

TXYZ network mapping. The XYZT network mapping shows fluctuations in the total 

and communication times, which may be due to higher possibility of interference with 

other processes. 

3.3.3 Multithreading 

In addition to the massive inter-node scalability demonstrated above, our 

parallelization strategy involves the lower levels of optimization: First, we use 

multithreading explained in section 3.2.2, implemented with POSIX thread. Next, we 

vectorize the loop for construction of packed _uk
(t )  and computation of the stencil 
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f (c,neighbor(packed _uk
(t ) ))  inside the triply nested for loops in Table 3.3 by using 

SSE3 intrinsics on the Intel Nehalem platform. We use Intel C compiler (icc) version 11 

with O3 optimization level for our benchmarks.  

Fig. 3.5(a) shows the reduction in clock time spent per simulation step due to 

multithreading and SIMD optimizations. Corresponding speedups are shown in Fig. 

3.5(b).  

 
Figure 3.5: (a) The wall-clock time per iteration for non-SIMD and SIMDized codes as a 
function of the number of threads on quadcore Intel Nehalem.  (b) Breakdown of the 
speedups due to multithreading and data-level parallelism along with the combined intra-
node speedup. The best observed intra-node speedup is 5.83 with 8 threads on 4 cores. 

 

So as to delineate the performances of multithreading and SIMDization, we define 

a performance metric as follows. We use the clock time for one simulation step of the 

single threaded, non-vectorized code to be the sequential run time Ts. We denote the 

parallel run time, Tp(NUM_THREADS), to be the clock time required for execution of 

one time step of the algorithm as a function of spawned thread number, in presence of 

both multithreading and SIMD optimizations. Then combined speedup, Sc, shown in Fig. 
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3.5(b) is the ratio Ts/Tp as a function of the number of threads. We remove SIMD 

optimizations to quantify the effect of multithreading only, and measure the parallel 

running times for a variety of thread numbers, and state the multithreading speedup, St, 

with respect to Ts. Finally, we attribute the excess speedup, Sc/St, to SIMD optimizations. 

Fig. 3.5(b) shows the best speedup of 5.83 for 8 threads on a single quadcore Intel 

Nehalem node. It should be noted that multithreading speedup continues to increase until 

8 threads on 4 cores. This is because Nehalem cores feature simultaneous multi-threading 

technology (SMT) that enables each core to run two threads at the same time. Increased 

L3 cache sharing and thread management cost dominates at 16 threads to yield moderate 

performance degradation.  

3.3.4 Single-core Performance 

We use empirical search to determine the best values of tile sizes yTile and zTile 

for stencil_2dTiling and its variant featuring RB, using a simple search on a 2-

dimensional parameter space. The parameter space is defined by tile sizes <yTile, zTile>, 

bounded by cache and TLB capacity constraints. Our tiling approach essentially keeps 

cachelines closer to the core (in cache). All measurements are performed using one core 

of Intel Core i7 920 CPU. Table 3.6 summarizes the improved cache utilization by tiling.  

Table 3.6: Performance comparison of original and tiled codes 

Per 1000 
instructions 

Original 2dTiling Improvement 

LLC_MISS 0.42 0.054 7.77 
Local DRAM 0.54 0.115 4.69 

DTLB 0.41 0.084 4.88 
 



 63 

As a reference, Table 3.6 lists the performance of the experimental kernel that 

incorporates loop-unrolling transformations labeled as original. Each row shows the 

number of CPU events per 1,000 retired instructions. The data in the rows are normalized 

with respect to 1,000 retired instructions during the code execution. The first row shows 

the number of retired loads that miss the LLC per 1,000 retired instructions at Nehalem 

core. We observe a 7.7-fold improvement in the LLC miss rate for the tiling 

implementation with the best tile sizes used. The second row shows number of memory 

load instructions retired where the memory reference missed the L1, L2 and LLC caches 

and required a local socket memory reference per 1,000 retired loads during the 

execution. We see that the tiling version of the code shows improvement by decreasing 

local memory access rate by a factor of 4.6. The third row shows the number of retired 

loads that missed the DTLB per 1,000 retired instructions. We also observe that tiling 

improves DTLB miss per 1,000 instructions by 4.8-fold.  

Fig. 3.6(a) shows the variation of the performance (in terms of the floating-point 

operations per second) of stencil_2dTiling with tile sizes compared with that of the 

original loop-unrolling transformation code. We observe the dominant effect of y tile 

size, with the smaller y tile size achieving the better performance. The best observed 

performance is 2.72 Gflops, whereas the theoretical peak performance is 2.67×109 

cycles/second × 4 flops/cycle = 10.68 Gflops. This corresponds to 25% of the peak 

performance. Auto-tuning through CHiLL generates similar flops performance. 
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Figure 3.6: Floating-point operations per second performance at Intel Nehalem. (a) 
Comparison of the original and tiled codes. (b) The performance of tiling for TLB, cache 
and registers with SIMD implementation. The best single core performance is 5.9 
GFlops. 

 

Fig. 3.6(b) shows the tile-size dependency of the performance of the code variant 

incorporating both tiling and RB optimizations with the explicit use of SSE instructions. 

The best performance we have achieved is 5.9 Gflops, which corresponds to over 55% of 

the theoretical peak performance. 

The above results show more than 2-fold improvement by the SSE featuring code 

variant with respect to the tiling version. This performance enhancement may be 

attributed to the effective use of Intel SSE instructions for floating-point operations. In 

fact, we use Intel C compiler (icc) version 11 for all codes with the best optimization 

level (-O3), but the compiler fails to vectorize the nested loop body for the HOSC. Our 

analysis with Vtune reveals that the SIMD variant reduces the number of instructions that 

retire the execution by more than 2-fold with respect to both original and tiling versions 

of the same code. To better understand this, we have examined the assembly codes for 

floating-point operations inside the loop body. Table 3.7 shows a typical assembly code 
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for a single floating-point multiply generated from the original code and vector multiply 

of a four packed single-precision floating-point values in the SIMD code variant. Both 

codes load coefficient c and grid value 

€ 

ui, j,k
(t )  and perform a multiply operation. Original 

code executes extra instructions to calculate array indices whereas SIMD variant uses 1 

array index calculation per 4 floats multiply. Note the use of unpcklps and movlhps in the 

original code to unpack and move single-precision floating-point values, and use of 

movups for moving unaligned data. Also one single-precision floating-point multiply is 

performed by mulss instruction. In the SIMD code variant, movaps is used to load a 128-

bit memory location to an XMM register at once, i.e., aligned load operation loads 4 float 

values at a time, then performs a packed multiply, mulps, to concurrently multiply 4 

packed floats. 

