GPU data-parallel computing of sequence alignment using CUDA
Jung, Sungbo

ProQuest Dissertations and Theses; 2008; ProQuest Dissertations & Theses (PQDT)
pg. na

GPU DATA-PARALLEL COMPUTING OF SEQUENCE ALIGNMENT
USING CUDA

By

Sungbo Jung
B.A., Korea University, Korea, 2000
M.E., Korea University, Korea, 2003

A Thesis
Submitted to the faculty of the
- Graduate School of the University of Louisville
In Partial Fulfillment of the Requirements
for the Degree of

Master of Science

Department of Computer Engineering and Computer Science
University of Louisville
Louisville, Kentucky

December 2008

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~ UMI Number: 1468602

INFORMATION TO USERS

- The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poof quality illustrations
and photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note Will indicate the deletion.

®

UMI

UMI Microform 1468602
Copyright 2009 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Copyright 2008 by Sungbo Jung

All rights reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GPU DATA-PARALLEL COMPUTING OF SEQUENCE ALIGNMENT
USING CUDA

By

~ Sungbo Jung
B.A., Korea University, Korea, 2000
M.E., Korea University, Korea, 2003

A Thesis Approved on

December 5, 2008

by the following Thesis Committee:

o, Ogy

Thesis Director - Ming Ouyang, Ph.D.

-~

Dar-jen Chang, Ph.D.

Gail W. DePuy, Ph.D.

il

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

Though only my name appears on the cover of this thesis, a great many people
have contributed to its production. I owe my gratitude to all those people who have made
this thesis possible and because of whom my graduate experience has been one that I will
cherish forever.

My deepest gratitude is to my advisor, Dr. Ming Ouyang. I have been amazingly
fortunate to have an advisor who gave me a vision of research, and at the same time the
guidance to recover when my steps faltered. I am also thankful to him for encouraging
the use of correct grammar and consistent notation in my writings and for carefully
reading and commenting on countless revisions of this manuscript. Dr. Dar-jen Chang
has been always there to také care of me and give advice. I am deeply grateful to him for
helping me sort out the tgchnical details of my work. Dr. Gail W. DePuy's insightful
comments of my thesis were thought-provoking. I am grateful to her for holdingmetoa
high research standard and enforcing strict validations for each research result, and thus
teaching me how to do research.

I am also indebted to the members of the CECS Tech Service where I worked.
Particularly, I would like to acknowledge Big Boss Mr. Ron Lile and Mrs. Sﬁsan Lile,

My best mentor Sir Jeffrey Marean. Finally, I appreciate my family, father, mother, sister,

and sister’s family.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

GPU DATA-PARALLEL COMPUTING OF SEQUENCE ALIGNMENT
USING CUDA
Sungbo Jung

December 5, 2008

Recently rapid growth of the technology of the Graphics Processing Unit (GPU)
has led to a surge of interest in using the GPU for general purpose applications. We can
utilize the GPU in computati‘on‘ as a massive parallel co-processor because the GPU
consists of multiple cores. In bioinformatics, finding the similarities in protein and DNA
sequence databases has become a fundamental procedure. The Smith-Waterman
algorithm based on the dynamic programming is one of the methods used to search for all
of the possible local alignments between two sequences, enabling us to find the optimal
local alignments. However, the dynamic programming requires a sequential calculation
due to data dependency. Also required is a high number of computation steps
proportional to the product of the lengths of the two sequences.

The approach of the present study is to implement fhe Smith-Waterman algorithm
using the huge computational power of the GeForce 8800 series, based on NVIDIA’s
G80 architecture, to develop high performance solutions for local sequence alignment. To

program the G80 hardware, the parallelized Smith-Waterman with the wavefront
iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm is imblemented in NVIDIA CUDA, an extended C language. Except the first
row and the first column, every cell in the sequence matrix depends on previous
calculations of the neighbor cells. However, all the cells in an anti-diagonal can be
independently calculated. Thus we can parallelize the Smith-Waterman algorithm by
using multiple streaming processors to é’alculate an anti-diagonal.

The computation is conducted on an NVIDIA GeForce 8800GT installed in a 3.0
GHz Intel Pentium D computer equipped with 2 GB RAM, running Microsoft Windows
XP Professional. The results show that the parallelized Smith-Waterman with the
wavéfront algorithm on the GPU achieves from 1.5 to 3.7 times speed-up than the
sequential Smith-Waterman on the CPU. Therefore, the GPU is shown to be sufficiently
advanced to be used as an efficient high computing accelerator for a bioinformatics

~,

application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

PAGE
ACKNOWLEDGMENT S. ..ottt ettt eeeaaeeiiseeeeaaes iii
ABSTRACT ..niiitiitiie et ettt e e b eaee s enais IS\
LIST OF TABLES ...ttt ettt e atsetstesstersaiisaasesesseeines viii
LIST OF FIGURES ...ttt ettt ettt e e e e ix
CHAPTER
1. INTRODUCTION.....iutuiutniniiteniiteiit i eeteuiieieneenereete e, 1
LT MOtIVAHON . cevincie i 1
1.2 Contributions of the Thesisc..ouviveiiiiiieeiiiieiiiieneeeeees 3
1.3 Organization of the Thesiscoiveiiiiiiiiiiiiiiiiiiiiiii 3
2. GPU ARCHITECTURE........ctiiiiiiiiiiiiiiiiiiiii it iineeaas 4
2.1 The arise of the Graphics Processing Unitcc.ovvvveneeeneiiininen. 4

