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Abstract

Proteins are complex 3D organic compounds formed from amino acid residues.
As protein functionality is strongly dependent on structural conformation, un-
derstanding structural similarities between proteins helps obtain useful insights
in their functional relationships. Specifically, structural similarities often help
identify functional relationships that cannot be predicted from sequence simi-
larity alone.

In the past three decades, a variety of computational tools have been de-
veloped to address the problem of identifying structural similarities between
proteins. These tools identify functionally similar parts of two given proteins
by aligning their amino acid residues, i.e., by identifying a correspondence be-
tween similar parts of the two protein structures. However, most algorithms
for structural alignment provide only approximate rigid sequential alignments
between the protein structures under comparison. The incapability of struc-
ture alignment tools to provide nonsequential and nonrigid alignments limit
their applicability to accurately identify conformation changes within similar

structures.
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In this thesis, we present two very different approaches to protein structure
alignment. First, we revisit the state-of-the-art exact structure alignment algo-
rithm CMOS [XS07] and introduce improved reduction schemes in the CMOS
algorithm, resulting in an an over five-fold increase in the computational effi-
ciency of the algorithm. This improvement has increased the applicability of
the CMOS algorithm to comparisons between large proteins within reasonable
computing times. However, the CMOS algorithm is still insufficient to perform
an all-to-all comparison of proteins in the protein structure database and is
also limited to sequential structure alignments.

In the second part of the thesis, we introduce a novel model for protein
structure alignment that lends itself to an efficient computational procedure
for protein structure alignment. The model is based on a reformulation of the
traditional approach to structure alignment where alignments are evaluated
by rigid structure superposition of the proteins. We develop a new algorithm,
SAS-Pro, based on this approach. The new formulation does not require the
sequentiality constraints, thus making it possible to discover non-sequential
protein alignments and similarities. Alignments obtained with SAS-Pro have
better RMSD values and larger lengths than those obtained from other align-
ment tools. Moreover, for non-sequential alignment problems, SAS-Pro leads
to alignments with high degree of similarity with known reference alignments.

In the final part of the thesis, we extend the SAS-Pro model to allow
for nonrigid superposition of the proteins structures under comparison. We
utilize derivative-free optimization (DFO) methodologies for searching for the

v
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global optimum of the proposed model. We perform an extensive analysis of
the performance of 22 different DFO solvers to determine a suitable solution
approach for flexible protein structure alignment. Our results indicate that
the proposed methodology provides excellent quality alignments for problems

where conformational changes are observed.
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Chapter 1

Introduction

Proteins are complex 3D organic polymers found in living organisms and are
responsible for all bodily functions. They are formed from 20 different amino
acids joined together in numerous possible combinations by peptide bonds.
The resulting complex 3D structure of the proteins are responsible for their
functional properties. Thus, a better understanding of protein structures and
structural similarity relationships among them provides information that is
critical to function elucidation, fold family classification, and developing ho-
mology based inferences about proteins. As a result, knowledge of these sim-
ilarity relationships has a vast array of applications in a variety of industries,
including the drug design and bio-catalysis industries.

Extensive information about known proteins is documented in protein data
banks, which keep a detailed record of structural and physical features of
proteins. As of July 2011, the UniProtKB/Swiss-Prot database [uni] holds

sequences of 531,473 proteins and this number is increasing in size every day
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1 Introduction

with the addition of newly discovered proteins to the database. Figure 1.1
shows the number of sequences in the UniprotKB/Swissprot database since
1985. The 3D structural information of proteins in stored in the Protein
Data Bank (PDB) [pdb]. While there are only over 75,000 protein structures
currently in the PDB database, this number is also increasing at a rapid rate, as
observed from Figure 1.2. This multitude of data necessitated the development
of large number of mathematical modeling and optimization tools for the fast
and accurate analysis of protein sequences and structures, especially as they

relate to potentially new enzymes and drugs.

E

A\

° i A s N \ s i
1900 1908 1001 1904 1087 2000 2009 2008 2000 2

Figure 1.1: Data on the growth in the number of proteins in the Uniprot
since 1985. Statistics for the figure are taken from the Uniprot website
(http://www.uniprot.org).

Amongst the several unresolved problems in the field of bioinformatics and
proteomics, the protein alignment problem has gained tremendous research
importance due to its applicability in protein clustering, identifying homology

2
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Figure 1.2: Data on the growth in the number of proteins in the PDB since
1976. The total number of proteins is shown in red bars, and the number of
proteins per year in blue bars. Statistics for the figure are taken from the PDB
website (http://www.pdb.org).

relationships, and inferring unknown information about new and existing pro-
teins. Proteiﬁs may be compared with each other through sequence alignment,
where the similarities between the proteins are identified through similari-
ties within their amino acid residue sequences. Research on protein sequence
alignment has led to the development of numerous dynamic programming al-
gorithms [NW70, SW81] that are central to the BLAST code [AGM90, AS97],
an alignment tool that radically transformed the bioinformatics field and found
extensive applications in the biotechnology industry. However, structural in-
formation of proteins is difficult to infer from sequence information alone.

While sequence similarity guarantees structural similarity between proteins,
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1.1 Protein structure alignment

there exist a large number of protein pairs, e.g. haemoglobin and myoglobin
found in the human body, that are structurally similar but possess low se-
quence similarities (a.k.a. twilight zone proteins). Physical comparisons of
protein structures [FKR*70, HESF71] further demonstrate the need for di-
rect comparison of 3D protein structures, also known as the protein structure

alignment problem, which is the focus of this dissertation.

1.1 Protein structure alignment

The aim of protein structure alignment problem is to determine structural
similarities between a given pair of proteins so that further functional rela-
tionships between them may be identified. The problem involves determining
an assignment of corresponding amino acid residues of the proteins, as well as
a suitable measure of the degree of similarity between the two proteins. The
protein structure alignment problem is thus formulated as an optimization
problem that matches amino acid residues of two proteins in a way that maxi-
mizes the degree of structural similarity, as measured by a similarity function,
while satisfying certain biological constraints. However, the complex geome-
try of the 3D structures and the exponential number of potential alignments
between the two proteins makes the protein structure alignment problem com-
putationally challenging.

The basic approach to the development of protein structure alignment tools

involves a three step process, described in Figure 1.3. First, a suitable math-
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1.1 Protein structure alignment

ematical representation of the protein structures is determined. Proteins may
be represented as graphs, where the residues represent the nodes of the graphs
and interactions between them are represented as edges; distance matrices,
where the inter-residue distances are represented in a matrix form; secondary
structure vectors, where secondary structures are represented by vectors in 3D
space; or simply by their 3D co-ordinates. Next, a suitable similarity mea-
sure that may be optimized is decided. These similarity criteria, except for
contact map overlap (as explained in Chapter 2), are evaluated based on the
superimposed structures of the proteins. Finally, based on the mathemati-
cal structure representation and the similarity function to be optimized, the
protein structure alignment problem is formulated as an optimization prob-
lem and addressed by various optimization algorithms, dynamic programming
techniques, and heuristic search methods.

The computational complexity of the resulting protein structure alignment
problem prohibits the development of fast alignment tools that may provide
globally optimal structural alignments. Hence, most structure alignment tools
utilize approximate and heuristic methods for fast evaluation of structure align-
ments. As a result of these approximations, alignment tools may provide
inaccurate structural and functional classification of proteins. A few exact
structure alignment tools have also been developed to address this structure
alignment problem [LCWIO1, CCI*04, XS07]. However, they are often com-
putationally expensive and currently not applicable to large scale comparisons

of proteins.
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1.1 Protein structure alignment
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Figure 1.3: Steps in designing a protein structure alignment tool. 1) Pro-
tein structure representation, 2) Development of similarity measures, and 3)
Problem formulation and development of optimization solution techniques.

In addition to involving computationally complex optimization problems,
the structure alignment problem poses additional interesting challenges. Most
alignment tools provide good quality alignments for ’similar sized’ and struc-
turally similar proteins. However, their performance deteriorates considerably
when aligning different sized proteins or those that possess low levels of sim-
ilarity. Moreover, existing structure alignment algorithms are limited in pro-
viding only rigid and sequential alignments between two protein structures
under comparison. In many protein pairs, the different parts of protein struc-
tures that come together to form a functional unit, may not always occur in
the same sequential order in both proteins. Thus, while the proteins present

similar structures, they align in a nonsequential manner and the order of the
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1.2 Research objectives

corresponding amino acid residue sequences is not preserved. Moreover, a large
number of proteins present multiple conformational changes, which can be ac-
counted for in structural comparisons only through flexible protein structure
alignment. Nonsequential and flexible alignment problems are more complex

and present a great opportunity for continued research in this field.

1.2 Research objectives

In this dissertation, we aim at developing fast and accurate structure alignment
tools which can provide solutions to some of the challenges of the protein
structure alignment problem. Specifically, we have addressed the following

issues:

1. Improving the computational efficiency of an existing structure align-

ment tool

2. Developing approaches to obtain optimal/near-optimal nonsequential

structure alignments

3. Developing approaches to obtain optimal/near-optimal flexible struc-

ture alignments

In the remainder of the thesis, we begin by presenting improvements to
the state-of-the-art exact structure alignment tool CMOS, by improving the
computational efficiency of this algorithm. We then introduce a new structure

alignment approach that allows for flexibility and nonsequential alignments,

7
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1.3 Thesis outline

resulting in the development of a new, fast, and accurate structure alignment

tool.

1.3 Thesis outline

In Chapter 2 we present a comprehensive literature survey of the structure
alignment tools developed in the past three decades. The literature survey pro-
vides useful insights in the approaches to protein structure alignment problems.
It also demonstrates the difficulties and challenges presented by the structure
alignment problem.

In Chapter 3, we revisit the state-of-the-art exact structure alignment algo-
rithm, CMOS [XS07]. The CMOS algorithm is the fastest performing known
exact structure alignment tool and is based on a graph representation of pro-
tein structures known as contact maps. The protein structure alignment prob-
lem is modeled as an integer program, discussed in more detail in Chapter 3.
The CMOS algorithm is based on a branch-and-bound approach to this prob-
lem, and utilizes many reduction schemes which are mainly responsible for the
computational efficiency of the algorithm. In this chapter, we present improve-
ments to the CMOS algorithm through introduction of new reduction schemes,
based on physical information from the 3D structure of the proteins. We sys-
tematically investigate four different physical properties-hydrogen bonding,
hydropathy, torsion angles, and solvent accessibility, and the impact of imple-

menting these biological/physical constraints on the CMOS algorithm.
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1.3 Thesis outline

In Chapter 4, we propose a new alignment tool, SAS-Pro, which is capable
of providing flexible nonsequential structure alignments between the protein
structures under consideration. The SAS-Pro alignment tool is based on a
novel bilevel optimization model for protein structure alignment. We further
discuss the implementation of the SAS-Pro algorithm and present computa-
tional results for both sequential and nonsequential structure alignment data
sets. We also demonstrate the performance of the SAS-Pro alignment tool in
comparison with other state-of-the-art structure alignment tools.

In Chapter 5, we enhance the SAS-Pro model and SAS-Pro alignment
tool with flexibility variables that allow up to two bends within one of the
protein structures before superposition. We perform an extensive analysis
of the performance of 22 different derivative-free optimization (DFO) solvers
in the context of flexible protein structure alignment. The performance of
these solvers is analyzed to determine the most effective techniques suitable
for our model, in terms of computational requirements and solution quality.
We also discuss the applicability of the SAS-Pro alignment tool with flexibility
to similar protein pairs with conformational changes.

Finally, in Chapter 6, we conclude the dissertation, highlight its key con-
tributions to the field of protein structure alignment, and suggest directions

for future work.
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Chapter 2

Literature survey

The protein structure alignment problem can be formulated as an optimization
problem that matches amino acid residues of two proteins in a way that maxi-
mizes the degree of structural similarity, as measured by a similarity function,
while satisfying certain biological constraints. Several measures of similarity
and optimization formulations have been proposed for this purpose. In gen-
eral, the problem of identifying an optimal structural alignment is known to
be NP-hard [GPI99], which refutes the possibility for the existence of an exact
algorithm that runs in polynomial time. As a result, many algorithms have
been proposed in the quest of developing tools that perform well in practice
without necessarily sacrificing solution accuracy. In addition to the similarity
function they utilize, these approaches differ primarily in the way they repre-
sent protein structure mathematically. Several protein representations empha-
size secondary structure elements, bond lengths and angles, relative distances

and placements of amino-acid residues in 3D space. Others rely on graphical
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2 Literature survey

representations, such as contact maps. We review and contrast these repre-
sentations and the algorithmic and software tools that have been developed
for protein alignment over the past three decades.

The early protein structure comparisons were based on computing the
root mean square deviation (RMSD) amongst two protein structures of known
residue correspondence. In order to make such comparisons on a large-scale,
McLachan [McL82] and Sippl [Sip82] developed algorithms for fast RMSD
computations. These algorithms were theh used to construct the first pro-
tein structure alignment tools [AF96, ATG92, LKSDO0O] that were based on
determining the optimal correspondence amongst individual residues of two
proteins. In the 1990s, several protein structure representations were ex-
plored for making fast and accurate alignments leading to the development
of tools such as DALI [HS93], CE [SB98], and STRUCTAL [SLL93]. These
tools have been instrumental in the development of various protein structure
databases like FSSP [HS96], SCOP [MBHC95], CATH [OMJ*97] and HOM-
STRAD [MDBO98], which provide extensive information on classification of
protein folds and domains.

Protein structure alignment has been the subject of several review pa-
pers that present a comprehensive comparison of various structure alignment
tools. Gibrat et al. [GMB96] and Lancia et al. [LCWIO01] reviewed the align-
ment tools that focused on specific protein structure representations such as
secondary structure based representation and contact map representations re-
spectively. Kolodny [KKLO05], Singh and Brutlag [SB01], and Novotny et al.

11
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2.1 Co-ordinate based protein representation

[NMKO04] performed large computational experiments to compare the various
alignment tools. Their results indicate that different tools perform with differ-
ent performance levels for different cases, and thus no single tool is the best.
These reviews are systematic and comprehensive, each concentrating on a sub-
set of the algorithms developed for structure alignment. We complement these
works by providing coverage of a much larger number of algorithms and tech-
niques, and put the relative strengths and weaknesses of all these approaches
into perspective.

We classify protein structural alignment tools based on the protein struc-
ture representations they use. Representations based on coordinates, sec-
ondary structures, contact maps, and various other elements, are discussed
in Sections 2.1, 2.2, 2.3, and 2.4, respectively. In Sections 2.5 and 2.6, we re-
view commonly used similarity measures and protein fold databases. Finally,
we conclude in Section 2.7 with a discussion of the current state-of-the-art in

the protein structure alignment field and presentation of standing challenges.

2.1 Co-ordinate based protein representation

In co-ordinate based protein structure representation every atom in the protein
is denoted via its 3D co-ordinates. The alignment problem is then formulated
as a semi-continuous optimization problem where the degrees of freedom are
the rotational and translational parameters (continuous) for superposition of

the protein structures (figure 2.1), as well as the decision variables (discrete)

12
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2.1 Co-ordinate based protein representation

Fly Thioredaoxin Human Thioredoxin

UORBISURY] PUe LUOIRI0Y

Figure 2.1: Protein structure alignment through structure superposition

representing the correspondence between the amino acid residues. In this
section we review the various protein structure alignment tools employing this
structural representation.

The co-ordinate based representation has been extensively used in develop-
ment of early alignment tools which treated proteins as rigid structures without
allowing gaps in the alignment. In order to allow for gaps, tools such as SARF
[ATG92, AF96] and ProSup [LKSDO0O0] were developed which utilize the rigid
body superposition techniques [McL82, Sip82] to align smaller fragments of
proteins, which were further joined together to provide a complete alignment.

Using the co-ordinate based representation, the structure alignment prob-
lem is often approached in a two stage process where a suitable alignment

between the residues of the proteins is first determined and then the pro-
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2.1 Co-ordinate based protein representation

teins are superimposed to employ a similarity function to obtain the merit
of alignment. This process is performed iteratively until a desired alignment
is obtained. This two stage approach usually provides approximate align-
ments with no guarantees of optimality, although the alignments obtained
for highly similar protein pairs are observed to be close to the optimal so-
lution. Levitt and coworkers [SLL93, GL96] developed the STRUCTAL tool
based on dynamic programming methods to obtain an alignment between two
proteins and accessed the similarity using the newly developed STRUCTAL
score. The alignments obtained through STRUCTAL have since been used
as a benchmark for other alignment tools and have been instrumental in the
development of the SCOP protein fold database [MBHC95]. Andreani et al.
[AMMYO08] developed a heuristic method for finding suitable alignments, and
used a Gauss-Newton approach to minimize the RMSD. They further im-
proved this alignment tool [AMO8] by replacing the heuristic method by a
dynamic programming method, and by using the STRUCTAL score as the
similarity measure. Their method provides fast and accurate alignments for
proteins possessing a high degree of similarity (> 85%), however has limited
applicability for proteins with lower similarity. Bhattacharya et al. [BBC06)
introduced dynamic programming methods based on novel ‘neighborhood pre-
serving projection vectors’ obtained from inter-residue distancés where the
optimal rotation translation parameters are obtained by solving a continuous
optimizétion problem. Ortiz et al. [OSO02] combined the continuous super-
position method [McL82] with dynamic programming methods and developed

14
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2.1 Co-ordinate based protein representation

the MAMMOTH algorithm. This algorithm was the first to be generalized to
obtain multiple structure alignments simultaneously [LLMAOQS5].

A few recent co-ordinate representation based approximate algorithms guar-
antee near-optimal alignments within polynomial time for some special cases
of structure alignment problems. Kolodny et al. [KLL04] employed a heuris-
tic procedure where a polynomial number of sample structure superposition
transformations are chosen and optimal sequential alignment for each trans-
formation is obtained by dynamic programming. The alignment with the best
similarity score provides a near-optimal alignment. Shibuya and coworkers
[Shi07, ShilOb, SJS10, Shil0a] constructed a protein structure database search
tool providing a set of similar protein structures within a given RMSD value in
linear time complexity. Starting with alignments based on rigid protein struc-
tures permitting no gaps, they generalized their methodology in a step-wise
manner to incorporate small number of gaps, as well as flexible alignments
with few or no gaps.

One of the key challenges in structure alignment problem is obtaining so-
lutions that allow for flexibility within protein structures. Some of the recent
tools like FlexProt [SNW02], FATCAT [YGO03|, ProtDeform [RSWD09], and
FlexSnap [SZB10] address this issue by aligning smaller rigid fragments of pro-
teins and joining them together, allowing for twists and turns in the overall
alignment. The FlexProt [SNWO02] tool joins the aligned fragments in a rigid
fashion, and introduces a bend whenever RMSD exceeds the desired value.
In the FATCAT [YGO3] algorithm an upper bound on total allowable bends

15
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2.2 Secondary structure based algorithms

is chosen apriori heuristically and updated for improving the RMSD value.
FlexSnap [SZB10] furthermore generalized the FlexProt and FATCAT tools
by introducing non-sequential flexible alignments. In ProtDeform [RSWDQ9]
an alignment based on secondary structure representation of proteins is found

and structural flexibility is introduced for obtained the best match.

2.2 Secondary structure based algorithms

Hydrogen bonding within amino acids gives rise to the formation of some
commonly occurring structural motifs called secondary structures. These sec-
ondary structures also form the building blocks for the functional units of
proteins. As a result, there is a growing interest in the development of various
structure alignment algorithms based on secondary structures.

The vector alignment search tool (VAST) [MGB95] is the earliest alignment
tool based on secondary structures. In VAST an initial alignment of secondary
structures is found and then refined through a Monte Carlo technique on the
aligned backbone. VAST has been an instrumental structure alignment tool
utilized in protein database search and has been recognized as one of the major
structure similarity search tools by NCBI.

Singh and Brutlag [SB97] developed a unique method of representing pro-
teins as a set of vectors, one for each secondary structure, as shown in figure
2.2. Each vector extends from the beginning to the end of the secondary

structure, and the angles represents the relative placement of the secondary
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2.2 Secondary structure based algorithms

structures in 3D space. They developed a dynamic programming based al-
gorithm, LOCK, which aligned the secondary structure vectors and further
refined the alignment by a heuristic method which minimized the RMSD.
This protein structure representation was further employed in the development
of the current state-of-the-art alignment tool, Secondary Structure Matching
(SSM) [KHO04]. In SSM, the initial alignment of secondary structure vectors
is determined heuristically, and then refined through a fast 3D superposition
technique. SSM is currently the most popular, fast and accurate alignment
tool available and is employed in the SCOP database [MBHC95] to evaluate

and classify protein similarities.

9 /;,,
yan

Protein 1Vii SSE vector form of Protein 1Vii

Figure 2.2: Secondary structure vector representation of 1VII protein intro-
duced by Singh and Brutlag [SB97]

Protein structures have also been represented as sequences of secondary
structures and aligned by string matching. TM-align alignment tool [ZS05)
utilizes protein structures represented as strings of a-helices and (-strands
while TOPSCAN [Mar00] utilizes strings of seven different types of secondary

structures determined by DSSP [KS83]. TOPS [VGO01] and TOPS+ [VGV10]
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2.3 Contact maps

suggest improvements over TOPSCAN by incorporating information about
chirality and hydrogen bonding, and loops and directed connectivity among
secondary structures, respectively.

