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Abstract
This work deals with the use of artificial neural networks (ANN) for the digi-

tal processing of finite discrete time signals. The effort concentrates on the efficient
replacement of fast Fourier transform (FFT) algorithms with ANN algorithms in cer-
tam engineering and scientific applications. The FFT algorithms are efficient methods
of computing the discrete Fourier transform (DFT) . The ubiquitous DFT is utilized
in almost every digital signal processing application where harmonic analysis Infor-
mation Is needed. Applications abound in areas such as audio acoustics, geophysics,
biomedicine, telecommunications, astrophysics, etc. To identify more efficient meth-
ods to obtain a desired spectral information will result In a reduction In the compu-
tational effort required to implement these applications.

Introduction
We define signal processing as the mathematical treatment of signals with the objective of

extracting information of relevance to a user. In the case of discrete-time signal processing, the
objective is to extract information from a sequence of numbers. We call this process filtering, and
call the computational structure which performs this operation a filter. As it is stated by Blahut
[11], filtering is the most important task in signal processing. Our objective is to identify ANN
structures which will allow us to perform filtering in an efficient manner and with a certain degree
of fault-tolerance. We concentrate in a class of filters called linear, shift-invariant flnite impulse
response (LSI-FIR) systems which Blahut also states are the most important devices in digital
signal processing.

We start in the next section by providing a general description of LSI-FIR systems and their
importance in signal processing. We then describe the discrete Fourier transform operator, the
most important tool for implementing these systems nowadays. We proceed to describe the spec-
tral properties of LSI-FIR systems and then continue describing methods of representing these
systems for the purpose of hardware implementations. We conclude by establishing a relationship
between LSI-FIR systems and ANN structures. In particular, we discuss multi-layer feed-forward
perceptrons as described by [1] and [8].

* This work was partially supported by NSF Grant #CDA-8913486
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LSI-FIR Systems
In this section we define the concept of LSI-FIR systems and the substantive role they play in

signal processing. We first introduce some mathematical notations and definitions.

Let Z/n denote the set of n nonnegative integers

{O,1,...,n—1}. (1)

An n-point sequence over the complex field C is the mapping

f:Z/n—iC (2)

The set Z/n is called the indexing set of the sequence of f. The value of the sequence I on j E Z/n
is 1(J) and it is usually denoted by f,.

We denote by the symbol f the n-tuple formed with the values fj, j =0, 1, 2, . . . , n — 1:

Jo

1= '
(3)

In—i

The set of all sequences I: Z/n —+ C forms a linear vector space which we denote by L(Z/n). The
set L(Z/n) is isomorphic to the n-dimensional complex vector space C".

The set of n n-point sequences

{8[kJ: k=O,1,...,n—1}, (4)

where

t5 — Ji, j=k; j,kEZ/n 5[kJ.7,
—

lo, jk
forms a basis for the space L(Z/n) which we call the standard basis.

We now introduce the shift operator S over the space L(Z/n). This operator is the central
component in the characterization of LSI-FIR systems.

Let the operator S over the space L(Z/n) be defined in the following manner:

S:L(Z/n) —' L(Z/n)
8[kI '9 = 8[k+iJ

S81_11 = = 5, SS = S,[oJ = (6)

Given an n-point sequence J E L(Z/n), we can write this sequence as a linear combination of
the set of basis functions {S[kJ, k E Z/n} in the following way

/ = fk5[k] (7)
O<k<re
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where Ik 1(k). We define the inner product ( , ) of two sequences 1 g E L(Z/n) as follows

( , ):L(Z/n) x L(Z/n) — C

(f,g) —+ (1,9) = >.: (8)

O�k<n

where L(Z/n) x L(Z/n) defines the cartesian product of the L(Z/n) with itself, and g =
the operation ( )* implying complex conjugation. Using (f, &[k]) =Ik, we rewrite (7) as

I = : u &[kJ)S[k] (9)
O<k<n

Using the shift operator S,, we can also write f E L(Z/n) as

I = : fk15[k] = : fkS,8[OJ (10)
O�k<n

LSI-FIR systems are very important in the analysis of digital signals. This stems from the fact
that if the response of a given system T, acting on the basis function 5, 8 EL(Z/n) is known, then
the result of the system acting on any other input signal f E L(Z/n) may be deduced. We make
this statement more precise. Let h[oJ = h be the sequence obtained by applying a given LSI-FIR
system T to the basis function 8:

TS[oJ = TS = h[o] h (11)

The result of T acting on any other basis function 8[k) E L(Z/n), k E Z/n is given by

T(S[k]) = T(S8) = S(TS) = Sh (12)

Since any given sequence f E L(Z/n) can be written uniquely as

I = : f(k)8[k], I E L(Z/n), (13)
kEZ/n

we have that

T(f) = T( > f(k)6[k]) = > f(k)T(8[kJ) = f(k)Sh (14)
kEZ/n kEZ/n kEZ/n

The sequence h is usually termed the signal impulse response of the acting system, in this case,
the system T. To identify this impulse response sequence h with this particular system, we rename
the system Th and call the action Th(f) h * f a linear convolution operation. Our interest is
in another type of convolution operation called cyclic convolution. Myers [18] clearly establishes
the relationship between linear convolution and cyclic convolution and the importance of cyclic
convolution in implementing LSI-FIR systems. Since cyclic convolution is a modulo n operation,
it can be viewed as a linear operator acting on the space of signals f e L(Z/n):

Th:L(Z/n) —p L(Z/n)
(15)

(1) Th(f)
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where
Th(f) = : h,Sf (1) * h (16)

IEZ/n

This operator Th can be thought of as representing an LSI-FIR system whOse impulse response
sequence (function) is h. In this way the system Th is uniquely characterized by the signal h. Thus,
a system Th acting on the unit sample sequence shifted by j units produces the following response

Th(6[,])(k) = (i,i * h)(k)

= .: hmS8131(k) hm&(k _ j_ 'fl)
mEZ/n wEZ/n (17)

= : hm&[j_k)(—m) = h(k—j) = Sh(k)
mEZ/n

And we conclude
Th(SS[O]) = Th(SS) = Sh (18)

The Discrete Fourier Operator
The space L(Z/n) will be used to represent two related ideas. In the first place, L(Z/n)

will be thought of as representing the space of all finite n-point complex sequences with domain
Z/n. In the second place, the space L(Z/n) will also be thought of as representing the space of
all periodic complex sequences with period n. This latter interpretation will allow us to perform
modulo n operations on the indexing set Z/n, turning this set to into an additive group of order
n. Evaluations modulo n will become more clear as we delve into the properties of the discrete
Fourier transform (DFT) operator. The DFT of an n-point sequence I is defined in this section as
a linear operator on the space (Z/n). Before we introduce this definition, we would like to describe
some preliminary concepts and definitions.

The indexing set A = Z/n = 0, 1, . . . , n — 1 forms an Abelian group with modulo n addition
as the internal binary operation. Its dual A is defined as

2= {xk:keZ/n}(Z/nc (1)

where
Xk:Z/n—C

. . (2)
(i) xk(j) =

The functions Xk are usually termed exponential sequences, characteristic sequences, or, simply,
characters.

The set of functions A plays a very important role in the analysis of LSI-FIR systems. They
are eigefunctions of this type of systems. For the Fourier operator F, we have

F: L(Z/n) — L(Z/n)
5[il '— F8[,]

where

F&131 =
X,, j E Z/n (4)
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Allowing F to operate on f gives

Ff I = F( f&()) = f1FS131 = f,x (5)
jEZ/n jEZ/n jEZ/n

We can use matrices to represent LSI-FIR systems. Since each ndimensiona1 LSI-FIR system
Th: L(Z/n) —4 L(Z/n) represents a linear transformation in the space L(Z/n), Th is determined
by its action on a set of basis vectors (signals) spanning L(Z/n). If we choose as reference the
standard basis set {8[j:j E Z/n}, then each signal Th(8[11) E L(Z/n) can be uniquely expressed as
a linear combination of the basis set. We write

Th(S[k]) = i: h•,k&[,1 (6)
jEZ/n

where the set of scalars
{h,,k:jEZ/n}, kEZ/n (7)

represents the vector coordinates of the given signal Th(&[k)), k E Z/n, with respect to the standard
basis set. The signal Th(5[k)) can also be written as

Th(&[k]) = : Th(8[kJ)(j)8(,1 (8)
5EZ/n

Next, we define the matrix H as follows

H = [h,,k Io�j,k<n [ h,_k (9)

The matrix H, thus, have the following form

h0 h_1 h_2 . . .

h1 h0 h_1 . . . h2

H = h2 h1 h0 . . . h3 (10)

h_1 h2 h_3 . . .