Table 3.7: Comparison of original and optimized code at the assembly level 

Assembly for 1 float multiply from original code: 
  1:   movss 0160(%rsp), %xmm14 
  2:   mulss %xmm14, %xmm13 
  3:   addss %xmm13, %xmm10 
  4:   unpcklps %xmm8, %xmm8 
  5:   movlhps %xmm8, %xmm8 
  6:   movups 010(%rax, %r13, 4), %xmm11 
  7:   mulps %xmm8, %xmm11 
  8:   addps %xmm11, %xmm14 
  9:   movss 0210(%rsp), %xmm6 
 10:   mulss %xmm6, %xmm8 
 
Assembly for 4 float vector multiply in SIMD code variant: 
  1:   movaps (%rdx), %xmm10 
  2:   movaps 010(%rbp, %rax, 4), %xmm0 
  3:   mulps %xmm0, %xmm10 
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Lastly, we have explored performance enhancement thanks to software 

prefetching through micro-architecture level analysis of second-level cache utilization. 

Our results indicate that prefetching does not provide significant speedup. This is because 

the innermost loop in stencil kernel is predominately memory bandwidth-bound and 

already features competing techniques such as tiling and loop unrolling. It should also be 

noted that RB technique improves cache performance and this also contributes in less 

effectiveness of prefetching the data to L2 cache. Similar results were reported by Datta 

et al. for similar memory bound problems [18]. 
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Chapter 4 

A Metascalable Computing Framework  

In the preceding chapter, we presented a scalable parallelization scheme for high-

order stencil computations. In this chapter, we discuss a metascalable (or “design once, 

scale on new architectures”) parallel computing framework that has been developed for 

large spatiotemporal-scale atomistic simulations of materials based on spatiotemporal 

data locality principles, which is expected to scale on emerging multipetaflops 

architectures. The framework consists of (1) an embedded divide-and-conquer (EDC) 

algorithmic framework based on spatial locality to design linear-scaling algorithms for 

high complexity problems; (2) a tunable hierarchical cellular decomposition (HCD) 

parallelization framework to map these O(N) algorithms onto a multicore cluster based on 

hybrid implementation combining message passing and critical section-free 

multithreading. The EDC-HCD framework exposes maximal concurrency and data 

locality, thereby achieving: (1) inter-node parallel efficiency well over 0.95 for 218 

billion-atom molecular-dynamics and 1.68 trillion electronic-degrees-of-freedom 
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quantum-mechanical simulations on 212,992 IBM BlueGene/L processors 

(superscalability); and (2) high intra-node, multithreading parallel efficiency 

(nanoscalability).  

4.1 A Metascalable Dwarf 

4.1.1 Embedded Divide-and-Conquer (EDC) Algorithmic Framework 

In the embedded divide-and-conquer (EDC) algorithms, the physical system is 

divided into spatially localized computational cells [63]. These cells are embedded in a 

global field that is computed efficiently with tree-based algorithms (Fig. 4.1). 

 
Figure 4.1: Schematic of embedded divide-and-conquer (EDC) algorithms. The physical 
space is subdivided into spatially localized cells, with local atoms constituting 
subproblems, which are embedded in a global field solved with tree-based algorithms. 

 

Within the EDC framework, we have designed a number of O(N) algorithms (N is 

the number of atoms). For example, we have designed a space-time multiresolution MD 

(MRMD) algorithm to reduce the O(N2) complexity of the N-body problem to O(N) [65]. 

MD simulation follows the trajectories of N point atoms by numerically integrating 
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coupled ordinary differential equations. The hardest computation in MD simulation is the 

evaluation of the long-range electrostatic potential at N atomic positions. Since each 

evaluation involves contributions from N−1 sources, direct summation requires O(N2) 

operations. The MRMD algorithm uses the octree-based fast multipole method (FMM) 

[36, 73] to reduce the computational complexity to O(N) based on spatial locality. We 

also use multiresolution in time, where temporal locality is utilized by computing forces 

from further atoms with less frequency [64]. 

We have also designed a fast ReaxFF (F-ReaxFF) algorithm to solve the O(N3) 

variable N-charge problem in chemically reactive MD in O(N) time [69]. To describe 

chemical bond breakage and formation, the ReaxFF potential energy is a function of the 

positions of atomic pairs, triplets and quadruplets as well as the chemical bond orders of 

all constituent atomic pairs [100]. To describe charge transfer, ReaxFF uses a charge-

equilibration scheme, in which atomic charges are determined at every MD step to 

minimize the electrostatic energy with the charge-neutrality constraint. This variable N-

charge problem amounts to solving a dense linear system of equations, which requires 

O(N3) operations. The F-ReaxFF algorithm uses the FMM to perform the matrix-vector 

multiplications with O(N) operations. It further utilizes the temporal locality of the 

solutions to reduce the amortized computational cost averaged over simulation steps to 

O(N). To further speed up the solution, we use a multilevel preconditioned conjugate 

gradient (MPCG) method [60]. This method splits the Coulomb interaction matrix into 

far-field and near-field matrices and uses the sparse near-field matrix as a preconditioner. 
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The extensive use of the sparse preconditioner enhances the data locality, thereby 

increasing the parallel efficiency. 

To solve the exponentially complex quantum N-body problem, we use an EDC 

density functional theory (EDC-DFT) algorithm mentioned in section 1.3.4. 

4.1.2 Tunable Hierarchical Cellular Decomposition (HCD) for 
Algorithm-Hardware Mapping 

To map the O(N) EDC algorithms onto parallel computers, we have developed a 

tunable hierarchical cellular decomposition (HCD) framework. 

Massively distributed scalability via message passing—Superscalability: Our 

parallelization in space is based on spatial decomposition, in which each spatial 

subsystem is assigned to a compute node in a parallel computer. For large granularity (the 

number of atoms per spatial subsystem, N/D > 102), simple spatial decomposition (i.e., 

each node is responsible for the computation of the forces on the atoms within its 

subsystem) suffices, whereas for finer granularity (N/D ~ 1), neutral-territory [87, 88] or 

other hybrid decomposition schemes [31, 79, 80, 92] can be incorporated into the 

framework. Our parallelization framework also includes load-balancing capability. For 

irregular data structures, the number of atoms assigned to each processor varies 

significantly, and this load imbalance degrades the parallel efficiency. Load balancing 

can be stated as an optimization problem [13, 20, 102]. We minimize the load-imbalance 

cost as well the size and the number of messages. Our topology-preserving spatial 

decomposition allows message passing to be performed in a structured way in only 6 

steps, so that the number of messages is minimized. To minimize the load imbalance cost 



 71 

and the size of messages, we have developed a computational-space decomposition 

scheme [61]. The main idea is that the computational space shrinks in a region with high 

workload density, so that the workload is uniformly distributed. The sum of load-

imbalance and communication costs is minimized as a functional of the computational 

space using simulated annealing. We have found that wavelets allow compact 

representation of curved partition boundaries and thus speed up the optimization 

procedure [59]. 

Multicore scalability via multithreading—Nanoscalablity: In addition to the 

massive inter-node scalability, “there is plenty of room at the bottom,” as Richard 

Feynman noted. At the finest level, EDC algorithms consist of a large number of 

computational cells (Fig. 4.1), such as linked-list cells in MD [65] and domains in EDC-

DFT [90], which are readily amenable to parallelization. On a multicore compute node, a 

block of cells is assigned to each thread for intra-node parallelization. Our EDC 

algorithms are thus implemented as hybrid message passing + multithreading programs. 