VAST and TM-align have been instrumental in providing new similarity
measures for evaluating protein alignment. VAST, like its namesake BLAST,
utilizes a unique similarity function which provides a probability value repre-
senting the biological relevance of the alignment and provides an appropriate
ranking of similarity amongst a database of proteins. TM-score is inspired by
the STRUCTAL score [GL96], and provides a weighted RMSD measure incor-
porating suitable weight for aligned residues and number of gaps. Currently
the TM-score is amongst the most commonly used similarity measures and

results in obtaining more biologically meaningful alignments.

2.3 Contact maps

First introduced by [GKS93] for visualizing patterns in protein structures,
a contact map is a graphical representation of a protein structure, where the
nodes of the graph correspond to the amino acid residues of the protein and an
edge between two nodes of the graph encodes the interactions between residues.
Interactions are modeled by a distance cut-off between the residues in the 3D
structure. An example of a contact map is shown in Figure 2.3. Figure 2.3(a)
illustrates the construction of a contact map from the 3D structure of part of

the backbone of protein 1VII. A cutoff a 7A was used to create this contact
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2.3 Contact maps

map. Thus, nodes in the contact map were joined by edges only for those
amino acid residues that are within 7A from each other. This, for instance,
was the case for residues ASN68 and GLU72. On the other hand, there is
no edge between two nodes of the contact map if the distance between the
corresponding residues is larger than 7A. This, for instance, is the case for
residues MET41 and PHE76. The complete contact map of protein 1VII in

presented in Figure 2.3(b).

1V PROTEIN

M 5

Contact Map

(L2
Node (residue)

CONTACT MAP OF 1Vi) PROTEIN

Figure 2.3: (a) Contact map generation, and (b) Contact map for 1VII protein

The contact map encodes information about the entire structure of the
protein. In comparison to coordinates-based representation of proteins, con-
tact maps provide a more robust representation since the map does not change
considerably with small perturbations within the structure. In addition, the
corresponding alignment problem formulation is independent of the number
of gaps between aligned residues, and provides the flexibility of introducing
non-rigidity in the protein structure.

The contact maps of two proteins may be compared to identify structural
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2.3 Contact maps

similarity between the corresponding 3D protein structures. Similar subgraphs
of the contact maps imply similar sub-structures of their corresponding pro-
tein structures. Thus, viewed through contact maps, the protein alignment
problem becomes equivalent to finding a maximum-sized common subgraph
among the two contact maps. In addition, it is customary to require the align-
ment to maintain the sequential order of amino acid residues. The problem
of finding the maximum contact map overlap is referred to as MAX-CMO.
The MAX-CMO formulation of protein structure alignment was shown to be
NP-hard by Goldman [GPI99]. Hence, exact algorithms designed to solve the
protein structure alignment problem are often computationally expensive.
Figure 2.4 illustrates an alignment between two contact maps A and B.
Here, a dotted line between a node of contact map A and a node of contact
map B denotes a pair of aligned residues. Lines | and m in the figure are
examples of such an alignment. The binary variables x; and z,, represent the
decision variables for lines [ and m. Here, the binary variable z; corresponding
to line [ takes the value of 1 if the residues at the ends of line ! are aligned.
The MAX-CMO formulation requires finding a set of non-intersecting such
lines which maximizes the number of overlapping edges. These edges are
shown in thick lines in Figure 2.4. The parameter e, equals 1 if there exists
an overlapping edge in both contact maps for nodes aligned by lines [ and
m, and 0 otherwise. The condition of non-intersecting lines is imposed to
maintain the sequential order of amino acid residues in the alignment. The

mathematical model that stems from this formulation is a nonlinear integer
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2.3 Contact maps

Edges
/ N Matched edge (e,,)
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Figure 2.4: A schematic of contact map overlap problem

program, first suggested by Lancia and co-workers [CLI00], and is given as:

(IP -1) max Z Z €imTiTm

leL meL

s.t. Z x; < 1, vIieTl Clique Inequalities
lel

I & {0, 1}, Vie L,

where L is the set of lines, I is the set of incompatible, i.’e. , intersecting
lines, and T is the set of all sets of incompatible lines. The constraints for
maintaining the order of the amino acid residues in the alignment are known
as clique inequalities. These inequalities arise from a graph representation of
MAX-CMO. Every node in this graph represents a line in the MAX-CMO
problem, and every edge in the graph represents a pair of interesting lines.

The condition of no intersecting lines in MAX-CMO translates to having no

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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cliques in the graph.
The nonlinear integer program (IP — I) can be converted to a linear integer

program through the addition of variables y;,, = z;z,, to obtain:

(IP —II) max Z Z eimYim

leL meL

s.t. Zx, <1, VvIieTl
lel

Yim < Iy, VimelL
Yim = Ymi, VimeLl<m

ze{0,1}, Vel

The continuous relaxation of the integer program does not provide any
useful information. The relaxation is very weak and the solution suggests that
every possible alignment between the proteins is equally likely. Thus enumer-
ation methods based on branch-and-bound were developed for obtaining exact
solutions to the problem. The order preserving property involves the addition
of exponentially many constraints, known as the clique inequalities [CLI00] to
the integer programming formulation. Carr et al. [CLI00, LCWIO01] suggested
a solution to deal with this exponential number of inequalities through an it-
erative method of adding only the most violated inequality as a cut at every
step of a branch-and-cut algorithm. In a more recent work [CL04], the same
group also suggested the use of a more compact formulation, which provides
faster solutions than the branch-and-cut algorithm. The same group devel-

oped different bounding heuristics for the branch-and-cut algorithm. The ini-
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tial heuristics were based on a genetic algorithm. The group further improved
these bounding heuristics by suggesting a lower bound obtained by solving
a Lagrangian relaxation of the integer program [CL02, CCI*04]. In 2006, a
branch-and-reduce algorithm was developed by Xie and Sahinidis [XS06] for
MAX-CMO. The reduction and bounding parts of this algorithm are based on
dynamic programming techn-iques and are largely responsible for the speed of
the overall approach. This algorithm was further improved in 2007, via the
addition of stronger reduction schemes based on optimality arguments. This
algorithm currently represents the state-of-the-art exact algorithm for MAX-
CMO in the sense that it is at least an order of magnitude faster than other
exact algorithms for this problem [16, 12, 65] on a large collection of test.
In addition, this algorithm was able to obtain the global optimum for some
previously unsolved large protein structure alignments.

Strickland et al. [SBSO05] expressed the MAX-CMO problem as a graph
theory problem of finding a maximum cardinality clique (MAX-CLIQUE) in a
graph of size |E; X E;|. The MAX-CLIQUE problem was solved exactly using
coloring techniques that exploit the special structure of the graph. Also ex-
ploiting MAX-CLIQUE, Pullan [Pul07] came up with a local search technique
for finding an approximate solution. This method was shown to be faster than
the method proposed by Strickland et al. [SBS05] by an order of magnitude
while providing the true global optimum in most cases.

The MAX-clique formulation has the drawback of creating very large graphs,
even for small proteins. As a result, it requires a large amount of memory to
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store the graph structure and cannot be used for large problems. This draw-
back has been addressed by Melvin et al. [MST09] where a new data-structure
has been developed to store the graph. This development has resulted in the
ability of solving much larger problems using the MAX-CLIQUE formulation.

The MAX-CLIQUE algorithms, however, are not as fast as other exact
algorithms like the branch-and-reduce algorithm developed by Xie and Sahini-
dis [XS06, XS07], since the reduction and bounding schemes developed by Xie
and Sahinidis are much faster and efficient at finding the solution.

In addition to exact algorithms for contact map overlap maximization,
there have been efforts to develop faster approximate solution procedures.
Godzik et al. [GSK93] made the very first attempt to use contact maps for
protein structure alignment using a Monte-Carlo based simulated annealing
approach. This was further generalized to multiple structure/sequence align-
ment by the same group [GS94]. Gramm [Gra04] proposed a poly-time al-
gorithm for a special case of contact maps, namely 2-interval sets. The sug-
gested algorithm may be used as a building block to more general MAX-CMO
algorithms. Another approximate poly-time algorithm for MAX-CMO was
developed by Xu et al. [XJBO07], where a suitable alignment of protein contact
maps is found using a tree-decomposition algorithm derived from discretizing
the rotation angles. Jain and Lappe [JLO7] used a continuous optimization
algorithm for solving the maximum common subgraph problem and then con-
verted the solution into a MAX-CMO solution using a dynamic programming
approach. The resulting solution is approximate but the algorithm is fast and
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provides good solutions. Pelta et al. [PGV08] developed a multi-start variable
neighbor search metaheuristic, which provided good approximate alignments
of the contact maps, although at the expense of more CPU time than other
alignment heuristics and algorithms.

In order to provide a quick estimate of the level of similarity between
two proteins, the universal similarity metric (USM) [KP04] was developed in
2004. USM arises from the application of Kolmogorov complexity to protein
structures, described in terms of contact maps. The Kolmogorov complexity
gives a measure of the information stored in an object, and can be used to
derive a measure of the information distance between two objects. The smaller
the information distance, the more similar the two objects are. USM can be
used to estimate the similarity between two proteins without actually aligning
them. This measure can be used efficiently as a pre-processing technique before
exact algorithms are invoked.

The USM measure was successfully applied to a more general class of con-
tact maps, known as the fuzzy contact maps. Fuzzy contact maps [PGKO05,
PKBCT05] were introduced to capture short as well as long distance relation-
ships, through the use of multiple thresholds to define contact maps. Pelta et
al. [PGKO05] used USM to evaluate the alignment obtained for fuzzy CMOs
and observed very good agreement with the clustering observed in nature.
They also demonstrated in [PKBC*05| that a simple neighbor search heuris-
tic provided very good clustering for the Chew-Kedem and the Skolnick data

sets.
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There have been several efforts to obtain approximate solutions to the max-
imum contact map overlap using memetic evolution and genetic algorithms
(GAs). The idea is to use traditional GA operators like crossover and mu-
tation rules, accompanied by a local search. Krasnogor [Kra04], Carr et al.
[CHK*02] and Lancia et al. [LCWIO1] use traditional GA moves along with
some modifications. Lancia et al. [LCWIO1] use GAs to find an approximate
solution to be used as feasible solution in their branch-and-cut algorithm. Carr
et al. [CHK*02] associate a local search with every instance of the problem,
and pass on the local search to the new generation during cross-over. Krasno-
gor [Kra04] suggested an improvement with some added processes of imitation,
innovation, and mental simulation. The order in which meme processes are
applied is also different. However, the approximate solutions obtained through
memetic evolution are inferior to other approximate solution algorithms includ-
ing LGA and Lagrangian relaxation algorithms. Kolbeck et al. [KMSG*06]
used a hybrid alignment technique combining secondary structures and contact
maps. At the first level the secondary structures of proteins were aligned us-
ing GA and at the second level the corresponding contact map alignment was
refined. The algorithm was further improved [GKO08] by using a combinatorial

technique instead of the GA, at the first level.
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2.4 Miscellaneous structure representation models

2.4 Miscellaneous structure representation mod-

els

Dynamic programming has been the key to the development of fast and accu-
rate sequence alignment algorithms. In the case of structure alignment prob-
lems, any good alignment provides useful information for obtaining the most
meaningful structure alignment. Since dynamic programming techniques are
fast and useful for problems of sequential nature, they can be used efliciently
to obtain good alignments.

Proteins structures have been represented as sequences of objects other
than amino-acid residues and then aligned using dynamic programming tech-
niques. Sali and Blundell [SB90] developed the comparer alignment tool based
on a sequence representation of the structure, as a weighted sum of alignments
based on primary and secondary structure sequence representations and phys-
ical properties such as hydrophobicity, hydrogen bond orientation, dihedral
angles etc. In the tool VeaR developed by Leluk et al. [LKRO3] the protein
structure is represented as sequences of dihedral angles and radius of curvature
of five residue long fragments. Ye et al. [YJLO5] use a geometric representation
which captures orientation of the corresponding amino acid residues. Wu et
al. [WSHB98] use dynamic programming on proteins represented as sequences
of radius of curvature of smaller fragments.

Taylor et al. [TO89a] developed the SSAP algorithm which involves a bi-

level dynamic program. For this algorithm, every residue is represented as
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sequence of vectors pointing at other residues. Dynamic programming is used
first to determine the correspondence and then the alignment of the amino
acid residues. The algorithm was further improved [TO89b] to include physi-
cal properties of protein structures like hydrogen bonding, hydrophobicity etc.
Further to expand the scope of the problem to multiple structure alignment,
Taylor et al. [TFO94a] suggested the integration of MULTAL, a multiple se-
quence alignment tool [TFO94b], and the SSAP method of structure alignment

[TO89a, TO89b|, to obtain better multiple sequence alignments of proteins.

m\/ 1v1l Distance Matrix for 1VH protein

Residue Number

. 12 16 18 30

12 0 451 | 645 | 12.56

16 | 451 0 537 12.36
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Residue Number
&

30 1256|1236] 921 0

AR distances are i A

Figure 2.5: Distance matrix representation of protein 1VII

DALI and CE are amongst the oldest and most popular structure alignment
tools. Holm and Sanders [HS93] developed DALI which uses the distance
matrix representation of proteins, which is a matrix of inter-residue distances
of the protein, as depicted in figure 2.5. The algorithm finds smaller sub-
matrices of the distance matrix that are similar to each other, and then the
alignment obtained is further improved using the Monte Carlo method. The

results obtained by DALI have since become the benchmark for structure
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alignment. An improved version of DALI, known as DaliLite [HP0O], is now
available for structure alignment. Combinatorial Extension (CE) developed
by Shindyalov and Bourne [SB98] also uses distance matrix representation of
proteins. Various distance comparison heuristics have been employed to choose
among the combinatorial number of possible alignments of the proteins. CE
is also used as a benchmark for protein structure alignments. Both these tools
are currently employed as structure comparison tools for the FSSP protein fold
database [HS96]. More recently, Tai et al. [TVKL09| developed a tool termed
as seed extension (SE) based on distance matrix representation where they
identify potential small alignments which are extended further using dynamic
programming to provide the final alignment.

A variety of novel protein representations are used for developing tools
focusing on different geometric features of protein structures. Falicov etc al.
[FC96] create a triangulation between two proteins, where the residues are the
vertices of the triangles. For two proteins to be similar, they must superimpose
perfectly on each other, thus making the area of the triangulation zero. The
algorithm developed by Falicov et al. focuses on obtaining a minimum area
triangulation between the two proteins. TOPFIT [IAL04] is based on vornoi
diagram representation of protein structures. Initially the tessellation of the
protein structure is found and the tetrahedra are classified as per volume and
size. Then the tetrahedra are matched to obtain initial alignment, which is
then expanded through addition of neighboring tetrahedral matches. Zhao et

al. [ZFASO08] suggested an algorithm, SLIPSA, based on feedback for structure
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alignment. They use the idea of stitching local alignments together to get a
global alignment, which is then provided as a starting point to the algorithm,
as a feedback. The algorithm uses a graphical representation of proteins. Yang
and Tung [YT06] developed a structural alphabet for proteins using the angles
between the C-alpha atoms and then used dynamic programming to align the

structural alphabet sequence.

2.5 Similarity Metrics

The quality of alignment, or means to measure the quality of alignment, is
very important to evaluate the true significance of the similarity found between
proteins. Every alignment tool has a different metric to measure similarity,
giving different degree of importance to four main factors, namely, (a) RMSD,
(b) length of alignment, (c) size of the proteins compared, and (d) number of
gaps. Every similarity measure is a function of these four quantities. Most
similarity measures try to minimize the RMSD and number of gaps in the
alignment, while maximizing the length of alignment as fraction of size of
proteins being compared. It is not clear which factor is important to what
degree and every measure gives different weights to these factors. This has
resulted in multiple similarity metrics with no clear consensus on the best
similarity measure.

Amongst the wide variety of similarity metrics the more commonly used

ones are geometric measures such as the RMSD, wRMSD [WSHBY8], SI score
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[KJ94], SAS score [SLL93], the LG score [LG98], and TM-score [ZS05]. For
special protein representations, special similarity metrics such as contact map
overlap, and the VAST p-score are also used, though they are not as common.
We use the RMSD, SI, SAS and contact map overlap similarity measures
through the course of this thesis to evaluate the quality of the alignments and
compare different alignment tools. The eqﬁations below provide the definitions

for some of the similarity measures utilized in protein structure alignment.

SIMILARITY MEASURES

o \/ZZSi,-llev(ai))—r(b;-)H?/ZZSﬁ
wRMSD = \/Z 3w+ Syll60r(@)) — (b)Y Y Sy
i j i

SI = RMSD« ﬂT.‘_N%:L_Zl
SAS = RMSD+ 1\;32,,
LG-score = Mz;z]: n (i:/do)z) _ N;ap
CM overlap = QET f’gj
1 S
TM-score = MAX B sz: CESCWEAE

Here, a; represents the i* residue of protein A, and b; represent the ;™
residue of protein B. r(a;) and r(b;) represent the 3D coordinates of the corre-
sponding amino-acid residues. S;; is a binary variable that equals 1 when a; is

aligned to b; and 0 otherwise. 6 represents the rotation-translation transfor-

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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mation applied to protein A. d;; represents the distance between the ith residue
of protein A and j** residue of protein B. P, represents the size of protein A.
E; and E, represent the sizes of contact maps A and B. Nggn represents the

number of aligned residues. dy and M are parameters.

2.6 Databases

There have been some efforts to classify the existing proteins into fold families.
However, due to the limitation of fast structure alignment tools, not many folds
are identified and only a small percentage of proteins are actually classified.
Some of the popular databases storing the classification of these proteins are
the CATH database [OMJ*97], the SCOP database [MBHC95|, the FSSP
database [HS96], and the HOMSTRAD database [MDBOY8]. As of September
1, 2011, the CATH database has classified proteins into 1282 fold families (also
known as topologies), with over hundred thousand domains.

Barthel et al. [BHB*07] developed a web-based server called ProCKSI,
which makes an intelligent choice of a suitable alignment tool to align two
proteins from a set of different alignment tools based on a variety of alignment
measures. ProCKSI has x;rovided a common platform for structure alignment

tools by integrating various tools and similarity measures on a single server.
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2.7 Conclusions

A large number of structure alignment tools have been developed in the past
three decades, based on very different and innovative approaches to the align-
ment problem. Most algorithms provide good quality alignments for protein
pairs with high amount of structural similarity, that are in agreement with
the clustering for proteins in the SCOP and CATH databases. The increasing
size of the protein database further emphasizes the importance to obtain fast
alignment tools to do an all-to-all comparison of proteins in the PDB. Amongst
inexact tools the SSM algorithm is the state-of-the-art since it is quite fast and
provides biologically relevant approximate alignments. Amongst exact align-
ment tools based on contact map formulations, the CMOS tool provides quick
alignments with guarantees of global optimality.

Even though structures with similar sizes and with high amount of similar-
ity are easier to compare, the challenge for most approaches remains to identify
similarity between similar structures of different sizes and between structures
with medium level of similarity. Also most algorithms are able to deal with
rigid sequential alignments with few or no gaps. The problem of fast nonrigid
and nonsequential alignment of proteins is still a challenge. For sequential
comparison, dynamic programming techniques have proven to be quite effec-
tive, while for non-sequential alignment continuous alignment methods seem
to be promising.

In the remaining dissertation, we provide computational solutions to ad-
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dress some of the limitations of current alignment tools. As a result, we

improve existing and provide new freely usable structure alignment software.
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Chapter 3

Exploiting physical information

in the CMOS algorithm

Among the many factors affecting protein conformation are physical factors,
such as hydrogen bonding, torsion angles, hydropathy, and ionic interactions.
Some of these factors, such as hydrogen bonding, are easily identified from the
3D protein structure, while others, such as long-range ionic interactions, are
difficult to infer from the structure. Moreover, the contribution of each of these
factors towards shaping and imparting function to a protein has not been not
quantified. Due to these reasons, these factors have not been used effectively
in protein structure alignment tools. The only exception is hydrogen bonding
information, which is utilized through secondary structures that are commonly
observed in 3D protein étructures.

As discussed in Chapter 2, secondary structure information is utilized by
many alignment tools, including VAST [MGB95], TM-align [ZS05], and SSM
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[KHO4]. These tools are based on representations of secondary structures,
such as a sequence of secondary structure types [MGB95, ZS05], or vector
representations [SB97, KHO4]. Amongst these alignment tools, SSM is the
most computationally efficient. SSM provides better quality alignments than
other alignment tools, such as CE, DALI, and Structal, that do not utilize any
physical property information (cf. [KKLO05]). Thus, exploitation of physical
properties may be very significant in determining structural features of proteins
and improving the performance of structure alignment tools.