We notice that the columns of H are formed by shifted versions of the coordinate vector repre
sentation of the signal h; that is, we can write H as

H = [Ih, Sh, Sh, .., S'h] (11)

Spectral Properties of LSI-FIR Systems

In this section we will describe the spectral properties of LSIFIR systems. A shift invariant
linear operator acting on an n-dimensional vector space may be represented in the frequency domain
by using the concepts of eigenfunctions (eigenvectors) and eigenvalues. The eigenvalues correspond
to the natural frequencies encountered in the spectral representation of the impulse response signal
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of a given LSI-FIR system. We will be more explicit later on in describing the relationship existing
between the eigenvalues (and their associated eigenfunctions) of a given LSIFIR operator Th and
the frequency components of the associated impulse response sequence h. We start the section
describing some properties of the system T5111 which are essentially the same as the properties of
the shift operator S,.

The simplest LSI-FIR system, apart from the trivial system, i.e., the system represented
by the identity operator I,, is the system represented by the shift operator S,. This system is
sometimes called the unit..delay system because its digital electronics hardware implementation
may be accomplished by using a single delay element. We use the same symbol S, to denote the
matrix representation of the shift operator S,. This matrix representation is now given.

Recalling that 1 V• icj €i1 L1Sj = L11
0 on

IEZ/n

we have,
To[1J(&[kJ)

=
S[1J*S[kJ Sn8[kJ 5[k+iJ (2)

The matrix S, representing the shift operator S, is obtained by allowing the vector representation
(with respect to the standard basis set {ö[k):k E Z/n}) of the signal To(lJ(&[kJ), k E Z/n, become
the columns of the matrix S:

Sn = [T5111(S[O]),T6111(8[l]), . . . ,T6t1j(8E_1))]
(3)

= [S[1J,8[21,.. .,5[n_i),8[oJ]

where we have separated by commas the columns of for legibility. The matrix S, becomes

oo...o1
1o...oo

sn= (4)

oo...1o
An important property of the S, operator matrix is that any LSI-FIR system Th may be

represented by a matrix H which can be written as a sum of powers of the matrix S1 pre-
multiplied by a diagonal matrix Dh1:

H = D1S = (h,®S) (5)
jEZ/n jEZ/n

where
h,

h
Dh, = • , h, = h(j), jE Z/n (6)

and the symbol 0 stands for tensor product. Let A = [ak4 and B = [bra] be any two arbitrary
matrices (row vectors, column vectors, or scalars also considered). The tensor or Kronecker product
between A and B is given by A 0 B = [aki. B]. That is, each entry of this new matrix A 0 B
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18 obtained by replacing each entry of A by the product of that particular entry times the matrix
B. We give the following simple example to illustrate the representation LSIFIR systems using
powers of S,.

Example 1: Take n = 4. We have

h0 0 0 0 0 0 0 h1
— 0 h0 0 0 h1 0 0 0D.I4— 0 h0 0 ' Dh1•S4= o h1 0 0

0 0 0 h0 0 0 h1 0
0 0 h2 0 0 h3 0 0

2_ 0 0 0 h2 0 0 h3 0
Dh2S4— h2 0 0 0 ' Dh3S4= o o o h3

0 h3 0 0 h3 0 0 0
H4 : Dh,S = >: (h, S)

jEZ/4 EZ/4

h0 h3 h2 h1
— h1 h0 h3 h3H — L L L"2 '1 'O '3

h3 h2 h1 h0

The matrix F, called the DFT matrix and representing the discrete Fourier transform (DFT)
operator F, is obtained by first determining F(S[kJ), k E Z/n:

F(S[k)) = Xk, kE Z/n, Xk(j) = e_2'1' = w (7)

The matrix F is obtained by writing the coordinate vector representation of the signal set
{F,48[kJ): k E Z/n} as the columns of F:

F = Exo,xl,x2,. . . ,Xn—1] (8)

1 I 1 ... 1

1 w, . . .

