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ABSTRACT

In this dissertation, we focus on three representativeiegipmns targeted to ad-
vanced computer architectures: parallel Hmmpfam (Hiddemkigy Model for Protein
FAMily database search) on cluster computing, parallel GPRIP (Sensitivity Profiles
From an Array of Coils for Encoding and Reconstruction in Rababn Cyclops-64,
a state-of-the-art multiprocessor-on-a-chip computehigecture, and halftoning-based
tactile graphics.

Hmmpfam is one of the widely used bioinformatics tools farshing a single se-
guence against a protein family database. We analyzed thegfian program structure,
proposed a new task decomposition scheme to reduce datawuoation and imple-
mented a scalable and robust cluster-based parallel Hmmp&ing the EARTH (Effi-
cient Architecture for Running Threads) model.

SPACE RIP, one of the parallel imaging techniques, utilizearalver of receiver
coils to simultaneously acquire data, thus reducing theiaiopn time. We implemented
the parallelization and optimization of SPACE RIP at threelevThe top level is the loop
level parallelization, which decomposes SPACE RIP into masks of a singular value
decomposition (SVD) problem. The middle level parallediiee SVD problem using the
one-sided Jacobi algorithm and is implemented on CyclopsA4this level, an SVD
problem is decomposed into many matrix column rotationin@st The bottom level
further optimizes the matrix column rotation routine usssyeral memory preloading or
loop unrolling approaches. We developed a performance hiodie dissection of total
execution cycles into four parts and used this model to coengifferent memory access

approaches.

XV



We introduced halftoning algorithms into the field of taetimaging and imple-
mented four different multilevel halftoning algorithms time TIGER (Tactile Graphics
Embosser) printer, a widely used embossing printer dedigm@roduce tactile text and
graphics for visually impaired individuals. Digital haifting creates the illusion of a
continuous-tone image from the judicious arrangement iy picture elements. We
exploited the TIGER tactile printer’'s variable-height phimg ability to convert graph-
ics to multilevel halftoning tactile texture patterns. Wnducted experiments to compare
the halftoning-based approach with the simple, commoriliged thresholding-based ap-
proach and observed that the halftoning-based approadvastsignificant improvement

in terms of its texture pattern discrimination ability.

XVi



Chapter 1

INTRODUCTION

1.1 Background and Motivation

Over the past few years, many new design concepts and imptations of ad-
vanced computer architectures have been proposed. Amweagbkaew trends, building
clustering servers for high performance computing is g@more acceptance. Assem-
bling large Beowulf clusters [1] is easier than ever, andrtherformance is increasing
dramatically. In TOP500 [2], a website founded in June 198&twassembles and main-
tains a list of the 500 most powerful computer systems in tbedythere are 294 clusters
in the November 2004’s list, up from 208 in November 2003 athihANovember 2002.

Another important trend is the emerging multithreaded iéectures [3-8]. Tra-
ditional approaches to boosting CPU performance, such asasing clock frequency,
execution optimization , as well as increasing the size ohed9] are running into some
fundamental physical barriers. Multithreaded architexduhave the potential to push
the computer architecture paradigm to a new limit by explpthread-level parallelism.
Meanwhile, technology development will produce chips vittions of transistors, en-
abling large quantities of logic and memory to be placed omgle chip. One chip
can have many thread units with independent program cauniére IBM Cyclops-64
[10-12] architecture is an example of multithreaded aechiitres.

In this dissertation, we focus on three bioinformatics antedical related appli-
cations and conduct parallelization and performance opdtion targeted to the emerg-

ing computer architectures. Bioinformatics and biomedaggblications provide both



challenges and opportunities for parallel computing. Rstance, the genome projects
and many other sequencing projects generate a huge amodaiaofComprehension of
those data and the related biological processes becomestampossible without har-
nessing the power of parallel computing and advanced canputhitectures. Examples
of highly computation-intensive applications includeatsse searching [13, 14], protein
folding [15], phylogenetic tree reconstruction [16], eks.the biomedical imaging field,
applications such as image reconstruction [17], imagestegion [18, 19] and fMRI im-
age sequence processing [20] are a few representative isamp

In the remainder of this chapter, we explore a few generatepts about com-
puter architectures and provide background informatiavuabioinformatics. We then

summarize our major contributions and publications.

1.2 Parallel Computing Paradigms

Parallel computing or parallel processing is the solutiba single problem by
simultaneous execution of different parts of the same taskoltiple processors [21].
The terms “High Performance Computing (HPC)”, “parallel mesing” and “supercom-
puting” are often used interchangeably.

According to Flynn’s taxonomy of computer architecture][2#arallel computing
architectures are divided into two large classes: Singd&uction Multiple Data (SIMD)
and Multiple Instruction Multiple Data (MIMD) machines. BIMD architectures, once
each of multiple processing elements (PES) is loaded with, @asingle instruction from
the central processing unit (CPU) causes each of the PEs faripethe indicated in-
struction at the same time, as in a vector processor or an@egpsor. An example of
SIMD applications is in the area of image processing: chramthe brightness of an im-
age involves simultaneously changing the R, G, and B valueadt pixel in the image.
In MIMD architectures, there are multiple processors eagdlidg with their own data.
Examples include a multiprocessor, or a network of workstst The MIMD architec-

tures can be classified according to their programming nscaieleither shared memory

2



or distributed memory architectures, shown in Fig. 1.1.

1.2.1 Shared Memory Architectures

In shared memory architectures, multiple processors aneexted to a global
memory system including multiple memory modules, suchéhah processor can access
any memory module [23]. Most commonly, a single addressesigaamployed in a shared
memory architecture, which means that each location in thkeag memory system is
associated with a unique address. This address is used bypeamessor to access the
location.

The shared memory architecutures can be further class#ieteer Non Uniform
Memory Access (NUMA) or Uniform Memory Access (UMA) models the NUMA
model, the access time to the shared memory varies with taidm of the processor.
In the UMA model, all processors have equal access time twhwe memory which is
uniformly shared by all processors.

Symmetric Multiprocessor (SMP) is a shared memory multpssor where the
cost of accessing a memory location is the same for all psocses Software for SMP
machines is usually custom programmed for multithreadedgssing. However, most
consumer products such as word processors and computes gaenmaot written in such a
manner because writing a program to increase performangééhsystems will produce
a performance loss on uniprocessor systems, which contpagargest percentage of the
market. Therefore, these products cannot gain large befieiih SMP systems.

The advantage of shared memory architectures is that tleesetatively easy to
write software for due to the convenience of sharing datawé¥er, due to the single
address space concept, variable sharing may limit the spesdhe computation. Locks
and semaphores used to avoid memory conflicts are also vstly.dm the shared mem-
ory systems, many CPUs need fast access to memory and wijt tkehe memory. A

cache architecture with a strong consistency model is radaBle.
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Figure 1.1: (a)Shared memory architure (b) Distributed memory arcéitu

Examples of shared memory architectures include SUN SUBME, Cray T3E,
Convex 2000 and SGI Origin/Onyx [24]. Entry level servers amukstations with two
processors dominate the SMP market today; mid level sengrally have four to eight
processors. At the high end, the fastest single SMP systéme 804 processor Cray X1
at the Oak Ridge National Laboratory, which is ranked numiyenty nine on the list of

the world’s Top 500 Supercomputers [2] as of November 2004.

1.2.2 Distributed Memory Architectures

In distributed memory MIMD architectures, the memory iscassted with indi-
vidual processors and a processor is only able to addreswitsmemory, as shown in
Fig. 1.1b. Since these systems lack shared memory, datanisianicated by message-
passing via the interconnection network. Thus such multipssor systems are usually
called message-passing multiprocessors.

The advantage of distributed memory architectures is tiggt¢an physically scale

easier than shared memory multiprocessors. Scaling ugbdisg]d memory machines is



simply adding communication links to connect additionalgassors to existing proces-
sors. The drawback is that its message-passing mechanisot & attractive for pro-
grammers. It usually requires the programmers to provideettplicit message-passing
calls in the code. This may be problematic for applicatidrest require sharing large
amounts of data.

Intel Paragon, CM-5, and Transputers [24] are a few exampldistoibuted mem-
ory machines. Cluster computing and grid computing are twib@imost popular exam-

ples.

1.2.2.1 Cluster Computing

A computer cluster is a group of independent computers adadeénto a unified
system through software and networking [21]. One of the rmopular implementations
is a cluster-based on commodity hardware, on a private rsystgwork, with an open
source software (Linux) infrastructure. This configuratie often referred to as a Be-
owulf cluster [1]. The Beowulf Project was started in earl\{49 The initial prototype
was a cluster computer consisting of 16 DX4 processors ateddy a channel bonded
Ethernet. The top supercomputer as of November 2004 is tipareent of Energy’s
BlueGene/L cluster system [25].

There are several factors that have contributed to the sacé¢he Beowulf cluster
project. First of all, market competition has driven thecpa down and reliability up for
the subsystems, including microprocessors, motherbpdislss and network systems.
Secondly, open source software, particularly the Linuxaipeg system, GNU compilers,
programming tools, MPI and PVM message-passing libranesiaw available. Thirdly,
an increased reliance on computational science demantdspkiormance computing.
Typical applications include bioinformatics, financial ket modelling, data mining, and
Internet servers for audio and games.

PVM (Parallel Virtual Machine) [26] and MPI (Message Pagsinterface) [27]

are software packages for parallel programming on a cluBé&¥ used to be the standard

5



until MPI appeared. PVM was developed by the University airfessee, the Oak Ridge
National Laboratory and Emory University. The first versiwas written at ORNL in
1989. MPI is the standard for portable message-passingiglgnaograms. It is a library
of routines that can be called from Fortran, C and C++ progravial’s advantage over

older message-passing libraries is that it is both portabtefast.

1.2.2.2 Grid Computing

CERN (an European Organization for Nuclear Research), whichaway in the
creation of the World Wide Web, defines the “Grid” as: “a seevior sharing computer
power and data storage capacity over the Internet” [21]d Gvmputing offers a model for
solving massive computational problems by making use ofithesed resources of large
numbers of computers treated as a virtual cluster embeddadilistributed telecommu-
nications infrastructure.

Grid computing has the following features: (1), It allows thirtualization of
disparate IT resources. (2), It allows the sharing of resegjrwhich include not only files
but also computing power. (3), It is often geographicallstaibuted and heterogeneous,
which makes it different from cluster computing.

Typical applications of grid computing include grand chaliing problems like
protein folding, financial modeling, earthquake simulaticlimate/weather modelling
etc. An example of grid computing is BIRN (Biomedical InfornestiResearch Net-
work), which is a National Institutes of Health initiativeqviding an information tech-
nology infrastructure, notably a grid of supercomputens distributed collaborations in

biomedical science.

1.2.3 Multithreaded Architectures
The design concept of computer architecture over the lastdgcades has been

mainly on the exploitation of the instruction level par&#im, such as pipelining, VLIW



(Very Long Instruction Word) or superscalar architectui2d][ Pipelining is now uni-
versally implemented in high-performance processors.e&agalar means the ability to
fetch, issue to execution units, and complete more thanrmtruction at a time. Similar
to superscalar architectures, VLIW enables the CPU to egesmyteral instructions at the
same time and uses software to decide which operations aan parallel. Superscalar
CPUgs, in contrast, use hardware to decide which operationsucein parallel.

However, the major processor manufactures have run outash with the tra-
ditional approaches to boosting CPU performance, such asasing clock frequency,
execution optimization (pipelining, branch predictior,IW and superscalar), as well as
increasing the size of cache [9]. First of all, as the cloekjfrency increases, the transis-
tor leakage current also increases, leading to excesswergmnsumption. Second, the
design concepts of traditional approaches have becomeotoplex. Third, resistance
capacitance delays in signal transmission grow as feaizes shrink, imposing an addi-
tional bottleneck that frequency increases do not addwdlss, for certain applications,
traditional serial architectures are becoming less effics processors get faster due to
the effect of the Von Neuman bottleneck [28].

In addition, the advantages of higher clock speeds are @e@fgtmemory latency.
There are many commercial or scientific applications whiakehfrequent memory ac-
cess, and the performance of such applications is domirmgtékde cost of memory ac-
cess. As pointed out in many papers, microprocessor peaficenhas been doubling
every 18-24 months for many years, while DRAM performancg anproves by 7% per
year [29]. Therefore the memory access latency continugsaio in terms of CPU cy-
cles. The divergence of the CPU and memory speed is genezédlyed to as the “mem-
ory wall” problem. Assuming 20% of the total instructionsarprogram need to access
memory, which means, one of every five instructions durirgcaion accesses memory,
the system will hit the memory wall if the average memory asdéme is greater than 5

instruction cycles [30].



Therefore, for the next generation of computer architestumultithreaded archi-
tectures are becoming more popular. Depending on the spémifn of a multithreaded
processor, a thread could be a full program (single-three&ti X process), an operating
system thread (a light-weighted process, e.g., a POSDéd&l]), a compiler-generated

thread, or a hardware generated thread [5].

1.2.3.1 Classification

Multithreaded models can be classified according to thethseheduling mecha-
nisms (preemptive or non-preemptive), architecturalfieset and memory models (shared
memory or distributed memory), or program flow mechanisnasaftbw or control flow)
[32].

According to the classification in [5], multithreaded ateltures in the more nar-
row sense only include architectures that stem from the fication of scalar RISC,
VLIW, or superscalar processors. The classification frofrigshown in Fig. 1.2. The

terminologies in the figure are explained as follows:

e Threaded dataflow [33]: a combination of multithreading #meldataflow model.
This model uses the dataflow principle to start the execudfos non-preemptive

thread.

e Explicit multithreading [5]: an approach that explicitlixexutes instructions of
different user-defined threads (operating system threagsogesses) in the same

pipeline.

o Implicit multithreading [5]: an approach that adopts tlitéavel speculation, dy-
namically generates speculative threads from singleattee programs and exe-

cutes them concurrently with the lead thread.
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Figure 1.2: Classification of multithreaded architecture

¢ Interleaved multithreading (IMT) [24]: an approach in wihign instruction of dif-
ferent threads is fetched and fed into the execution pipeltreach processor cycle.

The Cray MTA chip is a VLIW pipelined processor using the IMTheique.

e Blocked multithreading (BMT) [24]: an approach in which thetiuctions of a
thread are executed successively until an event occursrimatcause latency and

induces a context switch.

e Simultaneous multithreading (SMT) [7]: an approach thatudianeously issues

instructions from multiple threads to the execution unfta superscalar processor.

e Chip MultiProcessor (CMP) [10-12, 34, 35] : a single chip dedfat uses a col-
lection of independent processors with less resourcerghailihis approach may

also be referred to as “multiprocessor-on-a-chip” or “ncolte processor” design.

In this section, we first introduce the dataflow model and ittméading, followed

by a brief introduction of CMP and the Cyclops-64 architecture



1.2.3.2 Data Flow Multithreading

The dataflow model [6, 36] is a dramatic break from the traddi von Neumann
model [37]. In the von Neumann computer, a single programmswletermines which
instruction to execute next and a complete order existsdmtwnstructions. The dataflow
model, in contrast, only hasgartial order between instructions. The fundamental idea
of dataflow is that any instruction can be executed as lontsaperands are present.

The combination of the von Neumann model and the dataflow h@8puts two
or more dataflow actors into threads; therefore, it can redwme-grain synchronization
costs and improve locality in dataflow architectures. It amo add latency-tolerance and
efficient synchronization to conventional multithreadeakimnnes by integrating dataflow
synchronization into the thread model.

According to Dennis and Gao [33], a thread is viewed as a seigllg ordered
block of instructions with a grain-size greater than oneal&ation of a non-preemptive
thread starts as soon as all input operands are availalatiag the idea of the dataflow
model. Access to remote data is organized in a split-phasmendy one thread sending
the access request to memory and another thread activaliag its data is available.
Thus a program is compiled into many, very small threadsatitig each other when
data become available.

EARTH (Efficient Architecture for Running THreads) [3, 4] in@example of the
multithreaded data flow model. More details of the EARTH mi@de presented in next
chapter. The EARTH model is currently supported on both SMiehimes and cluster

computers.

1.2.3.3 Multiprocessor-on-a-Chip Model

The “multiprocessor-on-a-chip” model is a single chip desihat uses a collec-
tion of independent processors with less resource sha@ngently available multicore
processors include IBM’s dual-core Power4 and Power5, Hewkckard’s PA-8800 and
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Sun’s dual-core Sparc IV. AMD will deliver dual-core Optasbaround the middle of
2005. Intel also makes shifts to multicore chips this year.

Intel researchers and scientists are experimenting withyrtens of cores, poten-
tially even hundreds of cores per die. And those cores wilpsut tens, hundreds, maybe
even thousands of simultaneous threads [39]. Intel's ¢Hatf2015 [28] describes the
evolution of its multiprocessor architecture over the nBxtyears. Multicore architec-
tures of Platform 2015 and sooner will enable dramatic perémce scaling and address
important power management and heat challenges. They avilltdbe to activate only
the cores needed for a given function and power down the mllesc The features of
the hypothetical Micro 2015 include: (1), Parallelism voi handled by an abundant
number of software and hardware threads. (2), A relativalgd high speed, reconfig-
urable onchip memory will be shared by groups of cores, thet@Smicro kernel and
the special-purpose hardware. (3), Tera-flops of superatenjike performance and new
capabilities for new applications and workloads will bepded.

Another representative “multiprocessor-on-a-chip” #eztture design is Cyclops-
64 [10-12, 34, 35], a new architecture for high performararltel computers being de-
veloped at the IBM T. J. Watson Research Center and the Uniyerfsibelaware. The
basic cell of this architecture is a single chip with mukihreads of execution, embedded
memory, and integrated communication hardware. The memtatency is tolerated by
the massive intra-chip parallelism. More details of Cyctédsarchitecture are described

in Section 3.2.
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1.3 Bioinformatics
1.3.1 Definition

Bioinformatics or computational biology is the applicat@mircomputational tools
and techniques to the management and analysis of biologgtal [40]. It is a rapidly
evolving discipline and involves techniques from appliedtinematics, statistics, and
computer science. The terms “bioinformatics” and “compatel biology” are often
used interchangeably, although the latter typically fesusn algorithm development and
specific computational methods.

We view bioinformatics research as an integration of bimalgdata management
and knowledge discovery. Biological data management esadficient storage, orga-
nization, retrieving, and sharing of different types ofarrhation. Knowledge discovery
involves the development of new algorithms to analyze atatimet various types of data,
as well as the development and implementation of softwanis to

Bioinformatics has many practical applications in diffdrareas of biology and
medicine. More specifically, major research efforts in tleddfinclude sequence align-
ment, gene finding, genome assembly, protein structurerakgt and prediction, and the

modeling of evolution.

1.3.2 Role of High Performance Computing

Bioinformatics has inspired computer science advances wath concepts, new
ideas and new designs. In turn, the advances in computewhaerdand software algo-
rithms have also revolutionized the area of bioinformatid@$e cross-fertilization has
benefited both fields and will continue to do so. The role ohhpgrformance comput-
ing in bioinformatics can be reflected from two angles: (Iydgaamounts of data; (2)
computationally challenging problems.

Firstly, large amounts of data create an urgent need foregformance comput-
ing. For example, the genetic sequence information in thigoNal Center for Biotech-

nology GenBank (NCBI) database [41] has more than 44 billiore lpeasrs as of April
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Figure 1.3: NCBI database growth (Number of base pairs)

2005. The growth of the NCBI database is shown in Fig. 1.3. A Ipaseis a pair of
nitrogenous bases held together by hydrogen bonds thattfecore of DNA and RNA,
i.e the A:T, G:C and A:U interactions.