D2 GPGPU oo oottt 5

2.3 GPU Programming Languagec.c.coeveviiiieiniinninininenininnnnn.. 7
2.4 G80 Architgcture. e eeeeeenretet et s et a et eaen et et sraehehe e et aens 11
2.5 CUDA Programming Modelcooiiiiiiiiiiiiiiiiine 13
3. SEQUENCEALIGNMENT |
3.1 BioinformatiCs.vueurieieiis ettt 20
3.2 Sequence Alignmentcooeeiniiniiniiiiiiiiiiiieeeen 20

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Dynamic Programming...........cceouiriiiiiiiiiiiiiiiniiiiiiiiiiiaiinnnns 21
3.4 The Smith-Waterman Algorithmcoooiiiiii 22
3.5 Sequence Alignment on the GPU...........cooiviiiiiiiiiiiiiiiiiiiiene, 24

4. SMITH-WATERMAN ON THE GPU USING CUDAcccoevvviveerrnennen. 26

4.1 Parallelized Smith—Waterman Algorithmooiiiiiiiiie 26

4.2 Wavefront Algorithmcooiiiiiiiiiiiiiiiinnnn.. R 26

4.3 Smith-Waterman on the GPU Systemcccevveiiiiiiiiiiiennninnenn.. 27

4.4 CUDA Implementationcceveereeeneneeieirieeneennrenneeceeensennenn. 20

5. RESULTS AND CONCLUSION ...ccvoceeretittniiienenes cerrenerneneneanneenenen 37
5.1 ENVITONIMIENL. . ..t iiiiinie et iiiiiereseeeteerannneneeeeeesssnnnssssneenss 37

I =11 | 1 T 38

5.3 Conclusion....» i 38
REFERENCES ...ttt et ettt et ee et e et e aeaeenns 40
CURRICULUM VITAE ...ttt et eeee e e een 43

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

TABLE - PAGE

1. Memory types in CUDA e e e e et e et ee et eeaeeaenaens 16

2. Protein conversion in substitution matrix e e e et eaeeaaiaaeaaaee 35

3. Experimental result between CPU-SW and GPU-SW with 1 block 38
viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

FIGURE PAGE

1. The growth of the GPU vs. the CPUcoiiiiiiiiiiiiiiiiiiiiiiiiecieaes
2. The graphics Pipelineccouiueniiiiniiitiiii i
3. An overview of the G80 architectureccoovviiiiiiiiiiiiiiiiiiiiiiie
4. Multiprocessor design for CUDAcociiiiiiiiiiiiiiiiiiiiiiiiae,
5. Organization of CUDA threadsc..ooeiiiiiiiiiiiiiiiiiiiiiiiiiiicnnes
6. Memory architecture of the G80............ovviiriirriiiiiiiien e
7. Tracking the alignment SCOTESveueereriiinerniiniiiieeirentiieiieeniiieieineinenn
8. Smith-Waterman scoring SChemesco.oveiiiiiiiiiiiiiiiiiiiiiiii,
9. Data dependency of each cello
10. Vector parallel model and pre-defined query-profilec.cooeiiiiiinnn,
11. Diagonal sweep Wavefrontcoeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeaaes
12. Diagram of Smith-Waterman CUDA systemcccvveiniiiiniiiiiiiiininn,
13. The sequence MAtriXoeeiiiiiiiiiiiiiiii
14. Pre-defined macro COdecoeiuiiiiiiiiiiiiiniiiiiiiiii e
15. BLOSUMSO0 substitution matrix for SW CUDA.........cccovvvt iviiiiiiiiiiienes
16. Anti-diagonal matriX CONVEISIONeueueuueneneeneneeniennenerteieieiseneinereines
17. Data dependency of each anti-diagonal part ettt aaas
18. Bank conflict checker codeooovvvniiiiiiiiiiiii
19. Mid anti-diagonal kernel code et en e eeteateeeeteeeee e eaneaentenaeaans

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

1.1 Motivation
At the beginning of the pérsonal computer era, the graphics card was created for
the purpose of display. It had been designed as a 2-Dimensional (2D) graphics accelerator
in order to use a palette of colors and fast 2D display. Then it became a multi-media
device for playing high quality video. Recently the graphics card has been developed as a
3-Dimensional (3D) graphics accelerator to meet the demand of 3D gaming and 3D
visualization. Furthermore, it has evolved into Graphics Processing Units (GPUs) with
multiple streaming processors for high computing power. The trend of Central Processing
. Unit (CPU) has changed from the high clock cycle single core architecture to the multi-
core architecture due to the problems of heat dissipation, power consumption, and
physical limitation. GPUs have also evolved into multi-core streaming processors that
can perform several Vertex shaders and Pixel shaders. So now GPUs can perform
floating point computation faster than the CPU. Therefore there is attempt to use the
computation power of GPUs not only in the 3D graphics applications, but also in the

general purpose applications. This approach is called General Purpose computation on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GPU (GPGPU) [1]. It will be useful and efficient to utilize the parallel computing power
of the GPU for applications that need high computational power with multiple data.