F = w;t . . . w;2 (9)

i w;-1 w2 . : .

We now take an LSIFIR system Th, which is represented by the matrix II, and obtain the
discrete Fourier transform of the system response to a given input signal I E L(Z/n). Taking the
DFT of the response g = Tk(f), and using the cyclic convolution theorem, produces the following
result

F(Th(f)) = F(h)oF(f)
(10)

(FTh)(f) = (F(h) oF)(f)
Here, the symbol implies point-wise multiplication of two vectors in the first equation, and of
the vector F(h) with each of the columns of the F matrix in the second equation. Since the
choice of f E Z/n was arbitrary, we obtain the following important result

FTh = F(h)®F (11)
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or, emphasizing the diagonalization of Th by the action of the F operator,

FThF;' = F(h)oI (12)

The expression F(h) 0 I, is denoted by DF(h) = D,where a matrix representation of D is given
by

D = , i1=(F(h))(j, 3EZ/n (13)

Thus,
FThF1 = D (14)

In essence, we are stating that computing with the filter Th is equivalent to compute with the
structure F;1DF which it has been demonstrated is more efficient if we use a fast Fourier
transform algorithm to compute the discrete Fourier transform.

Implementation of LSI..FIR Systems
It is important to review the two main methods of representing LSI-FIR filters for the purpose

of hardware implementation. We will use some of the linear algebra tools described in the previous
sections on LSI-FIR systems. This will allow us to relate the results of this section with with previ-
ous works and applications on LSI-FIR systems. The two main methods for representing LSI-FIR
filters are usually called the time domain representation and the frequency domain representation.
The time domain representation follows readily when we exprese an LSI-FIR system as a linear
combination of powers of the shift operator; that is, the time domain representation of a given
LSI-FIR filter Th is given by Th : h,S (1)

jEZ/n

The frequency domain representation is obtained by taking the Z-transform of the impulse
response sequence which characterizes the given system Th. We would like to describe this rep-
resentation in more details since it is most often used. First, let us discuss some ideas about
polynomial functions and introduce the Z-transform of a n-point sequence h E L(Z/n).

Associate with an n-point sequence

h=[ho h1 (2)

the (n — 1)-th degree polynomial Ph in the indeterminate a

ph = h0 + hia + . .. +h_1a'', (3)

and the polynomial function

ph(z1) = h3z H(z), z C (4)
iE Z/n
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The polynomial function ph(z1) belongs to the ordered set (the order induced by the natural
order of Z/n)

Z(h) = {ph((z)k): k E Z/n} (5)

where
ph((z)k) = >: hz_ak, kEZ/n (6)

3€ Z/n

and the index product j'k is taken modulo n. Since the elements of Z(h) become complex numbers
when z E C is fixed, we can think of this set as an n-point sequence in L(Z/n). Thus, the k-th
element of the sequence Z is given by

Z(h)(k) = ph(z_c)Hk(z), zECfixed (7)

Another way of viewing the set Z(h) is to fixed the index value k (the value of k usually chosen to
be one (1)) and allow z to become a variable, taking the entire complex plane C except the origin.
The expression Z(h) is then called the Z-transform of the n-point sequence h E L(Z/n), and is
written as

Z(h) = ph(z') = : hz' H(z), z E C (8)
3EZ/n

We notice that the set Z(h) now consists of a single element, namely H(z); and by allowing z to
take on values on C, H(z) becomes an analytic function on the entire complex plane except at
the origin. The function H(z) is usually termed the system function associated with the impulse
response sequence h.