In bioinformatics, BLAST (Basic Local Alignment Search Topd2] is an al-
gorithm for comparing biological sequences, such as theaacid sequences or the
DNA sequences. Given a library or database of sequences, &Bls&arch enables a
researcher to look for sequences that resemble a given rsagjé interest. A study
[43] of the performance of BLAST found that a query on the 20@Bank data using
a 2003 Intel-based server takes an average of around 260dsecbhe same task took
only 83 seconds on a 2001 GenBank collection and 2001 hargesade36 seconds for
1999. BLAST is becoming around 64 percent slower each yegitdamprovements in
hardware.

Secondly, many computational-intensive algorithms existthe bioinformatics
area. Of them there are two grand challenges: understamdhpigtion and the basic

structure and function of proteins. A phylogenetic tree tisea reconstructed from DNA
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or protein sequences to represent the history of evolutthrylogenetic tree reconstruc-
tions involve solving difficult optimization problems wigncomplexity of(2n — 5)!! for

a tree withn leafs and requires months to years of computation. Manyosmbes have
been proposed to reconstruct phylogenetic tree using thenaf high performance com-
puting, such as parallel fast DNAmI [44] and GRAPPA [16, 45he$e approaches still
have limitations such as tree size and accuracy. The praieiing simulation is a popular
way to predict the structure and function of proteins. Rrdi@ding refers to a process by
which a protein assumes its three-dimensional shape wiithahey are able to perform
their biological function. According to an estimate [46¢carate simulation of a protein
folding to predict the protein 3D structure may be intra#abithout PetaFLOPS-class
computers. Simulating 100 microseconds of protein foldimyld take three years on
even a PetaFLOPS system or keep a 3.2GHz microprocessofdyugye next million
centuries. Therefore, new approaches of high performaocguting and algorithmic

design need to be developed to meet these challenges.
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1.4 Achievements and Contributions

The principal goal of this research is to find better solwidéor important and
practical bioinformatics or biomedical applications. Tdeatribution of our work is two-
fold. On the one hand, we parallelize and optimize the reafyd scale applications,
dramatically decreasing the time for computation. On theohand, we experimental
results of the applications provide new insights for thagtesf computer architectures.

The applications include the Hmmpfam database searcharoffom the bioin-
formatics area, the SPACE RIP image reconstruction from tbeédical area, and an-
other very useful biomedical application — using halft@naigorithms to make graphics
available to people with visual impairment. These thrediegiions fall into the gen-
eral umbrella of bio-oriented applications. The first twelkgations are closely related
to parallel computing; the last application, in contrastnot as closely related. This is,
however, a natural result of the multi-disciplinary chaeaistic of this research.

Hmmpfam is a widely-used computation-intensive bioinfatits software for se-
guence classification. Sequence classification plays aortart role in bioinformatics to

predict the protein structure and function. The major admngents are listed as follows:

1. We analyzed the Hmmpfam program structure and proposed aask decompo-

sition scheme to reduce data communication and improve @anogcalability.

2. We implemented a scalable and robust cluster-basedlglartathmpfam using
EARTH (Efficient Architecture for Running Threads), an evdnven fine-grain

multithreaded programming execution model.

3. Our new parallel scheme and implementation achievedetmprovements in
terms of program scalability. We conducted experimentsanddvanced super-
computing clusters at the Argonne National Laboratory (AMid achieved an

absolute speedup of 222.8 on 128 dual-CPU nodes for a repatigerdata set.
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The application SPACE RIP (Sensitivity Profiles From an Arr&goils for En-
coding and Reconstruction in Parallel) is one of the paratialging methods that has the
potential to revolutionize the field of fast MR imaging. Thmeage reconstruction prob-
lem of SPACE RIP is a computation-intensive task, and thus angiat application for

parallel computing. The major contributions of our work atenmarized as follows:

1. We implemented the parallelization and optimization BASE RIP at three lev-
els. The top level is the loop level parallelization, whiddcdmposes SPACE RIP
into many tasks of a singular value decomposition (SVD) |mob The middle
level parallelizes the SVD problem using the one-sided Wiaalgorithm and is
implemented on Cyclops-64. At this level, an SVD problem isateposed into
many matrix column rotation routines. The bottom leveltiertoptimizes the ma-
trix column rotation routine using several memory prelogdor loop unrolling

approaches.

2. We developed a model and trace analyzer to decomposet#thexecution cycles
into four parts: total instruction counts, “DLL”, “DLF” antDLI”, where “DLL”"
represents the cycles spent on memory access, “DLF” rapsesiee latency cy-
cles related to floating point operations, and “DLI” reprasethe latency cycles
related to integer operations. This simple model allowsoustudy the application

performance tradeoff for different algorithms.

3. Using a few application parameters such as matrix sizajmsize, and architec-
tural parameters such as onchip and offchip latency, welolesd analytical equa-
tions for comparing different memory access approachels aa@reloading and
loop unrolling. We used a cycle accurate simulator to vaiidae analysis and
compare the effect of different approaches on the “DLL” f@artl total execution

cycles.
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The application of using halftoning to generate tactileppraes uses signal
processing algorithms and computer technologies to amdilpeople. Tactile imaging
is an algorithmic process that converts a visual image intoreage perceivable by the
sense of touch. Tactile imaging translates a visual imatgesin image perceivable by the
sense of touch. Digital halftoning creates the illusion obatinuous-tone image from the
judicious arrangement of binary picture elements. As aareston of binary halftoning,
multilevel halftoning techniques are adopted on printeas tan generate multiple output
levels. We exploited the TIGER (Tactile Graphics Embosgeinter’'s variable-height
punching ability to convert graphics to multilevel halftog tactile texture patterns. The

major contributions are summarized as follows:

1. We introduced digital halftoning into the field of tactirmaging and implemented

four different halftoning algorithms into the TIGER printriver.

2. According to the specifics of the TIGER printer, we extehtladitional binary

halftoning algorithms to multilevel algorithms.

3. We conducted experiments to compare the halftoningebapproach with the
simple, commonly utilized thresholding-based approacti abserved that the
halftoning-based approach achieved significant improveneierms of its texture

pattern discrimination ability.

1.5 Publications

This dissertation is based on several published works. Tir& wn the parallel
Hmmpfam is published in Cluster2003 and the Internationaitral of High Performance
Computing and Networking (IJHPCN) [47]. The work on SPACE RIP &WD is in-
cluded in the proceedings of the 16th IASTED Internationahf€cence on Parallel and
Distributed Computing and Systems [48]. The work on tactigpgics using halfton-
ing is summarized in a paper submitted to the IEEE Transastim Neural Systems and

Rehabilitation Engineering [49].
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1.6 Dissertation Organization

The remainder of this dissertation is organized as folldsapters 2, 4 and 3 fo-
cus on the applications Parallel Hmmpfam, tactile grapipesallel SPACE RIP respec-
tively. Chapter 2 includes background information aboutHlieden Markov Model and
its application in the bioinformatics area, an introducted the Hmmpfam program, the
original parallel scheme in the PVM implementation, theposed cluster-based parallel
implementation and the performance results. Chapter 3 miesiee background infor-
mation of Cyclops-64, the parallel imaging technique SPACE RiPloop level and fine
level parallel scheme, a performance model for differentowy access schemes, and
the performance results. Chapter 4 includes a brief revietaatile printing, the TIGER
printer hardware and software, a discussion on the bashaéning techniques, and the
implementation of the halftoning algorithm into the TIGERnper graphics processing
pipeline, as well as the experimental design and evaluagisults. Chapter 5 concludes

this dissertation.
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Chapter 2

A CLUSTER-BASED SOLUTION FOR HMMPFAM

2.1 Introduction

One of the fundamental problems in computational biologhésclassification of
proteins into functional and structural classes or famibased on homology of protein
sequence data. Sequence database searching and fanslficdien are common ways
to analyze the function and structure of the sequences.rAil§ais a group of proteins of
similar biochemical function that are more than 50% idextj60]. Sequence homology
indicates a common function and common ancestry of two DNprotein sequences.

The family classification of sequences is of particularrese to drug discovery
research. For example, if an unknown sequence is identiideelbonging to a certain
protein family, then its structure and function can be irddrfrom the information of that
family. Furthermore if this sequence is sampled from cerntiseases X and belongs to a
family F, then X can be treated using the combination of exgstirugs for F [51].

Typical approaches for protein classification include\pee sequence alignment
[13, 42], consensus patterns using motifs [52] and profiieléin Markov models (profile
HMMs) [53-55]. A profile HMM is a consensus HMM model built froa multiple
sequence alignment of protein families. HMM is a probatdigraphical model used
very widely in speech recognition and other areas [56]. ten¢years, HMM has been an
important research topic in the bioinformatics area. ltpleed systematically to model,
align, and analyze entire protein families and the secondimucture of sequences. A

consensus sequence of a family can be determined by dethengrofile HMM. Unlike
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Figure 2.1: HMM model for tossing coins

conventional pairwise comparisons, a consensus modehgaimciple exploit additional
information such as the position and identity of residued #ie more or less conserved
throughout the family, as well as variable insertion anatieh probabilities [57].

A very simple example of HMM for tossing coins is given in F@l1. We use a
fair coin or a biased coin which has a probability of 0.7 togéhead”. We change coins

with a probability of 0.1. The corresponding HMM is:
e The states ar€ = {5, S2}, whereS; stands for “fair” ands, for “biased”.
e Transition probabilities arer;; = 0.9, a5 = 0.1, ag; = 0.1, aige = 0.9.

e Emission probabilities areP(H|S;) = 0.5, P(T|S;) = 0.5, P(H|S2) = 0.7,
P(T|S;) = 0.3.

In this example, the observation is “Head” or “Tail”. Thets&®S; andS; are not observ-
able, thus the name “hidden”. Assuming tl$tis the initial state, we can compute the

probability of observing a certain sequence. For example:
P(HH|M) = P(H|S1) x 0.9 x P(H|S)+ P(H|S1) x 0.1 x P(H|S>) (2.1)

A profile HMM can be derived from a family of proteins (or geregjgences), and
later be used for searching a database for other members ittily. Fig. 2.2 is a most

simplified profile model extracted from the multiple sequeatignment shown in Listing
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2.1. Each block in the figure corresponds to one column in thiipre sequence align-
ment. The emission probabilities are listed in each blonK, the transition probabilities
are shown on the black arrows. The detailed process oflindtéon of an HMM from a

multiple sequence alignment is reviewed in [57].

seql: CA ——— AT
seq2: CA ACT AT
seq3: GA C-—- AG
seqd: GA ——— AT
seqgb: CC G- - AT

Listing 2.1: DNA sequence alignment

There are three types of questions related to profile HMM:[%Z] How do we
build an HMM to represent a family? (2) Does a sequence belorayfamily? For a
given sequence, what is the probability that this sequeasédben produced by an HMM
model? (3) Assuming that the transition and emission pa@m@re not known with
certainty, how should their values be revised in light of tieserved sequence? The
problem solved in this research falls into the second cayego

Usually, for a given unknown sequence, it is necessary to database search
against an HMM profile database which contains several trasof families. HMMER
[14] is an implementation of profile HMMs for sensitive daasbk searches. A wide col-
lection of protein domain models have been generated by ubm HMMER package.
These models have largely comprised the Pfam protein fashatighase [58—60].

Pfam (Protein families database of alignments and HMMsJYlstabase of protein
domain families. A “domain” in the sequence context is areeded sequence pattern
that indicates a common evolutionary origin. It also refera segment of a polypeptide
chain that folds into a three-dimensional structure [50fhi@ “structural” context. The
Pfam database contains multiple sequence alignments ¢brfamily, as well as profile

HMMs for finding these domains in new sequences. Each Pfariyféuas two multiple

21



A 02

C 0.4

G 0.2

T 0.2

o.eT 0.6

¢ oel?e oale ool°)e oo
G 04 =N G 0.0 G 0.0 [ G 0.2
T 0.0 T 0.0 T 0.0 T 0.8

Figure 2.2: HMM model for a DNA sequence alignment

alignments: the seed alignment that contains a relativeilsnumber of representative
members of the family and the full alignment that containsr@mbers. In the past 2
years, Pfam has split many existing families into strudtdmanains. Currently, in the
Pfam database, one-third of entries contain at least orteiprof known 3D structure.
Pfam also contains functional annotation, literaturereziees and database links for each
family.

Hmmpfam, one program in the HMMER 2.2g package, is a tool éarching a
single sequence against an HMM database. In real situatileissprogram may take a
few weeks to a few months to process large amounts of sequiztae Thus efficient
parallelization of the Hmmpfam is essential to bioinforioairesearch.

HMMER 2.2g provides a parallel Hmmpfam program based on PWsirdllel
Virtual Machine) [26]. However, the PVM version does not éayood scalability and
cannot fully take advantage of the current advanced supgrating clusters. So a highly
scalable and robust cluster-based solution for Hmmpfanecessary. We implemented
a parallel Hmmpfam harnessing the power of a multithreadekiitecture and program
execution model —the EARTH (Efficient Architecture for RumgilHreads) model [3, 4],

where parallelism can be efficiently exploited on top of aesapmputing cluster built
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with off-the-shelf microprocessors.

The major contributions of this research are as follows: t(i¥) first EARTH-
based parallel implementation of a bioinformatics seqaefassification application; (2)
a largely scalable parallel Hmmpfam implementation taadét advanced supercomput-
ing clusters; (3) the implementation of a new efficient mastave dynamic load balancer
in the EARTH runtime system. This load balancer is targete@drallel applications
adopting a master-slave model and shows more robust pexfmenthan a static load
balancer.

The remainder of this chapter is organized as follows. Itice@.2, we review the
Hmmpfam program and the original parallel scheme impleetenn PVM, the EARTH
model is reviewed in 2.3. Our cluster-based multithreadadlfel implementation is
described in section 2.4 and section 2.5. The performarstatseof our implementation

are presented in section 2.6, and conclusions in section 2.7

2.2 HMMPFAM Algorithm and PVM Implementation

Hmmpfam reads a sequence file and compares each sequeniceitwithe at a
time, against all the family profiles in the HMM database kiog for significantly similar
matches. Fig. 2.3 shows the basic program structure of Heampfig. 2.4 shows the
task space decomposition of the parallel scheme in therduPéM implementation. In
this scheme, the master-slave model is adopted, and witlenstage, all slave nodes
work on the computation for the same sequence. The masterdythmically assigns
one profile from the database to a specific slave node, anthtreersode is responsible for
the alignment of the sequence to this HMM profile. Upon fimghits job, the slave node
reports the results to the master, which responds by asgigimew job, i.e. a new single
profile, to that slave node. When all the computation of thgpsace against the whole
profile database is completed, the master node sorts ansd ttamkesults it collects, and

outputs the top hits. Then the computation on the next seguieegins.
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Figure 2.3: Hmmpfam program structure

The experimental results indicate that this implementatioes not achieve good
scalability as the number of computing nodes increases &ER®). The problem is that
the computation time is too small relative to the commumicabverhead. Moreover, the
master node becomes a bottleneck when the number of the togmodes increases,
since it involves both communications with slave nodes amdputations such as sorting
and ranking. The implicit barrier at the end of the compotatf one sequence also

wastes the computing resources of the slave nodes.

2.3 EARTH Execution Model

The new parallel implementation of the Hmmpfam algorithrbased on EARTH
multithreaded architecture, which is developed by the Cderplrchitecture and Paral-
lel Systems Laboratory (CAPSL) at the University of Delawalre this section, before
presenting our implementations, we briefly describe EAR&Hpbarallel multithreaded

architecture and execution model.
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Figure 2.4: Parallel scheme of PVM version

EARTH (Efficient Architecture for Running THreads) [3, 4] quguts a multi-
threaded program execution model in which a program is wexsea collection of threads
whose execution ordering is determined by data and congqmdiddencies explicitly iden-
tified in the program. Threads, in turn, are further dividatbifibers which are non-
preemptive and scheduled according to data-flow like firilgg, i.e., all needed data
must be available before it becomes ready for executiongrBnoes structured using this
two-level hierarchy can take advantage of both local syowization and communication
between fibers within the same thread, exploiting data itycdh addition, an effective
overlapping of communication and computation is made ptessiy providing a pool of
ready-to-run fibers from which the processor can fetch nevwkws soon as the current
fiber ends and the necessary communication is initiated.

As shown in Fig. 2.5, an EARTH node is composed of an execution(EU),

which runs the fiber, and a synchronization unit (SU), whicheslules the fibers when
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Figure 2.5: EARTH architecture

they are ready and handles the communication between noldesye is also a ready
gueue (RQ) of ready fibers and an event queue (EQ) of EARTH bpesagenerated by
fibers running on EU. The EARTH architecture executes apgios coded in Threaded-
C [61], a multithreaded extension of ANSI-C programmingglaage, which by incorpo-
rating EARTH operations, allows the programmer to indidate parallelism explicitly.
Although designed to deal with multiple threads per node,EARTH model does not
require any support for rapid context switching (since fis&on-preemptive) and is well-
suited to running on off-the-shelf processors. The EARTHtRoum System 2.5 (RTS 2.5)
is implemented to support the execution of EARTH appligetion Beowulf clusters that
contain SMP nodes.

The EARTH RTS 2.5 [62—-64] provides an interface between ati@tty mul-
tithreaded program and a distributed memory hardwaregofat{65]. It's portable on
various platforms: x86-based Beowulf clusters, Sun SMPtetas IBM SP2, etc. It
performs fiber scheduling, inter-node communication rifiteer synchronization, global

memory management, and an important feature — dynamic lladding.
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2.4 New Parallel Scheme
2.4.1 Task Decomposition

To efficiently parallelize an application, it is importaotdetermine a proper task
decomposition scheme. In parallel computing, we normadigodnpose a problem into
many small tasks that run in parallel. A smaller task size madhat relatively small
amounts of computational work are done between commuaitatients, which, in turn,
implies a low computation-to-communication ratio and hagdgmmunication overhead.
A smaller task size, however, facilitates load balancinge dften use “granularity” as
a qualitative measure of the ratio of computation-to-comitation. Finer granularity
means a smaller task size. The proper granularity dependleonlgorithm and the
hardware environment.

In the original scheme, the alignment of one sequence wighpoafile is treated
as a single task. In order to reduce communication overtmadscheme considers the
computation of one sequence against the whole databasedragetask. Normally the
number of sequences in a sequence data file is much largathgnanmber of computing
nodes available in current Beowulf clusters. So the numbgingte tasks is still relatively
large to keep all nodes busy. Usually, the sequences arendésiength; thus we can
also achieve good load balancing even with a bigger task dvi@eover, because the
computation of one single sequence is performed by one gsame one fixed node, the
sorting and ranking can be done locally on that particulatenahus freeing the master

from the burden of such computation.

2.4.2 Mapping to the EARTH Model

The EARTH model allows dynamic and hierarchical generatibtihreaded pro-
cedures and fibers, thus allowing us to use a two-level ghrstheme. At level one,
as shown in Fig. 2.6, we map each task to a threaded procedtine EARTH model.
The threaded procedure is a C function containing locagstétinction parameters, lo-

cal variables, and synchronization slots) and one or moezdibf the code. Either the
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Figure 2.6: Two level parallel scheme

programmer or EARTH RTS can determine where (on which nodgjoaedure gets
executed. At this level, the master process assigns eacierseg|to one and only one
threaded procedure. Each procedure conducts the conguutatithe sequence against
the whole HMM database, then sorts and ranks the alignmsuliseand outputs the top
hits to a file on the local disk. The task size at this level igéaand independent to other
tasks at the same level, so this level exploits the coarsie-garallelism.