In bioinformatics, high computational power is required to process large amounts
of data and complicated calculations. Finding sequence similarities in protein and DNA
databaées has become a routine procedure. Based on dynamic programming, the Smith-
Waterman algorithm is one of the methods to search for all possible alignments between
two éequences to find the optimal local alignments. However, dynamic programming is
traditionally implemented as sequential calculations, and the number of the required
operations is proportional to the product of the lengths of the two ~sequence:s. Many
researchers have attempted to use high performance devices like super computers, cluster
computers, or specially designed devices in order to reduce the computation time.
Although they can deliver enough computational power, the costs are pretty high and
they are hard to access. Thus, GPUs, being inexpensive commodity high performance
hardware, may be a good solution towards bioinformatics problems.

NVIDIA, one of the major GPU manufacturers, developed a new graphics éhipset
architecture code-named G80 in 2007 [2]. It has 128 streaming processors with 768MB
memory. The G80 supports CUDA, an extended C language environment, to implement
GPGPU applications. Contrary to previous GPGPU approaches that use indirect
operations through the vertex shader and the pixel shader, CUDA is easy to develop

general purpose applications on the GPU.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Contribution of the Thesis

The goal of this thesis is to implement the Smith-Waterman algorithm using the
‘huge computational power of the GeForce 8800 series, which is based on NVIDIA’s G80
architecture. The Smith-Waterman algorithm is parallelized via the wavefront pattern.
Except the first row and the ﬁrst column, every cell in the séquence matrix depends on
previous calculations of the neighbor cells. Howevér, all cells in an anti-diagonal can be
independently calculated. Thus the anti-diagonals of the sequence matrix of the Smith-

Waterman algorithm can simultaneously be processed by multiple streaming processors.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 presents GPU architecture,
including GPGPU, the G80 architecture, and the CUDA language. Chapter 3 describes
sequence alignment including the Smith-Waterman algorithm and a review of the
literature. Chapter 4 describes the implementation of the parallelized Smith-Waterman
algorithm on the G80 with CUDA. In particular, the wavefront algorithm as a method of
parallelizing dynamic programming is introduced in this chapter. Finally, Chapter 5
summarizes computational results, contribution of this thesis to the research field, and

future works.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2
GPU ARCHITECTURE

2.1 The Arise of the Graphics Processing Unit

During the last decade, the performance of the Graphics Processing Units (GPU)
has been dramatically increased by the development of new technology. In the Abeginning,
a graphiés card was designed for purpose of display, so the main features of a graphics
card were 2D Graphics such as the number of colors, the quality of display, and the
support of high resolution. In the mid 1990s, enhanced Operating Systems (O/S) with
user friendly Graphics User Interface v(GUI) led to demanding multi-media environments
in order to play video files, to suppbrt 3D graphics games, and to manage multil;le
displays. The demands of 3D graphics led to the creation of the GPU, which had better
integration and faster speed. In 2000, the multi-core platform was incorporated in the
design of GPU. Major vendors such as ATI, NVIDIA, and 3D Labs competed to develop
real time 3D graphics capable GPU and they used the multi-core technology for parallel
processing. Now, floating point performance of the GPU is higher than performance of
the CPU because the architecture of the GPU is dramatically changed via improvement of
the chip design and manufacturing technology [3]. Thus, people want to use this great

capability for general purpose applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GFLOPS

12004 “wom NVIDIAGPU
11004 - -sem: ATIGPU -
10004 - === CPU
9004
sood
600 S
el o
o _ e e
2003 2004 2005 2006 2007 2008
Figure 1. The growth of the GPU vs. the CPU
2.2 GPGPU

At the present time, the GPUs are the most economical and powerful
computational hardware because they are inexpensive and user programmable, and they
achieve high performance. The increased flexibility and high computing capabilities of
GPUs have led a new research field that explores the performance of GPUs for general
purpose computation. The general-purpose computation on the GPU (GPGPU) is getting
the attention of many researchers and developers [4].

The processing of information in 3D graphics occurs in several serialized stages,
where each stage generates results for the next, and a 3D image is transformed into 2D.
Graphics processing in the GPU is like an assembly line with each stage affecting
successive stages and all stages working in parallel. This architecture is called the

graphics pipeline. The earlier design of the graphics pipeline was a “fixed function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pipeline, where the limited number of operations available at each stage of the graphics
pipeline was hard-wired for specific tasks” [1]. The technology of the GPU has evolved
into a more flexible programmable pipeline, and the graphics pipeline has been replaced
by the user programmable vertex shader and pixel shader. “A programmer can now
implement custom transformation, lighting, or texturing algorithms by writing programs
called shaders” [5]. The pixel shader is more flexible than vertex shader to program the
GPGPU applications. Recent GPUs have fully programmable unified processing units
with support for single precision floating-point computation. Furthermore, the latest
generation of GPUs, such as ATI's RV770 and NVIDIA's GT200, is expanding on its
capabilities to support double precision floating point computation [6, 7]. High speed,
increased precision, and rapidly expanding programmability of GPUs have transformed

GPUs to a powerful platform for general purpose computations.