The CMOS algorithm [XS07] was shown to be up to an order of magni-
tude faster than other exact algorithms. In addition, this algorithm provided
exact alignments for some previously unsolved structure alignment problems.
The CMOS algorithm has been used extensively as a benchmark for struc-
ture alignment algorithms [JO09, LFM+*10, SHL10, WDK10]. In addition, the
similarity measure utilized by CMOS has been used in other bioinformatics
applications, such as protein model evaluation [MVR*10]. The computational
efficiency of the CMOS algorithm results from a variety of reduction schemes
that are employed by the algorithm in order to reduce the size of the search
space. These reduction schemes utilize only geometric constraints imposed’ by
the structure of the proteins, and are not dependent directly on any physical
properties of the proteins under comparison.

We propose improvements to the CMOS algorithm through exploitation
of physical property information of the proteins under comparison. While the
mere incorporation of physical properties in search space reduction schemes
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3 Exploiting physical information in the CMOS algorithm

in any structural alignment tool is an obvious way to induce computational
benefits, it gives rise to several interesting questions. In particular, one must
then determine how to go about quantifying physical properties and how to
use quantitative measures of properties to perform alignment space reductions
in a way that does not eliminate biologically meaningful solutions. We have
performed systematic computations to answer these questions in the context
of CMOS. Our computational results demonstrate that exploiting physical
properties in CMOS results in a five-fold reduction in the computational re-
quirements of the CMOS algorithm. Furthermore, this increased efliciency
increases the applicability of CMOS to larger structure alignment problems,
which were previously unsolvable by this algorithm. We first present a brief
description of the CMOS algorithm in Section 3.1. In Section 3.2, we present
the biological significance of the various physical properties that we have con-
sidered and discuss models that relate these physical properties to structural
information. Finally, in Sections 3.3 through 3.5, we present a detailed anal-
ysis of the role of these physical properties in improving the performance of

CMOS, making it more viable for large structure alignments.
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3.1 Protein structure alignment and the CMOS algorithm

3.1 Protein structure alignment and the CMOS

algorithm

Protein structure alignment tools are based on a variety of mathematical for-
mulations derived from different representations of the 3D structures of pro-
teins. Currently, the contact map protein representation provides an excellent
framework for formulating sequential non-rigid structure alignment problems.
Most exact structure alignment tools developed in the past are based on the
contact map representation of protein structures.

The mathematical formulation of the protein structure alignment problem
using the contact maps is also known as the MAX-CMO formulation. Fig—
ure 2.4 illustrates a schematics of the MAX-CMO formulation through an
alignment between two contact maps A and B. Here, a dotted line between a
node of contact map A and a node of contact map B denotes a pair of aligned
residues. Lines [ and m in the figure are examples of such an alignment. The
binary variables z; and z,, represent the decision variables for lines [ and m.
Here, the binary variable x; corresponding to line ! takes the value of 1 if the
residues at the ends of line [ are aligned.

The MAX-CMO formulation requires finding a set of non-intersecting such
lines which maximizes the number of overlapping edges. These edges are
shown in thick lines in Figure 2.4. The parameter e, equals 1 if there exists
an overlapping edge in both contact maps for nodes aligned by lines [ and

m, and O otherwise. The condition of non-intersecting lines is imposed to
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3.1 Protein structure alignment and the CMOS algorithm

maintain the sequential order of amino acid residues in the alignment.

Xie and Sahinidis [XS07] developed the branch-and-reduce algorithm, CMOS,
which provides an exact solution for the MAX-CMO formulation. These au-
thors demonstfated the CMOS algorithm to be an order of magnitude faster
than prior exact algorithms for MAX-CMO. In addition, this algorithm ob-
tained the global optimum for some previously unsolved large protein structure
alignment problems.

The CMOS algorithm is based on a branch-and-bound approach. The
reduction and bounding schemes of this algorithm are based on dynamic pro-
gramming and are largely responsible for the speed of the overall approach.

Hence, the algorithm is also referred to as a branch-and-reduce algorithm.

LB= max{L8,,LB,}
UB= max{UB,,UB,} Branching i }‘fBUB,d.B, Fathom
disallowed = max {LB,, LB,, LB,}
match chosen UB=max {UB,,UB, UB,}

Figure 3.1: Schematic of the branch-and-reduce tree generated by CMOS

The search tree of CMOS algorithm is illustrated in Figure 3.1. Each
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3.1 Protein structure alignment and the CMOS algorithm

node of the CMOS branch-and-reduce tree corresponds to a subproblem of
the MAX-CMO problem. The algorithm dynamically generates this tree and
processes one node of the tree in every iteration. For each node/subproblem,
three sets of lines are evaluated: the set C includes lines corresponding to fixed
amino acid residue alignments for the subproblem, the set D includes lines cor-
responding to disallowed amino acid residue alignments for that subdomain of
the problem, and the set F' includes lines representing potential amino acid
alignments, about which no conclusion is made yet. Alignments from the set F’
act as variables of the subproblem. Reduction schemes which enforce geomet-
rical and mathematical constraints of the problem are employed for reducing
the size of F' in every node of the tree. Upper and lower bounds for the ob-
jective, i.e. , the number of aligned edges, are calculated for each subproblem.
The maximum (best) lower bound of the ‘branch-and-reduce tree is updated in
every iteration. Dynamic programming methods are used for lower and upper
bound calculations at each node. Inferior nodes, i.e. , subproblems with an
upper bound that does not exceed the maximum lower bound of the tree, are
pruned. At every node, a potential alignment, referred to as the branching
alignment, is chosen from set F', and the node is branched (partitioned) into
two descendant nodes, one where the branching alignment is enforced (adding
branching alignment to set C'), and the other where the branching alignment is
disallowed (adding branching alignment to set D). The algorithm terminates
when the maximum lower bound equals the maximum upper bound of the tree.
The alignment which provides the maximum lower bound is then declared as
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3.1 Protein structure alignment and the CMOS algorithm

an optimal alignment. The algorithm is initialized with C = D =@, F = {all
possible alignments}, upper bound UB = oo and lower bound LB = 0. A
step-by-step implementation of the CMOS algorithm is as follows:

Stepwise implementation of the CMOS algorithm

1. Initialize the root node such that C = D = @, F = {all possible
alignments}, UB = oo, and LB = 0. Let list of all nodes £ = {root
node}.

2. While L#0

(a) Choose a working node k from L.

(b) Apply reduction schemes. Update sets D and F for the working
node.

(c¢) Calculate UBy and LBy for the current node. Update UB =
maXjer UB[ and LB = maXee LB[.

(d) Prune/delete inferior nodes | with UB; < LB.
(e) Check for termination, i.e. , stop if UB = LB.

(f) Choose branching alignment € F'. Create descendant nodes, which
inherit D and F from the parent node, and add them to £. Delete
current working node k from L.

3. end

The bounding and reduction schemes are the key computational ingredients
of CMOS and provide several opportunities for enhancements. Introduction
of new reduction schemes will result in further reducing the variable search
space, and hence decreasing the computational time for dynamic programming
based bounding schemes at every subproblem. Thus, inclusion of physical
property information for determining and excluding from the search potential
residue alignments that are biologically unimportant may prove useful towards

improving the performance of CMOS algorithm.
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3.2 Alignment space reduction by physical prop-
erty exploitation

Physical property information about the protein structures under comparison
can be obtained before aligning the structures. This information can then be
used to determine physically and biologically incompatible parts of the pro-
teins under comparison. With this strategy, we have examined four physical
properties-hydrogen bonding, hydropathy, torsion angles, and solvent accessi-
bility. For each of these four physical properties, we first briefly discuss their
role in shaping the 3D structure of proteins. Then, we describe numerical scales
to quantify these physical properties using existing computational tools. We
further use these numerical scales in order to devise reduction schemes based
on physical property values. These reduction schemes eliminate some of the
potential residue alignments from the search space before the actual applica-
tion of the CMOS algorithm.

While all these physical properties are responsible for shaping the protein
structures in some way, not all of them may be useful in accelerating a protein
structure alignment algorithm. Their usefulness will be assessed by analyzing
the fraction of the number of aligned residues of known optimal alignments
for which a given physical property of corresponding residues agrees within
a certain threshold. We refer to such residues as maiching residues and to
the corresponding thresholds as matching thresholds. For any given matching
threshold, a higher fraction of matching residues indicates a higher correlation |
between the physical property and protein structure. Matching thresholds fur-
ther become parameters for designing reduction schemes that disallow all po-
tential alignments whose properties fall outside their corresponding thresholds.

Tighter thresholds lead to elimination of a larger number of potential residue
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alignments, thus expediting the search algorithm. However, large reductions
may also eliminate biologically meaningful alignments. A key question here is
how to identify matching thresholds that provide the best trade-off between
computational time reduction and quality of alignments obtained after reduc-
tion.

We performed a wide range of computational experiments to assess the
usefulness of physical properties in protein structure alignment. These ex-
periments involved pairwise comparisons of the proteins in the Sokol data set
[CLIOO] and the Skolnick data set [LCWIO1]. The former contains nine small
proteins, while the latter contains forty large proteins from five different fold
families from the SCOP database. The entire testing set comprises a total
of 850 protein pairs, including 222 similar protein pairs and 628 dissimilar
protein pairs. The choice of matching thresholds is made through a detailed
computational study of the proteins in the Sokol data set. These computa-
tional experiments were performed on an INTEL dual core 2.1 GHz machine.
A limit of 10000 iterations was imposed on CMOS in all runs. Within this
iteration limit, the CMOS algorithm was able to provide optimal structure
alignments for 205 of the 850 problems from the Sokol and Skolnick data
sets. These 205 pairs are analyzed and used to draw assess different reduction
strategies.

In the following, we examine each physical property in detail, using the

analysis techniques discussed above.

3.2.1 Secondary structures

Secondary structures, formed by intra- and inter-molecular hydrogen bonding
within amino acid residues, impart important functional properties to pro-

teins. Different types of secondary structures exhibit very different physical
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and structural properties. For this reason, we consider search space reduc-
tion techniques that eliminate alignments between different types of secondary
structures. Specifically, we introduce search space reduction schemes that en-
sure that a-helices and S-strands are not aligned with each other.

We use the DSSP model developed by Kabsch and Sander [KS83] to de-
termine the secondary structure type of each amino acid residue in a protein
based on its 3D structure. This model identifies three types of a-helices and
two types of B-strands with 100% accuracy. For reduction purposes, we do not
discriminate between different variants of a-helices and B-strands. In other
words, we lump the three different types of a-helices into a single a-helix type
and the two different types of B-strands into a single S-strand type.

To investigate the applicability of secondary structures to protein structure
alignment, the known optimal structure alignments for 205 protein pairs in the
Sokol and Skolnick data sets were analyzed. Figure 3.2 shows the number of
these problems as a fgnction of the fraction of matching residues. As seen in
this figure, secondary structure types agree completely for nearly 50% of the
aligned residues in all optimal alignments. In addition, the distribution in this
figure is skewed heavily towards the 100% value. These observations suggest
that secondary structures correlate well with structural similarity.

The secondary structure based reduction scheme was implemented in CMOS
by updating the set of disallowed alignments D at the root node based on sec-

ondary structure type (SS-type) of amino acid residues as follows:
D = DU {z; | SS-type of a; # SS-type of b} (3.1)

The impact of this reduction mechanism on the solution quality and com-

putational requirements of the CMOS algorithm is assessed in Figure 3.3,

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2.2 Hydropathy
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Figure 3.2: Distribution of alignment problems with respect to the fraction of
aligned residues with an identical secondary structure type

which compares optimal alignments obtained with and without the inclusion
of Equation (3.1). The figure presents the % deviation of the objective func-
tion values of these alignments versus the % reduction in search space gained
by using Equation (3.1). The secondary structure based reduction scheme re-
sulted in an average (maximum) deviation of 1.6% (10%) from the optimal,
while producing an average (maximum) 16% (22%) reduction in the variable

search space.

3.2.2 Hydropathy

The hydrophobic or hydrophilic nature of amino acid residues provides infor-
mation about residue affinity towards water and other solvents. Hydrophobic
residues tend to form hydrophobic cores in proteins and prefer the interior
of the protein structure, as compared to hydrophilic residues, which tend to
form outer protein surfaces and help in stabilizing the protein through solvent
interaction.

The hydropathy of amino acid residues is measured by the hydropathy

index (HPI) that is determined by theoretical and experimental analysis over
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Figure 3.3: Impact of secondary structure based reduction on CMOS algo-
rithm. The graph shows % deviation of objective function from optimal vs. %
reduction in search space when reduction mechanism is applied to the Sokol
data set.

a large data set of proteins. The HPI scale developed by Kyte and Dolittle
[KD82] is based on characteristics of amino acid residues placed individually
in a solvent environment. In contrast, the HPI scale developed by Rose et al.
[RGL*85] is based on the observed behavior of amino acid residues as a part of
the whole protein structure placed in a solvent environment. Henceforth, we
will refer to the scales of Kyte and Dolittle [KD82] and Rose et al. [RGL*85]
by HPI-KD and HPI-R, respectively. Since the two scales differ considerably
in the ranking of the amino acid residues, we have compared the utility of both
of these in protein structure alignment.

To investigate the applicability of a hydropathy-based reduction test, the
known optimal structure alignments for the 205 protein pairs in the Sokol and
Skolnick data sets were analyzed in terms of the fraction of matching amino
acid residues for a given matching threshold. Figures 3.4 and 3.5 are based on

the HPI-KD and HPI-R values, respectively, and show the number of aligned
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Figure 3.4: Distribution of optimally’aligned protein pairs with respect to the
fraction of aligned residues with matching hydropathies. Data shown are for
the Sokol and Skolnick data sets using the HPI-KD hydropathy scale

protein pairs that had a certain fraction of aligned residues with matching
HPI values. The hydropathy values of the amino acids range between -5 and
5 on the HPI-KD scale, and between -1.8 and 0.9 on the HPI-R scale. Thus,
the range of the thresholds of the difference between the HPI values is 0 to
10 HPI-KD units and 0 to 2.7 HPI-R units respectively. The Figures 3.4 and
3.5 were constructed using a mid-threshold value of 6 HPI-KD units and 1.5
HPI-R units, respectively. For these 205 protein pairs, it was observed that
HPI values matched for more than 70% of the aligned residues. For a large
number of pairs, the fraction of matching residues was over 90% of aligned
residues. Clearly, hydropathy informatfon characterized by both the HPI-KD
and HPI-R scales is matched for large lengths of optimal alignments.

The reduction schemes we designed are based on the HPI values and elimi-
nate alignments where the HPI values of the aligned amino acid residues differ

by more than a threshold value. This was implemented in the CMOS algorithm
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Figure 3.5: Distribution of optimally aligned protein pairs with respect to the
fraction of aligned residues with matching hydropathies. Data shown are for
the Sokol and Skolnick data sets using the HPI-R hydropathy scale

by updating the set of disallowed alignments D at the root node by

D = DU {x,; | |HPI index of a; — HPI index of b;| > HPLihreshoid} (3.2)

The reduction scheme described in Equation (3.2) was also investigated
in the context of the CMOS algorithm by computing the effect of the chosen
“threshold on objective function deviations from optimum as well as search
space reduction. For different threshold values, the average deviation of the
objective obtained after the inclusion of Equation (3.2) from the objective
value before the inclusion of Equation (3.2), and the reduction in search space
size caused by Equation (3.2) were analyzed for the Sokol data set. The results
are shown in Figures 3.6 and 3.7.

Figure 3.6 shows the average % deviation from the optimal and the av-
erage % reduction in search space obtained for different HPI;jresnola Values in
the HPI-KD scale. These HPIi eshold Values were varied between 2 and 10
HPI-KD units. With thresholds of 8 or more HPI-KD units, only alignments

between highly hydrophobic and highly hydrophilic residues are eliminated.
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Figure 3.6: Average % deviation from optimal vs. % reduction in search space.
Data shown are for the Sokol data set using the HPI-KD hydropathy scale

Figure 3.6 shows that only with a large threshold value of 8 HPI-KD units,
the average deviation of the solution from the optimum falls below 5% of the
geometric optimum, thus maintaining the quality of the optimum alignment.
However, with this threshold value of 8 HPI-KD units, the average (maximum)
reduction in the search space is only 2% (5%), which is not enough to produce
a significant improvement in the performance of the CMOS algorithm.

Similarly, the Figure 3.7 shows the av.erage % deviation from the optimal
and the average % reduction in search space obtained for different HPI;jreshold
values in the HPI-R scale. These HPIlipreshola values were varied between 0.4
and 2.7 HPI-R units. Figure 3.7 shows that only with a large threshold value
of 2.2 HPI-KD units, the average deviation of the solution from the optimal
falls below 5% of the geometric optimal value, while producing an average
(maximum) search space reduction of only 2% (8%). This reduction is also
insufficient to produce a significant improvement in the performance of the
CMOS algorithm.

Overall, the hydropathy based reduction schemes were unable to produce

considerable search space reductions for the CMOS algorithm. While lower
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Figure 3.7: Average % deviation from optimal vs. % reduction in search space.
Data shown are for the Sokol data set using the HPI-R hydropathy scale

threshold values did produce large reductions in the search space, they also
led to the elimination of large number of optimal aligned residue pairs leading
to loss of quality in the optimal solution. Higher threshold values produced
reductions while maintaining the quality the quality of the solutions. However,
the reduction was insufficient to produce a significant improvement in the
performance of the CMOS algorithm. Thus, hydropathy information is not

used in the updated version of the CMOS algorithm.

3.2.3 Torsional angles

The local structure of proteins is characterized by the torsion angles ¢ and
¥ about the N-C, and C,-C bonds, respectively. These angles determine the
turns and twists in the C,-backbone of the proteins that we compare while
performing structure alignments. Torsion angle information is readily available
in the PDB file of each protein. These torsion angles vary between 0° and 360°
and are utilized to match the local structure of the proteins within thresholds
of 0° to 180°.

To determine the role of torsion angles in protein structure alignment,
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we analyzed the fraction of optimal alignments where the torsion angles of
the aligned residues were within a pre-specified threshold. Figures 3.8 and
3.9 show the distribution of these alignment problems versus the fraction of
the alignment for which the ¢ and 1 values, respectively, were within a mid-
threshold value of 90° of the aligned residues. These figures show that, for
most problems, the torsion angles matched for more than 50% of the aligned
residues. However, for some problems, the match was as low as 30% of the
optimal alignment length. Thus, while there were many alignments for which
torsion angles matched for a large number of aligned residues, there were also
many problems for which the length of match was not significant. Moreover,
the distribution for the ¢ torsion angles was more uniform, indicating a weak

correlation between the torsion angles and optimal structure alignments.

Number of problems

20

82 o3 09

04 .5 0.6 7 .
Fraction of alignment with matching ¢ values

Figure 3.8: Distribution of alignment problems with respect to the fraction
of optimal alignments where torsion angles match for the Sokol and Skolnick
data sets for torsion angle ¢

We designed two separate reduction schemes, one for each of the two torsion
angle types ¢ and 1. These reduction schemes eliminate residue alignments
when the difference between the corresponding torsion angles is larger than

a specified threshold value. The corresponding reduction schemes are imple-

o1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2.3 Torsional angles

Number of problems

20-

82 03 0.7 08 09

04 0.5 0.6 .7 .
Fraction of alignment with matching y values

Figure 3.9: Distribution of alignment problems with respect to the fraction
of optimal alignments where torsion angles match for the Sokol and Skolnick
data sets for torsion angle v

mented in CMOS by updating the set of disallowed alignments D to

= DU/{x | |¢ angle of a; — ¢ angle of b;| > Ppreshotd } (3.3)

= DU {x | |¢ angle of a; — ¢ angle of b;| > Yyprechold } (3.4)

We further investigated the trade-off between the deviation from the op-
timal value before and after inclusion of Equations (3.3) and (3.4), and the
reduction in the search space caused by these equations for different @ihreshoid
and Ygnreshold Values, respectively. The corresponding results are presented in
Figures 3.10 and 3.11, respectively. The @ipreshold and Yshreshold Values were
varied between 40° and 180° in intervals of 20°. A maximum difference of 180°
represents aligned bonds in exactly opposite directions. Figures 3.10 and 3.11
show that, for even for a large value of 160° for the @inreshold and Yehreshold,
the average deviation of the solution from the optimal was larger than 5%

of the geometric optimal value. The choice of a threshold greater than 160°
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would represent allowing matches up to bonds in nearly opposite directions,
providing no biologically meaningful reduction in the CMOS search space. We
therefore decided not to incorporate these reduction schemes in the CMOS

algorithm.

I

[
S

% Reduction in search space

0 s 0 15 20 25 30
% Deviation from optimal

Figure 3.10: % deviation from optimal vs. % reduction in search space. Data
shown are for the Sokol data set using the torsion angle ¢
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Figure 3.11: % deviation from optimal vs. % reduction in search space. Data
shown are for the Sokol data set using the torsion angle v
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3.2.4 Solvent accessibility -

Solvent accessibility (SA) for protein surfaces plays an important role in de-
termining the function and binding sites of a protein. Solvent accessibility is
measured by the number of accessible solvent molecules or the solvent accessi-
ble area around an amino acid residue. The shape of the protein surface as well
as the interior and exterior protein parts can be determined accurately from
solvent accessible area at each of the amino acid residues. ‘Solvent accessibility
can be quantified using the DSSP tool [KS83], which provides a measure of

the solvent accessible area around every amino acid residue of the protein.