Here, we use the POSIX thread standard, which is supported across broad architectures 

and operating systems. In addition, our framework [63] includes the optimization of data 

and computation layouts [55, 96], in which the computational cells are traversed along 

various spacefilling curves [57] (e.g. Hilbert or Morton curve). To achieve high 

efficiency, special care must be taken also to make the multithreading free of critical 

sections. This is illustrated below using MRMD as an example. 

In MRMD, the interatomic potential energy V consists of two-body (V2) and 

three-body (V3) terms [65]. To compute interatomic forces, the Newton’s third law is 
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usually used to reduce computation. However, for multithreading, a race condition occurs 

when computed force values are sent back to memory due to the random memory access 

pattern of MD application. We have designed a critical section-free algorithm to make all 

interatomic force computations independent. For example, Eq. (1) shows a conventional 

summation rule to compute the three-body interaction without duplicating the same 

calculation (the two-body computation follows a similar but simpler procedure): 

 

€ 

V3 = v(rj ,ri ,rk )
j<k

nbr(i)

∑
i=1

N

∑ , (1) 

where ri is the coordinate of the i-th atom and nbr(i) is the list of neighbor atoms within 

the three-body cutoff length from atom i. In order to avoid a race condition, we slightly 

rewrite Eq. (1) and calculate the three-body force, 

€ 

F
l

(3)
= −∂V3 /∂ri , on the l-th atom as 
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Fl
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= −
∂v(ri ,rj ,rk )

∂rik≠i

nbr( j)

∑
j=1

nbr(i)

∑
i=1

N

∑ δi,l , (2) 

where 

€ 

δi,l  = 1 (i = l) or 0 (else). Note that Eq. (1) has atom i as the center of atomic triplet 

(j, i, k), whereas Eq. (2) has atom i as its head, (i, j, k). The modified three-body 

interaction computation consists of a loop over atom i, each iteration of which traverses 

atoms j in the neighbor list of atom i and subsequently neighbor atoms k in nbr(j). By 

assigning different head atoms i to different threads, there cannot be any race condition. 

Our multithreading is based on a master/worker model, in which a master thread 

coordinates worker threads that actually perform force computations. We use POSIX 

semaphores to signal between the master and worker threads to avoid the overhead of 

thread creation and joining in each MD step. There are two check points at each MD time 
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step, where all worker threads wait a signal from the master thread: (1) before the two-

body force calculation loop, which also constructs the neighbor-lists, after atomic 

coordinates are updated; and (2) before three-body force calculation, after having all 

atoms complete neighbor-list construction. Table 4.1 and Fig. 4.2 show a pseudo-code 

and a flow chart of our algorithm, respectively.  

Table 4.1: Pseudo-code of the critical section-free force computation algorithm 

Master thread: 
nstep = 0 
compute 2-body and 3-body forces 
spawn worker threads 
while (nstep < Number_of_MD_steps) 
  post semaphore1 to worker threads to begin neighbor-list 
construction and  
    2-body force calculation 
  wait for semaphore1 signaled back from worker threads 
  post semaphore2 to worker threads to begin 3-body force 
calculation 
  wait for semaphore2 signaled back from worker threads 
  update atom positions 
  nstep++ 
join all threads 
 
Worker threads: 
while (nstep < Number_of_MD_steps) 
  wait for semaphore1 from master thread 
  start neighbor-list and 2-body force calculation 
  post semaphore1 to master thread 
  wait for semaphore2 from master thread 
  start 3-body force calculation 
  post semaphore2 to master thread 
  nstep++ 

 



 74 

 
Figure 4.2: Flow chart of the critical section-free MD algorithm. At the beginning of 
simulation, a master thread computes complete force and energy before creating worker 
threads. Worker threads wait until master updates atomic coordinates 

€ 

{ri}  and velocities 

€ 

{vi} (Dt is one MD time step). After receiving a signal from the master thread, the 
worker threads start computing two-body forces and neighbor-list, and then send a signal 
back to the master. Subsequently, three-body forces are computed following the same 
signaling scheme. 

 

Intelligent tuning: The hierarchy of computational cells provides an efficient 

mechanism for performance optimization as well—we make both the layout and size of 

the cells as tunable parameters that are optimized on each computing platform [63]. Our 

EDC algorithms are implemented as hybrid message-passing + multithreading programs 

in the tunable HCD framework, in which the numbers of message passing interface (MPI) 

processes and POSIX threads are also tunable parameters. The HCD framework thus 

maximally exposes data locality and concurrency. We are currently collaborating with 

compiler and artificial intelligence (AI) research groups to use: (1) knowledge-

representation techniques for expressing the exposed concurrency; and (2) machine-

learning techniques for optimally mapping the expressed concurrency to hardware [6]. 
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4.2 Scalability Tests 

The scalability of our EDC-HCD applications has been tested on various high-end 

computing platforms including 212,992 IBM BlueGene/L processors at the Lawrence 

Livermore National Laboratory and 131,072 IBM BlueGene/P processors at the Argonne 

National Laboratory. The BlueGene/L comprises 106,496 compute nodes (CN), each 

with two IBM PowerPC 440 processors (at 700 MHz clock frequency) and 512 MB of 

shared memory. Each processor has a 32 KB instruction and data cache, a 2 KB L2 

cache, and a 4 MB L3 cache, which is shared with the other processor on the CN. Each 

CN has two floating-point units that can perform fused multiply-add operations. In its 

default mode (co-processor mode), one of the processors in the CN manages the 

computation, while the other processor manages the communication. In an alternative 

mode of operation (virtual mode), both processors can be used for computation. A 3D 

torus network connects nearest-neighbor CNs, and a collective global tree network 

handles communications involving all nodes. The 163,840-processor BlueGene/P 

consists of 40 racks each with 32 node-cards. On every node-card, there are 32 quadcore 

nodes, each with 2 GB DDR2 DRAM and four 450 POWER PC processors sharing L3 

cache. Compared to the BlueGene/L, the BlueGene/P has 20% higher clock frequency 

(850 MHz) and 1.4 times larger communication bandwidth (5.1 GB/s). While the sizes of 

the private L1 and L2 caches are the same on both platforms, the shared L3 cache of the 

BlueGene/P (8 MB) is twice as large as that of the BlueGene/L. On the BlueGene/P, 

hardware latency for nearest neighbors is less than 1 microsecond, and latency of one-

way tree traversal is 1.3 microseconds. 
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4.2.1 Inter-node (Message-Passing) Spatial Scalability 

Fig. 4.3 shows the execution and communication times of the MRMD, F-ReaxFF 

and EDC-DFT algorithms as a function of the number of processors P on the IBM 

BlueGene/L and P.  