3D Model ‘

Display

_ VertexShader __ PixelShader

A - i

) i i

g i - ! J ‘
-y od

| Programmable Programmable i !

g Vertex Processor : Fragment Processor | ‘

Figure 2. The graphics pipeline

Although GPUs have become a compelling platform for general-purpose

computation, there are some limitations and difficulties to program them [1]. Originally,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GPUs are specifically designed for 3D graphics. The performance enhancement of these
devices has mainly focused on the highly parallel tasks of the 3D graphics calculations.
Some limitations of GPUs, such as the lack of integers, logical operations, and fixed-
point arithmetic make GPUs ill-suited for some general purpose computation. In
particular, programmers need to describe a general purpose calculation in graphics terms,
which requires the programmer to understand both the GPU architecture and graphics
programming. Thus it is desirable to hide many of the architectural features and simplify
the programming methods, and vendors of GPUs and organizations of programmers have

attempted to develop attractive GPGPU programming languages.

2.3 GPU Programming Language

The modern graphics programming languages were intended for the improvement
of visual output effects. The graphics'programming languages were also able to program
the parts of the graphics pipeline in the GPU. Early GPU programming languages were
based on shaders in various off-line rendering systems, such as the Renderman shading
language by RenderMan [8]. The Renderman shading language consists of pre-defined
standalone functions and five types of shaders: surface, light, volume, imager, and
displacement shaders. In later GPU programming languages, shaders were divided into
two parts, the vertex shader code and pixel shader code. Such division changed the
structure of the GPU into one with two proc_essing units for each shader. This feature
became important when branching comeé into play [9]. The resulting code was not

always effective because sometimes branching caused inappfopdate mixing of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

instructions for each processing unit. So this division forced the programmer to manually
optimize the code for higher performance.

GPU programming languages can be divided into two groups according to their
intended purposes: graphical purpose and general purpose. The GPU programming
languages that are intended for graphical purposes are the most popular languages for
common graphics hardware. Several languages, such as Microsoft Direct3D-HLSL,
NVIDIA Cg, SGI OpenGL-GLSL, and RapidMind Sh, were introduced by graphics
hardware vendors and software developers [10, 11, 12, 13]. The early GPU programming
languages that are intended for general purposes depend on modifying the codes in
shaders. This arrangement makes the implementation complicated because it needs
additional code to bypass the nature of GPUs. There are some attempts to add high level |
abstraction to GPU programming languages. The abstraction can hide the graphical
nature of GPUs [14]. The high-level scheme also provides an attractive API for
programmers. Although this effort simplifies the implementation process, the
performance of babstracted high-level languages is usually lower than that of direct GPU
languages. The followings sections review some recent approaches of abstracted high-

level languages for GPGPU applications

CTM : AMD (originally ATI) Close To Metal (CTM) was an approach that enabled low-
level efficient GPU programming without any graphics overhead [15]. CTM aimed to
give devélopers direct access to the native instruction set and memory of the massively
parallel computational elements in recent AMD GPUs. However, it was short-lived as a

beta version and a predecessor of AMD Stream Computing SDK.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BrookGPU : The Brook is the Stanford University graphics group’s stream-oriented
language intended for stream processing that is developed for specialized high
performance stream machines [16]. The pipeline nature of the GPU allows almost direct
conversion of the Brook to the GPU with only a few limitations based on features of the
GPU thus creating a general tool for implementing general proces’sing algorithms on the

GPU.

Brook+ : The Brook+ is an AMD hardware optimized version of the Brook language
[17]. It is an implementation by AMD of the BrookGPU spec on compute abstraction
layer with some enhancement for AMD GPU. It supports integer and double precision

processing for AMD GPU and it will also support NVIDIA GPU.

Stream ComputingvSDK : AMD Stream Computing SDK is their first production of
GPGPU language to be run on Windows XP. The SDK includes Brook+, itself a variant
of the C language, open-sourced and optimized for stream computing [17]. It includes the
AMD Core Math Library (ACML), AMD Performance Library (APL) with optimizations
for the AMD FireStream, and the COBRA video library for video transcoding
acceleration. Another important part of the SDK, the Compute Abstraction Layer (CAL),
is a software development layer aimed for low-level accesé, through the CTM hardware
interface, to the GPU architecture for performance tuning of software written in various

high-level programming languages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RapidMind : RapidMind, based on the programmable GPU language Sh, is a multi-core
development platform for expressing data-parallel computations as C++ code and
executing them on multi-core processors. RapidMind currently runs not only on GPUs
from both ATI and NVIDIA but also on multi-core CPUs and on Cell Broadband Engine.