120

80-

Number of problems
g

85 o055 o6 o065 07 075 08 08 09 095 1
Fraction of alignment with matching solvent accessibility

Figure 3.12: Distribution of alignment problems with respect to the fraction
of optimal alignments where solvent accessibilities match for the Sokol and
Skolnick data sets

The utility of solvent accessibility in protein structure alignment was an-
alyzed using the 205 exactly solved structure alignment problems from the
Sokol and Skolnick data sets. Figure 3.12 shows the distribution of these
alignment problems versus the fraction of the alignment for which the solvent
accessibility values were within an SAqhresnola of 60A2, or 6 water molecules,
of their aligned residues. As seen in this figure, solvent accessibility values

matched for more than 50% of the optimal alignment length. The peak of the

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2.4 Solvent accessibility

distribution curve is near 90% of the optimal alignment length, suggesting a
very good correlation between the solvent accessibility and optimal structure
alignments.

Reduction schemes based on solvent accessibility eliminate residue align-
ments which differ in their solvent accessible areas by more than a SApreshold
value. The reduction scheme based on solvent accessibility is implemented in

the CMOS algorithm by updating the set of disallowed alignments D to

D=DuU {.’L’l I [SA of a; — SA of bll > SAthreshold} (3.5)

& 8 8

% Reduction in search space
~N w
> S

% 5 10 25 0 35

15 20
% Deviation from optimal

Figure 3.13: % deviation from optimal vs. % reduction in search space. Data
shown are for the Sokol data set using solvent accessibilities

Figure 3.13 depicts the trade-off between the deviation from the optimal,
and the reduction in the search space, after the application of the reduction
scheme presented in equation 3.5, for different SA hresnold Values. The SAhreshold
values were varied between 4 and 16 accessible water molecules, or 40A2 to
160A? of solvent accessible area. From amongst these, an average deviation

of less than 5% from the optimal could be obtained only for a tolerance of
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Figure 3.14: Distribution of the % deviation from optimal and % reduction in
search space for solvent accessibilities

16 water molecules or an area of 160A2. This also resulted in providing a
reduction in the search space of an average of only 3%. This reduction value
is quite low and cannot produce any considerable computational advantage,
while compromising on the quality of solution by 2%. The impact of the
inclusion of Equation 3.5 in CMOS is shown in Figure 3.14, which presents
the deviation in the optimal value and the reduction in search space for all
problems in the Sokol data set. The figure shows that solvent accessibility
leads to a maximum search space reduction of 8%. Also, while the deviation
from optimal is low for most problems, there are a few problems for which the
deviation from the optimal is as large as 18%, even for a large threshold value
of 160A2. For this reason, solvent accessibility information was not utilized as

a reduction scheme in the algorithm.
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3.3 Accelerating CMOS with physical proper-
ties

The computational results of the previous section suggest that, amongst the
four physical properties considered, only secondary structure information may
be utilized for considerable improvement in the CMOS algorithm without com-
promising the quality of the solution obtained. The reduction scheme based on
secondary structure types produced a considerable reduction in search space
with very low deviation from optimal alignments for the Sokol data set. The
effect of incorporating this reduction scheme into the CMOS algorithm is stud-
ied in more detail in this section through a computational study that relies on
the entire Skolnick data set. In both cases, we compare alignments obtained
by the algorithm with and without the incorporation of secondary structure
information represented by Equation 3.1. From now on, we use CMOS to refer
to the original CMOS algorithm and we use CMOS-SS to refer to the version
of the algorithm that utilizes secondary structure based reduction. The com-
parison between the two approaches was made on the basis of: (a) the average
gap between the upper and lower bounds at the root node, (b) the number of
branch-and-reduce iterations required by the algorithm to terminate within a
10% gap between the upper and lower bounds, and (c) the number of prob-

lems solvable to near optimality. Table 3.1 summarizes the results from these

comparisons.
| [ cMOS | CMOS-SS |
Average root node gap 90% 60%
Average # iterations for 10% gap || > 10000 2000
Solvable problems in Skolnick set 20% 80%

Table 3.1: Improvements in the CMOS algorithm by introduction of secondary
structure information. Results shown are for the Skolnick data set.
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3.3 Accelerating CMOS with physical properties

As seen in Table 3.1, the introduction of secondary structure based re-
duction resulted in an average of 30% decrease in the root-node gap. The
root-node gap reduction was especially large for hard alignment problems,
comprising large dissimilarity in sizes and low to medium levels of structural
similarities. Proteins with large differences in sizes produce a combinatorially
explosive number of possible alignments. Thus, even a small number of elim-
inated alignments by the secondary structure information results in a large
reduction in the number of possible alignments to search, thus improving al-

gorithm performance considerably.

Solved
exactly

Solved
exactly by
CMOS-SS

Solved
within 10%
by CMOS-SS

Protein index

R 2% Unsolved
10 20 30 0
Protein index

Figure 3.15: Problems of the Skolnick data set solved exactly by CMOS [red],
solved exactly by CMOS-SS [blue], solved within 10% by CMOS-SS [green],
and unsolved [yellow]

Table 3.1 further reports the number of iterations required to obtain a
solution within a tolerance of 10% of the optimal solution. It was observed that
CMOS-SS terminated in an average of 2000 iterations, while CMOS was unable

to attain a 10% tolerance within the maximum limit of 10000 iterations. Thus,
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the secondary structure information resulted in an over five-fold improvement
in the corﬁputational time of the algorithm. Figure 3.15 presents the problems
of the Skolnick data set that were solved exactly (with LB = UB) or to
near-optimality (nonzero gap between LB and U B) by CMOS and CMOS-SS.
CMOS-SS provided exact solutions for 25% problems (red-+blue in Figure 3.15)
and solutions with 10% gap for 75% of the remaining problems (green in
Figure 3.15). The original version of CMOS was able to obtain exact solutions
for only 20% of the problems (red in Figure 3.15), and was unable to terminate
with near-optimality proof for any of the remaining problems. Overall, within
a maximum limit of 10000 iterations, the CMOS-SS algorithm terminated with
no more than a 10% gap between LB and UB for 80% of the problems. The

original CMOS algorithm succeeding in doing so for only 20% of the problems.

4%

Figure 3.16: Pie chart depicting deviation of CMOS-SS optimal solution from
the geometric optimum obtained by CMOS for the 155 optimally solved prob-
lems in the Skolnick data set

CMOS-SS imposes reduction constraints that may result in obtaining a

suboptimal alignment as compared to the true geometric optimum. Figure 3.16
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shows the distribution of the deviation from the optimum for solutions ob-
tained from CMOS-SS as compared to true optimal solutions obtained by
CMOS. We observed that in over 60% of the cases, the optimal solution re-
mained the same as the geometrical optimal, and differed less than 10% from
the geometrical optimal value in 90% of the remaining cases. Violations greater
than 10% were observed in only 4% of the cases. However, most of differences
between the CMOS and CMOS-SS solutions were observed to be isolated align-
ments with a low number of edges in the contact maps. These alignments are
usually biologically irrelevant and do not affect the quality of the alignment.
For problems which were solved to near-optimality by CMOS-SS, no exact
solution for the alignment problem in available. However, CMOS-SS termi-
nated with a better objective value than CMOS for about 40% of these prob-
lems. The improvements in the objective value ranged between 3% to 12%
of the objective values obtained by CMOS. The objectives function values of
the remaining 60% of the problems are all within 5% of the solutions obtained
by CMOS, suggesting essentially no loss of quality due to the inclusion of

secondary structure information.

3.4 Special cases

There are certain cases of proteins for which secondary structure based re-
duction appears to be very effective. One of these cases is when the proteins
under comparison have both a-helical and S-sheet characteristics. Figure 3.17
represents the 2PTF and 3B5M proteins, both of which have both a-helical
and B-sheet characteristics. These proteins have a sequence identity of 22%
and show homologous characteristics. A comparison of these proteins with

CMOS requires 5000 iterations, while CMOS-SS provided an optimal solution
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3B5SM PROTEIN

2PTF-3B5M PROTEINS (SEQUENCE IDENTITY - 22%). HOMOLOGOUS PROTEINS

Figure 3.17: Proteins 2PTF and 3B5M are homologous proteins. The a-helices
are marked in pink, 3-sheets are marked in yellow

in only 1000 iterations. Thus, with the use of secondary structure information,
the CMOS algorithm provided the solution five times faster than the original
algorithm.

Considerable benefits from reduction based on secondary structures are
also observed when the proteins under consideration are of very different sizes.
As an example, in Figure 3.18, we compare the 3CHY protein with the 3LFT
protein. These proteins are of very different sizes and are homologous in nature
through a shared domain. The original CMOS algorithm resulted in a root
node gap of 189, while the root node gap was reduced to only 86 by CMOS-
SS. Also, the original CMOS algorithm could not provide a solution within
10% solution gap in 10000 iterations, while CMOS-SS terminated with a 10%
tolerance solution within only 3000 iterations.

While hydropathy information may not be used in devising a general align-
ment tool, hydropathy information was observed to be useful in comparing

proteins with a hydrophobic core. As an example, in Figure 3.19, we have the
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3CHY protein 3LFT protein

3CHY-3LFT proteins. Homologous by shared domain.

Figure 3.18: Proteins 3CHY (length 128) and 3LFT (length 296) are homolo-
gous proteins. The aligned domains are marked in red

1B00 and 3CHY proteins with hydrophobic cores where the use of hydropathy-
based reduction is very useful. Here, the reduction scheme, as described in
Equation 3.2, eliminated alignments where the difference in the corresponding
HPI-KD values [KD82] was in excess of 6 HPI-KD units. The CMOS algorithm
produced an optimal alignment in 529 iterations. When the hydropathy-based
reduction scheme was applied, the optimal solution was obtained in only 101
iterations, providing a five-fold improvement in the performance of the algo-

rithm.

3.5 Conclusions

We studied the effects of four physical properties of proteins, namely, hydrogen
bonding through secondary structures, hydropathy, torsion angles and solvent
accessibility, on the CMOS algorithm for structural alignment. While all of

these properties may be useful in special cases of protein alignments, it was
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1B00 PROTEIN HYDROPHOBIC CORE 3CHY PROTEIN

1B00 - 3CHY PROTEINS, HOMOLOGOUS PROTEINS WITH HYDROPHOBIC CORE

Figure 3.19: Proteins 1B00 and 3CHY homologous proteins. The hydrophobic
residues are marked in red, hydrophilic residues are marked in blue

observed that only secondary structures prove to be useful in general struc-
ture alignment problems. Other physical property constraints provide inferior
alignments as compﬁred to the geometric optimum for a large number of cases.
Computational studies with secondary structure information indicated an
over five-fold improvement in the computational efficiency of the CMOS align-
ment tool. At the same time, the quality of the optimal solution also remained
within 10% of the original geometric optimal value for over 95% of the test
problems. Thus, secondary structures provided enhanced performance of the
CMOS algorithm, without compromising the quality of the solution.
CMOS-SS also provided near-optimal solutions for 80% of the problems
that were previously unsolved by CMOS. Amongst these, CMOS-SS provided
lower bounds to the solutions than those obtained by CMOS for 40% of the
problems. Thus, the incorporation of secondary structure informatién has

increased the utility of the CMOS algorithm to solve more difficult problems.
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Chapter 4

SAS-Pro: Simultaneous residue
assignment and structure
superposition for protein

structure alignment

The structure alignment problem is traditionally formulated as a continuous
optimization problem, where similar protein substructures are superimposed
onto each other to evaluate structural similarity. Here, the proteins are repre-
sented using the 3D coordinates of all the C, atoms representing the protein
backbone. To obtain an alignment, one of the proteins is rotated and trans-
lated to superimpose it onto the other protein structure, while optimizing a
measure of similarity between them. Current structure alignment tools ad-
dress the alignment optimization problem through a two-step process. In the
first step, ‘assignment’ between amino-acid residues of two proteins is estab-
lished using dynamic programming or heuristic methods. The objective here

is to obtain the largest possible sequential alignment between the two pro-
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4 SAS-Pro: Simultaneous residue assignment and structure superposition for
protein structure alignment

teins. In the second step, ‘superposition’ is achieved via computing optimal
values for rotation-translation variables by various convex optimization tech-
niques. In the superposition step, the RMSD value or a variant of the RMSD
value is minimized. An iterative application of this process results in obtaining
the final alignment. Structal [GL96], MAMMOTH [0S002], and alignment
tools developed by Wu et al. [WSHB98], Andreani and Martinez [AMO08], and
Andreani et al. [AMMYO08] are all based on this two-step approach. These
approaches differ in the algorithms they use for assignment evaluation and
structure superposition, as well as the choice of the objective functions in the
two stages of alignment. Nearly all these methods determine the assignment
by basic dynamic programming, and utilize different ways of building the sim-
ilarity matrices based on differenf structural characteristics of the proteins.
The exception is Andreani et al. [AMMYO08], who determine the assignment
of amino-acid residues by a heuristic method.

The two-step approach to structural alignment has clear computational ad-
vantages and results in very fast implementations. However, by decoupling the
inter-dependence between the assignment and superposition problems, align-
ment tools based on this approach may produce suboptimal alignments. In
this work, we present a novel approach, Simultaneous Alignment and Superpo-
sition of PROteins (SAS-Pro), that combines the evaluation of the assignment
and the rotation-translation problems into a single bilevel optimization formu-
lation. We further propose a combination of optimization algorithms, which
we demonstrate leads to a practical computationally efficient approach for the
solution of the proposed formulation. In addition, by eliminating the residue-
sequentiality constraints, the SAS-Pro approach is capable of providing both

sequential and non-sequential structure alignments.
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4.1 The problem and a natural decomposition

Consider proteins A and B to be structurally aligned. Let a; represent the **
residue of protein A, and b; represent the j** residue of protein B. In addition,
let r(a;) and r(b;) represent the 3D coordinates of the corresponding amino-
acid residues. We seek to align amino-acid residues of A to amino-acid residues
of B so that, when A is rotated-translated onto B, a similarity measure between
the two proteins is minimized. The RMSD function will be used to determine

the similarity between the protein structures and is defined as

Z Z Si;|10(r(a:)) — r(b;)II?

RMSD(S, §) = 4| ——2 S35, : (4.1)

Here, S;; is a binary variable that equals 1 when a; is aligned to b; and 0
otherwise, and 8 represents the rotation-translation transformation applied to
protein A.

The problem of minimizing the RMSD may be represented as the following

mixed-integer nonlinear optimization program:

(MINLP) mingy RMSD(S, )

st. ) S;<1 Vj (4.2)
Y Si<1 Vi (4.3)
J
Y5 Sz, (4.4)
LI |
Sij € {0’ 1} V’l,,] (45)

Here, the parameter r,, is the minimum number of residues that must be
aligned to ensure that the global optimum attains a non-trivial value and is

enforced through Constraint (4.4). Constraints (4.2) and (4.3) ensure that no
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more than one amino-acid residue of protein A is aligned with an amino-acid
residue of protein B and vice versa. Constraint (4.5) enforces the binary nature

of the assignment variables S.

4.1.1 Two-stage approach

A two-stage solution approach employed by existing alignment tools decouples
the effects of S and 6 variables and evaluates the effect of the assignment
variables S and rotation-translation variables @ separately. The two-stage

optimization problem may be viewed as follows:

Stage 1
mins f(S, o)
s.t. Z.S'ij S 1 Vi
D S;<1 V)
J
Z Z Sij 2 Tm (46)
i :
S‘ij € {0> 1} V’t,]
Stage 2

ming RMSD(Sy, 8)

where Sy and 6, are optimal values of S and 6, respectively, obtained in Stage
1 and Stage 2 of an iteration of the two-stage optimization problem. Con-
straint (4.6) in Stage 1 is imposed implicitly in the model by solution proce-
dures utilized to solve for Sg.

In typical approaches, values for the assignment variables S are determined
by heuristic methods and dynamic programming techniques. The function

f is thus selected as the dynamic programming objective function based on
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different similarity matrices designed for the alignment tool. The similarity
matrices currently in use are based on structural features of the proteins, in-
cluding inter-residue distances [GL96, AMO08]|, bond angles [0S0O02], and radii
of fragment curvature [WSHB98|. These heuristic methods and dynamic pro-
gramming techniques do not guarantee optimality of the alignment obtained
with respect to the objective of Stage 2, the RMSD value. Thus, the final
alignment obtained from the iterative procedure is not guaranteed to be glob-
ally optimal, and is known to be dependent on the initialization of the process
[GL96, AMMY08, AMO08]. Hence, the two-stage formulation may provide only
a feasible solution of the MINLP and not necessarily a global optimum. Global

optimality cannot be guaranteed unless the MINLP is somehow solved directly.

4.2 SAS-Pro model

The SAS-Pro model reformulates the MINLP model into a single bilevel opti-
mization problem. For any given 6, the function SRMSD(6) may be defined

as
SRMSD(6) = min RMSD

The master problem of the SAS-Pro model optimizes over the solution of
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the subproblem SRMSD(6). The bilevel SAS-Pro model is as follows:

(SAS-Pro master problem)
T = moin {msln RMSD(S, 6)}
= min SRMSD(9)
(SAS-Pro subproblem)

SRMSD(6)

msin RMSD(S, 8)
st. Y S <1 Vj
Y S;<1 v

J
Zzsij ZTm
i ]

Si; € {0,1} Vi, j

The master problem objective function SRMSD(6) is.in the space of the 6
variables alone. Yet, it is trivial to see that any assignment/superposition
feasible to the MINLP is also feasible to the SAS-Pro master problem. Hence,
our reformulation maintains optimality.

Evaluation of the function SRMSD(0) involves solving the subproblem and
determining the optimal assignment variables S, for given values of & and pa-
rameter r,,. Our key observation is that, for a given value of 8, the subproblem

can be reformulated as the following k-cardinality linear assignment problem
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(k-LAP):

(k-LAP) ko= mins Y ) a;S; (4.7)
i g

s.t. ZS,'J' <1 Vjy

i

Y S;<1 Vi

J
Z Z Sij ZTm (48)
LI

Sij € {0, 1} VZ,]

where a;; = ||8(r(a;)) — r(b;)||%, V%, j. A highly efficient polynomial-time
algorithm, SKAP [DLMO1], has been developed to solve the k-LAP prob-
lem and can be readily utilized in this context. The solution to the k-LAP
problem will provide an assignment of exactly r,,, amino-acid residues, as con-
strained in equation (5.4). The numerical value of SRMSD(#) can be ob-
tained from the objective value in equation (5.3) of the k-LAP problem as
SRMSD(8) = +/k¢/Tm. The k-LAP model does not include any sequence
preserving constraints. Thus, the SAS-Pro model is designed to provide an
optimal assignment and structure superposition of protein structures for spec-
ified values of the parameter r,,, with no sequence-preserving constraints. We
later show how to recover a sequential alignment, if desired, from the SAS-Pro
alignment.

Kolodny and Linial [KLLO04] also present a bilevel approach to structure
alignment by utilizing the SAS [SLL93] similarity measure as the objective
function in the master problem, as opposed to the RMSD value. They ob-
tain values for the assignment variables S through a dynamic programming
methodology and determine the rotation-translation variables by enumera-

tion over a grid in the 6 space. Our approach differs from their approach in
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three major aspects. First, the objective function used by Kolodny and Linial
in the subproblem to determine the assignment variables S (dynamic pro-
gramming based objective) differs from their master problem objective (SAS
score). We use the same objective in both the subproblem as well as the mas-
ter problem of the SAS-Pro model, which guarantees that a SAS-Pro optimal
solution is optimal also for the original MINLP problem. Second, we utilize ef-
ficient search techniques to solve the master problem and obtain near-optimal
rotation-translation variables, as opposed to the expensive enumeration ap-
proach used by Kolodny and Linial. Finally, our approach has the added ca-
pability of providing both sequential and non-sequential structure alignments
for protein pairs.

As mentioned above, an optimal solution of the MINLP is feasible to our
reformulation. In order for an optimal solution to be identified, suitable algo-
rithms must be used to solve the master problem to global optimality. Indeed,
there exist derivative-free optimization (DFQO) algorithms that can achieve this
goal based on dense sampling of the domain [RS11]. However, in the search
of the most computationally efficient approach, in the next section we will
also evaluate local search techniques for solving the master problem. With
the same goal in mind, we will introduce a heuristic approach for determining
the optimal parameter r,, as well as for curtailing the number of degrees of

freedom for the alignment problem.

4.3 Algorithm

4.3.1 Derivative-free optimization

The landscape of the RMSD function with varying values of the rotation angles

B and 7 is presented in the contour plot of Figure 4.1 for proteins 1B00 and
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4.3.1 Derivative-free optimization

Y (radians)

. S S—

B (ragians) :

Figure 4.1: Contour plot of the landscape of the RMSD function for 1B00 and
1DBW proteins in the 8 — v rotation angles plane

1DBW. As seen in this figure, the objective function in the SAS-Pro model
is highly multi-modal and nonlinear. This multi-modality can be addressed
by optimization techniques that span the entire search space of the problem
in the search for global optima. Furthermore, an explicit algebraic form for
the SRMSD objective function for the master problem is not available, thus
making it difficult to utilize derivative-based optimization methods. Thus, we
opted to employ DFO techniques in order to solve the SAS-Pro model.