We now proceed to obtain the frequency domain representation of an LSI-FIR system Th. We
first recall that given a system T,, its action on a input sequence x E L(Z/n) results in the cyclic
convolution of this sequence z and the impulse response sequence which characterizes the system
Th. That is, if we call y E Z/n the output sequence which results when Th acts on the input
sequence x, this sequence is given by

y=ThX= hSx=x*h (9)
jEZ/n

We also would like to obtain the Z-transform of the shifted sequence X[jJ = Sx, which is obtained
as follows:

Z(x[,]) =
mEZ/n

= x(m-j)zm
mEZ/n

(10)
=

kEZ/n

= xkzk = z'X(z)
kEZ/n

where X(z) is the Z4ransform of the n-point input sequence x.
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if we now take the Z-transform of the cyclic convolution given above Eq. (9) we obtain the
following result

Z(y) = Z(x*y) = z( > h.Sx)
jEZ/n

= >: h,Z(Sx) = : h1z1X(z) (11)
jEZ/n jEZ/n

= X(z) : h1z = X(z)H(z) Y(z)
IEZ/n

By making an analogy between the expression

V = : hSx = x*h (12)

and the expression
Y(z) = : hz1X(z) = X(z)H(z), (13)

IEZ/n

the expression
H(z) = : h1z1 (14)

jEZ/n

is usually termed the "frequency domain representation" of the LSI-FIR system Tk. Thus, the
frequency domain representation of a given LSIFIR system Th is its associated system function
H(z).

The hardware implementation of either the time domain or frequency domain representations
of an LSI-FIR system is usually accomplished by identifying either the shift operator S, in Eq.
(12), or the multiplication element z1 in Eq. (13), with a unitde1ay element device in digital
signal processing hardware.

if we allow z in the system function H(z) to take values only on the unit circle, we obtain the
Fourier transform of the n-point sequence h. Thus, at z = C$& e2'1, we obtain

H(e"') ph(z1 = e211) = hae2111, 0 � I < 1 (15)
jEZ/n

The discrete Fourier transform (DFT) of the n-point sequence h is obtained by setting fixed z
in the sequence Z(h) to the primitive n-th root of unity e211" =w;'. In this way, the k4h term
of the discrete Fourier transform of h is given by

ii(k) = F(h)(k) = > = Hk(e2") (16)
iEZ/n

Since k takes on values on the set {O, 1,2,...,n — 1}, the values (e21/' = w;k form the set
U(n) of the n roots of unity, which are spaced uniformly on the unit circle of the complex plane.
This elucidates the known fact that the DFT of an n-point sequence corresponds to the uniform
sampling of its Z-transform on the unit circle.
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LSI-PIR Systems and ANN Structures
We discussed the role of LSIFIR systems in signal processing. We know discussed how this

system8 can be implemented using ANN structures. The fundamental idea is that of the circulant
matrix H which describes a given LSI-FIR system. Barto [4] has demonstrated how to implement
ANN structures using the fast Fourier transform (FFT). This was obtained by transforming the
discrete cros&.correlation operation describing the global transition function of a network into a
cyclic convolution operation and, in turn, computing the convolution operation by indirect methods
(as we have discussed previously in the section on spectral properties of LSIFIR systems) using the
fast Fourier transform. In 1989, Culhane, Peckerar, and Marrian [6] presented an electronic circuit
for computing the discrete Fourier transform. This circuit was based on a neural net structure.

Recently, Zhang, Jullien, and Miller have demostrated how to compute over finite rings using
neural network structures. They present a computational network termed finite ring neural network
(FRNN). This work finds some of its importance in the area of signal processing when we are dealing
with computation in surrogate fields [1 1]. Other works in the area of discrete-time signal processing
using ANN structures include the work by Widrow, Baudrenghien, Vetterli, and Titchener [3], and
the work by Greco, Paoloni, and Ravaioli [17].

Conclusion

We have described in detail the concept of LSI-FIR systems and the role they play in harmonic
analysis applications. We have concentrated on the implementation of these systems using ANN
structures. In particular, we have concentrated on multi-layer feed-forward perceptrons. A more
detail study of these systems in needed to identify other potential implementations using various
ANN structures in addition to the multi-layer feed-forward perceptron. We have also concentrated
on the theoretical study of these systems and their implementation using ANN structures; but, we
have perfomed various successful implementation efforts of the multi-layer feed-forward perceptron
using MATLAB environment. To accomplish we have followed the work described in [8].
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