The tasks of level one can be further divided into the smadisks of level two,
each one of them conducting the comparison/aligment of egeence versus a partition
of the HMM database. Each task of level two can be mapped tdar“fin the EARTH
model. Each fiber gets one partition of the database, pesfcomputation, then returns

the result to its parent procedure. This level exploits the-firain parallelism.

2.4.3 Performance Analysis
In this subsection, a comparison of the proposed new appraét the PVM

approach is presented. The parameters and assumptiomnsteaek follows:

1. We haven profiles in the profile database ahdequences in the sequence file.

28



2. The computation of one sequence versus one profile takssthe amount of time,

which is denoted a$;.
3. Denote the time for one back and forth communicatioi.as

4. Assume that the master node can always respond to redumstslaves concur-
rently and immediately, and that the bandwidth is alwayBa@aht; thus slaves have

no idle waiting time.

In the original PVM approach, the basic task unit is compaotedf one sequence
versus one profile. There is a total bfx n such tasks. Each one of them nedds
computation time and,, communication time. Thus, the total work load (the sum of

computation and communication) is:
WL=Fkxnx (Ty+T.) (2.2)

In our new approach, one basic task unit is computation ofseggience versus
the whole database, includimgprofiles. There is a total df such tasks. Each task needs
n x Ty computation time and, Communication time because only one communication

is necessary for one task. Thus, the total work load is
WL=Fkx(nxTy+T.) (2.3)
The workload saved by our approach is:
W Lsgwe = k x (n—1) x T, (2.4)

From (2.4), it can be seen that a largeand n indicate a larger improvement of our
approach.

In addition to the reasons analyzed in the preceding forsnuteere are several
other factors that contribute to the better performancaiobpproach. Firstly, the master

node in our approach has less chance of becoming a bottleg¢bken the number of
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slave nodes is very large, a lot of requests from the slavéisetonaster may happen at
the same time. Since the master node has to handle the requestby one and the
communication bandwidth of the master node is limited, tb&uenption of “immediate
responses from the master” may not be valid anymore. As omediin Section 2.2, the
PVM approach regards the computation of one sequence agamprofile as a task, and
the computation time for this task is very short, so the slavges send requests to the
master very frequently. Our approach regards one sequeaggsathe whole database as
one task unit and has a larger computation time for each taisktberefore the requests
occurs less frequently. Thus, the chance of many requestkdd at the master node for
the PVM approach is much higher than our approach. Secosidlye the computations
of ranking and sorting are performed at the master node ®oP¥M approach, during
this stage, all the slaves are idle. In our approach, howéveranking and sorting are
distributed to the slaves; thus the slaves have less idewnaiting for the response from

the master node.

2.5 Load Balancing

We implemented the parallel scheme in Fig. 2.6 using tweebffit approaches:
the static and the dynamic load balancing. The static loddnbang approach pre-
determines job distribution using the round-robin aldornt The dynamic load balancing
approach, in contrast, distributes tasks during execuwtitimthe load balancing support
of the EARTH Runtime system.

2.5.1 Static Load Balancing Approach

In the static load balancing implementation shown in Fig.@e explicitly spread
out the tasks across the computing nodes before the exeaitamy process. To achieve
an even work load, we adopted the round robin algorithm. i@uitte initiation stage, the
master node reads sequences one by one from the sequencel f{jerserates new jobs

for each of them by invoking a threaded procedure on the Bpéaiode. The EARTH
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Figure 2.7: Static load balancing scheme

RTS then puts all the invoked threaded procedures into ayrqadue for each slave
node. During the computation stage, each slave node fejchsdrom its own ready
gueue, which means all nodes execute jobs without frequemtmunication with the
master node. A sequence file contains a large amount of seegierich are usually of
similar length, so the static approach can achieve an ew@hyced work load and good

scalability.

2.5.2 Dynamic Load Balancing Approach

The EARTH RTS includes an inherent dynamic load balancingvaeism, which
collects information on the dynamic system status to cotwunctime workload dispatch-
ing. The design of the dynamic load balancer focuses on tyectbes: (1) keeping all
the nodes busy; (2) minimizing the overheads of load batanci

In fact, the research on the parallelization of Hmmpfam wadéid us to design a
load balancer in the EARTH RTS 2.5, as illustrated in Fig.. 2\8th the dynamic load
balancing support of the EARTH RTS, the job distribution anpletely transparent to
programmers. The EARTH RTS takes over the responsibilitgigfhatching jobs at the

runtime, which makes programming much simpler. The RTS taais a ready queue at
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Figure 2.8: Dynamic load balancing scheme

the master node and sends tasks to slave nodes one by ong thariexecution. Once
a slave node finishes a job, it requests another task fromAlRTH RTS on the master
node.

The dynamic load balancing approach is more robust thanrthegtermined job
assignments strategy. In the static load balancing appradigobs are put into the ready
gueue of slave nodes during the initiation stage, and cammahoved away after that.
If one node has a heavier work load than others or even stogangg its jobs cannot
be reassigned to other nodes. The dynamic load balanciaiggy in contrast, is able
to avoid this situation because the EARTH RTS maintains ¢laey queue at the master
node. The robustness of Hmmpfam makes an important issiugderimg the fact that
Hmmpfam may run for quite a long time (e.g., several weekssoAon a supercom-
puting cluster that consists of hundreds of computing noalesbust approach becomes
necessary because it is not easy to guarantee that all natespvoperly without any

failure.
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2.6 Experimental Results
2.6.1 Computational Platforms

The experiments described in this research are carriedyousing the EARTH
Runtime System 2.5 and three different Beowulf clusters. Tdmparison of the PVM
Hmmpfam version and the EARTH version is tested on the COMHRIBtel at the
Computer Architecture and Parallel Systems Laboratory (QARSthe University of
Delaware. COMET consists of 18 nodes: each node has two 1.4 ABH2 Athlon
processors and 512MB of DDR SDRAM memory. The interconnaatietwork for the
nodes is a switched 100Mbps ethernet.

Other experiments are conducted on two large clusters. Tlitea@@ity cluster
[66] is a scalability testbed at the Argonne National Labama The cluster is comprised
of 256 computational servers, each with two 500MHz Pentillprocessors and 512MB
RAM memory. The interconnects for high performance commatioa include a fast
ethernet and a 64-bit Myrinet.

The JAZZ [67] cluster is a teraflop-class computing clustetha Argonne Na-
tional Laboratory. It consists of 350 computing nodes, eaith a 2.4 GHz Pentium
Xeon processor. All nodes are interconnected by fast ethemmd Myrinet 2000. De-

tailed configuration of the platforms is summarized in Table

Table 2.1: Experiment platforms

[ Name [ Location | Processortype [ # of CPUs [ Memory per node] Network ]

Comet

UDel

AMD Athlon 1.4G

18 x 2 per node

512M

100T Ethernet

Chiba City [66]

ANL

PIll 500MHz

256 X 2 per node

512M

Gigabit Ethernet

JAZZ67]

ANL

Xeon 2.4GHz

350 x 1 per node

2G/1G

Gigabit Ethernet

2.6.2 Experimental Benchmarks

For the comparison of the PVM version and the EARTH versiompafallel

Hmmpfam, we use an HMM database containing 585 profile famjiland a sequence
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file with 250 sequences. This benchmark is referred to as sta in the following
sections. Data set-1 is also used in the robustness expdrime

For testing both the static and dynamic load balancing earsi EARTH Hmmp-
fam, we use an HMM database containing 50 profile familied, asequence file con-
taining 38192 sequences. This benchmark is referred totasseé&?2 in the following

sections.

2.6.3 Comparison of PVM-based and EARTH-based Implementatios

The first test is conducted to compare the scalability of #&IRersion and the
EARTH version on the COMET cluster using test data set-1. Ziga shows the absolute
speedup curve when both the PVM version and the EARTH veesieconfigured to use
only 1 CPU per node in COMET, while Fig. 2.9b shows the resultgdt@l CPUs per
node configuration. From the figures, it is easily seen thaptioposed new version has
much better scalability, especially in dual-CPU per noddigamation. For example, with
16 nodes and 2 CPUs per node configuration, the absolute gpetthe PVM version is
18.50, while the speedup of our version is 30.91, which mé@a#sreduction of execution
time. This is due to the fact that our implementation incesdhe computation granularity

and avoids most communication costs and internal barriers.

2.6.4 Scalability on Supercomputing Clusters
The second and third tests are conducted to show the penfioertd our EARTH

version Hmmpfam on large clusters, the Chiba City cluster aedJAZZ cluster, using
test data set-2. The results of both static load balancimydymamic load balancing
schemes are shown in Fig. 2.10 to Fig. 2.11, where Fig. 2.48d&. 2.10b show the
results for static load balancing on 1 CPU per node and 2 CPUsqakr configuration,
and Fig. 2.11a and Fig. 2.11b are the results for dynamic beddncing. The two
methods do not have much difference in the absolute speethig. is due to the fact

that subtasks are relatively similar in size, which meaaticstoad balancing can also
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Figure 2.12: Dynamic load balancing on JAZZ

achieve good performance. Both of them show a near lineadspeevhich means in
our new parallel scheme, the serial part only occupies asmaafl percentage of the total
execution. As long as the test data set is big enough, thelspég expected to keep near
linear up to 128 nodes on the the Chiba City Cluster. The tesksesuthe JAZZ cluster
are shown in Fig. 2.12. The speedup curve shows that our mgsigation can get a near

linear speedup on 240 nodes.

2.6.5 Robustness of Dynamical Load Balancing
One of the advantages of the dynamic load balancing appirieathrobustness.
The experiments are conducted to show that the program witardic load balancing is
less affected by the disturbance (the resource conteraiosed by other applications run-
ning at the same time). The Blastall [42] program is used adigtarbance source since
this program is another commonly used computation-intensioinformatics software.
The execution time for both the static and the dynamic appresiwith and with-

out disturbance is measured. Btdenote the execution time without disturbance, and
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T’ denote the execution time with disturbance. Defingpisdormance degradation ratio

under disturbancéPDRD) as:

T —-T

PDRD = ( ) x 100% (2.5)

The PDRD is computed and plotted for both the static and thamymapproaches. A
smaller PDRD indicates that the performance is less influkibgethe introduction of
disturbance, thus implying the higher implementation stbass.

For the robustness experiment, the data set-1 is used on thNETOluster. Fig.
2.13a shows the result when only one Blastall program is nghon 1 CPU to disturb
the execution of Hmmpfam, and Fig. 2.13b shows the resultwitve CPUs of one node
are both disturbed. Fig. 2.13c and Fig. 2.13d show the regwh 2 computing nodes
are disturbed. From the figures, it is apparent that the dimkad balancing program is

less affected by the disturbance and thus has higher rassstn

2.7 Summary

We implemented a new cluster-based solution of the HMM detalsearching
tool on the EARTH model and demonstrated significant peréoroe improvement over
the original parallel version based on PVM. Our solutionvptes near linear scalability
on supercomputing clusters. Comparison between the statidgnamic load balancing
approaches shows that the latter is a more robust and @bsttution for large-scale
time-consuming applications running on clusters.

This new implementation allows researchers to analyzebgichl sequences at a
much higher speed and also makes it possible for sciertisisalyze problems that were
previously considered too large and too time consuming. prallelization implemen-
tation in this work motivated the addition of a robust dynatoad balancing support into
the EARTH model, which proves that applications could bedieng force for design

of architecture and programming models.
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Chapter 3

SPACE RIP TARGETED TO CELLULAR COMPUTER
ARCHITECTURE CYCLOPS-64

3.1 Introduction

This chapter presents the parallelization and performapteization of another
biomedical application—-SPACE RIP, a parallel imaging teghai on the Cyclops-64
multiprocessor-on-a-chip computer architecture. Cyclep$10-12, 34, 35] is a new ar-
chitecture being developed at the IBM T. J. Watson Researche€Cantl the University
of Delaware. SPACE RIP (Sensitivity Profiles From an Array ofl€tr Encoding and
Reconstruction in Parallel) is one of the parallel imaginghteques which use spatial
information contained in the component coils of an arrayadiplly replace spatial en-
coding which would normally be performed using gradientsrider to reduce imaging
acquisition time. We present the parallelization and ogtation of SPACE RIP at three
levels. The top level is the loop level parallelization. Toep level parallelization decom-
poses SPACE RIP into many SVD problems. This is possible bedhageconstructions
of each column in an image are independent of each other. &dmnstruction of each
column is a pseudoinverse of a matrix, which is solved by thguar value decompo-
sition (SVD). The middle level is the parallelization of a B\problem using one-sided
Jacobi algorithm and is implemented on Cyclops-64. At thigllean SVD problem is
decomposed into many tasks, each one of them is a matrix ocalatation routine. The
bottom level further optimizes the matrix column rotatieutine by using several mem-

ory preloading or loop unrolling approaches.
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1. We implemented the parallelization and optimization BASE RIP at three lev-
els. The top level is the loop level parallelization, whidgcdmposes SPACE RIP
into many tasks of a singular value decomposition (SVD) |eob The middle
level parallelizes the SVD problem using the one-sided Wiaalgorithm and is
implemented on Cyclops-64. At this level, an SVD problem isateposed into
many matrix column rotation routines. The bottom leveltiertoptimizes the ma-
trix column rotation routine using several memory prelogdor loop unrolling

approaches.

2. We developed a model and trace analyzer to decomposet#hexecution cycles
into four parts: total instruction counts, “DLL”, “DLF” antDLI”, where “DLL”"
represents the cycles spent on memory access, “DLF” rapreige latency cy-
cles related to floating point operations, and “DLI” reprasethe latency cycles
related to integer operations. This simple model allowsoustudy the application

performance tradeoff for different algorithms.

3. Using a few application parameters such as matrix sizejpysize, and architec-
tural parameters such as onchip and offchip latency, welolesd analytical equa-
tions for comparing different memory access approachels aa@reloading and
loop unrolling. We used a cycle accurate simulator to vaiidae analysis and
compare the effect of different approaches on the “DLL" @and the total execu-

tion cycles.

The remainder of this chapter is organized as follows. Thgetaplatform
Cyclops-64 is introduced in Section 3.2. The background of Miiging is presented
in Section.3.3. The SPACE RIP technique is briefly reviewecbatien 3.4 to expose the
parallelism inherent in the problem. The coarse grain l@well parallelization is pre-
sented in Section 3.5, and the fine grain parallelizatioh®f3VD algorithm is presented

in Section 3.6. Different memory access approaches ainted in Section 3.7 in order
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to further improve the performance of the rotation routifthe SVD algorithm. Detailed
analysis of these approaches is presented in Section 38pdiformance experimental

results are shown in Section 3.9 and the conclusions summedhkin Section 3.10.

3.2 Cyclops-64 Hardware and Software System

The Cyclops-64 project is a petaflop supercomputer projdet. main principles
of the Cyclops-64 architecture [10] are: (1), the integratdprocessing logic and mem-
ory in a single piece of silicon; (2), the use of massive huing parallelism to tolerate
latencies; (3) a cellular approach to building large systd@), the smaller inter-processor
communication and synchronization overhead brings bpddgormance.

The Cyclops-64 system is a general purpose platform thatggyost a wide range
of applications. Some possible kernel applications inelG&8T and other linear algebra
such as BLAS 1 and 2 of LAPACK [68] package, protein folding atiteobioinformatics
applications. In this research, Cyclops-64 is adopted ftmirsgpthe SVD linear algebra
problem in the context of biomedical imaging.

Fig. 3.1 shows the hardware architecture of a Cyclops-64 @hkpa C64). One
Cyclops-64 chip has 80 processors, each consisting of tveadhunits, a floating-point
unit, and two SRAM memory banks of 32KB each. A 32KB instructiache, not shown
in the figure, is shared among five processors. In a Cyclopdiptaschitecture there
is no data cache. Instead, a portion of each SRAM bank can dgemed as scratch-
pad memory. Such a memory provides a fast temporary stovageptoit locality under
software control.

On the software side, one important part of the Cyclops-6tesysoftware is the
Cyclops-64 thread virtual machine. Itis worth noting thaC#his not developed. Instead,
CThread (Cyclops-64 thread) is implemented directly on tajpehardware architecture
as a micro-kernel/run-time system that fully takes advgmtat the Cyclops-64 hardware

features.
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Figure 3.1: Cyclops-64 chip

The Cyclops-64 thread virtual machine includes a thread madeemory model
and a synchronization model. The Cyclops-64 chip hardwgppa@ts a shared address
space model: all onchip SRAM and offchip DRAM banks are ad@tdssrom all thread
units/processors on the same chip, which means that aliteads can see a single shared
address space. More details are explained in [34, 35, 69].

In the thread synchronization model, the CThread mutex lockumlock opera-
tions are directly implemented using Cyclops-64 hardwasenat test-and-set operations
and are thus very efficient. Furthermore, a very efficientibasynchronization primitive
is provided. Barriers are implemented using the “Signal Byecgal purpose register.
The barrier function can be invoked by a group of threadseatis will block until all the
threads participating in the operation have reached thisne.

The memory organization is summarized in Table 3.1. Theulted&chip latency
is 36 cycles. It can become larger when there is a heavy loatkafiory accesses from
many thread units. This parameter can be preset in the Cy6élbssmulator. In this
experiment, the offchip latency is set to be 36 or 80.

Another set of parameters in the Cyclops-64 simulator is él@ydof instructions.
The delay for an instruction is decomposed in two parts, @ cycles and latency
cycles. The execution unit is kept busy for the number of efien cycles and another
instruction cannot be issued during the execution cyclée résult is available after the

number of execution+latency cycles. The resources canevewbe utilized by other
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Table 3.1: Memory configuration

Memory position size (Byte) Latency (cycle)
scratch-pad 80 x 2bank x 16 K 2
onchip SRAM 80 x 2bank x 16 K 19
offchip DRAM 4bank x 512M 36

instructions during the latency period.

3.3 MRI Imaging Principles

In this section, the MRI (Magnetic resonance imaging) pts/ard basic concepts
such as “frequency encoding”, “phase encoding” ahtispace are reviewed. MRI is
a method of creating images of the inside of opaque organsinglorganisms. It is
primarily used to demonstrate pathological or other pHggical alterations of living
tissues and is a commonly used form of medical imaging.

Paul Lauterbur and Sir Peter Mansfield were awarded the 2@@#INPrize in
Medicine for their discoveries concerning MRI. Lauterbigadivered that gradients in the
magnetic field could be used to generate two-dimensionaj@naviansfield analyzed the
gradients mathematically. The Nobel Committee ignored Raygingég Damadian, who
demonstrated in 1971 that MRI can detect cancer and filed atp@atethe first whole-

body scanner.

3.3.1 Larmor Frequency

MRI is founded on the principle of nuclear magnetic resongdh®éR), which is
shown in Fig. 3.2. There is electric charge on the surfacé®fptroton, thus creating a
small current loop and generating magnetic moméntThe proton also has mass which
generates an angular momentum when it is spinning. If th®prs put into a magnetic

field By, the magnetic field causéd to rotate (or precess) about the direction2f at
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Figure 3.2: Proton rotation and the induced signal

a frequency proportional to the magnitudefgy, which is called Larmor frequency [70].

Conventionally, the Larmor equation is written as:
Wo = fYBOa (31)

wherew is the angular frequency of the protons=£ 27 f). Using this scheme givesa
value 0f2.67 x 10°® radianss~'7"~!. When the use of scale frequency is helpful, we use
7 (gamma bar), which is equal tg/27 (i.e. 42M H,T—'). Thus the scalar frequency is
given by:

fo =42 x By. (3.2)

As the transverse component (the component inctheplane) of M rotates about
the z axis, it will induce a current in a coil of wire located arouthe x axis, as shown in
Fig. 3.2. This signal collected by the coil is the free ingdoicsignal (FID). The frequency
of the induced signal is the Larmor frequency. The inducgdaliis used for the MRI
imaging.