We pérformed extensive computational analysis with 28 different DFO
solvers, based on a variety of techniques that included direct search, pattern
search, surrogate management frameworks, domain partitioning methods, lo-
cal search, global search, deterministic and stochastic algorithms [RS11]. Our
experiments indicated that the derivative-free solver SNOBFIT [HNOS8] pro-
vides the best performance for a small number of function evaluations. This

observation is consistent with the results reported in [RS11]. Keeping the
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number of function evaluations low was dictated by our desire to design an
algorithm that would take no more than a few CPU minutes on a standard
computer workstation for the alignment of protein pairs that are routinely
analyzed nowadays.

Our interface to SNOBFIT is based on the ‘mydfo’ interface developed by
Rios [Rio09]. We have limited SNOBFIT to 500 function evaluations for each
value of the parameter r,,,. Every RMSD function evaluation for a given value
of @ involves solving the k-LAP problem using the SKAP code developed by
Dell’Amico and Martello [DLMO1].

4.3.2 Choice of parameter r,,

The solution to the SAS-Pro model is dependent on the parameter r,,. Dif-
ferent values of r,, may lead to very different optimal alignments. The best
alignment is found when the value of 7, is close to the number of biologically
relevant residue matches. It is therefore important to determine the right value
of the parameter r,,.

Proteins with high level of similarity have a large length of alignment,
usually corresponding to 85% or more of size of the smaller protein. Hence the
number of biologically relevant residues matches are expected to be between
to 85% to 100% of the size of the smaller protein. To identify the best value
for r,,, we systematically vary the value of r,, from 100% to 85% of the size
of the smaller protein, until an alignment with a good similarity measure
cutoff is obtained. The similarity measure used here is SAS;sq, a modified
version of the SAS score, that is further discussed in Section 4.3.5. In our
implementation, we select the value of r,, for which an SAS,.q score of less

than 44 is obtained.
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4.3.3 Reducing the number of degrees of freedom

The solution to the SAS-Pro model involves determining the optimal values of
both the assignment variables S as well as the rotation-translation variables
0. The assignment variables S are obtained as an exact solution to the SAS-
Pro subproblem. Thus, the only degrees of freedom available in the SAS-Pro
master problem are the three translation vector components ¢, t,, and ¢, along
the X, Y and Z axes, respectively, and the three rotation angles o, 3, and v
about the X, Y and Z axes, respectively.

In the course of our computational experimentations, we observed that, for
proteins with similar sizes, a good approximation of the translation vectors is
very often obtained if the centroids of the two protein structures are required
to coincide. Thus, while comparing proteins of similar sizes, the number of
degrees of freedom for optimization may be reduced to only the three rotation
angles. As demonstrated in [RS11], for a collection of over 500 test problems,
problems with up to three or four variables were almost always solved to global
optimality by a variety of DFO algorithms. Thus, while solving the SAS-
Pro optimization problem, the small number of degrees of freedom provides
a corﬁputational advantage in terms of obtaining globally optimal structure
alignments.

For structural comparison of proteins with different sizes, the SAS-Pro
algorithm offers an option to utilize all six degrees of freedom. In this case, in
order to maintain solution quality of the DFO solvers, we found it necessary
to increase the number of function evaluations to 1000 for each value of r,,

considered.
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4.3.4 Extracting sequential alignments

The solution to the SAS-Pro model is usually a non-sequential structure align-
ment between the two proteins. However, a sequential alignment is easy to ex-
tract from the non-sequential alignment obtained from the SAS-Pro algorithm
in a post-processing step. A dynamic programming algorithm was designed
to identify the largest sequential alignment amongst the aligned residues pro-
vided by SAS-Pro. This algorithm sequentially evaluates the largest length
of sequential alignment terminating at residue a(i) of protein A and stores it
in the vector LenSeq(i). The algorithm maintains a pointer to the residue
before a(z) in the sequential alignment in the vector PREV (i). M(a(?)) de-
notes the residue b(j) of protein B which is aligned to a(i). The largest value
of LenSeq(i) provides the length of the largest sequential alignment termi-
nating at residue i. Backtracking the residues from this value of ¢ using the
vector PREV (i) provides the corresponding alignment. A pseudo-code of the

algorithm is presented below:

INITIALIZE
for i=1— M) do
LenSeq(i) « 1
PREV (i) «+ 1
end for
MAIN ALGORITHM
for (i=1— M) do
for(j=1—>i-1)do
if (M(a(?)) < M(a(j)) and LenSeq(j) > LenSeq(i))
then
LenSeq(i) « LenSeq(j) + 1
PREV (i) «+ j
end if
end for
end for
SOLUTION
Maz Length + max; LenSeq(t)
Maxl + arg(max; LenSeq(z))
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Jj — Maxl

for (i =1 - MazxLength) do
Alignment « (j, M(a(3)))
j < PREV(j)

end for

4.3.5 Similarity measure

For sequential protein alignments, where the sequence of the amino acid residues
is preserved in the alignment, many suitable similarity measures, such as the

Structure Alignment Score SAS [SLL93] and the Similarity Index SI [KJ94],

have been defined. These measures are based on weighted ratios of the RMSD

value and the length of alignment produced by the algorithm. However, for

non-sequential structure alignments, the length of alignment is not properly

defined and hence cannot be used to calculate the SAS and SI measures. We

introduce a new measure of length of alignment, the total fragment length

(Nirag), to extend the definition of the SAS similarity measure to non-sequential

structure alignments. The total fragment length is defined as the sum of
lengths of aligned continuous fragments of five or more residues. Sequentiality

of the amino-acid residues in the fragment is not required, thus providing for

a measure of the length of alignment that is applicable to both sequential and

non-sequential structure alignment.

The similarity between proteins is then determined using the proposed

SAS,seq measure, which is defined as

RMSD

SASuea = F—7100

This measure reduces to the SAS measure for the case of sequential structure
alignments.

The best non-sequential structure alignment obtained from the SAS-Pro
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algorithm may include multiple local small-length matches as opposed to a
éingle large global alignment. This disorder of the alignment can be measured
by the value of the fragment length. A disordered alignment is expected to
have a small fragment length, while a biologically relevant ordered alignment is
expected to have a large fragment length, thus providing lower SAS,sq values
for biologically relevant alignments. Hence, the best alignment for a given pair

of proteins is expected to be one with the lowest SAS,.q score.

4.4 Implementation and computational results

We performed computational experiments based on three data sets:

e the Sokol data set [CLIOO], which is a set of 9 small size proteins with

proteins from three different fold families,

e the Skolnick data set [LCWIO1], which is a set of 40 large size proteins

from five different fold families, and

e the RIPC data set [MDLO7], which is a set of 23 complex structure

alignment problems.

An all-to-all pairwise alignment for all the proteins in the Sokol and Skolnick
data sets was obtained, resulting in 850 pairwise alignment problems with
222 similar protein pairs and 628 dissimilar protein pairs. The similar pairs
in these data sets exhibit sequential similarity. The RIPC data set consists
of 23 protein alignment problems for which a biologically relevant reference
alignment is available. These 23 alignment problems are complex and ex-
hibit non-sequential structure similarities. The complexity of these alignments

arises from repetitions, insertions/deletions, permutations, and conformational
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changes between the protein pairs that are not easily handled by alignment
algorithms.

In all tests, the typical computing time requirements for SAS-Pro were
around 1 CPU minute per protein pair on an Intel Quad Core 2.83 GHz proces-
sor with 6 GB RAM, while providing sequential and non-sequential alignments

with exceptional classification ability.

4.4.1 Sequential structure alignments

The Sokol and Skolnick data sets were analyzed to evaluate the performance
of SAS-Pro in obtaining sequential alignment problems. To obtain sequential
alignments from the non-sequential alignments provided by SAS-Pro, the pro-
cedure described in Section 4.3.4 was used. Alignments were compared using
the RMSD values as well as the geometric similarity measures SI and SAS.
A comparison.of the RMSD, SI, and SAS values obtained by SAS-Pro for
similar and dissimilar proteins is presented in Table 4.1. For protein pairs
within the same fold family, alignments with low RMSD, SI, and SAS values
were obtained. For pairs from different fold families, the values of RMSD, SI,
and SAS were comparatively higher than the corresponding values for similar
proteins. In addition, the alignments obtained from the SAS-Pro alignment
tool were near-sequential for similar protein pairs and were 96% in agreement
with known optimal alignments between the proteins that were obtained from
the exact structure alignment tool CMOS [XS07]. These optimal alignments
contain both large fragments of aligned residues as well as a few isolated aligned
residues. SAS-Pro matches the large fragments of aligned residues with these
ol;timal alignments exactly. However, the alignments may differ in isolated

residue matches, that are not of biological consequence, resulting in an average

of 96% agreement between the alignments between SAS-Pro and CMOS.
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| Sokol set [ Skolnick set ]
Similar | Dissimilar | Similar | Dissimilar
RMSD 0.60 29 1.72 3.94
SI 1.17 7.04 3.15 9.77
SAS 1.61 7.37 2.19 8.51
% match with optimal alignment 96 N.A. 96 N.A.

Table 4.1: Average RMSD value, SI score, SAS score, and match with reference
alignments for the Sokol and Skolnick data sets for similar and dissimilar
protein pairs.

% Problems where
SAS-Pro is better | SAS-Pro is at par
Solver | RMSD | SI | SAS | RMSD | SI | SAS
CE 57 51| 51 12 12| 12
SSM 47 36| 36 12 121 12
STSA 44 40 | 40 21 211 21

Table 4.2: Comparison of SAS-Pro with CE, SSM, and STSA for the similar
protein pairs of the Sokol and Skolnick data sets using RMSD, SI, and SAS
measures.

The alignments obtained from SAS-Pro were also compared with those ob-
tained from the CE [SB98], SSM [KH04], and STSA [SZB09] alignment tools.
The results are summarized in Table 4.2. The SAS-Pro approach provided
alignments with better or equal RMSD for over 59 to 69% of the similar align-
ment problems. Moreover, the RMSD values of more than three quartei‘s of
the remaining problems were observed to exceed those in CE and SSM by
only 1A on average, while preserving a 96% similarity with the corresponding
sequential structure alignments. Consequently, the corresponding SI and SAS
scores for these problems were also within 1A of those from CE and SSM.

The Sokol and Skolnick data sets together include 222 similar protein pairs
and 628 dissimilar protein pairs. A classification of these 850 problems into
similar and dissimilar pairs was sought based on the SAS scores of the align-
ments obtained. The CE, SSM, and SAS-Pro alignment tools provided exact

classification of these protein pairs. The STSA algorithm, however, produced
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very short alignments for 5 of the similar pairs, leading to an imperfect clas-

sification.
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Figure 4.2: Distribution of SAS values obtained by SAS-Pro for similar and
dissimilar proteins in the Skolnick data set

Figure 4.2 shows the distributions of the SAS values obtained for similar
and dissimilar protein pairs for the Skolnick data set by SAS-Pro. The distri-
butions for the similar and dissimilar proteins were observed to be completely
disjoint, with lower SAS scores for similar proteins and higher SAS scores for
dissimilar proteins. A SAS score cutoff of 4A produced a perfect classification
of the alignment problems into similar and dissimilar protein pairs. Based
on this observation, a termination criterion for the SAS-Pro code was imple-
mented. For computations reported in the sequel, SAS-Pro was designed to
terminate if (a) an alignment with a SAS score of 4A or less is obtained, or
(b) all values of r,,, between 85% and 100% of the size of the smaller protein
are explored. In either case, the best alignment and the corresponding RMSD,

SAS score, and fragment length of the alignment are returned by the software.
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4.4.2 Non-sequential structure alignments

(h) 115b—115¢

Figure 4.3: Alignments obtained by SAS-Pro for the RIPC data set. These
alignments are in 100% agreement with the reference alignments [MDLO07]

We performed a computational study to determine the quality of SAS-Pro’s

non-sequential structure alignments utilizing the RIPC data set and the non-
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sequential alignment problems presented by Salem and Zaki [SZB09]. Salem
and Zaki [SZB09] provided two examples of the non-sequential structure align-
ments for which their alignment tool, STSA, performs better than other struc-
ture alignment tools. We performed an alignment of the corresponding two
protein pairs, 2LH3:A with 2HPD:A, and 1FSF:A with 11G0:A, and obtained
comparable alignments for both cases. For the 2LH3:A and 2HPD:A proteins,
we obtained an alignment with length 126 and RMSD 3.17A, as compared
to STSA’s alignment of length 117 and RMSD 3.27A. For the 1FSF:A and
1IG0:A proteins we obtained an alignment with length 117 and RMSD 2.68A,
as compared to STSA’s alignment of length 104 and RMSD 5.4A. We present
a quantitative comparison of the SAS-Pro alignment between the 2LH3:A and
2HPD:A proteins and other solvers in Table 4.3. As the results in this ta-
ble demonstrate, SAS-Pro provides an RMSD in the same ball-park range as
most other tools but with larger alignment length, thus providing a superior
structure alignment as the SAS,.q values indicate.

We next present results from a computational study with the 23 protein
pairs in the RIPC data set. For this test set, SAS-Pro provided alignments
which are 30% to 100% in agreement with the reference alignments. The me-
dian agreement of SAS-Pro is 70% and the mean is 62%. SAS-Pro provides
alignments with greater mean and median agreements than CE, DALI, FAT-
CAT, MATRAS, CA, SHEBA, SARF, and LGA. The corresponding box and
whisker plot of percentage agreement with reference alignments is shown in
Figure 4.4. STSA provides alignments with better mean and median agree-
ments with reference alignments than SAS-Pro. However, SAS-Pro provides
excellent quality alignments with 100% agreement with the reference align-
ments for eight problems, while STSA provides alignments in 100% agreement

with reference alignments for only four problems.
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Figure 4.4: Box and whisker plot for the performance of different alignment
tools for the RIPC data set. The red line represents the mean and the dot
represents the median of the box. (All results, except for SAS-Pro and CE,
were taken from [SZB09]).

The eight alignments for which SAS-Pro is in complete agreement with
reference structures are shown in Figure 4.3. These eight protein pairs rep-
resent alignment problems spanning all four types of alignment challenges
encountered in the RIPC data set, namely, repetitions, insertions/deletions,
permutations, and conformational changes. The protein pairs 1gbg-lovw (Fig-
ure 4.3(a)) and 1jj7-1vga (Figure 4.3(b)) present alignments with large require-
ments of insertions/deletions, not handled by all alignment tools. Specifically,
protein 1jj7-1vga consists of a loop containing different numbers of 3-strands,

which require insertion/deletion of the right S-strands to obtain the correct

alignment. SAS-Pro places no limit on number of insertions/deletions, result-
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ing in a very good alignment for this protein pair. Protein pairs 1nkl-1qdm
(Figure 4.3(c)), 1qas-1rsy (Figure 4.3(d)), 1nls-2bqgp (Figure 4.3(e)), and 1qq5-
3chy (Figure 4.3(f)) are examples of proteins with permutations. In the 1nls-
2bgp protein pair, the N-terminus of one protein aligns with the C-terminus
of the other protein, and vice versa. Most alignment codes match only the N-
terminus half of 1nls with the C-terminus half of 1bqp, while SAS-Pro aligned
the entire protein accurately. The 1qq5-3chy, 1nkl-1qdm, and 1qas-1rsy pro-
teins consist of multiple a-helices, which do not align sequentially. SAS-Pro
correctly aligns the right a-helices with each other, producing biologically rele-
vant alignments. Finally, protein pairs 1gsa-2hgs (Figure 4.3(g)) and 115b-115e
(Figure 4.3(h)) present conforma'tional changes which cause slight bends in the
structures. SAS-Pro was able to provide the correct structural alignment with

a 100% match with the reference.

| Alignment tool | RMSD (A) | Najign | SASuseq |

SAS-Pro 3.17 126 2.5
STSA 3.37 117 2.9
SARF2 3.05 108 2.8

STRUCTAL 2.27 56 4
DALI 4.8 87 5.5
CE 4.05 91 4.4

Table 4.3: Comparison of performance of alignment tools for aligning 2LH3:A
and 2HPD:A proteins. (All results, except SAS-Pro, taken from [SZB09])

There are three problems in the RIPC data set for which the agreement
of the SAS-Pro alignment with the reference in less than 50%. These three
problems are from the permutation class of alignments for which, as Mayr et
al. [MDLO7] suggest, biologically relevant alternative alignments may exist.
Hence, it is likely that SAS-Pro’s performance may be even better than what
the results of this section suggest.

Mayr et al. [MDLO07] and Salem and Zaki [SZB09] have discussed eight
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protein pairs from the RIPC data sét that are difficult to align. Amongst
these, Salem and Zaki [SZB09] reported the 1nkl-1qdm protein pair and the
1qq5-3chy protein pair, for which most alignment tools provided a 0% match
with the reference alignment. For both of these pairs, SAS-Pro and STSA pro-
vided a 100% match with the reference alignment. Amongst the remaining six
protein pairs, SAS-Pro provided high quality alignments with 100% agreement
with the reference for three pairs and over 50% agreement with the reference

for the remaining three pairs.

4.5 Discussion

We presented a novel formulation of the protein structure alignment prob-
lem as a single bilevel optimization problem that addresses the assignment
of amino acid residues and the structural superposition of proteins simulta-
neously. We employed derivative-free optimization techniques to deal with
the multi-modality and non-differentiability of the RMSD function in the pro-
posed formulation. The proposed structure alignment methodology is capable
of providing both sequential and non-sequential alignments.

Our computational experiments demonstrate that.the SAS-Pro model cap-
tures similarities within proteins accurately and provides alignments with lower
RMSD values and larger lengths of alignments as compared to CE, SSM, and
STSA for a majority of problems in the Sokol and Skolnick data sets. More-
over, SAS-Pro exhibits very good performance for the RIPC data set, for
which it provided alignments with 100% agreement with the reference for a
large number of protein pairs.

While the present methodology addresses both sequential and non-sequential

alignments, we will investigate the introduction of flexibility within proteins
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through including additional degrees of freedom for bond rotations in Chapter
5. The introduction of flexibility is a step towards the development of a more

comprehensive structure alignment tool.
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Chapter 5

Structural flexibility in SAS-Pro

In the previous chapter, we presented a novel approach that combines the
evaluation of the assignment and the rotation-translation variables through a
single optimization problem. We further generalized the alignment procedure
by eliminating the residue-sequentiality constraint, thus allowing for nonse-
quential alignments within the proteins under comparison.

Most alignment tools evaluate similarity within the proteins through rigid
structure superposition of their structures. Thus, the alignments obtained do
not account for flexibility within the proteins. Some alignment tools such as
FlexProt [SNWO02], FATCAT [YGO03], ProtDeform [RSWD09], and FlexSnap
[SZB10] address this issue by aligning smaller rigid fragments of proteins and
joining them together, allowing for twists and turns in the overall alignment.
However, these tools (except FlexSnap) are limited to providing only sequen-
tial structure alignments. SAS-Pro provides nonsequential alignments but is
limited to rigid structural alignments. In this chapter, we extend the scope
of SAS-Pros by introducing flexibility within the superimposing protein struc-
tures. This is achieved by allowing up to two bends within one of the protein

structures under comparison. This increases the complexity of the structure
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alignment problem by introducing additional variables within the structure
alignment problem and making the RMSD and SAS similarity functions more
nonlinear and nonsmooth.

In order to address the multi-modularity and nonlinearity of the RMSD
and SAS function utilized in this approach, we employ and investigate several
derivative-free optimization (DFO) techniques to determine suitable solutions.
These DFO techniques provide near optimal solutions to the corresponding
optimization problems. While these techniques perform quite well with small
number of degrees of freedom (as in SAS-Pro), we investigate their performance
under increasing number of degrees of freedom with a highly nonlinear and
nonsmooth objective function obtained due to the inclusion of flexibility within
protein structures. We determine the best DFO tool that may be utilized in the
context of nonsequential and flexible protein structure alignment to provide
good quality structural alignments.

In the remainder of this chapter, we discuss the mathematical model and
the additional modifications to SAS-Pro in Section 5.1. Further, in Section 5.2
we present a brief description of the derivative-free solvers analyzed in this
study. Finally, we conclude in Sections 5.3 and 5.4 with computational results

and present an analysis of the computational experiments.

5.1 Mathematical model

Consider proteins A and B to be structurally aligned. Let a; represent the it*
residue of protein A, and b; represent the j** residue of protein B. Also let
r(a;) and r(b;) represent the 3D coordinates of the corresponding amino acid
residues. We seek to align amino acid residues of A to amino acid residues of

B so that when A is rotated-translated onto B, a similarity measure between
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the two proteins is minimized. The main similarity function utilized in the

present approach is the RMSD function. The RMSD function is defined as

i

RMSD = (Zzsi,-lww(af))—-r(b,-)llz)/(Zzs,-j) (5.1)

Here, S;; is a binary variable that equals 1 when a; is aligned to b; and 0 other-
wise, and 6 represents the rotation-translation and flexibility transformations
applied to protein A. Thus, @ includes the three angles of rigid rotation, three
rigid translation vector components, and the bend positions and three angles

of bend for each bend introduced in protein A, as represented in Figure 5.1.