                      

 
Figure 4.3: Total execution (circles) and communication (squares) times per MD time 
step as a function of the number of processors P of BlueGene/L (open symbols) and 
BlueGene/P (solid symbols) for three MD simulation algorithms: (a) MRMD for 
2,044,416P atom silica systems; (b) F-ReaxFF MD for 16,128P atom RDX systems; and 
(c) EDC-DFT MD for 180P atom alumina systems. 

 

In Fig. 4.3, we use one processor per dual-processor chip on BlueGene/L and all 

four cores per quadcore chip on BlueGene/P, so that 512 MB of memory is available per 

process to test the same problem size on both systems. Fig. 4.3(a) shows the execution 

time of the MRMD algorithm for silica material as a function of the number of processors 
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P. We scale the problem size linearly with the number of processors, so that the number 

of atoms N = 2,044,416P. In the MRMD algorithm, the interatomic potential energy is 

split into the long- and short-range contributions, and the long-range contribution is 

computed every 10 MD time steps. The execution time increases only slightly as a 

function of P on both BlueGene/L and P, and this signifies an excellent parallel 

efficiency. We define the speed of an MD program as a product of the total number of 

atoms and time steps executed per second. The isogranular speedup is the ratio between 

the speed of P processors and that of one processor. The weak-scaling parallel efficiency 

is the speedup divided by P, and it is 0.975 on 131,072 BlueGene/P processors. Though 

we have not completed all the benchmark runs, the measured weak-scaling parallel 

efficiency on 212,992 BlueGene/L processors is 0.985 based on the speedup over 4,096 

processors. Fig. 4.3(a) also shows that the algorithm involves very small communication 

time. 

Fig. 4.3(b) shows the execution time of the F-ReaxFF MD algorithm for RDX 

material as a function of P, where the number of atoms is N = 16,128P. The computation 

time includes 3 conjugate gradient (CG) iterations to solve the electronegativity 

equalization problem for determining atomic charges at each MD time step. On 212,992 

BlueGene/L processors, the isogranular parallel efficiency of the F-ReaxFF algorithm is 

0.996. 

Fig. 4.3(c) shows the performance of the EDC-DFT based MD algorithm for 

180P atom alumina systems. The execution time includes 3 self-consistent (SC) iterations 

to determine the electronic wave functions and the Kohn-Sham potential, with 3 CG 
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iterations per SC cycle to refine each wave function iteratively. On 212,992 BlueGene/L 

processors, the isogranular parallel efficiency of the EDC-DFT algorithm is 0.998 (based 

on the speedup over 4,096 processors). 

Our largest benchmark tests include 217,722,126,336-atom MRMD, 

1,717,567,488-atom F-ReaxFF, and 19,169,280-atom (1,683,216,138,240 electronic 

degrees-of-freedom) EDC-DFT calculations on 212,992 BlueGene/L processors. Though 

the absolute strong scaling (i.e. solving the same problem from P = 1 to 212,992) is not 

meaningful for such massive parallelism, the three algorithms exhibit excellent 

differential strong scalability, i.e., insensitivity of the speed on the granularity N/P. To 

quantify this effect, Fig. 4.4(a) plots the program speed (measured by the product of the 

number of atoms and MD time steps executed per second) for the MRMD algorithms as a 

function of the granularity (the number of atoms per processor, N/P) on BlueGene/L. The 

program maintains the same speed over a wide range of granularity for each P. The same 

data points are shown in Fig. 4.4(b) as a function of the number of processors, P. The 

MRMD program thus achieves a nearly perfect linear speedup as a function of the 

number of processors independent of the value of N/P. 
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Figure 4.4: (a) Speed of MRMD on BlueGene/L as a function of the granularity N/P, for 
different numbers of processors P.  (b) Speed of MRMD on BlueGene/L as a function of 
P for various granularities ranging from N/P = 117,912 to 2,044,416. 

4.2.2 Intra-node (Multithreading) Spatial Scalability 

We have tested the multithreading scalability of MRMD on a dual Intel Xeon 

quadcore platform. Fig. 4.5 shows the speedup of the multithreaded code over the single-

thread counterpart as a function of the number of worker threads. In addition to the 

speedup of the total program, Fig. 4.5 also shows the speedups of the code segments for 

two-body and three-body force calculations separately. We see that the code scales quite 

well up to 8 threads on the 8-core platform. We define the multithreading efficiency as 

the speedup divided by the number of threads. The efficiency of two-body force 

calculation is 0.927, while that for three-body force calculation is 0.436, for 8 threads. 

The low efficiency of the three-body force calculation may be due to the redundant 

computations introduced in Eq. (2) to eliminate critical sections. Nevertheless, the 

efficiency of the total program is rather high (0.811), since the fraction of the three-body 

calculation is about one third of the two-body force calculation. This result shows that the 

semaphore-based signaling between master and worker threads is highly effective. In a 
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test calculation for a 12,228-atom silica system, the running time is 13.6 milliseconds per 

MD time step. 

 
Figure 4.5: Speedup of the multithreaded MRMD algorithm over a single-threaded 
counterpart for the total program (circles), the two-body force calculation (diamonds), 
and three-body force calculation (squares). The solid line shows the ideal speedup. 

 

We have thus developed high-end reactive atomistic simulation programs to 

encompass large spatiotemporal scales with common algorithmic and computational 

frameworks based on spatiotemporal data-locality principles. In fact, the metascalable 

dwarf can reduce diverse applications (including all of the original seven dwarfs) to a 

highly scalable form by common techniques of embedding and divide-and-conquer. 

According to the scalability tests presented in this chapter, they are likely to scale on 

future architectures beyond petaflops. The simulation algorithms are already enabling 

million-to-billion atom simulations of mechano-chemical processes, which have 

applications in broad areas such as energy and environment [17, 70, 97]. 
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Figure 4.6: Spatiotemporal scales NT accessible by direct molecular-dynamics (white 
background) and approximate accelerated-dynamics (gray) simulations with a 
petaflops•day of computing. The lines are the NT achieved per petaflops•day of 
computing for MD (MRMD), chemically reactive MD (F-ReaxFF), and quantum-
mechanical MD (EDC-DFT) simulations, respectively. 