RapidMind is commercial software.

PeakStream : PeakStream is also a commercial platform enabled to program a high
performance, multi-core, and parallel processors, and convert them into radically
powerful computing engines for computationally intense applications. PeakStream
originally targeted the ATI GPUs. Now it is available in various types of multi-core

processors and is supported in Linux and Windows environments.

CUDA : NVIDIA CUDA is.an extended C language environment that unlocks the
processing power of GPUs to solve the most complex computation-intensive challenges.
CUDA provides developers with both the deterministic low-level API and the high-level
API for repeatable access to hardware, which is necessary to develop essential high-level
programming tools such as compilers, debgggers, math libraries, and application

platforms. At the present time it works only with recent NVIDIA G80 GPU series.

OpenCL : OpenCL (Open Computing Language) is a language for GPGPU based on the
C language and proposed by Apple in cooperation with others [18]. The purpose is to
make open industry standards for GPGPU, 3D graphics, and computer audio, and to

extend the power of the GPU beyond graphics. OpenCL is scheduled to be introduced in

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mac OS X v10.6 ("Snow Leopard'). According to the sources, Snow Leopard further
extends support for modern hardware with OpenCL, which lets any application tap into
the vast gigaflops of GPU computing power previously available only to graphics
applications. The initiél OpenCL implementation is reportedly built on LLVM and Clang

compiler technology.

2.4 G80 Architecture

In this section, brief descriptions of the architecture of the NVIDIA G80 GPU, the
GeForce 8800 series graphics card used in the experiments, and the Compute Unified
Device Architecture (CUDA) language, which is used to program the G80 or later GPUs,
are provided. This section is a summary of the information available in the CUDA
documentation by NVIDIA [19]. The G80 uses the standard 575Mhz clock core, a high
speed 1.35 GHz clock shader, and 1.8GHz 384-bit DDR3 Memory with a theoretical
bandwidth of 86.4GB/s. NVIDIA claimed that G80 can perform nearly 518 GFLOPS
(1.35 GHz * 128 SPs * 3 FLOPS).

Figure 3 illustrates the high level design of the G80 architecture. The G80
contains 16 streaming multiprocessors (SM) and each SM has 8 streaming processors
(SP), for a total of 128 SPs. These SPs run at a 1.35GHz clock, and they are mated with
1.8GHz 384-bit DDR3 memory. Each SP can access the registers and perform 32-bit
single precision floating point calculation. In addition, the arithmetic unit is also able to
perform integer arithmetic operations on the G80. Each SM contains two Special
Function Units (SFUs) that support more complicated float pointing calculations for the

mathematical functions. Each SM has a total of 8,192 registers and they can be

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dynamically partitioned when the threads are running. The latency rate of the register is
assumed to be about 2 clock cycles; however, NVIDIA has not provided more detailed
information. Each SM can execute one or more threads and blocks within the warp size.
A warp is a group of 32 threads and the SM executes the threads by the size of a warp
sequentially. That is, a SM can run only one instruction at the same time for all threads.
Because of this property, execution could be slowed when the threads follow different
control paths. The thread execution will be serialized in this case. The consideration of

warp size is also important in preventing bank conflicts.

d: not afl datapaths those fot only

graphic revision 1.2 - 4th Januery 2007

GS0

copyright Seyond3D 2006

E:] Vertex thread sstup and input assembler

E] Geometry thread setup

E Pixel thread setup

[3] Global thread scheduler

E Triangle setup (1 trifcik], rasterisation and Z-cull

E i Thread processing cluster

Per cluster schedular and register file {half shader frequency) i i

1SP and interpolator/special ALU groups . , R %

E] 2 x 8-way scalar FP32 SP ALUs (MADD + MUL dual-issue/clk) 7 l ' JJ:);)‘ J,
i -~

@2 x 8-way FP32 scalar interpolator (1 attrib/clk} and special function (4 c!ks/oy) AlUs 1—-—T—-—’
@ 4 pixels/clk data address and setup

8 INT8 bilerps/cik filtering + L1 local store (8KiB) @

@ ROP partition b

@ ROP with 82 or 8C samples/clk, 2¢lk FP16 biend
AA: Ox 8Z/clk, 4x 1Z+C/clk; max 8xMSAA, 16xCSAA

[£5] L2 shared data store {128KiB}
DRAM pair {2 x 32-bit)

Base clotk dotmain, memory clo domain, shader Guck damain

Figure 3. An overview of the G80 architecture [20]

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 CUDA Programming Model

NVIDIA CUDA is a general purposé scalable parallelized programming model
for highly parallel processing applications. It is an abstract high-level language that has
distinctive abstractions, such as a hierarchy of thread blocks, barrier synchronization, and
shared memory structures. CUDA is well-suited for programming on multiple threaded
multi-core GPUs. Many researchers and developers attempt to use CUDA for demanding

computational applications in order to achieve dramatic speedups.