>

Y’ axis

Protein A .
Protein B

»

d
~
«” -7

10,0,0) X axis

Z axis

Figure 5.1: Schematic of variables and degrees of freedom in protein structure
alignment

The SAS-Pro model that minimizes the RMSD function is presented as a

single bilevel optimization problem as follows:
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(SAS-Pro master problem)
T = moin {mégn RMSD(S, 6)}
= moin SRMSD(6)
(SAS-Pro subproblem)
SRMSD(8) = msin RMSD(S, 8)

s.t. ZS,'J' < 1 V]
D 8;<1 Vi
J .
Zzsij ZTm

i

Sij € {0, 1} Vi, j

Here, r,, is the minimum number of residues that must be aligned to ensure
that the global optimum attains a non-trivial value. For any given 6, the

function SRMSD(6) is defined as
SRMSD(6) = mSin RMSD . (5.2)

The master problem objective function SRMSD(6) is in the space of the
0 variables alone. In this approach, the @ variables include the rotation and
translation vectors for rigid body superposition as well as the variables for
introducing flexibility within the protein structures.

Evaluation of the function SRMSD(8) involves solving the subproblem and
determining the optimal assignment variables S, for given values of 8 and pa-
rameter r,,. We obtain the solution to the subproblem by solving the following

k-cardinality linear assignment problem (k-LAP):
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(k-LAP) ko= mins » > a;Sy (5.3)
. YS,<1 Vi
Ssy<1 v
XJ:ZS@' >rm (5:4)
L

S,'j (S {0, 1} Vi,j

where a;; = ||6(r(a;)) — r(b;)]|?, Vi, 5. The 0 variables in the original SAS-Pro
model include only the rotation and translation variables for the superposition
of rigid protein structures. We further introduce flexibility within the protein
structures being compared by allowing up to 2 bends in the protein structures.
This introduces four additional degrees of freedom per bend that includes a
bend position (integer variable) and 3 angles of rotation (continuous variables)
for the bend within protein A in the 8 variable vector. Thus, the inclusion of
bends in protein A allows a non-rigid superposition of the protein structures.

A highly efficient polynomial-time algorithm, SKAP [DLMO01], is utilized to
solve the k-LAP problem. The solution to the k-LAP problem will provide an
assignment of exactly r,, amino-acid residues, as constrained in equation (5.4).
The numerical value of SRMSD(6) can be obtained from the objective value
in equation (5.3) of the k-LAP problem as SRMSD(8) = \/k¢/Tm- The k-
LAP model does not include any sequence preserving constraints. Thus, the
SAS-Pro model is designed to provide an optimal assignment and structure
superposition of protein structures for specified values of the parameter r,,,
with no sequence-preserving constraints.

The objective function utilized in this approach is highly nonlinear and
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nonsmooth. This necessitates the utilization of optimization techniques which
span the entire search space of the problem in the search for global op-
tima. Furthermore, an explicit algebraic form for the objective function is
not available, making it difficult to utilize derivative-based optimization meth-
ods. Hence, derivative-free optimization (DFQO) techniques have been utilized
to solve the master problem of the SAS-Pro model. DFO methods are often
useful in obtaining near-global solutions for highly multi-modal and nonlinear
functions.

In this study, we have utilized 22 different DFO solvers, based on a variety
of techniques that included direct search, pattern search, surrogate manage-
ment frameworks, domain partitioning methods, and stochastic algorithms [RS11].
These algorithms are designed to address the global optimization of nonlinear
and nonsmooth functions with nonlinear and integer constraints and optimized
for best performance with smaller number of variables.

While comparing proteins with similar sizes, we observed that the centroids
of the superimposed proteins almost overlap with each other. Our data set
includes a large number of protein pairs with comparable sizes. Thus, in
order to analyze the performance of the DFO solvers with lower number of
degrees of freedom, we introduced the assumption of overlapping centroids.
This eliminated the translation degrees of freedom and reduced the number
of degrees of freedom by 3. We explore the performance of the DFO solvers
with and without the inclusion of this assumption. Further, inclusion of every
bend introduced 4 more degrees of freedom per bend. Thus, we compare the
performance of the DFO solvers with 3, 6, 7, 10, and 11 degrees of freedom.
The value of the parameter r,, is set to the size of the smaller protein.

The protein structure alignment problem can also be addressed by optimiz-

ing the Structure Alignment Score (SAS score), instead of the RMSD function
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in the MINLP formulation. The SAS function is defined as

RMSD

SAS = Nieeag/ 100

Here, the Ng,g represents the total fragment length, defined as the sum of
lengths of aligned continuous fragments of five or more aligned residues. The
fragment length is defined for nonsequential alignments and is equivalent to
the length of alignment for sequential alignments.

The bilevel optimization problem formulation of the SAS-Pro model can
be easily reused with the SAS function as the objective. The master and

subproblems of this reformulation are summarized below:

(SAS objective master problem)
T = moin {msin SAS(S,6,rm)}
= moin SSAS(0,7,,)
(SAS objective subproblem)
SSAS(9) = msin SAS(S,8,ry,)
s.t. ZS,'J' < 1 Vj
Y S;<1 v
J
Z Z Sij 2 Tm
i ‘
Sij € {07 1} VZ,]

where, for any given 8 and r,,, the function SSAS(6, r,,) may be defined as

SSAS(0,ry) = msin SAS (5.5)
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We observe that a feasible solution to the subproblem for this reformation
with the SAS objective function can also be obtained by solving the K-LAP
problem described in Equations 5.3. The value of SSAS(6,ry,) for the feasible
solution can be obtained from the optimal solution of the K-LAP problem as
SSAS(6,tm) = \/Ke/Tm X % The value of Ngag is dependent on the value
of the parameter r,,. Thus, while using the SAS objective value, we include
Tm as an additional degree of freedom along with the S and 6 variables. The
optimal value of 7, is determined from the solution of the master problem,
along with the @ variables. Thus, while using the SAS objective function, the
additional degree of freedom allows us to compare the performance of the DFO
algorithms up to 12 degrees of freedom.

Note that the solution obtained from the k-LAP problem is only a feasible
solution to the SAS-based SAS-Pro subproblem since the value of Ng,g is not
necessarily optimal for the corresponding k-LAP solution. Hence, while this
approach produces very good qué.lity solutions, the optimality of the solution
obtained for the SAS objective function is not guaranteed. However, in prac-
tice, solutions from the k-LAP problem are observed to provide a very good

estimate to the optimal sub-problem solution.

5.2 Derivative-free optimization solvers

We have compared the performance of 22 DFO solvers in the context flexi-
ble protein structure alignment. These encompass a variety of approaches to
derivative-free optimization and their application to this highly nonlinear opti-
mization problem. A list of all the solvers employed in this study in presented
on Table 5.1.

Global model-based search methods utilize a surrogate model to guide the
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Solver | Version | Language |
ASA 26.30 C
BOBYQA N/A Fortran
CMA-ES 3.26.beta | Matlab
DAKOTA/DIRECT 4.2 C++
DAKOTA/EA 4.2 C++
DAKOTA/PATTERN 4.2 C++
DAKOTA/SOLIS-WETS 4.2 C++
DFO 2.0 Fortran
FMINSEARCH N/A Matlab
GLOBAL 1.0 Matlab
HOPSPACK 2.0 C++
IMFIL 0.86 Matlab
MCS 2.0 Matlab
NEWUOA N/A Fortran
NOMAD 3.3 C++
PSWARM 1.3 C, Matlab
SID-PSM 1.1 Matlab
SNOBFIT 2.1 Matlab
TOMLAB/GLCCLUSTER 7.3 Matlab
TOMLAB/LGO 7.3 Matlab
TOMLAB/MULTIMIN 7.3 Matlab
TOMLAB/OQNLP 7.3 Matlab

Table 5.1: Derivative-free solvers considered

optimization of the real model. In this study, we have included model-based
search methods such as NEWUOA, Bound Approximation BY Quadratic
Approximation (BOBYQA), and Radial Basis Function based optimization
(TOMLAB/RBF).

Lipschitzian-based partitioning techniques construct and optimize an un-
derestimator of the original objective function. By constructing this under-
estimator in a piecewise fashion, these methods provide possibilities for the
global, as opposed to only local, optimization of the original problem. We
have explored the branch-and-fit algorithm (SNOBFIT), the DIRECT al-
gorithm based solver (TOMLAB/GLCCLUSTER), and a branch-and-bound
based solver (TOMLAB-LGO), which are all based on this technique.
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The list of solvers includes stochastic solvers such as Adaptive Simulated
Annealing (ASA), Covariance Matrix Adaptation Evolution Strategy (CMA-
ES), genetic algorithms (DAKOTA/EA), and particle swarm algorithms (PSWARM).
We also included other global optimization solvers such as GLOBAL, Hybrid
Optimization Parallel Search PACKage (HOPSPACK), Multilevel coordinate
search (MCS), TOMLAB/MULTIMIN and TOMLAB/OQNLP solvers.

Local search methods such as trust region algorithms (DFQ), Mesh adap-
tive direct search methods (NOMAD), Nelder-Mead Simplex based meth-
ods (FMINSEARCH), pattern search algorithms (DAKOTA /PATTERN, SID-
PSM), IMplicit FILtering (IMFIL), and greedy search algorithm (DAKOTA /SOLIS-
WETS) were also explored in this study.

Thus, these solvers span all the different approaches to derivative-free op-
timization techniques. The SAS-Pro model with flexibility presents an oppor-
tunity to test these solvers to optimize a black-box non-smooth multimodal

objective function.

5.3 Implementation and Results

We conducted a detailed computational study of the SAS-Pro model with the
DFO solvers with the aim of analyzing the performance of the DFO solvers
in obtaining near-optimal structure alignments, with different iteration limits
and numbef of degrees of freedom. The experiments involved the Skolnick
data set [LCWI01], which is a set of 40 large size proteins from five different
fold families. An all-to-all pairwise alignment for all the proteins in the data
sets is obtained, resulting in 850 pairwise alignment problems.

The performance of the solvers and the flexibility methodology is also tested

with 10 problems from the RIPC data set. These problems present similar-
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ities with conformational changes which are expected to align well with the
inclusion of flexibility within protein structures.

In this study we compare the performance of the DFO solvers for both the
RMSD and the SAS similarity measures as objective functions. Table 5.2
presents the variable types and bounds for all the variables utilized in the
flexibility model. The formulation of the SAS-Pro model with the SAS objec-
tive also includes the parameter r,, as a variable which takes integer values.
Thus, the additional integer variable makes the corresponding objective more
non-smooth and difficult to optimize as compared to RMSD objective function

with identical problem specifications.

I Variable | Type | Lower bound | Upper bound |
RMSD objective N.A. N.A.
SAS objective N.A. N.A.
Rotation angles | continuous - T
Translation vectors | continuous -100 100
Bend angles continuous -T s
Bend position integer 1 min(Py, P»)
Tm integer 0.85 x min(Py, P;) min(Py, Ps)

Table 5.2: Solver settings for the DFO solvers. P;, P, represent the sizes of
the two proteins.

The 22 DFO solvers were analyzed for varying number of degrees of free-
dom and iteration limits. The flexibility of the protein structures is included
a variable number of degrees of freedom. Structure alignment problems with
no flexibility involve smaller number of degrees of freedom (less than 6), while
those where flexibility within the protein structures is included have larger
number of degrees of freedom (more than 7). Each degree of freedom is ana-

lyzed for a limit of 500, 1000, 5000 and 10000 iterations.
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5.3.1 Skolnick data set

We first compare the performance of the DFO solvers with respect to their
computational requirements and the ability to provide near-optimal solutions
with varying number of iterations. Since the exact optimal values for these
problems are unknown, we evaluate the performance of the solvers on the basis

of the best solution obtained for different number of iterations.
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Figure 5.2: Comparison of performance of 22 DFO solvers. Number of prob-
lems for which best solution was obtained vs. number of iterations with RMSD
objective for 3 degrees of freedom

Figures 5.2, 5.3, 5.4, and 5.5 represent the percentage of problems for which
the 22 DFO solvers provided the best RMSD values vs different number of iter-
ations for varying degrees of freedom. Figures 5.2 represents the protein struc-
ture alignment problems without allowing any flexibility within the proteins.
The corresponding RMSD objective function is smooth due to the absence of
any integer variables. For these problems with 3 and 6 degrees of freedom,
the SNOBFIT solver provides better solutions than any other DFO solver for
more than 80% of the alignment problems. This observation is also consistent

with the utilization of the SNOBFIT solver in SAS-Pro for best performance.
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Figure 5.3: Comparison of performance of 22 DFO solvers. Number of prob-
lems for which best solution was obtained vs. number of iterations with RMSD
objective for 7 degrees of freedom
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Figure 5.4: Comparison of performance of 22 DFO solvers. Number of prob-
lems for which best solution was obtained vs. number of iterations with RMSD
objective for 10 degrees of freedom
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Figure 5.5: Comparison of performance of 22 DFO solvers. Number of prob-
lems for which best solution was obtained vs. number of iterations with RMSD
objective for 11 degrees of freedom '

The performance of TMOLAB/RBF and TOMLAB/GLCCLUSTER are the
next best to SNOBFIT. This ranking of the DFO solvers is consistent with the
observations of Rios and Sahinidis [RS11] for smooth optimization problems
with low number of degrees of freedom.

Figures 5.3, 5.4, and 5.5 present the performance of the structure align-
ment problem with the inclusion of flexibility within the protein structures.
The RMSD objective function here is nonsmooth due to the inclusion of dis-
crete degrees of freedom representing the bend positions . For these problems
with 7 or more degrees of freedom and nonsmooth objective function, the
MCS, PSWARM, and CMA-ES solvers are observed to provide the best solu-
tion for the largest number of problems. However, for these large number of
degrees of freedom, the differences in the performance of the DFO solvers are
much smaller. This is also consistent with the observations of Rios and Sahini-
dis [RS11] for the case of nonsmooth optimization problems with increasing

number of degrees of freedom.
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Figure 5.6: Comparison of performance of 22 DFO solvers. Number of prob-
lems for which best solution was obtained vs. number of iterations with SAS
objective for 4 degrees of freedom
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Figure 5.7: Comparison of performance of 22 DFO solvers. Number of prob-
lems for which best solution was obtained vs. number of iterations with SAS
objective for 7 degrees of freedom
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Figure 5.8: Comparison of performance of 22 DFO solvers. Number of prob-
lems for which best solution was obtained vs. number of iterations with SAS
objective for 8 degrees of freedom
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Figure 5.9: Comparison of performance of 22 DFO solvers. Number of prob-
lems for which best solution was obtained vs. number of iterations with SAS
objective for 11 degrees of freedom
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Figure 5.10: Comparison of performance of 22 DFO solvers. Number of prob-
lems for which best solution was obtained vs. number of iterations with SAS
objective for 12 degrees of freedom

Figures 5.6, 5.7, 5.8, 5.9, and 5.10 represent the percentage of problems for
which the 22 DFO solvers provided the best SAS values vs different number of
iterations for varying degrees of freedom. The SAS objective function is nons-
mooth due to the inclusion of r,, that takes integer values. Hence, optimizing
the SAS function is more challenging than optimizing the RMSD function
for identical problem specifications. Figures 5.6 and 5.7 show that even with
the SAS objective, for a small number of degrees of freedom, the SNOBFIT
solver providés better solutions than any other DFO solvers. However, the
differences in the performances of the DFO solvers for are much smaller, in-
dicating no single superior DFO solver. With larger number of degrees of
freedom, the performance of the SNOBFIT solver deteriorates and the solvers
TOMLAB/RBF, TOMLAB/GLCCLUSTER, PSWARM and CMA-ES show
consistent good performance in obtaining near optimal solutions.

The SNOBFIT solver is based on a branch-and-fit approach that utilizes

intelligent space branching techniques along with local quadratic fits for the

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3.1 Skolnick data set

objective function. The solver utilizes a full stochastic quadratic model for the
local fits of the objective function. Since this involves O(n®) operations for the
linear algebra, this limits the number of variables that can be handled without
excessive overhead. Hence for larger number of degrees of freedom, the SNOB-
FIT solver possibly times out before producing a good solution to the structure
alignment problems. Stochastic solvers thus outperform the SNOBFIT solver

for larger number of degrees of freedom.
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Figure 5.11: Comparison of performance of 22 DFO solvers. Number of prob-
lems for which best solution was obtained w.r.t. number of degrees of freedom
with RMSD objective for 500 iterations

The comparison of different DFO solvers w.r.t. number of degrees of free-
dom for different number of iterations is shown in Figures 5.11, 5.12, 5.13,
and 5.14. The objective function used here in the RMSD function. It is ob-
served that amongst all the solvers, the MCS, CMA-ES, PSWARM and TOM-
LAB/GLCCLUSTER consistently provide the best performances for different
number of iterations.

A similar analysis for the SAS objective function is presented in Fig-

ures 5.15, 5.16, 5.17, and 5.18. The figures indicate that most DFO solvers
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Figure 5.12: Comparison of performance of 22 DFO solvers. Number of prob-
lems for which best solution was obtained w.r.t. number of degrees of freedom
with RMSD objective for 1000 iterations
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Figure 5.13: Comparison of performance of 22 DFO solvers. Number of prob-
lems for which best solution was obtained w.r.t. number of degrees of freedom
with RMSD objective for 5000 iterations
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Figure 5.14: Comparison of performance of 22 DFO solvers. Number of prob-
lems for which best solution was obtained w.r.t. number of degrees of freedom
with RMSD objective for 10000 iterations

perform similarly for different degrees of freedom and number of iterations.
PSWARM and CMA-ES are observed to perform slightly better than other
DFO solvers providing the best solution for about 20% of the problems. How-
ever, no one solver is observed to provide the best performance in all cases.
We further analyze the quality of solutions obtained from solving the flex-
ibility model using the DFO solvers. It is observed that after the inclusion
of the flexibility related degrees of freedom, none of the DFO solvers provide
optimal solutions to the structure alignment problem within a limit of 10000
iterations. However, the near-optimal solutions provided by these solvers are
observed to characterize similarity between the protein pairs accurately. Also,
amongst the RMSD and SAS objective functions, the solutions obtained using
the SAS function are observed to possess larger Ny.qy and lower SAS values,
indicating more biologically relevant alignments. This may be true due to in-
clusion of r,, as a variable while using the SAS objective which allows sampling

of a larger variety of alignments as compared to only one value of r,, utilized
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Figure 5.15: Comparison of performance of 22 DFO solvers. Number of prob-
lems for which best solution was obtained w.r.t. number of degrees of freedom
with SAS objective for 500 iterations
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Figure 5.16: Comparison of performance of 22 DFO solvers. Number of prob-
lems for which best solution was obtained w.r.t. number of degrees of freedom
with SAS objective for 1000 iterations

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3.1 Skolnick data set

~# - SNOBFIT

~ PSWARM

 TOMLAB GLCCLUSTER
80 - TOMLAB RBF

~~NOMAD

. * TOMLAB MULTIMIN
40 * ~#=COLINY DIRECT

20

-*-COLINY SOLIS-WETS

% Problems with best SAS value for 5000 iterations

Figure 5.17: Comparison of performance of 22 DFO solvers. Number of prob-
lems for which best solution was obtained w.r.t. number of degrees of freedom
with SAS objective for 5000 iterations
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Figure 5.18: Comparison of performance of 22 DFO solvers. Number of prob-
lems for which best solution was obtained w.r.t. number of degrees of freedom
with SAS objective for 10000 iterations
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in the RMSD objective based analysis. Thus, for future computations, the

flexible structure alignments are obtained using the SAS objective function.

5.3.2 RIPC data set

Based on the analysis of the Skolnick data set, we concluded that the use of
SAS objective function provides more biologically rélevant alignments than
minimizing the RMSD function alone. We have thus evaluated the alignments
in the RIPC data set by using the SAS objective function. Also, the analysis
indicates that the performance of six DFO solvers-MCS, PSWARM, CMA-ES,
SNOBFIT, TOMLAB/RBF, and TOMLAB/GLCCLUSTER, dominates the
performance curves for different degrees of freedom and different number of
iteration limits. Hence, we have compared the alignments obtained from only
these six solvers.

Table 5.3 shows the results obtained for the ten alignment problems after
the introduction of flexibility constraints. As obéerved here, for eight of the ten
problems we now obtain 100% agreement with the reference alignments. For
the remaining two, the alignment obtained is in much better agreement than
SAS-Pro without any flexibility. We believe that not all problems present a
100% agreement with the reference alignment since the SAS-Pro with flexibility
models are not solved to optimality by the DFO solvers due to increased
complexity caused by additional degrees of freedom.

We observe that there is no one solver that provides the best solution for
all the ten alignment problems. The best performance is obtained from the
CMA-ES, PSWARM and SNOBFIT solvers. These solvers collectively provide
the best solutions for nine of the ten problems with the best SAS values and
best agreement with the reference alignments.