 

A critical issue, however, is the time scale studied by MD simulations. We define 

the spatiotemporal scale, NT, of an MD simulation as the product of the number of atoms 

N and the simulated time span T. On petaflops computers, direct MD simulations can be 

performed for NT = 1-10 atom•seconds (i.e. multibillion-atom simulation for several 

nanoseconds or multimillion-atom simulation for several microseconds). More 

specifically, a day of computing on a sustained petaflops computer (i.e. one petaflops•day 

of computing) achieves NT = 2.14 (e.g. 1 million atoms for 2.14 microseconds) (Fig. 4.6), 

according to the benchmark test in section 4.2 (i.e., extrapolated from the measured 

MRMD performance on the BlueGene/L, which is rated as 0.478 petaflops according to 

the Linpack benchmark). Accelerated-dynamics simulations [101] such as molecular-

kinetics simulations [58] will push the spatiotemporal envelope beyond NT = 10, but they 
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need to be fully validated against direct MD simulations at NT = 1-10. Such large 

spatiotemporal-scale atomistic simulations are expected to advance scientific knowledge. 
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Chapter 5 

Optimizing O(N) Density Functional Theory 

In preceding chapters, we have presented our parallelization framework for 

atomistic simulations and detailed our hierarchical optimization scheme for stencil 

computations. In this chapter, we unify our preceding discussions in performance 

analysis, multilevel parallelization and optimization to improve the computational 

performance of a production level first-principles molecular-dynamics application [90, 

91]. This scientific code implements a divide-and-conquer algorithm based MD 

simulation that uses small DFT calculations “on the fly” for computing interatomic forces 

[48]. Here, we particularly focus on improving the scalability and floating point 

performance of this application on large-scale clusters, in particular on BlueGene/P and 

Intel Xeon clusters. 
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5.1 Application Description 

The density functional theory (DFT) problem is formulated as a minimization of 

the energy functional EQM[ψNel] with respect to electronic wave functions (or Kohn-Sham 

orbitals) ψNel(r) = {ψn(r)|n = 1,...,Nel}, subject to orthonormality constraints (Nel is the 

number of wave functions on the order of N, and r denotes a three-dimensional position 

vector) [43]. The asymptotic computational complexity of the DFT problem is O(N3) for 

the orthogonalization of the Kohn-Sham orbitals, while it is proportional to N2 for 

iterative minimization methods for system sizes studied practically (N < 103, where the 

orthogonalization computation is not dominant) [40]. The data locality principle called 

quantum nearsightedness [49] in DFT is best implemented with a divide-and-conquer 

(DC) algorithm [105, 106], which naturally leads to O(N) DFT calculations [35]. 

However, it is only in the past several years that O(N) DFT algorithms, especially with 

large basis sets (> 104 unknowns per electron, necessary for the transferability of 

accuracy), have attained controlled error bounds, robust convergence properties, and 

energy conservation in its use in molecular dynamics (MD) simulations, to make large 

DFT-based MD simulations practical [29, 91]. The embedded divide-and-conquer (EDC) 

DFT algorithm considered in this research combines a hierarchical grid technique with 

multigrid preconditioning and adaptive fine mesh generation [90, 91]. Our EDC-DFT 

method is implemented as a ~38,500 lines Fortran 90 program that uses MPI for inter 

process message shuttling. 
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5.2 Systematic Optimization 

In this section, we detail our systematic optimization approach. We first present 

our system- and node-level performance evaluation of the EDC-DFT code, and then 

detail our performance enhancement methodology.  

5.2.1 Performance Evaluation 

The performance analysis of our Density Functional Theory (DFT) based 

Molecular Dynamics (MD) code on BlueGene/P has revealed that our implementation 

has excellent weak- and strong-scaling properties.  

 
Figure 5.1: Weak-scaling performance 

 

Fig. 5.1 shows the weak-scaling performance of the DFT code. Here, the principal 

x-axis shows the number of processors (P) used. The largest test case includes the whole 

BlueGene/P system with 163840 processors at Argonne National Laboratory. The 
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secondary x-axis shows the total number of the atoms in the system (N). Here, we scale N 

linearly with P, where the grain size (N/P) is 60 atoms/process. We show both the 

computation (or CPU) time and the communication time in Fig. 5.1, where the time is 

measured by MPI_WTIME() thereby refers to the wall-clock time. The weak-scaling 

parallel efficiency, which we define as the run time on the smallest benchmark divided by 

that on increasing number of processors, is observed to be more than 98% on P = 

163840. Thus our spatial decomposition implementation is highly effective in terms of 

inter-node scalability of DFT computations up to 163840 processors.  

 
Figure 5.2: Strong-scaling performance 

 

Fig. 5.2 shows the strong-scaling performance of the DFT code. In this 

benchmark, we keep N constant, and use different P to simulate the same physical 

system. Figure 5.2 plots the CPU times as measured by MPI_WTIME() as a function of 

P. The solid diagonal line shows the ideal strong-scaling behavior. We demonstrate two 

test systems composed of 9.83 and 3.93 million atoms. The largest test case uses the 
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whole BlueGene/P system with 163840 processors. The strong-scaling parallel 

efficiency, which we define as the normalized ratio of the run times to solve the problem 

using larger number of processors, is observed to be more than 97%. This result, together 

with the weak-scaling performance, confirms that our spatial decomposition based 

divide-and-conquer implementation for O(N) scaling DFT problem almost ideally scales 

on BlueGene/P system and will continue to be scalable on the next generation 

BlueGene/Q computer. 

We used the Tuning and Analysis Utilities (TAU) toolkit to gather performance 

information through the execution of our program on BlueGene/P. 

 
Figure 5.3: Percentage exclusive times 

 

In Fig. 5.3, we show percentages of the exclusive times spent in routines averaged 

over a 64 processor run (in virtual-node mode, i.e., 4 MPI processes per node) with 60 

atoms/processor grain size. In this figure, we demonstrate routines that have higher than 

1% impact on the total execution time. 

In Fig. 5.4, we present percentage exclusive times across each MPI process for 

this 64 processor run. Here, we have observed that the normalized standard deviation of 
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the individual times for the shown routines on different processes is less than 1%. This 

shows that our spatial decomposition implementation divides the computational load 

evenly among the processors.  

 
Figure 5.4: Percentage exclusive times across a 64-process run on BlueGene/P 

 

In order to evaluate intra-node performance, we have identified the top 

performance bottleneck routines. Specifically, we have observed that the 4 most time-

consuming subroutines given below spend more than 60% of the total CPU time. 

Therefore, in-core optimization of the corresponding subroutines could significantly 

reduce computation time. 

1. Conjugate gradient relaxation 
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2. Sparse-matrix to vector multiplication 

3. Linear mixing of wave functions with coefficients 

4. Inner product of two wave functions 

These subroutines mainly implement 2 computational kernels: (1) Nearest-

neighbor and high-order stencil computations; and (2) Basic linear algebra operations 

such as vector dot product, and constant times a vector plus a vector.  

In order to analyze the current floating point performance of these code sections, 

we have used IBM Hardware Performance Monitoring (HPM) API on BlueGene/P 

system. Our analysis with HPM revealed that the IBM XL Fortran compiler fails to 

generate instructions to utilize the dual floating-point units (FPUs) of the PowerPC (PPC) 

450 processor. Dual FPU instructions operate on pairs of double-precision (DP) floating-

point numbers, and perform single-instruction multiple data (SIMD) processing to deliver 

two DP floating-point operations per cycle. If instructions are not SIMDized, attainable 

performance is halved. In fact, our HPM analysis has shown that the floating-point 

operations per second (flops) performance of our code is ~200 Mflops per core, i.e., ~6% 

of the peak per-core flops performance of the PPC 450 processor. Finally, while we 

present our performance evaluation on BlueGene/P using TAU and HPM in this section, 

we have verified the validity of these results using Intel Vtune Performance Analyzer on 

a quadcore Intel Xeon 5320 processor as well.  