2.5.1 CUDA Structure

In earlier GPGPU designs, general purpose applications on the GPU must be
mapped through the graphics Application Programming Interface (API) because
traditional GPUs had highly specialized pipeline designs. This structural property made it
necessary for a programmer to write the programs to fit the graphics API. Sometimes the
programmer needed to rework all the programs. The G80 has a global memory that can
be addressed directly from the multiple sets of processor cores. The global memory
makes the G80 architecture a more flexible and general programming model than
previous GPGPU models. The global memory also allows programmers to implement
data-parallelized kernels for the GPU easily. A processor core in the GPU can share the
same traits with other processor cores. Thus, multiple processor cores can run

independent threads in parallel at the same time.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Multiprocessor 2

Ty

Shared Muitory

. .
Registers Registers
Instruction
Unit

Processor 1 Processor 2 ®* ¢ Piocessor M

‘] t ! , t
Constant
Cacha

Tcxtu‘m
Cache

v v v T

Device Mamory

Figure 4. Multiprocessor design for CUDA

2.5.2 SPMD Design

The GPGPU application systems use the GPU as a group of fast multiple
coprocessors that execute data-parallelized kernel code. So the programmers can access
the GPU cores via a single source code encompassing both CPU and GPU code. A kernel
function operates in a Single Program Multiple Data (SPMD) fashion [21]. The SPMD
concept extends Single Instruction Multiple Data (SIMD) by executing several
instructions for each piece of data. A kernel function can be executed by the threads in
order to run the data-parallelized operations. It is very efficient to utilize many threads in
one operation. For full utilization of the GPU, fine-grained decomposition of work is
required, which might cause redundant instructions in the threads. However, there are

several restrictions in using the kernel functions. A CUDA kernel function can not be

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

recursive and it can not use static variables. Kernel functions also need a non-variable
type of parameters. The host (CPU) code can copy data between the CPU’s memory and

the GPU’s global memory via API calls.

2.5.3 CUDA Threads

Thread execution on the G80 architecture consists of a three-level hierarchy, grid,
block, and thread. The grid is the highest level. A block is a part of the grid, and there can
be a maximum of 2'¢ — 1 blocks in the grid, organized in a one or two dimensional array.
A thread is a part of a block, and there can be up to 512 threads in a block, organized in a
one, two, or three dimensional array. Threads and blocks have their unique location
numbers as threadID and blockID. The threads in the same block share the data through
the shared memory. In CUDA, the function __syncthreads() performs the barrier
synchronization, which is the only synchronization method in CUDA. Additionally, the

threads can be grouped into warps of up to 32 threads.

Host

Figure 5. Organization of CUDA threads

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4.2 CUDA Memory Architecture

The G80 has several specially designed types of memory that have different

latencies and different limitations [22]. The registers are fast and very limited size read-

write per-thread memory in each SP. The local memory is slow, not cached, limited size

read-write per-thread memory. The shared memory is a low-latency, fast, very limited

Table 1
Memory types in CUDA [22]
. . V Read- _r
Memory | Location | Size Latency Onl Description
Yy
Large DRAM. All data reside here at the beginning of
kernel execution. Directly addressable from a kernel
768 200~300 using pointers. Backing store for constant and texture
Global off-chip | MB cveles No memories. Used more efficiently when multiple
total 4 threads simultaneously access contiguous elements of
: memory, enabling the hardware to coalesce memory
accesses to the same DRAM page.
16 ~ Local scratched that can be shared among threads in a
Shared on-chi KB register | No thread block. Organized into 16 banks. It is often
P per la;ge nc possible to organize both threads and data so that bank
SM v conflict seldom or never occurs.
8KB cache per SM, with data originally residing in
64 ~ global memory. The 64KB limit is set by
Constant on-chip KB register | Yes programming model. Ofteg used for lookup table The
cache Total | latenc cache is single-ported, so simultaneous requests
Y within an SM must be to the same address or delay
occurs.
16KB cache per two SMs, with data originally
residing in global memory. Capitalizes on 2D locality.
Texture on-chip | Upto | >100 Yes Can perform hardware interpolation and have
cache Global | cycles configurable returned-value behavior at the edge of
textures, both of which are useful in certain
applications such as video encoder
Local off-chip Upto | Same as No Space for register spilling, etc
Global | global ’

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

size, read-write per-block memory in each SM. Shared memory is useful for data among
the threads in a block. The global memory is a large, long-latency, slow, non-cached,
read-write per-grid memory. It is used for communication between CPU and GPU as a
default storage location. Constant and texture memory is used for only one-sided
communication. The constant memory is slow, cached, limited size, read-only per-grid
memory. The texture memory is slow, cached, large size, read-only per-grid memory.

Table 1 indicates the CUDA memory types.

L. Marziale, et al.[23] summarized the memory architecture of CUDA with restrictions

and associated costs as follows:

* Private registers are local to a particular thread and readable and writeable only
by that thread.

* Constant memory is initialized by the host and readable by all threads in a
kernel. Constant memory is cached and a read costs one memory read from
device memory only on a cache miss, otherwise it costs one read from the
constant cache. For all threads of a particular warp, reading from the constant
cache is as fast as reading from a register as long as all threads read the same

- address. The cost scales linearly with the number of different addresses read by
all threads.