Further, as an illustrative example of the performance of the SAS-Pro tool

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3.2 RIPC data set

Protein SAS-Pro SAS-Pro with flexibility
pair SAS | % ref match | SAS | % ref match | solver | no. bends

1b5t-1k87 | 3.07 62.5 2.28 100 CMA-ES 1
lgsa-2hgs | 4.1 100 2.8 100 CMA-ES 0
1ljwy-1puj | 8.23 375 75 50 PSWARM 1
1jwy-1u01 | 5.07 273 5.5 50 CMA-ES 2
lkia-1nw5 | 8.83 58.33 3.3 100 TOMLAB/RBF 1
1nkl-1qgdm | 5.85 100 3.5 100 SNOBFIT 0
1nls-2bqp 3.1 100 1.14 100 PSWARM 0
low5-2adm | 5.5 53.8 4.5 100 CMA-ES 2
lqas-1rsy | 2.72 100 1.09 100 PSWARM 1
1qg5-3chy | 3.4 100 34 100 SNOBFIT 0

Table 5.3: Results for the RIPC data set for flexible protein structure align-
ment. SAS measures are in A and % ref match represents % agreement with
the reference alignment.

with flexibility, we present an alignment between the 1TOP and 2BBM pro-
teins. These two proteins are known to be similar to each other through a
conformational change resulting in two bends in the 1TOP protein. In Fig-
ure 5.3.2, we show the corresponding alignments after allowing zero, one and
two bends in the flexible version of SAS-Pro. As observed in Figure 5.3.2(a),
the alignment obtained with zero bends is an average alignment that mini-
mizes the RMSD/SAS values without properly aligning the biologically rel-
evant parts. After the introduction of one bend, Figure 5.3.2(b) indicates
that the number of aligned residues increased considerably. However, a small
part of the two proteins is still misaligned. After the inclusion of two bends,
Figure 5.3.2(b) shows that most parts of the protein superimpose very well
with each other, resulting in a very good alignment between the proteins that

clearly depicts the similarity of the proteins.
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(a) 0 bends (b) 1 bend (c) 2 bends

Figure 5.19: Alignment of 1TOP protein with 2BBM protein using SAS-Pro
with flexibility. The alignment obtained after allowing (a) 0 bends, (b) 1 bend,
and (c) 2 bends.

5.4 Conclusions

Our analysis on the performance of several DFO solvers indicates that, for
up to 6 degrees of freedom, SNOBFIT provides the best solutions. As the
number of degrees of freedom increases, the stochastic solvers CAM-ES and
PSWARM, as well as the deterministic solvers MCS, TOMLAB/RBF and
TOMLAB/GLCCLUSTER provide the best solutions among all the solvers.
While these solvers are unable to provide optimal solutions within a limit
10000 iterations, the solutions obtained from these six solvers provide good
quality biologically relevant alignments. Further, the alignments obtained us-
ing the SAS objective function are observed to produce alignments with larger
fragment lengths than RMSD, thus providing more biologically relevant align-
ments as compared to the RMSD objective function.

Analysis of the RIPC data set concludes that the SAS objective function

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.4 Conclusions

produces good quality alignments for some of the flexible protein structure
alignment problems included the data set. We obtain a 100% agreement with
the reference alignment for eight out of ten problems, while improving the
alignment for the remaining two problems to 50% as compared to 35% without
flexibility. Thus, while the DFO solvers may not produce the optimal structure
alignments, the near-optimal solutions obtained from the solvers provide a
good estimate of the flexible structure alignments.

For rigid structural alignments, excellent quality alignments with very close
to optimal solutions are obtained using the original SAS-Pro alignment tool.
The flexibility option for SAS-Pro will provide considerably better alignments

only in cases where flexibility-affected alignments are anticipated.
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Chapter 6

Conclusions

In this chapter, we first present conclusions of the thesis and highlight our
specific contributions chapter-wise. Then, we present recommendations for

future work.

6.1 Thesis conclusions and contributions

In this thesis, we have studied two approaches to the protein structure align-
ment problem, especially addressing the challenges of computational perfor-
mance, allowance of flexibility, and nonsequential alignments.

In Chapter 2, we presented a comprehensive review of the structure align-
ment tools developed in the past three decades. We classified these tools based
on protein structure representations, and analyzed their strengths and limi-
tations in terms of computational speed and alignment accuracy. We also
examined the different similarity criteria used for evaluating quality of struc-

ture alignments. The main conclusions from this chapter are as follows:

e For sequential alignments, dynamic programming techniques have proven

to be effective.
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e For nonsequential alignments, continuous alignment methods are most

promising.

e The problem of fast nonrigid and nonsequential alignment of proteins is

a challenge in previous literature.

In Chapter 3 we enhanced the computational efficiency of the state-of-the-
art structure alignment tool CMOS. The computational performance of CMOS
is governed by effective reduction and bounding schemes. We introduced phys-
ical property information constraints as additional reduction schemes. These
schemes introduce approximations in an otherwise exact algorithm but resulted
in a five-fold reduction of the computational requirements of the CMOS al-
gorithm. Furthermore, we demonstrate that this increase in computational
efficiency leads to solutions of more complex structure alignment problems
which were unsolvable earlier. The improved CMOS algorithm provides near-
optimal solutions for over 80% problems in the Sokol and Skolnick data sets
that were previously unsolved. Finally, the inclusion of the physical property
constraints provided more biologically relevant alignments, and eliminated iso-
lated residue matches.

In Chapter 4, we presented a novel reformulation of the protein structure
alignment problem in the form of a single bilevel optimization problem that
addresses the assignment of amino acid residues and the structure superpo-
sition of proteins simultaneously. This model allows for both sequential and
nonsequential structure alignments. We demonstrated via computational ex-
periments that the proposed model accurately captured similarities among
the benchmark protein data set cases. Based on this model, we introduced
the structure alignment tool SAS-Pro that employs derivative-free optimiza- |
tion techniques to obtain quickly near-optimal solutions. SAS-Pro provides

superior alignments with lower RMSD values and larger lengths of alignments
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when compared to the commonly used structure alignment tools CE, SSM,
and STSA for over 50% problems in the Sokol and Skolnick data sets. More-
over, SAS-Pro exhibits excellent performance for the RIPC data, set which
comprises of complex nonsequential structure alignment problems. For this
set, SAS-Pro provides alignments with 100% agreement with the reference for
eight of the 23 protein pairs. In this sense, it does better than the commonly
used alignment tools CE, DALI, FATCAT, MATRAS, CA, SHEBA, SARF,
and LGA. In addition, for the same data set, SAS-Pro produces a median
agreement of 70%, which is better than these other tools, while matching the
performance of the STSA algorithm. The computational requirements of SAS-
Pro are low, requiring on average 1 CPU minute per protein pair on an Intel
Quad Core 2.83 GHz processor with 6 GB RAM.

In Chapter 5, we expanded the scope of SAS-Pro through introduction
of flexibility within protein structures under comparison. We performed an
extensive computational analysis of 22 derivative-free optimization solvers in
the context of this complex nonlinear nonsmooth optimization problem with
added degrees of freedom to determine the most suitable solution approach.
This extensive analysis provided systematic comparisons for the performance
evaluation of solvers for optimizing black-box nonsmooth nonlinear objective
functions, an area in which no previous comparisons have been presented for
such a large collection of solvers on black-box models. The results demon-
strated that SAS-Pro provides excellent quality alignments for a set of ten
similar and flexible protein pairs.

In conclusion, the SAS-Pro approach provides an alignment tool capa-
ble of providing near-optimal nonsequential flexible protein structure align-
ments with low computational requirements. An implementation of SAS-

Pro without the flexibility option is freely available online for download at
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http://eudouxs.cheme.cmu.edu/saspro/SAS-Pro.html. We plan to intro-

duce the flexibility alignment option in future releases of SAS-Pro.

6.2 Future directions

In this dissertation, we have proposed novel optimization solutions for address-
ing complex protein structure alignment problems. The following research
directions can further improve our understanding of the structure alignment
problem, and make further progress toward a more comprehensive structure

alignment tool.

6.2.1 Enhancements to the CMOS algorithm

The increased computational efficiency of CMOS has increased the applicabil-
ity of the algorithm to larger and more difficult alignment problems. However,
the algorithm is still not efficient enough for an all-to-all comparison of PDB

protein structures. The following strategies may be examined in this context.

e SSE expansion: The current SSE reduction scheme utilizes only a—helices
and S—strands for eliminating amino acid residue matches. More spe-
cific secondary structure types, such as different types of a—helices,
B—strands, bends, loops and coils, may also be utilized to develop a more
comprehensive reduction scheme. Further, Kolodny et al. [KKGL02] has
suggested a set of over 200 commonly found structural features in pro-
tein structures that may also be used as a secondary structure library to

develop a more comprehensive reduction scheme.

e Upper bounding: It is observed in the CMOS algorithm that, while the

lower bound obtained by CMOS reaches the optimal value in a small
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number of iterations, the upper bound of CMOS is not tight enough, re-
sulting in a large number of iteration for convergence. Developing better
upper bounding techniques would result in a considerable improvement

in the performance of the CMOS algorithm.

6.2.2 Applications and enhancements of the SAS-Pro

tool

The SAS-Pro tool introduced in this thesis provides a generalized framework
for complex protein structure alignment problems. It would be interesting to
perform a comprehensive analysis of nonsequentiality and flexibility in the pro-
tein database [pdb] using the SAS-Pro model with suitable DFO solvers. Also,
our current computational experiments provide excellent results with homolo-
gous protein pairs. It would be interesting to investigate the performance and
utility of SAS-Pro towards identifying similarities amongst distantly related
protein structures as well. Qur current analysis indicates that a comparison of
representative proteins from the the fold families in the SCOP database with
the remaining proteins in the PDB database would require about 145 CPU
years for a complete comparison. This may be further reduced considerably
through intelligent choice of protein pairs to compare and parallelization of
the comparison process.

The SAS-Pro framework may be further enhanced by addressing the fol-

lowing issues.

e Solution optimality: The objective function of the SAS-Pro model rep-
resents the value function of an integer program. A careful theoretical
analysis of this function could be used to determine a sufficient domain

resolution that could be utilized in the context of a branch-and-bound

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.2.2 Applications and enhancements of the SAS-Pro tool

algorithm for exact solutions.

e Parallel computation: Since the SAS-Pro approach is based on search
techniques (DFO solvers), the algorithm may be parallelized for reduc-
ing the computational time requirements of the solver. Considerable
computational gains may be obtained through parallelization over parti-
tions of variable space of the problem or different values of the parameter

Tm.

e Variable reduction: Pre-computed information, such as secondary struc-
ture types, known protein relationships, and information about bend
positions, may also be incorporated in the algorithm for more biologi-

cally relevant alignments and improved computational performance.
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[AF96] N. N. Alexandrov and D. Fischer. Analysis of topological and
nontopological structural similarities in the PDB: new examples
with old structures. Proteins, 1996.

This paper describes an improvement of SARF tool,
SARF2 which is based on a fast search of aligned frag-
ments based on secondary structures. A dynamic pro-
gramming refinement of the aligned fragments gives the
optimal structural alignment.

[AGM90] S. F. Altschul, W. Gish, and W. Miller. Basic local alignment
search tool. Journal of Molecular Biology, 215:403-410, 1990.

The sequence alignment tool, BLAST, is described in
detail in the paper.

[AMO08] R. Andreani and J. M. Martnez. Trust-region superposition meth-
ods for protein alignment. IMA Journal of Numerical Analysis,
28:690-710, 2008.

This paper presents a trust-region method for opti-
mizing the LG score maximization [GL96] for struc-
ture alignment. The algorithm uses an iterative scheme
with alternate calculation of a suitable alignment by dy-
namic program and maximization of the LG score by
optimizing a quadratic function estimation of the LG
score around the alignment. The method requires lower
computational resources than STRUCTAL and pro-
duces better quality solutions than STRUCTAL only
in case of proteins with high level of structural similar-

ity.

[AMMY08] R. Andreani, J. M. Martnez, L. Martnez, and F. Yano. Contin-
uous optimization methods for structure alignments. Math Pro-
gramming Ser. B, 112:93-124, 2008.
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This paper presents a Gauss-Newton method for struc-
tural alignment which incorporates alignments with in-
ternal flexibility. The Gauss-Newton approach is used
to optimize the non-smooth and non-continuous RMSD
function for different alignments through an itera-
tive method that alternates between obtaining a suit-
able alignment and identifying a suitable rotation-
translation superposition transformation between the
proteins. The algorithm performs at par with state-of-
the-art alignment tools for proteins with high structural
similarity.

[AS97] S. F. Altschul and A. A. Schaffer. Gapped BLAST and PSI-
BLAST: A new generation of protein database search programs.
Nucleic Acids Research, 25:3389-3402, 1997.

Further improvements to BLAST, namely, GAP-
BLAST and PSI-BLAST, are discussed in this paper.

[ATG92] N. N. Alexandrov, K. Takahashi, and N. Go. Common spatial
arrangements of backbone fragments in homologous and non-
homologous proteins. Journal of Molecular Biology, 225:5-9,
1992.

The paper presents the SARF alignment tool based on
alignment of small protein fragments which are further
joined together to obtain an optimal alignment. The
smaller protein fragments are aligned through a con-
tinuous method [McL82] which aims at minimizing the
RMSD value.

[BBC06]  S. Bhattacharya, C. Bhattacharyya, and N. Chandra. Projections
for fast protein structure retrieval. BMC Bioinformatics, 7:S5-
S17, 2006.

The authors describe an alignment tool based on pro-
jection vectors obtained from distance matrices. Pro-
teins are represented as projections with constant norm
value and orthogonal property.

[BHB*07] D. Barthel, J. D. Hirst, J. Blazewicz, E. K. Burke, and N. Krasno-
gor. ProCKSI: A decision support system for protein (structure)
comparison, knowledge, similarity and information. BMC Bioin-
formatics, 2007.

This paper presents an introduction to the ProCKSI
platform which integrates different structure compari-
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son tools like DALI, CE and TM-align as well as differ-
ent similarity measures like USM and MAX-CMO on a
single platform.

[CCI*04] A. Caprara, R. Carr, S. Istrial, G. Lancia, and B. Walenz. 1001
optimal PDB structure alignments: Integer programming meth-
ods for finding the maximum contact map overlap. Journal of
Computational Biology, 11:27-52, 2004.

This paper presents a Lagrangian-relaxation-based
branch-and-cut algorithm for the integer program for-
mulation based on contact maps where the solution
to the Lagrangian relaxation produces tight upper
bounds. This led to the ability to solve problems with
up to 1000 residue-long proteins, which is a consider-
able improvement over previous studies.

[CHK*02] B. Carr, W. Hart, N. Krasnogor, J. Hirst, E. Burke, and J. Smith.
Alignment of protein structures with a memetic evolutionary al-
gorithm. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pages 1027-1034, 2002.

In this paper, the authors suggest a memetic evolution
algorithm the maximum contact map overlap formula-
tion of the structure alignment problem. Basic genetic
algorithm operators, such as crossover and mutation are
used, along with some added local search strategies, in-
cluding sliding, wiper and split motions. They compare
the algorithm with LGA and a genetic algorithm on a
set of 18 proteins, and observe that the algorithm does
just as well as others.

[CL02] A. Caprara and G. Lancia. Structural alignment of large-size
proteins via lagrangian relaxation. In Proceedings of the Interna-
tional Conference on Computational Biology (RECOMB), pages
100-108, 2002.

This paper presents an introduction to the use of La-
grangian relaxation for obtaining bounds in the branch-
and-cut algorithm [LCWIO1]. The Lagrangian bounds
are tighter than the bounds obtained using the meta-
heursitics proposed in their previous work [LCWIO1].

[CL04] R. D. Carr and G. Lancia. Compact optimization can outper-
form separation: A case study in structural proteomics. {OR: A
Quarterly Journal of Operations Research, 2:221-233, 2004.
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In this paper, the authors introduce of a compact in-
teger program formulation of structure alignment rep-
resented by contact maps. This formulation provides
a tighter linear programming relaxation than previous
formulations [LCWIO01].

[CLIOO] R. D. Carr, G. Lancia, and S. Istrail. Branch-and-cut algorithms
for independent set problems: Integrality gap and an application
to protein structural alignment. Technical report, Sandia National
laboratories, 2000. Sandia Report SAND2000-2171.

This report outlines a branch-and-cut algorithm for the
integer program formulation based on contact maps.

[FC96] A. Falicov and F. E. Cohen. A surface of minimum area metric
for the structural comparison of protein. Journal of Molecular
Biology, 258:871-892, 1996.

In this paper, the authors describe a structure align-
ment method using an area minimization technique.
Initially an alignment is found using dynamic program-
ming for a similarity matrix based on triangulation dis-
tances. The alignment is then refined minimizing the
area measure using conjugate gradient, downhill sim-
plex and Powell’'s method of minimization. Tough the
measure they use is observed to be applicable only in
the same homologue family, in general their method is
able to obtain the same clustering as FSSP and similar
RMSD values for protein alignments.

[FKR*70] S. T. Freer, J. Kraut, J. D. Robertus, H. T. Wright, and Ng. H.
Xuong. Chymotrypsinogen: 2.5-A Crystal Structure, Comparison
with a-Chymotrypsin, and Implications for Zymogen Activation.
Biochemistry, 9:1997-2009, 1970.

In this paper, experimental results depicting structural
similarities between proteins with low sequence identity
are presented, thus establishing importance of structure
alignment.

[GKO08] A. Guerler and E. W. Knapp. Novel protein folds and their non-
sequential structural analogs. Protein science, 17:1374 — 1382,
2008.

This paper describes a protein structure alignment tool
that provides nonsequential structure alignments.
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[GL96]

[GMBY6)]

(GPI99]

[Gra04]

[GSK93]

M. Gerstein and M. Levitt. Using iterative dynamic programming
to obtain accurate pairwise and multiple alignments of protein
structures. In D. States, P. Agarwal, T. Gaasterland, L. Hunter,
and R. Smith, editors, Proceedings of international conference on
intelligent systems in molecular biology, pages 59—67. AAAI Press,
1996.

In this paper, the authors develop an iterative dynamic
programming algorithm called STRUCTAL, which uses
a similarity matrix based on the inter-residue distances
of aligned proteins. The objective function used is a
variation of the weighted RMSD with a gap penalty.

J. F. Gibrat, T. Madej, and S. H. Bryant. Surprising similarities
in structure comparison. Current Opinion in Structural Biology,
pages 377-385, 1996.

D. Goldman, C. Papadimitriou, and S. Istrail. Algorithmic as-
pects of protein structure similarity. In Proceedings of the 40th
annual symposium on foundations of computer science (FOCS),
pages 512-522. IEEE Computer society, 1999.

The authors prove that the MAX-CMO problem for
proteins is NP-hard and outline some special cases (self-
avoiding walks) where the problem can be solved in
polynomial time. They also enumerate some of the re-
quirements a good similarity measure must have, which
has been used as a benchmark since.

J. Gramm. A polynomial-time algorithm for the matching of
crossing contact-map patterns. IEEE/ACM transaction on com-
putational biology and bioinformatics, 1:171-180, 2004.

This paper introduces a polynomial time dynamic-
programming-based algorithm for contact maps based
alignment problems with special structures. The pro-
posed approach solves a limited class of problems, but
may be utilized as plausible building block for other
algorithms.

A. Godzik, J. Skolnick, and A. Kolinski. Regularities in interac-
tion patterns of globular proteins. Protein Engineering, 6:801-
810, 1993.

In this paper a Monte Carlo based simulated anneal-
ing technique for finding protein structure alignment is
described.
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[HPOO]

[HS93]

[HS96]

[IALO4]

[JL07]

L. Holm and J. Park. Dalilite workbench for protein structure
comparison. Bioinformatics Applications Note, 16:566-567, 2000.

This paper introduces a web-based server for the state-
of-the-art alignment tool DALI [HS93].

L. Holms and C. Sander. Protein-structure comparison by align-
ment of distance matrices. Journal of Molecular Biology, 233:123-
138, 1993.

The paper describes in detail the algorithm DALI,
which is one of the most widely used structural align-
ment tool. DALI uses a monte carlo based technique
with distance matrix representation for finding align-
ments. The technique is quite fast (5-10 minutes per
alignment), however there is no guarantee of global op-
timality of the solution obtained. In most cases, the
solution obtained is a local solution.

L. Holm and C. Sander. The fssp database: Fold classification
based on structure-structure alignment of proteins. Nucleic Acids

Research, 24:206-209, 1996.

This paper describes the FSSP database.

V. A. Ilyin, A. Abyzov, and C. M. Leslin. Structural alignment
of proteins by a novel topfit method, as a superimposition of

common volumes at a topmax point. Protein Science, 13:1865—
1874, 2004.

In this paper the authors describe the TOPFIT method
for structure alignment which uses vornoi representa-
tion of the proteins.In this method the tetrahedrals in
the vornoi diagram are matched to provide an align-
ment, which is further improved by addition of more
tetrahedral matches. The method is compared with
DALI and CE and is observed to provide better RMSD
values though the number of aligned residues is smaller.