 90 

5.2.2 Model-Guided Optimization 

As mentioned in section 1.3.4, the EDC-DFT algorithm represents the physical 

system as a union of overlapping spatial domains, Ω = ∪α Ωα (see Figure 5.5), and 

physical properties are computed as linear combinations of domain properties [90, 91].  

 
Figure 5.5: Schematic of the divide-and-conquer algorithm in 2D. The physical space Ω 
is a union of overlapping domains, . Each domain  is further decomposed 
into the non-overlapping core Ω0α, and the buffer layer Γα (see the shaded area). The depth 
of the buffer layer is b. 

 

For example, the electronic density is expressed as ρ(r) = Σα pα(r) Σn fnα|ψnα(r)|2, 

where pα(r) is a support function that vanishes outside the α-th domain Ωα, and fnα and 

ψnα(r) are the occupation number and the wave function of the n-th Kohn-Sham orbital in 

Ωα. The domains are embedded in a global Kohn-Sham potential, which is a functional of 

ρ(r) and is determined self-consistently with {fnα,ψnα(r)}. We use the multigrid method to 

compute the global potential in O(N) time. The DFT calculation in each domain is 
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performed using a real-space approach [14, 95], in which electronic wave functions are 

represented on grid points. The real-space grid is augmented with coarser multigrids to 

accelerate the iterative solution. Furthermore, a finer grid is adaptively generated near 

every atom, in order to accurately operate ionic pseudopotentials for calculating electron-

ion interactions.  

Each domain Ωα is further decomposed into its sub-volumes, 

 Ωα =Ω0α ∪Γα , (1) 

where Ω0α is the non-overlapping core, 

 Ω =∪
α
Ω0α ; Ω0α ∩Ω0β = 0 (α ≠ β) , (2) 

and Γα is the buffer layer [21]. Boundary conditions on {ψn
α (r )}  are imposed at the 

boundary  of domain Ωα. We use either the rigid-wall boundary condition, in which 

the wave function vanishes at the boundary, or the periodic boundary condition. The 

wave function values in the buffer layer Γα may be contaminated by the artificial 

boundary conditions imposed at ∂Ωα . Thus, the domain support function pα (r )  is made 

zero near ∂Ωα  within Γα [21], so that the contaminated wave function values do not 

contribute to the density ρ(r ) . 

The EDC-DFT algorithm on the hierarchical real-space grids is implemented on 

parallel computers based on spatial decomposition [90, 91]. Each compute node contains 

one or more domains of the EDC algorithm. Then, only the global density but not 

individual wave functions needs to be communicated. The resulting large 
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computation/communication ratio makes this approach highly scalable. In the following, 

we present our model-guided optimizations for the parallel EDC-DFT algorithm. 

5.2.2.1 Optimization of Domain Size 

We first optimize the spatial decomposition domain size in the EDC-DFT 

algorithm, based on an analysis of its computational cost given in Theorem 1. 

Theorem 1: Consider a cubic system of side length L, and let the side length and 

the buffer depth of a domain in the DC-DFT algorithm be l and b, respectively. The 

computational complexity of the DFT computation within each domain is denoted as ν. 

Then, the optimal domain size l*, which incurs the minimal computational cost, is given 

by 

 l* =
2b
ν −1

. (3) 

Proof: The number of domains is Ndomain = (L/l)3, and the computational cost per 

domain can be written as 

 Tdomain = c l + 2b( )3ν , (4) 

where c is a prefactor. The total computational cost is thus a function of l: 

 Tcomp l( ) = Tdomain •Ndomain = c
L
l

!

"
#

$

%
&
3

l + 2b( )3ν . (5) 

The optimal domain size to minimize the computational cost is then given by 

 l* = argmin Tcomp l( )!" #$=
2b
ν −1

. (6) 

QED. 
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As mentioned earlier, the computational complexity of the DFT problem is N2 for 

typical domain sizes, N < 100, and thus l* = 2b. (The asymptotic complexity, which has 

rarely been encountered in practical DFT calculations [39], is O(N3), and accordingly, l* 

= b.) Based on the analysis presented here, we select optimal l* in the b to 2b range in our 

typical run.  

5.2.2.2 Optimization of Buffer Depth 

The choice of the buffer depth b is dictated by accuracy requirement. Namely, the 

quantum nearsightedness principle [49] indicates that the error involved in the EDC-DFT 

algorithm decays exponentially as a function of b [81]. This proposition is confirmed by 

numerical experiments shown in Fig. 5.6 [90].  

To test the convergence of calculation with respect to the buffer depth, Fig. 5.6 

shows the calculated potential energy as a function of b for an amorphous CdSe system 

containing 512 atoms in a cubic cell of length 45.664 a.u. (The domain size is fixed as 

11.416 a.u.) The potential energy converges within 10-3 a.u. per atom above b = 4 a.u. 
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Figure 5.6: Potential energy as a function of the buffer length b for an amorphous CdSe 
system (512 atoms in a cubic cell of side length, 45.664 a.u.). The domain size is fixed as 
11.416 a.u. The atomic units are used for both energy and length. Numerals in the figure 
indicate the number of self-consistent iterations required for the convergence of the 

electron density within ρi (
r )− ρi−1(

r )( ) / ρ0{ }
2
≤10−4 , where ρi (

r )  is the electron 

density at ith iteration, ρ0 is the average electron density, 0.0215 a.u., and the brackets 
denote the average over the grid for the entire system. 

 

Since the computational complexity of the EDC-DFT algorithm scales with the 

buffer depth b asymptotically as b3
ν = b6 ~ b9 (see equation 5), the large b value required 

for obtaining a sufficient accuracy in energy (e.g., 10-3 a.u. per atom) represents a major 

computational bottleneck. Based on the analysis presented here, we select the buffer 

depth parameter with respect to our accuracy requirements for different physical 

simulations. 

5.2.3 Profiling-Guided Optimization 

In this section, guided by our performance evaluation given earlier in section 5.2, 

we develop an efficient computation acceleration subsystem to reduce performance 
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footprint of kernels mentioned earlier. The numerical core of DFT application represents 

a HOSC as discussed in section 3.1.1 therefore we utilize some of the in-core 

optimization methods that are detailed in section 3.2.3. More specifically, our approach 

includes the following methods to efficiently harvest computer processor and memory 

resources.  

5.2.3.1 Performance Libraries 

IBM Engineering and Scientific Subroutine Library (ESSL) and Intel Math 

Kernel Library (MKL) provide a collection of high performance mathematical 

subroutines for many common scientific and engineering applications. In our work, we 

took advantage of such performance libraries whenever possible. Specifically, WFN_MIX 

and OVLP subroutines shown in Fig. 5.3 implement linear mixing of wave functions 

with coefficients and inner product of two wave functions (represented as a linear array 

of float numbers), respectively. Both MKL and ESSL features subroutines that 

implement such functionality. In particular, we used DAXPY and DDOT subroutines 

provided by Intel MKL as an alternative to our existing WFN_MIX and OVLP 

subroutines, respectively. 