* Shared memory can be read and written by threads executing within a particular

| thread block. The shared memory space is divided into distinct, equal-sized

banks which can be accessed simultaneously. This memory is on-chip and can

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be accessed by threads within a warp as quickly as accessing registers, assuming
there are no bank conflicts. Requests to different banks can be serviced in one

clock cycle. Requests to a single bank are serialized, resulting in reduced

memory bandwidth.
Grid
© Block (0. 0) Block (L 0}
Shared Memory Sha W ¢ G
Registers Registers Registers | ' Regltes’ |
. : : H
& i
: 3 S S B

Thread (D, 0) Thread (L 0) Theaad (0. 0) Tiveasd (1, 0)

L 4 448 , 44 4 44 : £ X)
' i Y ¥

sl || Local 1ocal
. Memory l Memory Memory Mentory:

! iy

H
s

. '/ ‘N..,..,...,........,,.,,.,...-,....wﬁ

Gobal
. Memary

- Konstant
- Mamory

Texture
‘Memory

Figure 6. Memory architecture of the G80

* Texture memory is a global, read-only memory space shared by all threads.
Texture memory is cached and texture accesses cost one read from device

memory only on a texture cache miss. Texture memory is initialized by the host.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hardware texture units can apply Vaﬁous transformations at the point of texture
memory access.

* Finally, global memory is uncached device memory, readable and writeable by
all threads in a kernel and by the host. Accesses to global memory are expensive,

requiring 200 or more cycles of memory latency.

2.5.3 CUDA Toolkit and SDK

Nvidia provides the CUDA toolkit and CUDA SDK as the interface and the

- examples for the CUDA prograinming environment. They are supported on Windows XP,

Windows Vista, Mac OS X and Linux platfqrms. ‘The CUDA toolkit contains several
libraries and the CUDA compiler NVCC. A CUDA program is written as a C/C++
program. NVCC separates the code for the host (regular C/C++ code) and the device (a
CUDA native). The CUDA toolkit also supports a simulation mode of CUDA. In the
simulation mode, a programmer can debug the code. The CUDA toolkit and SDK also
provide GPU management functions, memory management functions, external graphical

API supported functions, and some useful sample codes.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

SEQUENCE ALIGNMENT

3.1 Bioinformatics

Bioinformatics is an interdisciplinary research area among many scientific fields,
including biology, chemistry, computer science, mathematics, physics, and statistics.
Bioinformatics can be defined as the application of information technology to the
collection, identification, classification, organization, and analysis of biological data. Due
to the rapidly increasing amounts of the biological data, the high computational resources
are required in bioinformatics research in order to process the large data sets and to
reduce the processing time. The main research domains in bioinformatics include
sequence alignment, gene finding, genome assembly, protein structure alignment, protein
structure prediction, analysis of gene and protein expression and protein-protein

interactions, and the modeling of evolution.

3.2 Sequence Alignment
Sequence alignment has become a basic tool of molecular biology. Its goal is to

find the similarity between two sequences in protein or nucleotide databases, and such

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

similarity may help identify the functional, structural, or evolutionary relationships
between the sequences. The similarity is generally called homology. Sequence alignment
algorithms are mostly used to align two sequences at a time. The quality of the alignment
is represented as an aligned score, calculated from matches, mismatches, and gaps in the
sequence alignment matrix. An optimal alignment algorithm ﬁnds the alignments that
maximize the score.

Pairwise sequence alignment can be gen_erally classified as global alignment and
local alignment. In general, globai alignment. is applied when the lengths of two
sequences are roughly equal. It can find the similarity throughout the entire lengths of the
sequences. Based on dynamic programming, the Needleman-Wunsch algorithm [24]
finds the optimal global alignment between two sequences. On the contrary, local
alignment finds short segments in the sequences that have high similarity. The Smith-
Waterman algorithm [25], also based on dynamic programming, finds the optimal local

alignments.

3.3 Dynamic Programming

Dynamic programming is a technique to find the optimal solutions from complex
problems that have overlapping sub-problems and optimal sﬁb-structures [26]. Dynamic
programming can speed up the computation when it is costly to enumerate all possible
sub-structures. When aligning DNA or RNA sequences, a match of residues is assigned a
positive score, a mismatch of residues receives a negative score, and a gap incurs a
negative penalty. When aligning protein sequences, a substitution matrix, constructed

from observed substitutions between different amino acids in evolutionarily related

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sequences, is employed instead of the simple match and mismatch scores. Dynamic
programming is guaranteed to find the maximum aligned score of two sequences with
respect to a particular scoring scheme. Although dynamic programming can find the

optimal alignments, it is slow for long sequences.

3.4 The Smith-Waterman Algorithm

The Smith-Waterman algorithm, proposed by T. Smith and M. Waterman in 1981,
finds the optimal local alignment between two sequences. This algorithm works by filling
the sequence alignment matrix with scores. One sequence is placed at the top of the
sequence alignment matrix, and the other sequence is place at the left side of the matrix.
The cells in the first row and the first column are filled with O for initialization of the

sequence alignment matrix. The configuration is illustrated in Figure 7.