B. J. Jain and M. Lappe. Joining softassign and dynamic pro-
gramming for the contact map overlap problem, 2007.

In this paper, the authors describe a method called
soft-assign for solving the maximum common subgraph
(MCS) problem. Softassign minimizes a continuous
quadratic objective by using simulated annealing. The
solution obtained is converted to a feasible solution for
the MAX-CMO problem using dynamic programming.
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This approach is fast and has been observed to provide
solutions that are close to the optimal for most data
sets.

(KHO4] E. Krissinel and K. Henrick. Secondary-structure matching
(SSM), a new tool for fast protein structure alignment in three
dimensions. Acta Crystallographica Section D: Biological Crystal-
lography, 60:2256-2268, 2004.

The paper presents the SSM alignment tool based on
a secondary structure based graphical representation
of proteins [SB97]. It utilizes both graph theory algo-
rithms as well as continuous optimization algorithms.
The results suggest that SSM performs comparable to
DALI, CE and VAST with lesser computational re-
quirements. It is one of the alignment tools used in the
development of SCOP database.

[KKLO5]  R. Kolodny, P. Koehl, and M. Levitt. Comprehensive evalua-
tion of protein structure alignment methods: scoring by geometric
measures. Journal of Molecular Biology, 346:1173-1188, 2005.

In this paper, the authors compare 6 structure align-
ment methods using geometric measures of comparison.
They conclude that STRUCTAL, SSM and LSQMAN
perform the best among the 6 methods STRUCTAL,
SSM, LSQMAN, DALI, CE and SSAP.

[KP04] N. Krasnogor and D. A. Pelta. Measuring the similarity of protein
structures by means of the universal similarity metric. Bioinfor-
matics, 20:1015-1021, 2004.

This paper describes the universal similarity metric
(USM) for structure comparison. USM evaluates simi-
larity between two protein structures without actually
finding an alignment. The measure is only an estimate
of the similarity, which can be further improved through
the use of alignment tools.

[Kra04] N. Krasnogor. Self generating metaheuristics in bioinformatics:
The protein structure comparison case. Genetic Programming and
Evolvable Machines, 5:181-201, 2004.

In this paper, the author proposes a memetic algorithm
for solving the maximum contact map overlap prob-
lem. This is an improvement over the Carr et al. paper
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[KS83]

[LCWI01]

[LG98]

[LKRO03]

[LKSDOO]

through the introduction of memetic processes. The al-
gorithm is marginally better than a genetic algorithm
but clearly better than LGA.

W. Kabsch and C. Sander. Dictionary of protein secondary struc-
ture: pattern recognition of hydrogen-bonded and geometrical
features. Biopolymers, 22:2577-2637, 1983.

This paper presents the DSSP tool developed to iden-
tify physical properties like secondary structures and
hydrophobicity from the 3D structure and side-chain
placement.

G. Lancia, R. Carr, B. Walenz, and S. Istrail. 101 optimal PDB
structure alignments: A Branch-and-cut algorithm for the max-
imum contact map overlap problem. In Proceedings of the fifth
annual international conference on Computational biology, Mon-
treal, Quebec, Canada, pages 193-202, 2001.

This paper introduces the integer program formulation
based on contact maps with separation of clique in-
equalities. A branch-and-cut method is proposed, where
at every node they add the most violated clique inequal-
ity is added to the relaxed integer program.

M. Levitt and M. Gerstein. A unified statistical framework for
sequence comparison and structure comparison. Proc. Natl. Acad.
Sci., 95:5913-5920, 1998.

The LG score similarity metric is introduced here. The
LG score provides more meaningful alignments than the
RMSD measure as it also accounts for introduced gaps.

J. Leluk, L. Konieczny, and 1. Roterman. Search for structural
similarity in proteins. Bioinformatics, 19:117-124, 2003.

This paper presents the VeaR alignment tool that is
based on proteins represented as sequences of dihe-
dral angle and radius of curvature for fragments of 5
residues. The alignment is obtained by performing a
multiple sequence alignment on the sequences of dihe-
dral angles and the log of the radii of curvature.

P. Lackner, W. A. Koppensteiner, M. J. Sippl, and F. S.
Domingues. ProSup: A refined tool for protein structure align-
ment. Protein Engineering, 11:745-752, 2000.
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The paper introduces the ProSup alignment tool based
on alignment of small fragments.

[Mar00] A. C. R. Martin. The ups and downs of protein topology; rapid
comparison of protein structure. Protein Engineering, 13:829-837,
2000.

This paper presents the TOPSCAN alignment tool
based on secondary structure representation obtained
through the DSSP tool [KS83].

[MBHC95] A.G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. Scop:
A structural classification of proteins database for the investiga-

tion of sequences and structures. Journal of Molecular Biology,
247:536-540, 1995.

This paper describes the methodology behind the cre-
ation of the SCOP database of proteins.

[McL82] A. D. McLachlan. Rapid comparison of protein structures. Acta.
Cryst., A38:871-873, 1982.

This paper describes a fast method for RMSD evalua-
tion between protein structures.

[MDBO98] K. Mizuguchi, C. M. Deane, T. L. Blundell, and J. P. Overing-
ton. HOMSTRAD: A database of protein structure alignments
for homologous families. Protein Science, 7:2469-2471, 1998.

The HOMSTRAD database for fold families is intro-
duced in this paper. The COMPARER [SB90] structure
alignment tool is used to obtain structure alignments on
this platform.

[MGB95] T. Madej, J. F. Gibrat, and S. H. Bryant. Threading a database
of protein cores. Proteins, 23:356-369, 1995.

This paper outlines the VAST method, in the context
of identifying ’true positives’ in a fold-recognition ex-
periment. This employs fast search by SSE alignment,
followed by Monte Carlo refinement at the level of back-
bone coordinates.

[MST09] J. Melvin, J. Sokol, and C. Tovey. Finding optimal solutions to
large cmo instances. working paper, 2009.

The authors introduced a new data structure to address
the issue of large memory requirements for the MAX-
CLIQUE reformulation [SBS05|. They obtain a O(N)
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improvement over the existing method in both time and
space requirements.

[NMK04] M. Novotny, D. Madsen, and G. J. Kleywegt. Evaluation of pro-
tein fold comparison servers. Proteins: Structure, Function and
Bioinformatics, 54:260-270, 2004.

The paper presents a review comparing web-based
structure alignment tools on the basis of their perfor-
mance as well as presentation. The review showed that
different solvers had different performance levels in dif-
ferent test conditions and there is no server that can be
considered as the best or worst.

[INW70] S. Needleman and C. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins.
J. Mol. Biol., 48:443-453, 1970.

This paper describes the basic dynamic programming
algorithm for sequence alignment.

[OMJ*97] C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones, M. B.
Swindells, and J. M. Thornton. CATH-A hierarchic classifica-
tion of protein domain structures. Structure, 5:1093-1108, 1997.

In this paper the authors describe the classification of
proteins into the CATH database. The structures are
classified at 5 levels, namely C - class, A - architecture,
T - topology, H - homologue family and S - sequence
family. Each of these is an increasing level of classi-
fication. Thus every protein can be represented to be
belonging to a CATHS number which is a 5-tuple.

[0SO02]  A.R. Ortiz, C. E. M. Strauss, and O. Olmea. Mammoth (match-
ing molecular models obtained from theory): An automated
method for model comparison. Protein Science, 11:2606-2612,
2002.

In this paper, the MAMMOTH algorithm is described.
The algorithm is based on a dynamic programming
based alignment using similarity scores obtained from a
RMSD minimization technique of McLachlan [McL82]

[PGKO5]  D. Pelta, J. R. Gonzalez, and N. Krasnogor. Protein structure
comparison through fuzzy contact maps and the universal simi-
larity metric. In Proceedings of the Jth Conference of European
Society for Fuzzy Logic and Technology - LFA, pages 1124-1129,
2005.
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In this paper, the Universal Similarity Metric (USM)
is introduced. USM provides a measure of similarity
without aligning the proteins. USM is defined using the
fuzzy contact maps representation and provides a ball-
park estimate for the similarity of two proteins. The
clustering obtained from the USM of pairs of proteins
is observed to be in agreement with the clustering ob-
served in SCOP database.

[PGVO08] D. A. Pelta, J. R. Gonzlez, and M. M. Vega. A simple and fast
heuristic for protein structure comparison. BMC Bioinformatics,
9:161-176, 2008.

This paper presents a multi-start variable neighborhood
search metaheuristic with pair addition and deletion
heuristics for solving the MAX-CMO formulation. The
heuristic is run for a fixed number of iterations and
provides an approximate solution to the MAX-CMO
problem. The proposed approach is observed to be com-
putationally expensive.

[PKBC*05] D. Pelta, N. Krasnogor, C. Bousono-Calzon, J. L. Verdegay, and
E. Burke. A fuzzy sets based generalization of contact maps for

the overlap of protein structures. fuzzy sets and systems, 1:171-
180, 2005.

Fuzzy contact maps have been introduced in this paper
using multiple thresholds to capture different levels of
residue interactions. A variable neighbor search (VNS)
metaheuristic based algorithm is presented for align-
ment and protein clustering is performed on various
data sets which is observed to be similar to clustering
in the SCOP database.

[Pul07] W. Pullan. Protein structure alignment using maximum cliques
and local search, 2007.

The authors present a heuristic local search method
which provides an approximate solution for the MAX-
CLIQUE reformulation [SBS05]. The approach is on
order of magnitude faster than [SBS05] and provides
the exact optimal solution for most problems in the
tested data set.

[RSWDO09] J. Rocha, J. Seguraa, R. C. Wilson, and S. Dasgupta. Flexible
structural protein alignment by a sequence of local transforma-
tions. Bioinformatics, 25:1625-1631, 2009.
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This paper discusses the use of a sequence of local rigid-
body transformations for aligning proteins, resulting in
different rotation and translation angles for different
fragments of the proteins. The resulting alignment is
non-rigid, providing a tool for comparing similar pro-
teins with small number of bends.

[SB90] A. Sali and T. L. Blundell. Definition of general topological equiv-
alence in protein structures: A procedure involving comparison of
properties and relationships through simulated annealing and dy-
namic programming. Journal of Molecular Biology, 212:403-428,
1990.

This paper presents an introduction to the Comparer
alignment tool based on a multi-level sequence repre-
sentation of proteins. The alignment is obtained as a
weighted sum of the sequence alignments found at each
level. The sequence representations are based on pri-
mary, secondary and tertiary structure of proteins as
well as physical properties such as H-bonds and dihe-
dral angles. A more biologically relevant alignment of
the proteins is obtained. However the method is ob-
served to be computationally expensive.

[SB97] A. P. Singh and D. L. Brutlag. Hierarchical protein structure su-
perposition using both secondary structure and atomic represen-
tations. In Proceedings in International Conference of Intelligent
Systems in Molecular Biology, 1997.

This paper describes a method called LOCK for struc-
ture comparison. In this paper a protein structure rep-
resentation as a vector of secondary structures is intro-
duced. The method is compared with DALI and argued
to have obtained better RMSD values.

[SB9g] I. Shindyalov and P. Bourne. Protein structure alignment by
incremental combinatorial extension (CE) of the optimal path.
Protein Engineering, 11:739-747, 1998.

In this paper the authors describe the method Combi-
natorial Extension (CE) for structural alignment. CE
is a heuristic method based on 8-mer residue fragment
comparison through distance matrix norms.

[SBS05] D. M. Strickland, E. Barnes, and J. S. Sokol. Optimal protein
structure alignment using maximum cliques. Informs:Operations
Research, 53:389-402, 2005.
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The authors introduce the MAX-CLIQUE reformula-
tion of structure alignment problem based on contact
maps. A coloring algorithm is developed which utilizes
the special graph structure for better performance. The
method is useful only for aligning small proteins since
the clique graph structure is memory intensive.

[Shi07] T. Shibuya. Efficient substructure RMSD query algorithms. Jour-
nal of computational biology, 14:1201-1207, 2007.

This paper presents a fast alignment search tool which
identifies protein alignments with low RMSD values.

[Shil0a] T. Shibuya. Fast Hinge Detection Algorithms for Flexible Protein
Structures. IEEE/ACM transactions on computational biology
and bioinformatics, 7:333-341, 2010.

This paper presents a fast alignment search tool which
identifies flexible protein alignments with very few gaps.

[Shil0b] T. Shibuya. Searching protein three-dimensional structures in
faster than linear time. Journal of computational biology, 17:593—
602, 2010.

This paper presents a fast alignment search tool which
identifies protein alignments with no gaps.

[Sip82] M. J. Sippl. On the problem of comparing proteins: Development
and applications of a new method for the assessment of structural

similarities and polypeptide conformations. Journal of Molecular
Biology, 156:359-388, 1982.

The author introduces the Dk procedure used to iden-
tify similarity between protein structures. The calcula-
tion of Dk values is fast and can be used to derive the
level of similarity between two proteins.

[SJS10] T. Shibuya, J. Jansson, and K. Sadakane. Linear-time protein
3-D structure searching with insertions and deletions. Algorithms
for Molecular Biology, 5:7-14, 2010.

This paper presents a fast alignment search tool which
identifies protein alignments with a fixed number of

gaps.

[SLL93] S. Subbiah, D.V. Laurents, and M. Levitt. Structural similarity of
dna-binding domains of bacteriophage repressors and the globin
core. Current Biology, 3:141-148, 1993.
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The paper introduces an iterative dynamic program-
ming utilized in the development of STRUCTAL align-
ment tool [GLI6].

[SW81] T.F. Smith and M.S. Waterman. Identification of common molec-
ular subsequences. J. Mol. Biol., 147:195-197, 1981.

In this paper the authors describe the Smith-Waterman
algorithm for sequence alignment.

[SZB09] S. Salem, M. J. Zaki, and C. Bystroff. Iterative non-sequential
protein structural alignment. Journal of Bioinformatics and
Computational Biology, 7(3):571-596, 2009.

Thus paper describes the STSA alignment tool that
provides nonsequential structure alignment by aligning
small fragments of protein structures.

[SZB10] S. Salem, M. J. Zaki, and C. Bystroff. FlexSnap: Flexible Non-
sequential Protein Structure Alignment. Algorithms for Molecular
Biology, 5:12-24, 2010.

This paper presents the FlexSnap alignment tool that
provides flexible nonsequential protein structure align-
ments. The algorithm is based in aligning small protein
fragments with each other nonsequentially and non-
rigidly. It is the only other algorithm other than our
present work that provides both nonsequential and flex-
ible alignments.

[TFO94a] W. R. Taylor, T. P. Flores, and C. A. Orengo. Multiple protein
structure alignment. Protein Science, 3:1868-1870, 1994.

The authors present an novel approach where the SSAP
method of structure alignment [TO89b] is combined
with the multal method of multiple sequence align-
ment to provide a multiple structure-sequence align-
ment tool.

[TFO94b] W. R. Taylor, T. P. Flores, and C. A. Orengo. Multiple protein
structure alignment. Protein Science, 3:1858-1870, 1994.

This paper describes a multiple protein structure align-
ment tool combining structure and sequence align-
ments.

[TO89a) W. R. Taylor and C. A. Orengo. A holistic approach to protein
structure comparison. Protein Engineering, pages 2505-519, 1989.
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The authors present an extension to the SSAP algo-
rithm to incorporate physical aspects such as hydro-
gen bonding, solvent exposure and torsional angles with
suitable weights to produce a more holistic comparison
method. The method is tested on a group of remotely
related a/fB type proteins that share a common fea-
ture in their overall chain fold. The results indicate that
the inclusion of hydrogen bonds, torsion angles and a
measure of solvent exposure led to improvements in the
more difficult comparisons. Consideration of amino acid
properties, including hydrophobicity, had no beneficial
effect.

[TO89b] W. R. Taylor and C. A. Orengo. Protein structure alignment.
Journal of Molecular Biology, 208:1-22, 1989.

The paper introduces the SSAP alignment tool which
is used commonly in the CATH database for fold clas-
sification.

[TVKL09] C. Tai, J. J. Vincent, C. Kim, and B. Lee. SE: an algorithm for
deriving sequence alignment from a pair of superimposed struc-

tures. Bioinformatics, The Seventh Asia Pacific Bioinformatics
Conference, 2009.

This paper presents a heuristic method, Seed exten-
sion (SE) tool based on distance matrix representation.
The tool identifies fixed alignments or seeds based on
minimal elements in rows and columns of the distance
matrix, and extends the seed segments to obtain the
alignment.

[VGO1] J. Viksna and D. Gilbert. Pattern Matching and Pattern Discov-
ery Algorithms for Protein Topologies. Algorithms in Bioinfor-
matics, Lecture Notes in Comput. Sci Springer-Verlag, 2149:98—
111, 2001.

The paper presents the TOPS alignment tool based on
a graphical secondary structure representation of pro-
teins.

[VGV10] M. Veeramalai, D. Gilbert, and G. Valiente. ~An optimized
TOPS+ comparison method for enhanced TOPS models. Bioin-
formatics, 11:138:151, 2010.

This paper discusses the TOPS+ alignment tool that
is an improved version of TOPS [VG01] through incor-
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poration of directional connectivity and chirality in the
secondary structure graphs.

[WSHB98] T.D. Wu, S. C. Schmidler, T. Hastie, and D. L. Brutlag. Model-
ing and superposition of multiple protein structures using affine
transformations: Analysis of the globins. Pac. Sym. on Bio, 1998.

In this paper a superimposition method allowing shear
transformation along with rotation and translation is
described. The protein structures are represented as a
sequence of radius of curvature of smaller fragments. By
setting up an average structure for the globulin family,
the fold family is quite accurately characterized.

[XJB07]  J. Xu, F. Jiao, and B. Berger. A parameterized algorithm for
protein structure alignment. Journal of Computational Biology,
14:564-577, 2007.

The paper outlines a polynomial time approximation
scheme for comparing a contact map with another con-
tact map or a distance matrix. The authors use a tree
decomposition technique in conjunction with discretiza-
tion of rotation angles to come up with an optimal
alignment.

[XS06] W. Xie and N. V. Sahinidis. A branch-and-reduce algorithm for
the contact map overlap problem. In A. Apostolico, C. Guerra,
S. Istrail, P. Pevzner, and M. Waterman, editors, RECOMB 2006,
Lecture Notes in Computer Science, volume 3909, pages 516-529,
2006.

In this paper, the authors present the CMOS branch-
and-reduce algorithm for the MAX-CMO problem. A
variety of optimality and feasibility-based fast reduc-
tion schemes are employed in this algorithm.

[XS07] W. Xie and N. V. Sahinidis. A reduction-based exact a,lgor‘ithm
for the contact map overlap problem. Journal of Computational
Biology, 14:637-654, 2007.

In this paper, the authors improved the CMOS algo-
rithm through the incorporation of faster and better
stronger reduction schemes. This led to a considerable
speed-up over existing exact algorithms and made pos-
sible the solution of many previously unsolved align-
ment problems.
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[YGO3] Y. Ye and A. Godzik. Flexible structure alignment by chaining
aligned fragment pairs allowing twists. Bioinformatics, 19:246—
255, 2003.

This paper discusses the alignment of small protein
fragments, allowing non-rigidity using a limited number
bends and turns in the aligned fragments. The result-
ing algorithm provides for finding non-rigid alignments
with limited number of bends and turns.

[YJLO5] J. Ye, R. Janardan, and S. Liu. Pairwise protein structure align-
ment based on an orientation-independent backbone represen-

tation. Journal of Bioinformatics and Computational Biology,
2:699-717, 2005.

This paper describes an iterative method for structure
alignment. The backbone of the protein is described
as a set of angles and then dynamic programming is
used to make the alignment, followed by transformation
evaluation of the RMSD. The method is compared with
DALI and LOCK and similar results are obtained.

[YTO06] J. Yang and C. Tung. Protein structure database search and
evolutionary classification. Nucleic Acids Research, 34:36463659,
2006.

The authors present the 3D-BLAST alignment tool
that aligns proteins by pattern matching techniques.
The 3D structure is modeled using a 23-letter struc-
tural alphabet developed employing the angles between
the C-a atoms. The algorithm demonstrates low time
requirements with moderate precision.

[ZFAS08] Z. Zhao, B. Fu, F. J. Alanis, and C. M. Summa. Feedback algo-
rithm and web-server for protein structure alignment. Journal of
Molecular Biology, 15:505-524, 2008.

The paper outlines an algorithm based on feedback
for structure alignment, SLIPSA. Local alignments are
stitched together to get a global alignment, which is
then provided as a starting point to the algorithm, as
a feedback. The method is time-intensive (almost 5-10
times that of DALI). The results indicate that in most
cases the number of matched residues is larger with
comparable RMSD or the number of matched residues
is comparable with lower RMSD.
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[ZS05] Y. Zhang and J. Skolnick. TM-align: A protein structure align-
ment algorithm based on the TM-score. Nucleic Acids Research,
33:2302-2309, 2005.

This paper discusses the TM-align alignment tool based
on iterative dynamic programming on sequence repre-
sentation of proteins based on secondary structures.
The TM-score similarity metric that is a commonly
used similarity metric is also defined in the paper.
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