The measured MR signal is the net signal from the entire gbjdtch is calcu-

lated by integrating transverse magnetization aleng

S = /00 M (z)dzx, (3.3)
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whereM (z) = r(z)e’@. r(z) is the density of magnetization alongandé(z) is the
local phase angle at. This signal alone is not able to produce an image since ikere
no way to tell where the signal comes from [71]. Thus the fesgpy and phase encoding

gradient is necessary for encoding position information.

3.3.2 Frequency Encoding and Phase Encoding

MRI use frequency and phase encoding to generate a 2D imagé. oBtiiem
use magnetic field “gradient”, which refers to an additiosétially linear variation in
the static field strength. Without gradient, the main maigrigtld B, is homogenous.
An “x gradient” will add to or subtract from the magnitude of thatistfield at different
points along ther axis. Similarly, a %y gradient” and ¥ gradient” will cause a variation
of magnitude along thg axis and: axis, respectively. Thex‘gradient” and % gradient”
are shown in Fig. 3.3 (Adapted from [70]). The gradient” is not shown due to the
similarity between the #” and “y” gradient, the only difference being the axis along
which the magnetic field varies. The length of the vectorsagsgnts the magnitude of the
magnetic field, which sometimes can also be representedebgethsity of the magnetic
field line. The symbols for a magnetic field gradient in they, and: directions are~,,
Gy, andG... Note that the “gradient” only changes the magnitude and doechange the
direction, which is always along theaxis (B, direction). Conventionally, the gradient
is used for slice selection. Thegradient and, gradient are used for frequency encoding
and phase encoding.

G, has no effect on the center of the field of view € 0) but causes the total
field to vary linearly withz, causing the resonance frequency to be proportional te the
position of the spin, as shown in Fig. 3.4 (Adapted from [70]he slope of the straight
line in Fig. 3.4 is equal t@~,. This procedure is called “frequency encoding” since the
x position is encoded into the precession frequency. Aftecgssing for a timein this

gradient field, the magnetization of a spin at positiowill acquire an additional phase
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Figure 3.3: Encoding gradient (&, and (b)G,

0, = vxG,t, and the measured signal at timnkbecomes:

S(t) = /_OO r(z)e "t de, (3.4)

Equation 3.4 is the form of an inverse Fourier transform. ffaguency encoding gradient
is applied continuously “during” the signal acquisitiordagenerates 1D imaging.

In order to get a second dimension, an additional gradi@pt is introduced. Itis
applied with a duration of “prior” to the signal measurement. Thus the magnetizatfon o
a spin at positio will get an additional phasg, = vyG, 7. This process is called “phase
encoding” since the position is encoded as an additional phase before measoteme

With both frequency encoding and phase encoding, the medsignal becomes:

S(t) = //r(x,y)emcztemGdea:dy. (3.5)

This Equation is in the form of 2D inverse Fourier transfoma dorms the base for 2D

imaging.
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Figure 3.4: Effect of field gradient on the resonance frequency

3.3.3 k Space and Image Space
In a complete MR acquisition, the signals are samplédimes at intervals\t¢,
and the phase encoding gradient pulse sequence repgatetes, each time increment-

ing the phase encoding gradient amplitude such that
Gprz(n) = AG x n, for n= —gtog —1. (3.6)

During each repetition, data are acquired and put into omzdmal line of the grid
shown in Fig. 3.5 (adapted from [72]). In this figure, the Guency encoding” and
“phase encoding” directions are illustrated. Each time wange the phase encoding
gradient, we acquire another line of data. The low phasedngdines are written in
the center of the grid, while the high phase encoding linesaaitten to the edges of the
grids. Conventionally, we refer to the acquired data in the gs “raw” data.

We define quantitiesrz andkp such that
kZFE:’?XG$XAtXm (37)

kpg =9 X AG X n x T. (3.8)
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Figure 3.5: Frequency and Phase Encoding Direction

Then the total signal acquired in two dimensions tinaad and “pseudo-timer is:

S(m,n) ://r(x,y)eﬂ”k”eﬂ”yk”dxdy, (3.9

which is in the form of an inverse Fourier transform of thensgénsityr(z,y). The 2D

FT of the encoded signal results-§¢pace raw data) in a representation of the spin density
distribution in two dimensions (image space or coordingi@ce). The relation of the
k-space and the image space is shown in Fig. 3.6. An example R image and its
k-space amplitude are shown in Fig. 3.7. The central poxioitspace corresponds to

the low spatial frequency components, and the outer edgeside the high frequencies.

3.4 Parallel Imaging and SPACE RIP

In the conventional serial imaging sequences, only oneiverceoil is used to
collect all the data; the phase encoding grad@pis varied in order to cover all of the
k-space line with the desired resolution. One echo is neestezbth value of, making

sequential imaging a time consuming procedure.
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Figure 3.6: Relationship ofc-space and image space

Reduction in acquisition time can reduce or even avoid magidifacts, make
the MR imaging more efficient and make it useful for more pb&tapplications. For
instance, dynamic imaging applications of cardiac cotitvacequire high temporal reso-
lutions without undue sacrifices in spatial resolution [7¥ere are many ways to reduce
the acquisition time for sequential imaging. For instamoglti-echo imaging EPI (Echo
Planar Imaging) can achieve higher speed by optimizingngths, switching rates, and
patterns of gradients and RF (Radio Frequency) pulses. Howtbese approaches will
sometimes decrease SNR (Signal to Noise ratio) or spasalugon; also, they tend to
require higher magnetic field strengths and increasedgmnaperformance, thus reaching
the technical limits.

Parallel imaging is based on using multiple receiver ca@ks;h providing inde-
pendent information about the image. Fig. 3.8 (adapted fi@#}) shows a configuration
with two coils. The sensitivity profile of the two coils ancdetleoil views are shown in
the second column and the third column of the figure, resgaygti The parallel imag-
ing techniques use spatial information contained in thepmmnt coils of an array to
partially replace spatial encoding which would normallygeformed using gradients,
thereby reducing imaging acquisition time.

The name “parallel” is due to the fact that multiple MR sigdaka points are
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Figure 3.7: Example of image space akdspace

acquired simultaneously. The maximum acquisition timeio#idn factor is the number of
coils used. In a typical parallel imaging acquisition, oalfraction of the phase encoding
lines are acquired compared to the conventional acquisititherefore, thé: space is
under-sampled, which causes the aliasing in the acquirgédiews (aliased version of
the second column of Fig. 3.8). A specialized reconstradsoapplied to the acquired
data to reconstruct the image.

There are three approaches of parallel imaging, known as V5], SENSE
[73],and SPACE-RIP [76]. SMASH (SiMultaneous AcquisitionSgatial Harmonics) is
a k-space domain implementation of the parallel imaging. ltased on the computation
of the sensitivity profiles of the coils in one direction. Beeprofiles are then weighted
appropriately and combined linearly in order to form sindabharmonics which are used
to generate th&-space lines that are missing due to undersampling.

SENSE (sensitivity encoding) [73] is an image domain seiitsitencoding
method. It relies on the use of 2D sensitivity profile infotroa in order to reduce image

acquisition time. Like SMASH, the cartesian version of SEEN8quires the acquisition
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Figure 3.8: Example of coil configuration and coil sensitivity

of equally spaced-space lines in order to reconstruct sensitivity weightdidysed ver-
sions of the image. Itis shown in [73] that the SENSE techaican reduce the scan time
to one-half using a two-coil array in brain imaging and thatlole-oblique heart images
can be obtained in one-third of conventional scan time witamay of five coils.

SPACE RIP [76] is the latest of the three methods. It uses kestasget data as
input in conjunction with a real space representation ofdbié sensitivities to directly
compute a final image domain output. It generalizes the SMABptoach by allowing
the arbitrary placement of RF receiver coils around the albgeloe imaged. It also allows
any combination of-space lines as opposed to regularly spaced ones. SPACE R#P has
higher computational burden than either SENSE or SMASH.

Fig. 3.9 shows the schematic representation of SPACE RIPsitiqgniand recon-
struction. S1, S2, S3 and S4 are acquired data from four. ddils matrix G is the system
gain matrix constructed from coil sensitivity profiles. Itfee image to be constructed.
The construction of the G matrix is explained as follows.

The MR signal received in a coil havifd,(z,y) as its complex 2D sensitivity
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profile can be written as:

54(G8,1) = / / (2, ) Wiz, )l @O0 oy (3.10)

wherer(z, y) denotes the proton density functidiv (=, y) is the complex 2D sensitivity
profile of this coil,iG,. represents the readout gradient amplitude applied im theection,
GY represents the phase encoding gradient applied duringthecquisition,z andy
represent the andy directions, respectively; is the pulse width of the phase encoding

gradientGY, andy is a constant with the value af67 x 10° radianss—"7"".

(Sy) e N
- S2
maging _
Target Ss - G |
S4 \_ Y,

Figure 3.9: Schematic representation of SPACE RIP

Taking the Fourier transform of (3.10) along théirection with a phase encoding

gradientGY applied yields:
Sk(Gga (L’) = /7”(1’7 y)Wk(‘r7 y)ej’Y(GgyT)dya (311)

which is the phase modulated projection of the sensitiviéyghited image onto theaxis.
Here thexr andy are continuous values. In order to obtain a discrete versiotiz, y),
r(z,y) andWy(x,y) are expanded along thedirection utilizing a set of orthonormal
sampling functiongl,, (y). Further mathematical simplification [76] yields:

N
Su(Gy.x) = D nlw, n)Wiw, n)el G, (3.12)

n=1

54



S1(G), x) Wi (x, 1)e(@1n) Wi (z, N)e (@GN

S(GT, ) Wi (x, 1)ed (G Wi(a, N)e (@) 0z, 1)
o o n(z,2)

SQ(G;, ) Wo(z, 1)637(Gy17) Wo(, N)e”(GyNT) .

So(GF, ) Wo(z,1)e(Gy17) Wo(z, N e (GyNT)

Sk(Gl, ) Wi (2, 1)e(Go17) Wi (2, N)e/ (G n(z, N)

Sk(Gy, ) W (z,1)e(G1) W (z, N)el (G N

(3.13)

whereN is the number of pixels in thg direction. n(x, n) is the discretized version of
r(x,y). The symbolk is used to denote the different coils with= 1 to K, where K
is the total number of coils. The symbglis used to denote different phase encoding
gradients, and the value gfis from 1 to F', whereF" is the number of phase encoding
gradients. This expression can be converted into the nfatnxfor each positiorn: along
the horizontal direction of the image, as shown in (3.13).

We can simplify (3.13) as:

Alx) =G(z) x I(z), ,x=1 to M, (3.14)

where A(x), G(x), and I(x) represent the left, middle andhtigems in (3.13). Their
dimensions aré{ ' x 1, KF' x N, andN x 1. K is the number of coils, and is the
number of phase encoding gradients for each cdil.and NV are the resolution of the
reconstructed image. Typicall/ and N are 256 by 256 or 128 by 128.

Note that A(x) contains thé' phase encoded values for &l coils. It is essen-
tially a one-dimensional DFT of the chosérspace data. Also, I(x) is av-element
vector representing one column of the image to be recorstilandz is the horizontal

coordinate of that column. G(x) can be constructed baseti@sdnsitivity profiles and
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phase encodes used. If an image hagolumns, thern: ranges from 1 ta\/. For each
particularz, we have an equation such as (3.14). Th&sequations can be constructed
and solved independently of each other, which means eadmaoobf the image can be
reconstructed independent of each other. Increasingnd N increases the computa-
tion load. It can also be seen that the Gain matrix G(x) besoarger whenk and F’

increase, thus increasing the computation load.

3.5 Loop Level Parallelization

In this section, the coarse grain parallelization of thegmeeconstruction is pre-
sented. As shown in the previous section, the SPACE RIP racamtisn algorithm is
computed column by column. The algorithm begins by readisp&ce data from the
data file, then a 1D DFT is computed along thelirection, followed by a major loop
reconstructing the columns one by one. This loop hAgterations, whereél/ is the x
dimension of the reconstructed image. Inside each iterationatrixG(x), as in (3.13)
is constructed. The pseudoinverse of this matrix is thenpeded, and one column of
the image is finally reconstructed by multiplying the ineensatrix with the vector(X)
as in (3.13). Timing profiling of the program for a typical datet shows that the major
loop occupies about 98.79 % of the total execution time. Adiogly, this loop is the
bottleneck to be parallelized.

Both Pthread and OpenMP versions at the loop level are impiegde The
speedup result on a 12 CPUs Sunfire workstation are showntiors&c9. On a shared-
memory multiprocessor computer, all CPUs share the samemmammory and can work
on the same data concurrently. The major advantage of thedsinaemory machine is
that no explicit message-passing is needed, thus makiagigefor programmers to par-
allelize the sequential code of an application comparedassage-passing-based parallel
languages, such as PVM or MPI.

Multithreaded programming is a programming paradigm tadoto shared-

memory multiprocessor systems. Multithreaded progrargnoifiers an alternative to
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multi-process programming that is typically less demagaihsystem resources — here
the collection of interacting tasks are implemented as iplalthreads within a single

process. The programmer can regard the individual thremdsraning concurrently and

need not implement task switching explicitly, which is getl handled by the operating
system or thread library in a manner similar to that for tagkahing between processes.
Libraries and operating system support for multithreadediamming are available to-

day on most platforms, including almost all available Unaxiants. However, it is worth

noting that there is a certain amount of overhead for hagdimltiple threads, so the

performance gain archived by parallelization must outWwelgs overhead. In our ap-

plication, the loop level parallelizations are at the ceaggin level, thus justifying the

overhead.

Pthread [31] is a standardized model for dividing a prograto subtasks whose
executions can be interleaved or run in parallel. The OpeAiBlication Program Inter-
face (API) [77] supports multi-platform shared-memorygil programming in C/C++
and Fortran on almost all architectures. Additionallysitiportable, scalable model that
gives shared-memory parallel programmers a simple andfeixiterface for developing
parallel applications.

It is worth noting that static variables are shared acrdsbraads for both Pthread
and OpenMP programming. In the SPACE RIP code, some CLAPACK [@&jres
are used. The CLAPACK [68] routines, however, have many ursseeg static local
variables, which are not thread-safe since they cause sowantied sharing. If not dealt
with, this unintended variable sharing causes false resulnay affect performance.

In the current implementation, the memory for A(x), G(x) df{x) as shown in
(3.14) are pre-allocated. Thus the program structure e cmple, as all the threads
can work on independent memory locations and return théttesadependent memory
locations. No communication issue needs to be consideredadine problem property.

In our implementation, a dynamic load balancing strategysisd for task distribution.
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In fact, load balancing is not a big issue for our test platfddecause all the slave nodes
have similar performance and task computation loads aoaptd our observation.

An MPI version of the loop level parallelization is implented on a Linux Clus-
ter. The difference from the above SMP-based solution istti@ MPI version needs
explicit message-passing. Specifically, the iterations in the loop are distributed to
slave nodes dynamically. After the computation of the psewerse for each column,
the slave nodes send back the result (Pseudo inverse of then@irix) to the master
nodes. The master then sends a new column index to thesensldegs. Such a process
continues until all iterations are completed. At the begignthe master nodes send all
necessary information to slaves, including the phase engagtadient data and neces-
sary information about the image, such as image dimensidso &t each iteration, the
slave sends back F' x N double precision complex numbers as the result, which sause

relatively heavy communication overhead.

3.6 Parallel SVD for Complex Matrices

The pseudoinverse of the gain matrix G(x) is solved by thgudar value de-
composition. In this section, we present the parallelmatf the one-sided Jacobi SVD
algorithm. The current existing algorithms for SVD are fByieeviewed first. Then a
one-sided Jacobi update algorithm for complex matricesapgsed. This is important
because the gain matrix is complex in this particular apgibe. Then our parallel imple-
mentation is presented with the parallel ordering of Gaoii&®[78]. GaoThomas paral-
lel ordering is briefly reviewed and related implementaigsues on SMP are discussed.
The parallelization is implemented both on the current SMé& @ellular architecture, the

latter of which is under development. The speedup resuleisgmted in Section 3.9.

3.6.1 Singular Value Decomposition
One of the important problems in mathematical science agahearing is singu-

lar value decomposition (SVD). The SVD forms the core of malgorithms in signal
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processing and has many interesting applications suchtasdepression, noise filter-
ing, and image reconstruction in biomedical imaging. It e @f the most important
factorizations of a real or complex matrices and is a contfmutantensive problem. A
SVD of real or complexn by n matrix is its factorization into the product of three matri-
ces:

A=UxvH, (3.15)

whereU is anm by n matrix with orthogonal columns} is ann by n non-negative
diagonal matrix, and” is ann by n orthogonal matrix. Here we usé to denote the
complex conjugate transpose of a matrix. If a matrix is a meatrix, thenH is the
transpose operation.

There are many algorithms for solving the SVD problem. Birshe QR algo-
rithm is used to solve singular value decomposition of adgjdnal matrix. QR is used
to compute singular vectors in LAPACK'’s [68] computationalitine xBDSQR, which
is used by the driver routine of xGESVD to compute the SVD aistematrices. The
XGESVD routine first reduces a matrix to bidiagonal form, #reh calls the QR routine
xBDSQR to find the SVD of the bidiagonal matrix. OriginallyetSPACE RIP sequential
code utilizes ZGESVD routine to solve the SVD problem of a ptax matrix. It is worth
noting that the Matlab SVD routine uses LAPACK routines DGES{br real matrices)
and ZGESVD (for complex matrices) to compute the singuléwezdecomposition.

Another approach is the divide-and-conquer algorithm.videés the matrix into
two halves, computes the SVD of each half, and integratesations together by solv-
ing a rational equation. Divide-and-conquer is implemémtethe LAPACK [68] routine
xBDSDC, which is used by LAPACK driver routine xGESDD to comptite SVD of a
dense matrix. It is currently the fastest routine availableAPACK to solve the SVD
problem of a bidiagonal matrix larger than about 25 by 25 [*§ESDD is currently the
LAPACK algorithm of choice for the SVD of dense matrices. Heoem to our knowl-
edge, there is no current parallel version of the ZGESVDineutr the ZGESDD routine
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in ScaLAPACK [80], which is a parallel version of LAPACK.

Finally, there is Jacobi’s algorithm [81, 82]. It is mosttsible for parallel com-
puting. This transformation algorithm repeatedly muigplon the right by elementary
orthogonal matrices (Jacobi rotations) until it converge&’y, and the product of the
Jacobi rotations i$/. The Jacobi approach is slower than any of the above tranafor
tion methods, but has the useful property that it can detimgrsingular values, and their
singular vectors, much more accurately than any of the abmtbods, provided that it is
properly implemented [83, 84]. Specifically, it is showntttiee Jacobi algorithm is more

accurate than the QR algorithm [85].

3.6.2 One-sided Jacobi Algorithm

In our implementation, we focus on the one-sided Jacobi SigDrahm since it
is most suitable for parallel computing. In the one-sidecbBaalgorithm, in order to
compute an SVD of am x n matrix A, most algorithms adopt Jacobi rotations. The idea
is to generate an orthogonal matfixsuch that the transformed matrikl” = W has
orthogonal columns. Normalizing the Euclidean length aheaonnull column o#V to
unity yields:

W =U%, (3.16)

where thelU is a matrix whose nonnull columns form an orthonormal seteaftors and
¥ is a nonnegative diagonal matrix. Singé’V = I, wherel is the identity matrix, we
have the SVD ofd given byA = ULV E,

Hestenes [86] uses plane rotations to construct he remainder of this subsec-
tion first reviews Hestenes’s algorithm for real matriced #ren extends the algorithm
for complex matrices.