5.2.3.2 Loop Blocking and Scalar Replacement 

Our percentage exclusive times plot, given in Fig. 5.3, revealed that the conjugate 

gradient relaxation subroutine took %21.1 of the execution time averaged over our 

experimental runs. Based on this evaluation, we developed code transformations that 

improve data locality within the main loop inside this subroutine, as shown in Table 5.1. 
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Table 5.1: A sample code snippet from conjugate gradient relaxation subroutine 
optimization is shown. The first section represents the original implementation; bottom 
code snippet shows our scalar replacement and loop blocking implementation.  

Original implementation: 
ndat = nx1*ny1*nz1 
      … 
do n = 1, ndat 
         i = ncorsx(n) 
         j = ncorsy(n) 
         k = ncorsz(n) 
         km1 = k - 1 
         kp1 = k + 1 
         jm1 = j - 1 
         jp1 = j + 1 
         im1 = i - 1 
         ip1 = i + 1 
         g(n) = g(n) &           
& - dk(1,dpth)*(wrk(im1,j,k)+wrk(ip1,j,k)) &  
& - dk(2,dpth)*(wrk(i,jm1,k)+wrk(i,jp1,k)) & 
& - dk(3,dpth)*(wrk(i,j,km1)+wrk(i,j,kp1))  
end do 
 
Scalar replacement and loop blocking implementation: 
n = 1 
     tmp1 = dk(1,dpth) 
     tmp2 = dk(2,dpth) 
     tmp3 = dk(3,dpth) 
do k = 1, nz1 
  do j = 1, ny1 
     af = wrk(0,j,k) 
     bf = wrk(1,j,k) 
     cf = wrk(2,j,k) 
    do i = 1, nx1 
        km1 = k - 1 
        kp1 = k + 1 
        jm1 = j - 1 
        jp1 = j + 1 
        im1 = i - 1 
        ip1 = i + 1 
        g(n) = g(n) & 
& - tmp1*(af+cf)    & 
& - tmp2*(wrk(i,jm1,k)+wrk(i,jp1,k)) & 
& - tmp3*(wrk(i,j,km1)+wrk(i,j,kp1)) 
         af = bf 
         bf = cf 
         cf = wrk(ip1+1,j,k) 
    end do 
  end do 
    n = n + 1 
end do 
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5.2.3.3 SIMD Processing 

It is of great importance to effectively use SIMD extensions since (1) most 

modern computing platforms have incorporated SIMD capability in their processors, and 

(2) non-SIMD operations can severely reduce the floating-point performance. For 

example, BlueGene/P’s PowerPC (PPC) 450 processor features a double precision, dual 

pipe, floating point unit (FPU). Dual FPU instructions operate on pairs of double-

precision (DP) floating-point numbers, and perform SIMD processing to deliver two DP 

floating-point operations per cycle. If instructions are not SIMDized, attainable 

performance will be halved. Therefore, recent work has focused on exploiting SIMD 

capability of PPC 450 for petaflops applications on BlueGene/P [3]. 

In our earlier work, we used several code transformations for SIMDizing stencil 

computations and molecular dynamics simulations on Intel quadcore based platforms [25, 

26, 78]. Here, we use Intel C compiler’s SSE3 intrinsics to implement SIMD concepts for 

DFT application. Since the original DFT code is written in Fortran 90, we first port 

bottleneck subroutines to C language considering differences (e.g., array layout, variable 

pass mechanism, internal compiler naming convention) in two languages. Then we 

implement with SSE3 intrinsics to take advantage of XMM registers of Intel platform. 

Table 5.2 shows a sample code snippet. 
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Table 5.2: Original Fortran 90 code for linear mixing of wavefunctions subroutine and 
corresponding C variant written with explicit SSE3 intrinsics 

Original implementation: 
subroutine wfn_mix0(wfn1,coe2,wfn2) 
 
use mod_mgdc 
   implicit real*8 (a-h,o-z) 
   dimension wfn1(mshnum), & & wfn2(mshnum) 
 
   do i = 1, mshnum 
       wfn1(i) = wfn1(i) + &       
       & coe2*wfn2(i) 
   end do 
 
   return 
end 
 
Explicit SSE3 implementation: 
void wfn_mix0_(double * wfn1,const double * coe2,const double * wfn2){ 
unsigned int i; 
__m128d mmcoe2; 
mmcoe2 = _mm_loaddup_pd(coe2); 
 
for (i = 0; i < mshnum / 2; i++) 
  _mm_store_pd( &wfn1[2*i],     
  _mm_add_pd(_mm_load_pd(&wfn1[2*i]),    
  _mm_mul_pd(_mm_load_pd(&wfn2[2*i]),mmcoe2))); 
 
if ((mshnum % 2) != 0) { 
for ( i = mshnum - mshnum % 2; i < mshnum; i++) 
   wfn1[i] += (*coe2) * wfn2[i];} 
 
return;} 

 

In Table 5.2, first the _mm_loaddup_pd intrinsic loads the double-precision 

floating-point coefficient coe2 into the lower and upper halves of the 16-byte long 

XMM register. Second, 2 double precision (8 byte) numbers, which are consecutive on 

16-byte boundary aligned double-precision floating-point arrays, wfn1 and wfn2, are 

loaded to another register by _mm_load_pd intrinsic. Finally, SIMD multiply-add 

operations are performed on XMM registers and results are stored back to computer 
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memory. We will consider the memory latency hiding benefit of this implementation in 

the next section.  

5.2.3.4 Memory Latency Hiding 

Memory structure is critical to achieving high performance on recent processors 

featuring complex memory subsystems including registers, multilevel caches and storage 

buffers. Performance can be easily limited by the speed at which data can be transferred 

from system memory to processor and thus researchers recently developed several 

memory optimization frameworks for emerging architectures [4, 28, 54]. 

To hide memory latency, we treat memory alignment carefully. In Table 5.2, it 

should be noted that memory load/store operations are handled through _mm_store_pd 

and _mm_load_pd intrinsics, which are equivalent to MOVAPD in x86 assembly 

programming language. The use of MOVAPD to load an XMM register from a 128-bit 

memory location (or to store the contents of an XMM register into a 128-bit memory 

location) requires the operands to be aligned on a 16-byte boundary. We ensure 16-byte 

boundary alignment at application level, using the keyword 

__attribute__((aligned(16))). This avoids redundant alignment checks 

during run time.  

Similar to x86 microprocessor, the BlueGene/P architecture allows for two 

double-precision values to be loaded in parallel in a single cycle, provided that the load 

address is aligned such that the values loaded do not cross a cache-line boundary (which 

is 32-bytes). If a non-aligned data is accessed or modified at application level, the 

PowerPC hardware generates an alignment exception and the data is artificially aligned at 
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the kernel level. Penalty for such context switch is in the order of thousands of cycles. 