Hestene generates a sequence of matfiges$ using the rotation

A1 = ApQx, (3.17)
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where the initiald; = A andQ;, is a plane rotation. Leti, = (a\", @, ,a'), and

Qr = qﬁ’?. Suppose&). represents a plane rotation in thej) plane, withi < j, Let us

define:
(k) (k)
4; =6 4;;° =S,
® ® (3.18)
The postmultiplication by, affects only two columns:
S(k+1) o(k+1 (k) (k ¢ s
(@, @) = @, a) . (3.19)
—S C
To simplify the notation, let us define:
7=a", a=a’
L . (3.20)
P=alt, g=db.
Then we have:
C S
(', v") = (u,7) : (3.21)
—S C

For real matrices, to make the two new columns orthogonahave to satisfyu’)? ' =

0. Further mathematical manipulations yield:
(® —sHw +cs(x —y) =0, (3.22)

wherew = @0, v = @', y = 01 7.
Rutishauser[87] proposed the formulas as in (3.23) to s@\22]. They are in

use because they can diminish the accumulation of roundiogse

o = ¥=% - sign(o)
2w’ o +V1+a?” (3.23)
c = \/ﬁ’ s =rTc.

We setc = 1 ands =0 if w = 0.
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3.6.3 Extension to Complex Matrices

It is noteworthy that the above formulas only apply to reatnmas. In order to
make the two new columns orthogonal In the case of complerieeat we have to make
(@)7¢ = 0. This still yield (3.22), except that the inner produetsz andy are now

defined as:

w= "7 x=ua"1,y= "7 (3.24)

Thez andy variables are still real numbers, hutmay be complex number, which makes
the solution, as shown in (3.23) no longer valid.

Park [88] proposed a real algorithm for Hermitian Eigeneadiecomposition for
complex matrices. Henrici [89] proposed a Jacobi algoritbnmrcomputing the principal
values of a complex matrix. Both use two sided rotations. itesiby their algorithms,
we derived the following one sided Jacobi rotation algonittor complex matrices. We

modify the rotation as follows:

, B G c s e P 0
(@', v") = (, 0) : (3.25)
0 0 -5 ¢ 0 1

where we get the angléfrom w: w = |w|e’”. The formula to get ands are as follows:

y—x _ sign(a)

(8% = T [t - S0k el S,
2|w|? 2
|w| lo|+v14+a (3.26)
1
¢ = 8 =TC

We setc = 1 ands = 0 if |w| = 0.

The idea is to first apply the complex rotation shown in (3.28)er this complex
rotation, the inner product of the two updated columns bexoreal number. It is easy to
verify that the(«’)# o' = 0 is satisfied with our proposed rotation algorithm.

If the matrix V' is desired, the plane rotations can be accumulated. We dempu
Vk+1 = Vk@k (3-27)
and update thel andV simultaneously.
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1 Rotationof_two_column(colu, colv)
2 {

3

4 /+colu and colv are two

5 columns of complex numbers/
6 /+The lengh of column is #/
7

8 w=inner.product(colu,colv);
9

10 if (Jw] <= delta)

11

12 converged<— true;

13 return

14 }

15 else converged<— false;

16

17 x=innerproduct(colu, colu);
18 y=innerproduct(colv, colv);
19

20 computer rotation parameter c,s
21 from w, x, y according to
22 Equation 3.26;

23

24 update colu, colv according
25 to rotation Equation 3.25;
26 }

Listing 3.1: Rotation of two columns of complex numbers

The pseudo-code of a Jacobi routine for complex matricdso@s in Listing 3.1.
We refer to the algorithm in Listing 3.1 as the “basic rotatroutine”. To simplify the

case, thé” matrix updating is not included in this kernel.

3.6.4 Parallel Scheme

The plane rotations have to be applied to all column pairgtikance in any
sequence (a sweep) efn — 1)/2 rotations. Several sweeps are required so that the
matrix converges. A simple sweep can be a cyclic-by-rowsrmnd. For instance, let
us consider a matrix with 4 columns. With the cyclic-by-romrsler, the sequence of a
sweep is:

(1,2),(1,3), (1,4), (2,3), (2,4), (3,4). (3.28)

It is easy to see that some pairs are independent and may beteden parallel if we

change the order in the sequence. Another possible segfi@naesweep can group
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independent pairs and execute them in parallel:

{(1,2),3,4)},{(1,4),(2,3)},{(1,3), (2,4)}, (3.29)

where the pairs in curly brackets are independent.We cetil ebthese groups a step. This
feature motivates the proposal of many parallel Jacobirorgalgorithms [78, 90-92] in
which then(n — 1)/2 rotations required to complete a sweep are organized imtopgr
of independent transformations. Gao and Thomas’s algorf#t8] is optimal in terms
of achieving both the maximum concurrency in computatioth @mnimum overhead in
communication.

We implemented the Gao and Thomas algorithm. This algoritbmputes the
pairs of n elements om /2 processors when is a power of 2. In each computation
step, each processor computes one pair. During the comatiamcstage, each processor
exchanges only one column with another processor. The totaber of computation
steps is(n — 1). The detailed recursive divide and exchange algorithm jgaéxed in
[78]. We only give one example of parallel ordering in Tablg 8r a matrix with8

columns.

Table 3.2: Parallel ordering of GaoThomas algorithm

| step1] (1,2)| 3,4)[ (5,6)] (7.8) |
[ step2][ (1,4)][ (3,2)] (5.8)] (7, 6)|
[step3][(1,8)][ (3,6)] (5.4) ] (7.2 ]
| step 4} (1, 6)} (3, 8)} (5, 2)} (7,4 ]
| | | |
| | | |

[ step5] (1,5)][ 3, 7)][ (6,2)] (8 4)]
| step6] (1,7)] (3,5)[ (6,4)] (8,2) |
[step7] (1,3)] (7.5)[ (6,8) ] (4,2)]

In our shared memory implementation, the number of slaweatlsp can be set to
be the number of available processors. All the column paite step can be treated as

a work pool. The works in this work pool will be distributedtteep slave threads, where
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1 < p < 3. After each step, we implemented a barrier to make sure ¢pe:st 1 always
uses the updated column pairs from steft the end of each sweep, we check whether
the convergence condition is satisfied. If not, we start a s\@eep again. Otherwise, the
program terminates.

The convergence behavior of different orderings may notheesame. Hansen
[93] discusses the convergence properties associatedavithus ordering. In our imple-
mentation, we chose to use a threshold approach in orderféocenconvergence [94].
We omit any rotation if the inner produ¢t)”« of the current column pairg and v is

below a certain thresholl Thed is defined as :
N
§=e-Y Al A[i, (3.30)
=1

wheree is the machine precision epsilon adff] is theith column of the initialA matrix.
At the end of each sweep, if all the possible pairs in the svas&p converged according

to the above standard, then the problem has converged.

3.6.5 Group-based GaoThomas Algorithm

As stated previously, the GaoThomas algorithm can complte- 1) /2 rotations
of a matrix withn columns onn /2 processors. When the size of the matrix increases,
group-based GaoThomas can be adopted. For instance, whemathix size i2n and
we only haven /2 processors, we can group two columns together and treatdseime
single unit. Then the primary algorithm for a matrix withcolumns can be used.

For a matrix withn columns, if we groug columns together as a group, then we
haven/g groups and can use the basic GaoThomas algorithm fgrelements, except
each element is a group. For instance, operations on a ni&ttwyy 16 can set the group
size to be 2, yielding 8 groups for which we can still use thed#i and exchange algo-
rithm shown in Table 3.2. The only difference is that eacltkedin the table is a rotation

of two groups, each group containing 2 columns in this case.
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Rotationof_two_group (groupa, groupb)

{

/xgroup size is gx/
/xgroup.a contains columnsu;,i=1,g*/
/xgroup_b contains columnsv;,i =1,gx/

if (current step is step 1)
{
for i=1 to g
for j=i+l to g
Rotateof_two_column (u;,u;);

for i=1 to g
for j=i+l to g
Rotateof_two_column (v;,v;);

}

for i=1 to g
for j=1 to g
Rotateof_two_column (u;,v;);

Listing 3.2: Rotation of two groups

Therefore, in the group-based algorithm for a matrix witbolumns and a group
size g, one sweep containg/g — 1 steps, and each step contain&g instances of a
rotation of two groups, which can run in parallel on a maximefm /2¢g processors. The
pseudo-code for rotating two groups is shown in Listing 3tds easy to find out that

after one sweep, all(n — 1)/2 basic rotations of two columns are computed.

3.7 Optimization of Memory Access

This section discusses several memory access approactesathbe integrated

into the rotation routines shown in Listings 3.1 and 3.2.

3.7.1 Naive Approach
The default memory allocation using “malloc()” in the Cycéep4 simulator is
from the offchip memory, while the local variables are aditexl from the stack located

on the onchip scratch-pad memory. Assuming that the maditix driginally reside on the
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offchip memory, we implemented an SVD program where all tlgnory accesses are
from the offchip memory. This implementation is referreca®the naive version in the
following discussions. Also, the loop within the inner poatlcomputation in the rotation

routine is implemented without any loop unrolling in thigsien.

3.7.2 Preloading

In order to reduce the cycles spent on memory accesses, weaelaad the data
from the offchip memory to the onchip scratch-pad memoryuslithe data accesses in
the computation part of the rotation routine are directynirthe onchip memory. The
updated data are then stored back to the offchip memaory.

There are two ways to preload data. The simplest way is tohesénemcpy”
function from the C library. The pseudo-code for the “menigmeloading in the two-
column rotation routine is shown in Listing 3.3. We refer he tode segment from line
10 to line 12 as the “computation core”, which consists ofdbmputation of three inner
products and a column rotation. Preloading for the grougebaotation routine is simi-
lar, except that two “groups” of columns are preloaded. Tierhcpy”-based preloading
has the problem of paying extra overhead of function callfdditionally, the assembly
code of the “memcpy” function is not fully optimized, whick $shown with analysis in
the next section. To overcome these two problems, we impiepreloading by using an
optimized inline assembly code instead of a function calk nfer to this approach as
the “inline” approach. For this approach, each “memcpy’ction call is replaced with
a segment of inline assembly code. The assembly code segfoetie “memcpy” and
“inline” preloading approaches (either the group-basedtian routine or the basic rota-
tion routine) are shown in Listing 3.6 and Listing 3.7. Frdm tistings, we can see that
memcpy and inline approaches have different instructidredaling. The former con-
ducts one “LDD” instruction followed by one “STD” and repsdbr a sufficient number
of times until all the data are moved successfully. The faitecontrast, issues several

“LDD” instructions in a row (in our case, 8 LDDs in a row) folleed by several “STD”s
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in arow. The effect of different ways of instruction schedglon the total memory access

cycles is analyzed in Section 3.8.

©CoO~NOUOhWNE

PRPRPRPRPRPE
O wNEO

Rotationof_two_column (colu, colv)

Allocate localcolu, localcolv
on the scratchpad;

memcpy (localcolu <—colu);
memcpy (localcolv <—colv);

conduct three inner productand
column rotation on localkolu, localcolv
as in Listing.3.1

memcpy (colu<—local_colu);
memcpy (colv<—local_colv);

Listing 3.3: Basic rotation routine with preloading using “memcpy”

3.7.3 Loop Unrolling of Inner Product Computation

There are three inner product function calls in the rotatiomine. We imple-

mented two versions of loop unrolling for the loop in the inpeoduct computation:

unrolling the loop body 4 times or 8 times. The idea is thaplaarolling makes it pos-

sible to schedule instructions from multiple iteratiormsyd facilitating the exploitation of

instruction level parallelism.

3.8 Performance Model

In this section, the performance model to dissect the ei@taycles is introduced

first. This model is then applied to analyze and compare tlegesyspent on memory

accesses for the memory access approaches discussed iavioeip section.
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3.8.1 Dissection of Execution Cycles

We begin with a simple execution trace example in Listingt8.4lustrate how
to dissect total execution cycles into several parts. Inidtieg, the first column is the
current cycle number. We notice that at cycle 98472, theeeneste “DLL = 1", which
means that there is a one-cycle latency related to memomsaccThe reason for this
latency is that at cycle 98472 the instruction needs theamgkeR9, which is not ready
at cycle 98472 because the LDD instruction at cycle 98470tlascycles of latency.
Similarly, at cycle 98475, the FMULD instruction needs thput operand R8 generated
by the FDIVD instruction at cycle 98469. R8 is not ready at ey@8475 and needs an
extra latency of 25 cycles since the FDIVD instruction hagg€les of latency from the
float point unit. Counting the total number of cycles from ey6B4609 till cycle 98501,
there are 33 cycles which include 7 instructions, 1 cycle BEL” and 25 cycles of
“DLF".

The integer unit may also cause certain latency called “Dwtiich is similar to

the “DLF” in the trace example. Therefore, we have the foltgpequation:

Total cycles = INST
+ DLL+ DLF+ DLI,

(3.31)

where the “ INST” part stands for the total number of instiats, “DLL” represents the
cycles spent on memory access, “DLF” represents the lateyags related to floating
point instructions, and “DLI” represents the latency cgadlelated to integer instructions.
When we change from the naive approach to the previously skeclimemory access
schemes, the “DLL" part is the most affected part. Our gotd ieduce this part by using
preloading or loop unrolling. The “INST” part is also affedtbecause the “memcpy” or
“inline” approach incurs extra instructions. The “DLF” afidLI” part are approximately
unchanged because they are related to either the floatintegieir point unit computation
that does not change with the change of memory access sch&heerext section gives

an estimate of the gain and cost in terms of “DLL” and “INSTY thfferent approaches.
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98469 FDIVD R8,R60,R8

98470 LDD R9,R3,96

98471 ORI R21,R0,0

98472 FDIVD R20,R9, R62 DLL = 1
98474 LDD R60,R3,104

98475 FMULD R6,R61,R8 DLF = 25
98501 STD R8,R3,160

Listing 3.4: Example of dissection of exectution cycles

3.8.2 Analysis of Naive Approach

All memory accesses in the naive approach are from the gffici@mory, and the
computation core part has a large number of “DLL” latencylegcWe denote the size of
the matrix as x n. Each element of this matrix is a double complex number. Wado
on one sweep that consists@) basic rotations for either the non-group-based approach
or the group-based approach. A basic rotation, as shownstimi 3.1 consists of two
different parts, the inner product part and the column ratgpart. We analyze the total
“DLL” latency cycles for both of them in this subsection.

First, there are three inner product function calls in theibaotation routine.
Each one of them consistsofterations, each iteration producing a multiplicationwbt
complex numbers and adding it to the sum. The execution tfite innermost iteration
is shown in Listing 3.5. In this example, the offchip latensget to be 80 cycles. From
the trace, we see that the innermost iteration has a “DLL = #6general, if we preset
the offchip latency to bé cycles, then the total number of “DLL” cycles in each itevati
is L — 4. Therefore, in one sweep, the total number of “DLL”" cycleshivi the inner

product part is:

n
DLLinnerproduct = (2

where “3” means that the inner product function is callecé¢htimes inside one basic

>><3><n><(L—4), (3.32)

rotation routine is the number of iterations in the inner product functiord an— 4 is

the number of “DLL” cycles within the innermost iteration.
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105069 SHLI R19,R12,4

105070 ADD R18,R19,R58
105071 ADD R7,R19,R57
105072 LDD R9,R7,8
105073 LDD R17,R18,8
105074 LDD R10,R18,0
105075 LDD R11,R7,0

105076 ADDI R12,R12,1

105077 CMPLT R15,R12,R61

105078 FMULD R16,R9,R17 DLL = 76
105155 FMULD R8,R9,R10

105156 HFVAD R16,R11,R10 DLF = 4
105161 FSUBD R8,R0,R8

105162 HFVAD R8,R11,R17 DLF =
105168 FADDD R14,R14,R16 DLF
105172 FADDD R13,R13,R8 DLF
105179 BNE R15+-64

I
o w Gl

Listing 3.5: Trace of the innermost iteration in the inner product raaitin

Second, for the column rotation part in the basic rotatiantine, we conduct a

similar analysis. The total number of “DLL” cycles of thisrpés:

DLLcotumn_rotation = (;L) Xn X (L - 4) (333)

Therefore the total number of “DLL”" cycles in the naive implentation of GaoThomas

algorithm (either the group-based or the non-group-baseahe sweep is:

DLLnaive - DLLinnerproduct + DLLcoluan‘otation

= (5) x n x (4L — 16).

(3.34)

3.8.3 Analysis of “Memcpy” Approach

Using either the “memcpy” or “inline” preloading approatie computation core
accesses data from the onchip memory. The “DLL” part in th@matation core is ap-
proximately zero due to the overlap of the short onchip mgmaocess latency (2 cycles)
with the float point unit latency. Therefore, from the pragravithout preloading to the
program with preloading, the decrease of the total numb&bbt” cycles in the com-
putation core iDL L,.;.., Which is the cycles we save by using preloading, and thus the

gain we expect to get.

71



Moving data from the offchip memory to the onchip memory tessin an extra
cost, which consists of two parts: the first part is the todLL” cycles in the code
segment that is responsible for moving data, and the secamdsghe extra instructions
incurred.

Firstly, we derive the total number of “memcpy” functionlsgwhich are respon-
sible for loading data “in”). For the basic non-group-ba&abThomas algorithm, there
is a total of(g) basic rotations (shown in Listing 3.1) in one sweep. A basiation needs
to load in two columns, each of length Loading a double complex number needs two

“LDD” instructions. Therefore, the total number of “LDD”sf preloading data is:

LD D iemepy nogroup = (5) X 2 X 1 x 2

(5) x 4n,

(3.35)

where the first “2” stands for loading “two” columns,is the length of the column, and
the second “2” means that loading a double complex numbetsige LDDs.

For the group-based algorithm, if the group sizg,ighere is a total o(”ég) group-
based rotations. At the beginning of each group-basedontate need to load in two
groups of columns (i.€ x ¢ columns) and each column needs 2 LDDs. Therefore,

the total number of LDDs for preloading data during one swiesep

LDDyemepy = ("9) x 29 x 0 x 2

= (”49) X g x 4n.

(3.36)

If we treat the non-group-based GaoThomas algorithm asupgased algorithm
with group size one, then we can use (3.36) for either themggtised algorithm or non-
group-based algorithm.

Secondly, we compute the latency incurred by the LDDs. Thez@txon trace
segment of the assembly code for the “memcpy” function isvshim Listing 3.6, with
the offchip latency set to be 80. From Listing 3.6, we obsdinet each LDD instruction

causes a long latency of 80 cycles. This latency is reflectestevthe “STD” instructions
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105375 LDD R6,R9,0

105376 STD R6,R7,0 DLL = 80
105457 ADDI R9,R9,8
105458 ADDI R7,R7,8
105459 LDD R6,R9,0
105460 STD R6,R7,0 DLL = 80
105541 ADDI R9,R9,8
105542 ADDI R7,R7,8
105543 LDD R6,R9,0
105544 STD R6,R7,0 DLL = 80
105625 ADDI R9,R9,8
105626 ADDI R7,R7,8
105627 LDD R6,R9,0
105628 STD R6,R7,0 DLL = 80

Listing 3.6: Trace of the memcpy code segment

exist. If we preset the offchip latency to lde then each “LDD” causes a latency of

cycles. So the total number of “DLL” cycles for preloadingalasing “memcpy” is:

DLLmemcpy = LDDmemcpy X L

= (") x g x 4n x L.

(3.37)

In summary, from the naive approach to the “memcpy”’-basedopding ap-
proach, the extra cost paid is theL L,,.,.,, While the cycles saved i®LL,;,. as in
(3.34). The preloading approach is a good choice wheneeetdht is smaller than the
gain.

In addition to the change in the total number of “DLL"s, wealsbserve the

increase in the total instruction count as:

Total INST increase = <nég) X gx4dn x 2 X2, (3.38)

where the first par("ég) X g X 4n is the total number of “LDDs for preloading data. We
need a same amount of “STD”, thus a multiplication by 2. Alsoaneed to use “LDD”

and “STD” to store data back, thus another multiplicatior2by
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3.8.4 Analysis of “Inline” Approach
The total amount of data preloaded for the “inline” prelogpdapproach is the
same as the “memcpy” approach. Therefore, the total numib&DD"s of the inline

approach is the same as the “memcpy” approach:

LDDiniime = ("9) x 29 x n x 2

= (”ég) X g X 4n,

(3.39)

wheren is the matrix size and is the group size..

The difference between the “inline” approach and “memcpppraach is the
scheduling of the LDD and STD instructions in the assemblyecoAs shown in List-
ing 3.6, each LDD in the “memcpy” approach is followed imnadly by one STD. In
the “inline” approach, 8 LDDs in a row are followed by 8 STDsamow, as shown in
Listing 3.7. From the trace we can see that we will have onel’13” every 8 LDDs
if we preset the offchip latency to be 80. If the offchip latgns L cycles, there is a
“DLL= L — 7" every 8 “LDD” instructions. Therefore, the total number“@fLL” cycles

for preloading data using the “inline” approach is:

DLLinline = LDDinline/8 X (L - 7)

=1 x ("%) x g x4n x (L —7).

(3.40)

From (3.40), we can see very clearly that preloading datagutsie “inline” approach
is better than using the “memcpy” approach becagd.;,;;,. is approximatelyl /8 of
DL Lpemepy-

From the naive approach to the “inline” preloading approdict extra cost paid
is the DL L;,;in., While the cycles saved IBLL,,;,. as in (3.34). Increase in the total
instruction count is computed according to (3.38). It i:aisteworthy that the “inline”
approach should have a smaller instruction count incrdesethe “memcpy” approach

since the former does not need the instructions involvedmetion calling.
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112688 LDD R16,R9,0

112689 LDD R17,R9,8
112690 LDD R18,R9,16
112691 LDD R19,R9,24
112692 LDD R20,R9,32
112693 LDD R21,R9,40
112694 LDD R22,R9,48
112695 LDD R28,R9,56
112696 STD R16,R6,0 DLL = 73
112770 STD R17,R6,8
112771 STD R18,R6,16
112772 STD R19,R6,24
112773 STD R20,R6,32
112774 STD R21,R6,40
112775 STD R22,R6,48
112776 STD R28,R6,56

Listing 3.7: Trace of the “inline” approach

3.8.5 Analysis of Loop Unrolling Approach

Loop unrolling only affects the inner product routine. Forailing 4 times, each
inner product routine now containg'4 iterations, each one of them computing the sum
of 4 multiplications of complex numbers. The trace of oneaiten is shown in Listing
3.8, with the offchip latency preset to be 80. The trace shbwasthe innermost iteration
consists of a “DLL = 72”. In general, if we preset the offchgidncy to be. cycles, then
the “DLL” in each iteration isL, — 8 cycles. Therefore, in one sweep, the total number of

“DLL” cycles incurred inside the inner product part is:

DLLinnerproduct,unrollll = <T2L> X 3 X % X (L - 8) (341)

A similar analysis of unrolling 8 times yields:

n

DLLinnerproducLunrollB = (2

) X 3 x % x (L — 13), (3.42)

where “L — 13" comes from the trace of loop unrolling 8 times.
The difference between the naive and loop unrolling apgresds only in the
inner product routine called by the basic rotation routinkile the column rotation and

the update part in the basic rotation routine are kept urggdn Therefore, from the
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naive approach to the loop unrolling approach, the totdesysaved i L L;ynerproduct —
DLLinnerproduct,unrollél for Unroning 4 timeS, O[DLLinnerproduct - DLLinnerproducLunrollB

for unrolling 8 times.

95288 SHLI R14,R62,4

95289 ADD R6,R14,R56
95290 ADD R7,R14,R55
95291 LDD R9,R7,8
95292 LDD R10,R6,8
95293 LDD R17,R6,16
95294 LDD R18,R6,24
95295 LDD R20,R6,32
95296 LDD R21,R6,40
95297 LDD R60,R6,56
95298 LDD R15,R6,48
95299 LDD R61,R6,0
95300 LDD R11,R7,0
95301 LDD R16,R7,16
95302 LDD R12,R7,24
95303 LDD R19,R7,32
95304 LDD R13,R7,40
95305 LDD R14,R7,48
95306 LDD R8,R7,56

95307 ADDI R62,R62,4
95308 FMULD R6,R9,R61 DLL = 72
95381 FMULD R9,R9,R10

95382 FSUBD R6,R0,R6 DLF = 4
95387 FMAD R6,R11,R10 DLF = 5
95393 CMPLT R7,R62,R57

95394 FMAD R9,R11,R61

95395 FMAD R6,R16,R18 DLF = 8
95404 FMAD R9,R16,R17 DLF = 1
95406 FMSD R6,R12,R17 DLF = 8
95415 FMAD R9,R12,R18 DLF = 1
95417 FMAD R6,R19,R21 DLF = 8
95426 FMAD R9,R19,R20 DLF = 1
95428 FMSD R6,R13,R20 DLF = 8
95437 FMAD R9,R13,R21 DLF = 1
95439 FMAD R6,R14,R60 DLF = 8
95448 FMAD R9,R14,R15 DLF = 1
95450 FMSD R6,R8,R15 DLF = 8
95459 FMAD R9,R8,R60 DLF = 1
95461 FADDD R59,R59,R6 DLF = 8
95470 FADDD R58,R58,R9 DLF = 1

95472 BNE R7+-160

Listing 3.8: Trace of one iteration of the inner product routine unrodetmes

76



3.9 Experimental Results
In this section, we present experimental results: the speed the loop level
parallelization and the fine level parallelization of SVI3, well as the comparison of

different memory access schemes.

3.9.1 Target Platform and Simulation Environment

Our test platforms include a Sunfire SMP machine from Sun iktinux cluster
and a cellular computer architecture Cyclops-64.

The software tool chain of the Cyclops-64 platform curreptigvides a compiler,
linker and simulator for users. A number of optimizationdisvare supported by the
compiler. A functional accurate simulator (FAST) is alsoypded. The main features
are: (1) the simulator supports most of the features of Cyge¥parchitecture, including
multithreaded execution, Cyclops-64 ISA, floating pointunierrupts, memory mapped
features (interthread interrupt and wakeup signal); (23 FAan generate the execution
trace and/or an instruction statistics report to help axsft/application developer tuning
and optimizing a program. Furthermore, the macros “Tracéddd “Trace off” allow
us to generate trace for a specific segment of code and sattleeto a file; (3) It can
also generate a timing result at the cycle level of a progr&or. an application to be
simulated, the code must be slightly modified. The Cyclopsditware tool chain runs
on Linux environment.

We also developed a Trace Analyzer that can take the ougmg from the simu-
lator and generate the dissection of execution cycles aalysis of the code simulated.
The trace analyzer can generate the following statistigghg dissection of the execution
cycles to the four different parts, as shown in (3.31); (B)dhalyzer can also generate sta-
tistics about the total “DLL" related to a certain instructi For instance, in the example
shown in Listing 3.7, the “DLL" latencies caused by the “LDDistruction are reflected
in the STD instruction. We call such latencies “associateithi the STD instruction. The

analyzer can sum the total “DLL"s associated with the STruwion. The sum is the
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total memory access cycles in the code segment of data dretpas in (3.37) or (3.40).
Similarly, the “DLL"s associated with the float point insttions such as “FMULD” or
“FMAD” are the “DLL”"s in the computation core, as in (3.34).

3.9.2 Loop Level Parallelization

The loop level parallelization is carried out on a Sunfire Sklthine and a Linux
cluster. The SMP machine used is the DBI-RNA1 at the DelawareeBimology Insti-
tute. DBI-RNA1 is a Sun Sunfire 4800 Server with 12 SPARC 750MHz €Ridd a 24
gigabyte memory. The code has also been ported to the Cetioiaputer architecture
Cyclops-64. However, due to the fact that the Simulator atstage is slow to carry out
the loop level parallelization experiment, we only pregéet Loop level parallelization
result on a Sunfire SMP machine and a Linux cluster.

In the data used in this experiment, the number of coils ikeljrhage size is 128
by 128 and the number of phase encodes is 38.

Fig. 3.10 presents the result of both Pthread and OpenMPspé&edup of both
the total execution time and the loop only are presentedmRhe figure, it is seen that
both Pthread and OpenMP achieved near linear performanielfithreads. This is due
to the fact that the tasks (iterations) of the loop are tpiallependent of each other.

According to the well known “Amdahl’s” law, if a program carm lexpressed as
two portions, the serial portion S and the parallel portipthEn the timel'(n) required

to complete a task on parallel processors is:
P
T(n)=S+ o (3.43)

and the speedup for n CPUs can be expressed as:

(1) S+P
T(n) S+ £

sp = (3.44)
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From the above equation, it is seen that the speedup of dglgmaigram cannot continue

to grow forever. Instead, there is a theoretical limit faz #peedup:

P
SPoo = nh_)ngo sp = S% (3.45)

According to our timing experiment, the total executiondiof the loop body occupies
about 98.79 % of the total execution of the sequential pragrhich means the limit of
the speedup is approximately 82.64. We assume that for bagda sets, the loop body
time percentage will be even bigger, and in real applicatioa loop body may be used
to handle real-time streams. So we focus only on the speefltife doop itself in the
following discussion. For instance, in the fine level palahtion part, only the speedup
of the loop is shown.

A MPI version is also implemented and tested on a Linux Clu3tee Linux clus-
ter “Comet” consists of 18 nodes, each containing two 1.4 GMbDAAthlon processors
and 512MB of DDR SDRAM memory. The interconnection networktfee nodes is a
switched 100Mbps ethernet. From Fig. 3.11, it can be sednhtedPI version achieves
a good speedup until the number of slave nodes reaches aP@unthe speedup grad-
ually stops increasing when the number of slave nodes igegréfaan 20. The reason is
that when the number of slaves increases, the work loadmlistd to each slave becomes

smaller, which does not justify the communication overhagithe initialization stage.

3.9.3 Fine Level Parallelization: Parallel SVD on SMP Machine 8nfire

In this section, the speedup result of the one-sided Jaddbidh Cyclops-64 for
complex matrices is presented. Fig. 3.12 shows the speeddlpe matrix sizes 128 by
128 through 1024 by 1024 (Pthread version). The numberseimitrix are uniformly
random double precision complex numbers. From the figureantbe seen that for a
small problem size such as 128 by 128, the speedup is linotegproximately 4. The
reason is that the task grain is not big enough to justify therftead associated with

the thread creation and synchronization such as barriematelx. In order to achieve a
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Absolute Speedup Sunfire, openMP version v.s Pthread version
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Figure 3.10: Speedup of loop level parallelization on Sunfire
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Figure 3.11: Speedup of loop level parallelization on Linux cluster
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good speedup for small problem size, small thread synchation overhead is necessary,

which is a good feature of Cyclops-64 architecture.

3.9.4 Fine Level Parallelization: Parallel SVD on Cyclops-6

In this section, the speedup result of the one-sided Jaddbiéh Cyclops-64 for
complex matrices is reported. Fig. 3.13 shows the speedujnéomatrix sizes 128 by
128, 64 by 64 and 32 by 32. The numbers in the matrix are unijorandom double
precision complex numbers. According to GaoThomas pamitering, the maximum
speedup for a by n matrix is 3. In our experiment, for the matrix size 128 by 128, the

measured speedup is 43, which is approximately 68% of treethécal value.

Absolute speedup of SVD on Sunfire for different problem sizes

- --Linear speedup
14r|——Problem size 128
Problem size 256
—e—Problem size 512
i12F Problem size 1024

6 7
Num of threads

Figure 3.12: Speedup of parallel one-sided Jacobi complex SVD on Sunfire

In Fig. 3.14, we compare the performance of the complex SVISonfire and
Cyclops-64. From the figure, it can be seen that Cyclops-64 simouch better perfor-
mance for matrix size 128. The actual biomedical data shosmngar result and is not

plotted due to the space limitation.

It is worth noting that Jacobi SVD is slower than other SVDoaithms. For the
data with a matrix size 152 by 128, our implementation is alibtimes slower than
ZGESVD in the CLAPACK package, which means, with more 2 praomesdhe parallel
SVD is better than ZGESVD.
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Absolute Speedup of SVD on Cyclops64
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Figure 3.13: Speedup of parallel one-sided Jacobi complex SVD on Cydidps-

Absolute Speedup of SVD on Cyclops64 v.s on Sunfire

| | - --Linear speedup
14 ——Problem size 128, on cyclops
Problem size 128, on sunfire

12

Speedup

1 2 3 a4 5 8 9 10 11 12

6 7
Num of threads

Figure 3.14: Parallel SVD on Cyclops-64 versus Sunfire

3.9.5 Simulation Results for Different Memory Access Schense

In this subsection, the simulation results of the SVD Gaconias algorithm are
presented for problem size = 32 andn = 64. The default configuration of offchip
latency is 36 cycles. If there is a heavy load of memory acopssations and mem-
ory access contention from different threads, the effeaiifichip latency becomes larger.
Therefore, simulation results for the offchip latency of&@les are also presented. The
simulation environment is introduced first, then a datagablpresented to show the
change of the “DLL” part in different versions of implemetit®, including the naive

approach, preloading using “memcpy” or “inline”, and loaprailing 4 times or 8 times.
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The actual numbers measured from the simulator are compatedy side with the re-
sults estimated from the equations in previous sectionsitibrour analysis. Finally, we

use several figures to illustrate the tradeoff of the costgamd for different approaches.

3.9.5.1 Model Validation

Table 3.3 shows the change of the total number of “DLL"s féfedent approaches
with the group size set to be one. In the table, for the pretmpdased approaches (mem-
cpy or inline), the change of the “STD associated DLL latérisythe cost we pay for
preloading, as shown in the third and fifth columns of thidg¢abrhe predicted value
of this part is computed using (3.37) for the memcpy apprpant (3.40) for the inline
approach. The change of the total “DLL"s in the computationec(inner product and
column rotation) is the gain we achieve. Without preloadihg equation for this part is
(3.34); with preloading, the number of total “DLL” cycles this part is approximately
zero. Therefore, for two preloading approaches, the eguédir the cycles saved in the
computation core is (3.34).

The difference percentage between the measured value fi@sirhulation trace

and the predicted value from the equations is computed disenfpllowing equation:

| Measurement — Prediction|
(Measurement + Prediction)/2

Dif f.Percentage = (3.46)

From the table, we can see that the predicted value is vesg ¢tnthe measured value,
and the difference percentage is quite small. The predi¢tothe “memcpy” approach
has a relatively bigger difference percentage since tha exterhead of function calling
is not accounted for in our simplified model.

From the naive approach to the loop unrolling approach, tilg change is the
inner product loop in the computation core. We expect zeamgh in the STD associated
DLL latencies because there is no preloading. One intagestbservation is the con-
stant change of “6048” from naive approach to loop unrollireggardless of the offchip

latency (36 or 80) and the time of unrolling (4 times or 8 tijne&fter an examination
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Table 3.3: Model validation

Latency=36 Latency=80

STD related | Computation core| STD related| Computation core

DLL Latency DLL Latency | DLL Latency DLL Latency

naive Measured 52416 16646112 52416 39354336
Measured 19664064 2016 42372288 2016

memcpy Change from Naive 19611648 16644096 42319872 39354336
Predicted change 18579456 16515072 41287680 39223296

Diff percentage 5.41% 0.78% 2.47% 0.33%

Measured 1943424 2016 4781952 2016

inline Change from Naive 1891008 16644096 4729536 39354336
Predicted change 1870848 16515072 4709376 39223296

Diff percentage 1.08% 0.78% 0.43% 0.33%

Measured 46368 6711264 46368 16646112

unroll 4 Change from Naive 6048 9934848 6048 22708224
Predicted change - 9676800 - 22450176

Diff percentage - 2.63% - 1.14%

Measured 46368 5114592 46368 12920544

unroll 8 change from Naive 6048 11531580 6048 26433792
Predicted change - 11273472 - 26175744

Diff percentage 2.26% - 0.98%

of the execution trace, we find it is simply due to extra ingians in the loop unrolling
in the forms of one “DLL = 1” for each inner product functionlicalrhe “DLL” latency
hiding phenomenon happens when a pair of “STD” and “LDD” apagated by other
instructions. Therefore, we ha\@‘*) x 3 x 1 = 6048, given problem size 64. Since

this is a post-simulation observation instead of a pretinatve have put the “-” in the
table. The measured change (“6048” cycles) is very smallpawad with the change in
the computation core. So this part is of no importance to bliaage of the total execution
cycles. Instead, we are more interested in the change obtake“DLL"s in the compu-
tation core, Which iDL L;,nerproduct — DL Linnerproductunroua fOr unrolling 4 times and
DL Lipnerproduct — DL Linnerproduct unrous fOr unrolling 8 times and can be computed fol-
lowing (3.32), (3.41) and (3.42). It is noteworthy that tb&at “DLL"s of “loop unrolling

8 times” is not one half of the “loop unrolling 4 times” becaube column rotation part
is kept unchanged, although the total number of the “DLL"legan the inner product

part is approximately reduced to one half.
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3.9.5.2 Comparison of Different Approaches

Fig. 3.15 illustrates the comparison of the five approaclyeddeomposing total
execution cycles into four parts as in (3.31). Each figuressis of five clusters of stacked
bars. The first cluster shows the results of five approachtasgroup size one, the second
one shows results for group size 2, and so on and so forthié#ch cluster, the leftmost
stacked bar illustrates the four-part dissection for theenapproach, the second and third
one depict the dissection for loop unrolling four times amghetimes, and the fourth and
the fifth represent the “memcpy” and the “inline” preloadiagproaches. Within each
stacked bar, the brown bar (at the top), the deep blue bdrg&idttom), the light blue bar
and the yellow bar (in the middle) represent the “DLL” pale number of instructions,
the “DLI” and the “DLF” part, respectively. The “DLI” part ¢anot be actually seen at
the current scale since it is very small compared to the qiads.

We can see from the figure that the measurement matches teyzgerfor-
mance analysis. Firstly, all the proposed approaches exbepg‘memcpy” approach
achieve better performance — less execution cycles — tieameilie approach. The “mem-
cpy” approach performs worse than the naive approach bedsuscheduling of “LDD”
and “STD” instructions results ih latency cycles for each “LDD/STD” pair in the data
preloading section. The “inline” approach, in contrast haetter scheduling in which
every 8 “STD"s only incut. — 7 latency cycles. Therefore, the “DLL” part of the “inline”
approach is approximately one eighth of that of the “mema@pgroach.