Thus for efficient data transfer, data must be word aligned and must fit in a quadword 

aligned quadword. IBM XL Fortran compiler provides user level functions as compiler 

hints to inform the compiler that the incoming data is aligned according to specific byte 

boundary, so it can efficiently generate load and stores without alignment checks. At 

BlueGene/P platform, we ensure proper alignment at the application level and provide 

alignment guarantees to the compiler (using Fortran’s ALIGNX function) for efficient 

load/store instruction generation.  

5.2.3.5 Register and Cache Blocking 

In section 3, we used blocking techniques targeting different levels of memory 

hierarchy: TLB, last level cache (LLC), and SIMD register file to increase memory 

performance on Intel quadcore based platforms [26]. Indeed these techniques has proven 

successful, as a consequence there are recent efforts to integrate such optimizations into 

performance tuning frameworks [15, 42].  

In our DFT code, all of the top performance hotspot subroutines listed in section 

5.2.1 feature large loops sweep the entire grid for wave functions. To increase spatial 

locality and reduce effective memory access time of the DFT application, we have 

implemented register and cache blocking methods mentioned in chapter 3.  

In summary, the tangible benefit of our systematic optimization has been 

achieving ~15% performance improvement for the DFT application. Such an 

improvement for a production level application such as our DFT program can potentially 

save one-to-two orders of magnitude of petaflops•days of computing resources for a 
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typical run or can extend the time and length scale of real-life MD simulations at the 

same computational cost. As the width of the SIMD register files increase in the 

emerging processors (e.g., Intel Sandy Bridge, Intel Ivy Bridge), and with the 

introduction of three-operand SIMD instruction format (e.g., advanced vector extensions 

to x86 instruction set), we expect our optimization techniques to be increasingly more 

effective on future computers.   
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Chapter 6 

Conclusion 

The focus of our work has been efficient parallelization and optimization of 

scientific computing applications on emerging parallel computer architectures. As high-

performance computing systems feature increasingly complex levels of parallel 

computing hierarchy, it is imperative that application scientists overcome challenges 

involved with using such systems. Our contributions to this challenge, as we summarize 

in this chapter, enable effective use of emerging parallel computers to tackle vastly larger 

computational problems. In this chapter, we also detail ideas for future work that will 

make high performance computing systems play an even more important role in scientific 

discoveries. 

6.1 Summary of Contributions 

Productivity Tools on Emerging Architectures: We devised an efficient 

performance profiling methodology that targets hybrid computer systems. Based on Cell 
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Messaging Layer communication library, we developed the first cluster level 

performance profiler for the Roadrunner, which is the first hybrid supercomputer and the 

first supercomputer to attain a sustained petaflop/second performance. We demonstrated 

that our performance tool utilizes the Cell processor’s high-bandwidth on-chip 

communication bus effectively to overlap collection of performance events with actual 

program execution. In addition, we showed that our library design maintains a very low 

memory footprint while it fully utilizes the exotic features of Cell architecture such as the 

coherent direct-memory-access mechanism. To demonstrate the utility of our tool, we 

ported several scientific applications to Cell platform. Experiments validated that our 

productivity tool provides a key starting point on applications performance optimization 

on Cell-based computing platforms.  

Parallelization and Optimization Framework: We have presented 

parallelization algorithms and optimization strategies that allow leveraging multicore 

computer systems optimally for large-scale simulations. In particular, we have studied 

high-order stencil computations, which is a computation-bound mathematical kernel at 

the heart of most finite-difference time-domain (FDTD) method based simulations. We 

have developed a multilevel optimization framework for high-order stencil computations 

that combines: (1) data locality optimizations through auto-tuned tiling for efficient use 

of hierarchical memory; (2) register blocking and data parallelism via single-instruction 

multiple-data techniques to utilize registers and exploit data locality; (3) inter-core 

parallelization via multithreading and explicit non-uniform memory access control; and 

(4) inter-node parallelization via spatial decomposition. We have applied our 
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optimization scheme to a 6th-order stencil based FDTD code. Our benchmarks on 32,768 

BlueGene/P processors achieved over 98% weak-scaling parallel efficiency. We have 

also observed superlinear strong scaling on a large-cache x86 architecture based cluster. 

We have showed that our optimizations increase cache performance considerably. Our 

experiments have achieved the highest reported percentage peak performance for this 

computation pattern on general-purpose x86 architectures.  

In a further effort to design scalable parallelization frameworks that would be 

applicable to the future generation of multipetaflops supercomputers, we have outlined a 

metascalable parallelization framework for atomistic simulations. In this study, we 

combined (1) an embedded divide-and-conquer (EDC) algorithmic framework based on 

spatial locality to design linear-scaling algorithms for high complexity problems; and (2) 

a tunable hierarchical cellular decomposition (HCD) parallelization framework to map 

these O(N) algorithms onto a multicore cluster based on hybrid implementation 

combining message passing and critical section-free multithreading.  

A Systematic Optimization Scheme: We have unified our experience in 

performance optimization to improve the productivity of a real-world density functional 

theory application. As the first step of our systematic optimization scheme, we 

comprehensively evaluated the system level performance of this large-scale legacy code 

on various high-end computing platforms. Following this scalability analysis, we adopted 

a model-guided system-level optimization approach where we provided a theoretical 

analysis of the total computational cost implied by the application and optimally tuned 

algorithmic decomposition parameters such as the domain size and the buffer depth. As 
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the second step of our optimization scheme, we used a profiling-guided node-level 

optimization methodology to restructure our program and implement variety of processor 

and memory optimizations. Based on the insights gained through performance analysis, 

we developed code transformations that improve data locality, concurrency and the 

floating-point performance in the original application where it is not efficient to use an 

existing performance library⎯if one exists at the least. The flowchart in Fig. 6.1 

summarizes our systematic optimization scheme.  

 

 

Figure 6.1: Systematic optimization process flow 
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To give a high-level description of our contributions, this thesis work develops a 

systematic end-to-end optimization approach for scientific applications on emerging high 

performance computing platforms. We underscore the significance of software 

productivity tools, in particular efficient performance analysis libraries, to achieve high 

application performance on new generation of supercomputers. To that end, we have 

developed a cluster level performance analysis tool on the first generation of hybrid 

supercomputers. On the application side, we effectively used such productivity tools to 

carefully port legacy code to new computing platforms and tune our algorithms to mimic 

architectural design decisions at the software level.  

6.2 Future Work 

As our study shows, it is imperative that application scientists are provided with a 

mature software stack to ensure the productivity of future computing systems. While we 

presented various memory efficient algorithms and processor optimizations in this 

dissertation research, it is still possible to extend this work to adapt new architectures 

beyond the ones discussed here.  

 As higher performance computer systems emerge, the extent of scientific 

computing is rapidly increasing. We believe our metascalable design paradigm will allow 

future applications continue to scale efficiently on the new generation of multipetaflops 

computers.  
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