Secondly, the way that the “DLL” part changes with the insesaf the group size
also confirms our analysis. For the preloading-based appesa(either “memcpy” or
“inline”), the “DLL” part reduces to approximately one hathen the group size doubles,
which coincides with the predictions of (3.37) and (3.40heTmemcpy” approach has
a large value for the “DLL” part when the group size equals;dhes its “DLL” part
decreases significantly from group size one to two and bes@maller than that of the

naive approach when the group size reaches three. On theugorithe “DLL” part of
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the loop unrolling-based approach does not change withithege of the group size, as
indicated by (3.41) and (3.42).

Thirdly, from the naive approach to the other four approachee increase or de-
crease of the number of total instructions (the bottom bé#nerstacked bar) also matches
our expectation. The extra overhead for data preloadingtitates the increase of this
part for the preloading-based approaches, which can baatstil according to (3.38).
The “memcpy” approach has more instructions than the “&ilapproach because func-
tion calls incur extra instructions. On the other hand, toplunrolling approach reduces
the total instruction cycles from the naive approach sihbas a smaller number of times
that the loop control statement gets executed.

Fourthly, the “DLF” part in the figures approximately does nbange no matter
which approaches we use. This is due to the fact that it repteshe latencies related to
the floating point instructions that are kept unchanged. él@x the figures do show a mi-
nor increase of “DLF” from the naive approach to the prelogebbased approaches. The
reason is explained as follows. A code segment often inslbd¢h floating point opera-
tions and memory access operations; thus the “DLL” part aBedDLF” part sometimes
overlap with each other. Without preloading, the memoryeases in the computation
core have a long latency, thus the “DLF"s that overlap with.LDs get hidden by long
“DLL"s. With preloading, the memory operations are mainlgrh onchip memory and
the access latency becomes short; thus those “DLF’s camgetde hidden by “DLL"s
and become explicit. Nonetheless, the change of the “DLIR’ipavery small compared
to the change of the “DLL” part and thus can be omitted safely.

Lastly, we can see that the “inline” preloading approachquers the best out of
all five approaches. In fact, from the naive approach to thife” approach, the number
of total execution cycles is reduced by 52% for latency 8@, 4806 for latency 36 (with
the problem size 64 by 64 and the group size 1).
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Table 3.4: Total execution cycles and MFLOPS for problem size 64 by 64

l l

naive

[ “memcpy”

[ “unroll4”

[ “unroll8”

[ “inline”

l

cycles (1 thread )
MFLOPS (1 thread)
cycles (32 threads)
MFLOPS (32 threads)

60883999
54
2192086
1509

70068895
47
2479114
1335

38256416
86
1484975
2228

33339392
99
1331255
2485

29331583
112
1206010
2744

3.9.5.3 Performance on Multiple Threads

Fig. 3.16 shows the performance of different approachesutipte threads with
the problem size 64 by 64, the offchip latency 80 and the gz 1. Other parame-
ter configurations generate similar results. Table 3.4 lise execution cycles and the
“MFLOPS” number for different approaches when the numbethodads equals 1 and
32. We compute “MFLOPS” based on the histogram measurerhahshows 6618532
floating point operations in one sweep. We can see that tti@eéinapproach performs
the best and achieves 2744 MFLOPS with 32 threads.

3.10 Summary

The SPACE RIP technique uses multiple receiver coils andeslthe sensitivity
profile information from a number of receiver coils in ordembinimize the acquisition
time. In this research, we focused on the parallel recocistmu of SPACE RIP.

Firstly, We analyzed the algorithm and identified one magampl as the program
bottleneck to be parallelized. The loop level parallelaais implemented with Pthread,
OpenMP and MPI and archived a near linear speedup on the &aa2ficPUs SMP ma-
chine.

Secondly, we analyzed the one-sided Jacobi algorithm of 8Mibe context of
the biomedical field and proposed a rotation algorithm fenplex matrices. A one-sided
Jacobi algorithm for parallel complex SVD is implementeshgshe GaoThomas parallel

ordering [78].
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Thirdly, we ported the code to the new Cellular computer aechire Cyclops-
64, which makes SPACE RIP one of the first biomedical applioatam Cyclops-64. The
speedup of the parallel SVD on Cyclops-64 achieved 43 forllea@VD problem with
matrix size 128 by 128.

Lastly, this chapter also presented a performance modediandation results for
the preloading and loop unrolling approaches to optimizepgérformance of the SVD
benchmark. (1), We developed a simple model and trace asrdlyzlissect the total ex-
ecution cycles into four parts: total instruction counf3L.L”, “DLF” and “DLI”. This
simple model allows us to study the application performarageoff for different algo-
rithms or architectural design ideas. (2), We focused orsitngular value decomposition
algorithm and presented a clear understanding of this septative benchmark. Using
a few application parameters such as matrix size, group &k architectural parame-
ters such as onchip and offchip latency, we developed acalygquations for different
approaches such as preloading and loop unrolling. Curtemtlyonly use offchip and
onchip scratch-pad memory. The same methodology can beedgplanalyze data pre-
loading from offchip to SRAM. (3), We used a cycle accurateudator to validate the
model and compare the effects of four approaches on the “[idrt and the total exe-
cution cycles. The simulation result and the model preaiicthatch very well and the
difference is within 5%. We find that the “inline” approachrfmems the best among sev-
eral approaches. We also study the effect of group size opdtfermance and find that
the total number of “DLL” cycles almost becomes one half wttengroup size doubles

for the preloading approach.
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Figure 3.16: Performance of different approaches on multiple threads

90



Chapter 4

GENERATION OF TACTILE GRAPHICS WITH MULTILEVEL
DIGITAL HALFTONING

4.1 Introduction

Humans receive all of their information about the world gsime or more of the
five senses [95]: the gustatory sense, the olfactory semseuditory sense, the tactual
sense, and the visual sense. The visual sense has the tbghestidth among the five
senses, making the illustration of ideas and conceptshysheough images and graphics
an efficient means of communications. Loss of one of the fiaeegrequires information
to be translated from one sense to another. One possibiddtiam is the visual to audio
translation, e.g., screen reading software [96] intenadtsspeech synthesizers to enable
visually impaired individuals to access information thgbwoice output. Screen readers,
however, can only read text, thus limiting access to graptigrmation.

Another possible information translation is the visualdotile translation. The
visual to tactile translation can further help with undensting graphics, including ob-
ject shape and texture, while the visual to audio transiasuitable for understanding
concepts. Many techniques have been proposed to trarstasaid graphics information
into the tactile modality. In 1934, Louis Braille inventectBraille system for sightless
reading and writing, regarded as one of the most significamirioutions to the education
of blind individuals [97]. This approach, however, is alsuited to text-based informa-
tion. Tactile pattern and graphics access were also madhpeosvith the invention of

the Optacon [98], which can convert a visual image into agpatbf pin vibrations that

91



can be read with one finger. Martet al. [99] developed methods to present business
graphics to blind individuals, converting pie charts, blaarts and other representations
into the tactile modality.

Recent work includes [100, 101], which successfully devetbpoftware algo-
rithms for the automatic generation of tactile graphics.aMagful information, includ-
ing edges and boundaries, is identified and extracted freoaVvimage data via a multi-
step procedure. A shortcoming of simple line edge-map+béaetile graphics is that
the resulting edges often intersect and do not form closedtstes. This shortcoming
can be addressed by segmentation procedures as well agesoltition edge detection
[102—104]. Closed contours often yield improved repregemts over simple line edge-
map-based representations.

A shortcoming of binary edge maps, whether generated fromdge detection
algorithm or segmentation procedures, is that featuresegidns are identified only by
their boundaries. Such identification yields no informatim the grayscale value, color,
or texture of a given region. To address the issue of taektute representation, a tac-
tile texture generation method for the TIE (Tactile Imagén&mcer) [105] was proposed
[106]. In this work, the human tactile system and tactilenfinig process model, along
with binary halftoning algorithms, are developed and ojzted for the TIE printer.

Digital halftoning is a method for rendering the illusion @intinuous-tone pic-
tures on display or printing devices that are capable ofyed) only a limited range of
tone levels. Recent research has yielded numerous halftongthods, many of which
are reviewed in [107-109]. Halftoning algorithms genetatery on/off pixel patterns
to create the visual illusion of gray level or color. This isspible due to the low pass
nature of the human visual system, which averages blackatmtsvhite space to yield
the perceived grayscale level. A similar approach can bentédk produce tactile textures,
utilizing the low pass property of the human tactile systé@g].

Although the generation of tactile patterns through halfig procedures appears
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promising, humerous open problems must be addressed liboreethod can be used
in practice. For instance, halftoning algorithms must beliad and optimized to other
tactile printers, such as the TIGER embossing tactile @rifit05], which is a commonly
used tactile printer that has the ability to punch dots ded#nt heights on the paper, and
thus can be regarded as a multilevel system. Also, diffdralftoning algorithms need to
be implemented to generate and compare different textuterps, such as the determin-
istic textures or stochastic textures, clustered dot testor dispersed dot textures, etc.
This research addresses these specific issues.

To address the first issue, multilevel halftoning algorishare implemented on
the TIGER printer to generate tactile texture patterns. Mexension of binary halfton-
ing, multilevel halftoning techniques are commonly addpia printers that can generate
several output levels. Therefore, multilevel halftonisginatural choice for the TIGER
printer to take advantage of the printer’s variable-hemlriching ability. To address the
second issue, four different multilevel halftoning algloms, including AM, Bayer’s, er-
ror diffusion, and green noise halftoning [108-112], ar@lemented, of which, AM
and Bayer’s are deterministic algorithms and the latter twe sdochastic algorithms.
Experiments are conducted to compare the halftoning-bapptbach with the simple
commonly utilized thresholding-based approach. It is shawat the halftoning-based
approaches achieved significant improvement in terms dfitexpattern discrimination
ability and that green noise halftoning achieved the begbpeaance result amongst the
four types of halftoning algorithms.

The remainder of this chapter is organized as follows. Aflyegiew of tactile
printing and the TIGER printer hardware and software arsgmted in section 4.2. In sec-
tions 4.3 and 4.4 we discuss the basics of halftoning tect@siand multilevel halftoning
algorithms specifically adapted for the TIGER printer. &t#.5 presents the experi-
ment design, protocol, and evaluation results. Finallyrieflsummary is presented in

section 4.7.
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(b)

Figure 4.1: (a) TIE printer from Retro-tronics Inc., (b) TIGER printeom View Plus
Technologies

4.2 Tactile Printing

The traditional way to produce tactile graphics is to cdli@collage of sandpa-
per, cloth and other tactile materials and then glue themualgnto a piece of paper.
This process is time consuming and not appropriate for maskiption. More recently,
several types of tactile printing technology have been ldges to generate tactile graph-
ics more conveniently and effectively. In this section,reatly available tactile printing

devices are briefly reviewed.

4.2.1 Thermal Paper Expansion Machine

Tactile graphics can be produced by using a thermal papanskm machine
such as the SwellForm from American Thermoform [113], theti?e in a Flash (PIAF)
from Pulse Data HumanWare [114], and the Tactile Image EcdrafTIE) and TIE Junior
from Repro-Tronics [105]. Fig. 4.1a shows the TIE printenirRepro-Tronics Inc.

The basic process for producing tactile images on a therag@mpexpansion ma-
chine is as follows. First, prepare a very simple line graphilt is always a good idea
to extract the line or boundary information and print onlg thain features of computer
graphics [103]. Next, use a normal ink or laser printer tafptihe graphics directly on

the front of the thermal expansion paper. A photocopier dsm lae used to transfer an
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Figure 4.2: Graphics printing pipeline

image from normal paper to thermal expansion paper. Finf@gd the thermal expan-
sion paper through the TIE printer. The micro-capsule ogabin the thermal expansion
paper is heat reactive. The black lines or images printedhenhermal expansion paper
absorb more heat than the surrounding areas when exposédteat aource, causing the
underlying capsules to grow, yielding the raised linesasyand symbols on the thermal
expansion paper.

The thermal imaging pen from Repro-Tronics [105] can alsodexiuo produce
tactile graphics. This pen is a tool that allows a person éovda raised image directly on
the thermal expansion paper by hand. The tip of the pen itieatd causes the paper to

swell at the point of contact, producing a raised image.

4.2.2 TIGER Embossing Printer

Unlike thermal paper expansion machines, the TIGER pridierctly punches
dots of variable heights on paper or plastic media. It is adaivs-based printer de-
veloped by View Plus Technologies [115], Fig. 4.1b. The TRG|inter prints text in
any computer Braille font or the new DotsPlus font. Graphowadtent is printed as well,
whereas complex graphics must be hand-edited to produamjarebensible tactile form.
The TIGER printer is the main experimental platform utitize this research. In the re-
mainder of this section, the internal mechanisms of the@rggraphics printing pipeline

are discussed.
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The graphics printing pipeline is show in Fig. 4.2. In thisifig we illustrate where
we insert the digital halftoning step in the proposed scheinethe graphics printing
pipeline, the graphics to be printed are first converted t0@&dpi virtual map. At this
resolution, various image processing algorithms, suchmagé segmentation algorithms,
are applied to generate an appropriate representatioi [116

After the resampling step, the downsampling step conveetd ©0 dpi virtual map
to a 20 dpi virtual map. The downsampling step is necessamtabtile image generation.
Research [100, 117] shows that the minimum tactually disolerigrating resolution for
a human fingertip is only 1.0 mm, indicating that the resolutf a tactile image should
be somewhat finer than 1 dot/mm. This corresponds to a résolaf approximately
25.4 dpi. For comparison, images for visual displays haselmions of 72 dpi (CRT) to
2400 dpi (laser printer). Therefore, to convert these Viguages into the tactile form,
the high resolution images must be downsampled to appra&iyn20 dpi. In the current
printer implementation, there are two methods for downdegjan image, either a mean
or max filter. The user can choose one of these two optionheidkGER driver control
program. Both filters work on a 5 by 5 block, where the filter vanwd are tiled upon the
100 dpi virtual map. The mathematical representation ofriban filter is given by (4.1)

and the max filter given by (4.2):

sy = 3 al) @1)
peW
y(n) = gggx(p), (4.2)

wherell” denotes the neighborhood window of the pixét), z(p) denotes the gray value
of pixel p in the high resolution image, andn) denotes the gray value of pixelin the
low resolution image. The window sizeof W is5 x 5.

The proposed multilevel halftoning algorithm is inserteztvireen the downsam-
pling step and the thresholding step, which means it maaipsithe pixels on the 20 dpi
bitmap. The thresholding step quantizes the input grayldewethe 20 dpi virtual map
to gray levels that can be produced by the printer. The TIGER@Gr can punch dots
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Figure 4.3: Example of mask-based halftoning

with 8 different heights. Thus the simple thresholdingdshprinter driver quantizes the
gray level [0, 1] to 8 different output levels. The detailgesifications of the dot height
are beyond the scope of this dissertation. Note that if dvailfig is applied on the 100
dpi virtual map, then the output of the halftoning step igHar processed at the down-
sampling step, and the halftoned pattern is destroyed.efdrey, we apply the halftoning
algorithms on the 20 dpi virtual map instead of the 100 dpiuakr map, as reflected in
Fig. 4.2. In our scheme, the halftoning processing steputsithitmaps with different
gray levels, which are equal to the output levels of the gmantand are passed through

the thresholding step and sent directly to the printer.

4.3 Binary Halftoning Algorithms
Many effective algorithms have been proposed in the fieldaditdming. In this
section, several popular halftoning techniques are bniefliewed, including AM halfton-

ing, Bayer’s halftoning algorithm, error diffusion halftog and green noise halftoning.

4.3.1 AM Halftoning

“Amplitude modulated” (AM) halftoning [108] is a clustereldt ordered dithering
algorithm. Gray level is presented by varying the size ofdbts that are printed along a
regular lattice. This method is primarily used for printérat have difficulty producing
isolated single pixels. AM halftoning is a mask-based baliftg technique, Fig. 4.3. The

mask-based algorithm works as follows: a continuous-tatgnal image is compared
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to the mask, where each pixel of the original image is comeedirectly into a binary
dot based on a pixel-by-pixel comparison with the mask. IBiwéth a gray level greater
than their corresponding threshold in the mask are corvéaéon” pixels in the final
halftoned image, while pixels less than the correspondirgsholds are turned “off”. The
mask is tiled end-to-end on the original image. The masknegged such that the output
“on” pixels tend to cluster together. One example of the AMskAL09] is shown in Fig.

4.4a. The AM halftoned pattern of a gray level ramp is showfign 4.5b.

4.3.2 Bayer's Halftoning Algorithm

Bayer’s algorithm [110] is a dispersed dot ordered dithetgapnique. This tech-
nique is also a mask-based method, but it turns pixels “adivVidually without grouping
them into clusters. In Bayer's mask, consecutive threshatdsdispersed as much as
possible, an example [108] of which is shown in Fig. 4.4b. Byntaning the size of
printed dots for all gray levels as an individual pixel, disged dot halftoning techniques
vary the spacing between printed dots according to the gsag},learning the name “fre-
guency modulated” or FM halftoning. The Bayer’'s method pretuperiodic structures.
In the visual case, these structures introduce an unnatstzl appearance. However,
the periodic structure may be helpful for perception in thetite case, which is why we
include Bayer’s algorithm here and implement it into the TRGjrinter driver. Like AM
halftoning, the Bayer halftoning algorithm is a determiigistalftoning algorithm. The

Bayer’s halftoned pattern of a gray level ramp is shown in Ei§c.

4.3.3 Error Diffusion Halftoning

The error diffusion halftoning technique was proposed hyy&land Steinberg
[111]. This algorithm is a stochastic dispersed dot haiftgnError diffusion also keeps
the dot size fixed as a single pixel, and the required illusicsontinuous tone is achieved
by varying the distance between printed dots. This procdepta a stochastic method

for quantizing the gray level of each pixel. The quantizateror produced in each of
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Figure 4.4: Halftoning mask (a) AM (b) Bayer’s

Figure 4.5: Binary halftoned ramp (a) original, (b) AM halftoning, (c) Bas halfton-
ing, (d) Error diffusion (Blue Noise) halftoning, (e) Greemwisle Halftoning
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the single pixel operations is distributed amongst the m@aghood of the pixel to be
processed. This algorithm is illustrated in the block deéexgrshown in Fig. 4.6a. The
error diffusion halftoned pattern of a gray level ramp iswhas Fig. 4.5d.

The pattern generated by error diffusion shows an irreuthspersed dot pixel
pattern and is referred to as the blue-noise halftone [I07YE name results from the fact
that the halftoned pattern is composed exclusively of highdency spectral components.
The error diffusion algorithm devised by Floyd and Steighehown in Fig. 4.6a, can be

mathematically represented as follows [108]:

, 4.3)

|1 i @)+ T ) > 0
y[n] =
0 else

where coefficient vectore of error filter E ise = [e1, eq, ..., en]T, and the output is
written asy'[n] = [y[n—1],y[n—2], ..., y[n—N]|T, ?[n] = [y°[n—1],y¢[n—2], ...,y [n—
NIJ|T, which follows fromy®[n] = y[n] — (x[n] + 2¢[n]) andz¢[n] = ?nge)[n]. The input
pixel under consideration in this expressionjs|.

Anideal printer is able to output patterns that are compo$edrfect square black
dots. In high quality printing situations, where this effectrue to a certain extent, blue
noise halftoning is considered the optimum technique forimizing visibility [118] and
maximizing the apparent spatial resolution [108, 119]. &her diffusion technique has
a certain characteristic that makes it superior to AM meshatican present fine detalil

with high spatial resolution.

4.3.4 Green Noise Halftoning

Green noise halftoning [112] is a combination of the clustiesind dispersed dot
halftoning techniques and is also called an AM-FM hybrid moett The green noise
model describes the spatial and spectral characterigticsually pleasing dither patterns
composed of a random arrangement of clusters that vary wathlgvel in both their size

and shape, as well as distance between the clustered detserfin“green” refers to the
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Figure 4.6: Schematic representation of halftoning algorithms (apEdiffusion, (b)
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mid-frequency content of the corresponding halftone pasteas green light is the mid-
frequency of white light. The green noise halftoned pattéra gray level ramp is shown
in Fig. 4.5e.

In green noise halfoned images, the minority pixel clustaes distributed ho-
mogenously. The green noise halftone is generated as amsexteo the error diffusion
technique proposed by Levien [112] and referred to as thar eliffusion with output
dependent feedback. The block diagram of the algorithmasvehin Fig. 4.6b. In this
algorithm, a weighted sum of previous output pixels is usedary the threshold. This
makes minority pixels more likely to occur in clusters. Theaant of clustering is con-
trolled through the hysteresis constént Large values of. cause large clustering and
small values lead to smaller clusters.

Levien’s algorithm is precisely defined as follows [108]:
H
1 if(z[n] + €Tyen] +ha Ty n]) >0
y[n] = , (4.4)

0 else
where@ = [ay,as,...,ax]", € = [e1,eq,...,en]", Zi]\io a; = 1, Zi]\io e; = 1, and the
output 3/’ [n] andy_g[n] are defined as before. The coefficient vectorof error filter E,
coefficient vectora™ of hysteresis filter A, and hysteresis constartan take on a wide
range of values, including special cases such as Floyai&teg [111], Jarvis [120] and

Stucki [121] filter coefficients.

4.4 Multilevel Halftoning Algorithms

In ink and laser printing, technologies that can generateentioan two output
levels are becoming increasingly common [109]. The imagdityustudies by Huang
et al. [122] demonstrated that a few intermediate output levatspravide a substantial
improvement to halftoned images. Therefore, multilevéditbaing [123, 124] extensions

from traditional binary halftoning algorithms are also beting more common. In this
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section, research on multilevel halftoning is briefly revéel. Two simple extensions are

adopted to extend the binary halftoning algorithms to rfeyél tactile halftoning.

4.4.1 Mask-based Multilevel Halftoning

AM halftoning and Bayer’s technique use mask screening oguaelattice. The
same approach is used to extend these halftoning algorittamsbinary to multilevel.
Simply put, we divide the normalized gray level [0, 1] il small intervals with uni-
form length. In the TIGER printer casé] can be 2 through 8. Each small interval is
mapped to a [0, 1] range, and traditional binary halftonsgpplied upon this interval.
This approach is illustrated in Table 4.1. It is noteworthgttnask[r|[s] in the table is
normalized into the range of [0, 1]. Fig. 4.7 shows the sirmoaresult and the his-
togram of the AM multilevel halftoning algorithm. Similaesults for Bayer’s and other
halftoning algorithms are not shown due to space limitatlois apparent from the figure
that for input gray levels between output levgland g;, 1, the halftoned pattern is the
clustered dot combination of only these two output levelse halftoned ramp patterns
generated with multilevel AM and Bayer’s algorithms are show Fig. 4.8b and Fig.

4.8c respectively.

4.4.2 Error-Diffusion-Based Multilevel Halftoning

The error diffusion and green noise halftoning techniquipasimilar algorithm
structures, as illustrated in Fig. 4.6. Thus, the same hawdti halftoning extension is
adopted for these algorithms. In the multilevel halftonexgensions, the binary thresh-
olding [125] in the block diagram is replaced by a multilegakntizer, as shown in Fig.
4.9. Note that only the extension to the error diffusion altpon is shown. The extension
to the green noise halftoning algorithm is similarly strafgrward and thus not shown.
The possible output of the quantizer is one of the 8 levelsttigprinter is able to print.

As shown in the graphics printing pipeline, our algorithnajplied on the 20 dpi virtual
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Figure 4.7: Four-level AM halftoning for solid grayscale pattern wittagscale level (a)

0.2 (b) 0.6 (c) 0.7 (d) 0.9; for each gray level, the top rovhis input image,
the middle row is the halftoned pattern (amplified to showdéil) and the

bottom row is the histogram of the halftoned pattern
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Table 4.1: Algorithm pseudocode for mask-based multilevel halftgnin

For all the pixelsinput_image[m][n], do the following:
{
for(i=1;i < N;i++)
if ((input_image[m][n] > g;) AND (input_image[m][n] < gi+1))

low = g;;
high = g;11;
break;
}
r = (m%mask_row);
s = (n%mask_col);

if (((¢nput-image[m|[n] — low) >= mask(r][s] * (high — low))
output_image[m][n] = high;

else
output_image[m][n] = low;

map, and the output of the halftoning is sent to the printéneut any further processing.

Mathematically, the quantizer is expressed by the follgneguations [109]:

zaln] = a[n] +2%[n],
( g1 if z,[n] < Ty
g2 if 7 < x4ln| < Ty
g3 if Ty < x4ln| <Tj
yln] =

gn-1 f Ty_o < x4n] < Ty_q

agn |f TN_1 S ZEa[TL]

where the tone leve; above is the-th output level of the TIGER printef]; is the

i-th threshold value, and’ is the number of output levels. The halftoned ramp patterns

generated with multilevel error diffusion and green noiaHtbning algorithms are shown

in Fig. 4.8d and Fig. 4.8e.
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Figure 4.8: Multilevel halftoned Ramp with four output levels (a) origin, (b) AM
halftoning , (c) Bayer’s Halftoning, (d) error diffusion (@moise) halftoning,
(e) green Noise Halftoning
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Figure 4.9: Multilevel error diffusion

4.5 Implementation

Unlike the halftoning pattern generation for the TIE prmtE05], the halftoning
algorithms are directly inserted into the TIGER printewvdrj thus enabling this printer
to work with every Windows application program, such as wprdcessing software,
graphics software and Internet browsers. The architeciuie general Windows graph-
ics printing driver is shown in Fig. 4.10.

Generally speaking, the graphics printer driver is a sakviaterface between the
graphics rendering engine and the printing device. Thetitgthe printer driver is sent
from the Windows applications through the graphics engMirosoft provides a sam-
ple driver called “UniDRV”, which consists of a working devthat can be adjusted to
the specific requirements of the corresponding printer. iAt@r driver programmer can
customize the UniDRV by providing a user mode dynamic-litkary (DLL) in which
the customized versions of some graphics rendering fumstave implemented. This
user DLL is referred to as a “rendering plug-in”. In our cafeyr different halftoning
algorithms are implemented in the user mode DLL, which cacdlied directly by the
UniDRV driver. This procedure is called “hook out a Windows¢tion”. More informa-
tion on device driver programming can be found in [126].

The parameters for different algorithms are selected axatally. In the current
experiment setup, AM halftoning and Bayer’s halftoning a@dox 8 masks, as shown
in Fig. 4.4. The error filter weight matrix for error diffusiaand green noise halftoning

adopt the weight parameters [111] of the classical Floyd® &teinberg’s algorithm, as
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Figure 4.11: Floyd’s and Steinberg’s error filter

shown in Fig. 4.11. The hysteresis for green noise halfgphiis set al).8.

4.6 Evaluation

Experiments were conducted to evaluate and compare diffalgorithms, includ-
ing the original thresholding-based approach and variaiftdming algorithms. Since the
main aim of this research is to use various halftoning atbors to generate texture pat-
terns that can represent different gray levels, experigmeete designed to focus on the
ability of different algorithms to represent and discriati@ different gray levels. In this
section, the test algorithms, test material generatigoeemental procedure, and experi-

mental results are presented.
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4.6.1 Test Algorithms

There are four types of halftoning algorithms to be evaldiaéM, Bayer’s, Error
diffusion and Green noise halftoning algorithms. For edgbrithm, we can use binary
halftoning, in which the output pattern is composed of eitm® dot” (blank paper) or
highest dot. Alternatively, we can use three-level halfignin which the output pattern
is composed of three possibilities: “no dot”, dot with medilneight, or highest dot.
Similarly, four-level or five-level halftoning algorithntan also be implemented.

Of interest is the determination of whether or not the meN®l halftoning al-
gorithms generate better tactile patterns in the sensettdrmkscrimination ability and
effectiveness. Also of interest is the optimal number opatievels, i.e., which of the
binary, three-level or four-level halftoning, etc is thesbehoice. Our hypothesis is that
more output levels do not necessarily result in better ohsoation ability. If we use too
many output levels, then the height difference between ®wighiboring output levels be-
comes negligible. Since the multilevel halftoning algamits are designed such that a gray
level is represented by the combination of two neighboriaigpot levels, the texture may
not be apparent enough to be discriminated with the senseich if the two neighboring
output heights are insufficiently distinct.

Therefore, different algorithms with different output & are included in the
experiments in order to answer the previous questions atestovhether our hypothesis
is correct. Preliminary tests show that tactile patternsegated with five output levels
are insufficiently distinct to be discriminated. Therefofige-level algorithms are not
included in the presented result. The algorithms testedistesl in the first column of
Table 4.3.

4.6.2 Test Material
The experiments conducted are discrimination experimanigiich subjects ex-
plore freely left and right tactile image pairs and tell wiestthey are different or not.

Therefore, the test materials include image pairs. Eaclgéniga square of one specific
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Figure 4.12: Left and right texture pattern of AM halftoning

gray level. Some of the pairs are the same (with the same gvay)| and some of the
pairs are different. One example is shown in Fig. 4.12, incliihe left and right patterns
are generated using AM halftoning.

The image pairs are generated as follows. Step 1: the grayrawge from 254
to O is quantized into 7 different ranges. The middle poitithe 7 different ranges are
selected and denoted Bk /2, ..., 7. The gray level 255 is denoted A% For the original
thresholding method, this input data $6tto /7 generates solid square patterns with dot
heights from level O to level 7, where level O is blank papet l@vel 7 is the highest dot.
For the halftoning algorithm, the gray level8 through7 are represented by different
halftoning texture patterns. Step 2: square patterns waly tpvels/1 through/7 are
printed using each of the 13 different algorithms. 10 is motuded since it is represented
by plain paper in all algorithms. The pair combinations &tet in Table 4.2. The total

number of pairs for each algorithm is 13.

4.6.3 Experimental Procedure
The experimental design focuses on discrimination abildjscrimination is an

important perceptual task extensively studied in the fi¢ldsychophysics. It addresses
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Table 4.2: Test pairs

[ Type of Pair [ Combinations |

Left and right Different| (11, 12), (12, 13), (13, 14), (14, 15), (15, 16), (16, 17)
Left and right Same | (11, 11), (12, 12), (13, I13), (14, 14), (15, 15), (16, 16), (1717)

the question “Is one stimulus different from another ondf’our experiments, the test
subjects explore two tactile objects, only by the senseuwftipand indicate whether they
think they are the same or not.

Ten sighted test subjects participated voluntarily in tkgegiment. Seven subjects
are male and three subjects are female. It is widely belilvattouch sensitivity varies
little from subject to subject, and that there is no statstiifference between the sighted
and unsighted populations [127,128]. Therefore, inforomabn how individuals with
visual impairment perceive can be inferred from the siglsigaject results.

Each subject was asked to perform a discrimination taslgusie complete set of
13 pairs per algorithnx 13 algorithms. Subjects were seated at a table, blindfcdahed
presented with a set @B x 13 sheets in random order. Subjects were briefly introduced
to the basic features of different algorithms at the begigmf the experiments. For each
sheet, subjects freely explored the pairs of tactile imagethe sheet for a time period.
This gives the subjects enough time to glean informatioruttiee texture/gray level of
the images. Then the subjects were asked to report whethémtyges felt the same or
different. Subjects also could make a guess if they couldsagtone way or the other.

During this procedure, the responses were recorded.

4.6.4 Experimental Results, Observations and Analyses
The experimental results are summarized in Table 4.3 andtddpn Fig. 4.13.
For each of the 13 algorithms, 13 images paird0 subjects constitute the total num-

ber of experiments. Out of the 130 responses, only the nuofbeorrect answers are
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counted, and the percentage of correct answers is listée itable. Analysis of variance
is denoted by, and used to compare the different halftoning algorithntk e original
thresholding-based approach and with chance (50%).

There are several observations from the table that can leelnétor instance, it
is noteworthy that a correct response of 50% is expected fura guess, and 100% is
expected for a perfect performance. From Table 4.3, it caeba that the original thresh-
olding algorithm has approximately 50% correct respon$bi is due to the fact that no
texture is generated by the thresholding approach, andliffisult, if not impossible, to
discriminate between different gray levels.

In addition, the correct response percentage for halfgpbesed approaches, es-
pecially the binary and three-level halftoning algorithnsshigher than the original al-
gorithm with statistical significance, as reflected by thealues. It is not concluded
whether three-level or binary algorithms are better. ForedBayand green noise halfton-
ing, three-level algorithms are slightly better than bynalgorithms, while for AM and
error diffusion, binary halftoning is slightly better.

Moreover, it can be seen from the table that the percentdges/af the four-level
algorithms are close to 50%. Also, the preliminary experitaendicate no significant
difference between five-level algorithms and chance (teswdt shown in the table). As
stated before, the reason is due to the reduced differetaede two neighboring output
levels.

Also, the comparison between different output levels witthie same algorithm
is illustrated in Table 4.4. It can be seen that for AM halft@ the binary algorithm is
better than the three-level and four-level algorithms wittistical significance. However,
for the other three halftoning algorithms, it cannot be ledsghed that there is significant
difference among binary, three-level and four-level alipons.

Lastly, it can also be seen that AM and green noise halftoamegslightly better

than the Bayer's and error diffusion algorithms. This is @toly due to the fact the
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both AM and green noise can generate clustered dots thatailg discernable by the
sense of touch. It is noteworthy that the three-level gregsenhalftoning algorithm
has an correct response greater than 80%, which is a sigmnifiroprovement from the
simple thresholding-based method. This may be due to theffacthe three-level green
noise algorithm generates a more prominent texture in iceldaal gray level ranges
since it changes both the cluster size and cluster disiibbud represent different gray
levels. This result is in agreement with [106], which repdrgreen noise halftoning as
the best halftoning algorithm for TIE generated output. Regaresented there and here
suggest that the green noise algorithm parameters maydutiedly optimized for tactile

halftoning. Such optimization is the focus of future work.

Table 4.3: Comparison of different halftoning algorithms

Percentage p p
Algorithm of Correct Responsg(vs. Original)| (vs. Chance
Original 49.23% 1.00e+000 5.5e-001
Binary AM 75.38% 2.19e-007 1.0e-007
Three Level AM 72.31% 6.91e-006 4.9e-006
Four Level AM 63.08% 1.04e-005 2.2e-006
Binary Bayer’s 64.62% 5.06e-006 1.2e-006
Three Level Bayer’s 70.77% 4.46e-007 1.5e-007
Four Level Bayer’s 56.92% 4.03e-004 3.1e-005
Binary Error Diffusion 67.69% 2.24e-007 3.1e-008
Three Level Error Diffusion 64.62% 5.06e-006 1.2e-006
Four Level Error Diffusion 58.46% 6.08e-005 2.6e-006
Binary Green Noise 75.38% 3.48e-006 2.6e-006
Three Level Green Noise 81.54% 6.84e-008 3.9e-008
Four Level Green Noise 63.08% 1.04e-005 2.2e-006

4.7 Summary
In this work, the major contributions are as follows: (1), Wé&oduced digital

halftoning algorithms into the TIGER printer to generatetita graphics. Four different
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Table 4.4: Comparison of different output levels within same algorithm

Algorithm Level p value || Algorithm Level p value
Comparison Comparison

AM Two vs. Three| 3.5e-006| Bayer's Two vs. Three| 5.1e-001
Two vs. Four | 6.8e-008 Two vs. Four | 2.8e-003
Three vs. Four 2.5e-001 Three vs. Four 3.2e-002

Error diffusion | Two vs. Three| 7.4e-002|| Green Noise Two vs. Three| 2.9e-001
Two vs. Four | 5.0e-003 Two vs. Four | 7.9e-004
Three vs. Four 1.1e-004 Three vs. Four 2.0e-002

Figure 4.13: Comparison of different halftoning algorithms

halftoning algorithms are implemented into the TIGER mirdriver. (2), According to

the specifics of the TIGER printer, traditional binary hatfing algorithms are extended to
multilevel algorithms. (3), Experiments are conductediovg that the new approach can
generate better tactile graphics; tentative conclusidmsitawhich algorithms are more

suitable for the TIGER printer are drawn.
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Chapter 5

CONCLUSIONS AND FUTURE DIRECTIONS

In this dissertation, we concentrated on performance opdition of three repre-
sentative applications from the bioinformatics or bioneatliarea using state-of-the-art
computer architectures and technologies. We believe thbadelogies adopted in the
study of these three applications can be applied to otherasting applications as well.

First of all, we proposed a new task decomposition schemedoce data com-
munication and generated a scalable and robust clustedhzgallel Hmmpfam using
the EARTH (Efficient Architecture for Running Threads) modEhe methodology is to
balance the computation and communication in clusterebesmputing environments.

Secondly, we used the real biomedical application SPACE RI® @mntext and
focused on the core algorithm SVD. We implemented the odeedslacobi parallel SVD
on Cyclops-64 to exploit the thread-level parallelism. Wapaleveloped a performance
model for the dissection of total execution cycles into fparts and used this model to
compare different memory access approaches. We obsenigdificant performance
gain with the combination of these parallelization and moptation approaches.

Our work on the parallelization and optimization of SPACE R$Pone of the
attempts to adapt to the era of multicore processor desighe new trend of multi-
core processors forces a fundamental change of softwagggmoning models. Many
applications have enjoyed free and regular performancesdar several decades, some-
times even without releasing new software versions andgdanything special, because
the CPU manufactures have enabled ever-faster mainstrestens; With the multi-

core processors, the “free lunch” is over [9]. Multithredd®ftware must be developed
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to fully exploit the power of multicore processors. Moregweficiency and performance
tuning will get more important. With the results and conauas from our optimization of

the SPACE RIP application, future extensions and optimiratio existing programming
languages and compilers may be developed.

Finally, we adapted different halftoning algorithms to @gfic tactile printer and
conducted experiments to compare and evaluate them. Taeaside find a good way to
utilize modern computer technologies and image procesdgaithms to convert graph-
ics to multilevel halftoning texture patterns that are madlyuperceivable by individuals
with visual impairment. We concluded that the halftoniraséd approach achieves sig-
nificant improvement in terms of its texture pattern diseéniation ability and that the
green noise halftoning performs the best among differelfiidmeng algorithms.

This dissertation shows the promise of using parallel camguechnology and
digital imaging algorithms to find better solutions for regplications. At the conclu-
sion of our research, we found that following areas have eperp for further explo-
ration. First of all, in the direction of combining bioinfoiatics/biomedical applications
and parallel computing, we may focus on other interestirgarallenging applications.
Porting applications, such as multiple sequence alignr(A), to Cyclops-64 may
generate interesting findings, such as novel parallel sebemd insights for architecture
designs. Secondly, the current halftoning-based apprmathactile graphics can be fur-
ther extended to process color images using digital coldtdméng techniques. Digital
halftoning can also be integrated with other tactile imgdiechniques, such as image
segmentation and edge detection, to generate the texttire segmented regions.

In conclusion, we feel that the combination of parallel comipy and bioinfor-
matics/biomedical algorithm/applications is indeed d@an@sting multi-disciplinary area.
It is worthy to take long term efforts to develop innovatiygpeoaches and provide better

solutions to existing and emerging problems.
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