@ ATCGTCGTATGATG
S |0 0000000000000
G |0 0000021002102
e 002012101043 2101032
i C 0 01 4 3433321022
T | 0 0 2 3 6 5 454 5 4321
t A |0 22255 4476565 4
+ T |0 1 43 4446598787
»C 0 0 3 6 56 555887 77
! A [0 225555477 710938
TTCTloe 11 44765666 9 98

Figure 7. Tracking the alignment scores

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

After initialization, the celis in the matrix are filled with scores in a top-down and left-to-
right fashion where the scores are calculated according to the formulas in Figure 8. After
filling all the cells in matrix, the maximum scoring cells are selected, and they represent
the ends of the optimal local alignments. Backtracking is applied till a cell with the score
0, which represents the beginning of the optimal local alignment. The Smith-Waterman

algorithm takes O(MN), where M and N are the lengths of the sequences.

A:a,a,,a,,...,a,,, a Thefirst sequence string

B:b,b,b,..., b

m-12

b,, The second sequence string

a : Initial Gap penalty

P : Extension Gap penalty

sbt(a;,b;) : A substitution matrix of a, and b,

E,
H,, = MAX -

i,j

H,_,,, +sbt(a;,b))

Where, 1<i<m

Figure 8. Smith-Waterman scoring schemes

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

During the computation of the Smith-Waterman algorithm, a cell in the sequence
alignment matrix has a dependency on three cells, the one tov the left, the one above, and
the one from the upper left diagonal, illustrated in Figure 9. However, the elements in the
same anti-diagonal are all independent of each other, and they are dependent on the

previous two anti-diagonals.

k=2 k=1 &

ey

'Figure 9. Daté dependency of each cell [27]

3.5 Sequence Alignment on the GPU
There were several studies to conduct sequence alignment on GPU in the

literature. W. Liu et al.[27] implemented sequence alignment in a high-level GPU

| programming language, GLSL, using texture buffer on Geforce 6800GTO and Geforce
7900GTX. They used a shifted sequence matrix for processing anti-diagonals, and RGBA
channels of 2D buffers for the computation of H, E, F, and the maximum values. M.C.
Schatz et al.[28] proposed high-throughput sequence alignment system using CUDA on

- GeForce 8800GTX. They implemented MUMmer (Maximal Unique Matches), a genome

alignment system, on GPU using CUDA. MUMmer used a suffix tree data structure to

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

align multiple query sequences against a single reference sequence. Their MUMmerGPU
was more than 10 times faster than the CPU version. Manavski and Valle succeeded to
implement the Smith-Waterman algorithm on GeForce 8800GTX using CUDA [29].
They adopted the vector parallel model, a pre-defined query-profile in order to reduce the
substitution matrix lookup, a pre-ordered database for fast computation, and an adequate
maximal use of memory per cycle. They used 64 threads in a block and 450 blocks in the
grid for a total of 28,800 threads on GeForce 8800GTX. In addition, they used two
GeForce 8800GTX as multiple GPUs. Their implementation was from 2 to 30 times

faster than other previous sequence alignment systems.

database sequence database sequence

b, by b, b, by by by by by byby b, by by by by by b; by by bipby 029181

& (CF RATZXYHC e [nNININIAININ fall :

Z‘; 259574 el erm M P K I E N L Y

AL PRI, o Adalalala|a|1]1]2]2

e [CF 7 X 20K, 2
BY P11 4440144 8= B |-3/2|0]4 1/4]-4|3
§ « AT § il
§ AP A A A §:;:51rJE::;,;“: 2(-4(-3|-2 3|-2]|-2|-3
& AT I TS g ol 1 - : ;
3 Il 7 4 DT EL. 3o

9110/,/ "4 g7, a:3

|, 7 85

iy AL X [-1{-2]-1-1 1111

A A 9 18 (S]{S8]18)(8 0(-3]-2|-1 2|-2(-1]8

77
. Z |-1|1]1/|3 5(0/(-3|-2

Figure 10. Vector parallel model and Pre-defined Query-profile [29, 30]

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

SMITH-WATERMAN ON THE GPU USING CUDA

4.1 Parallelized Smith-Waterman Algorithm

In this chapter, we describe the ifnplémentation of the parallelized Smith-
Waterman algorithm on GPU. The Smith-Waterman algorithm constructs a sequence
alignment matrix from which the optimal local alignments are extracted. In the sequence
alignment matrix, the value of a cell depends on three other cells: the one to the left, the
one aboVe, and the one from the upper left diagonal. However, the cells in the same anti-
diagonal are all independent, and they are dependent on the previous two anti-diagonals.
Thus, we will apply parallel computation to the anti-diagonals using multiple streaming

processors in the GPU.

4.2 Wavefront Algorithm

There is an approach called wavefront that uses diagonal sweeps to implement a
parallelized dynamic programming [31]. In wavefront using diagonal sweep, the
memorization method can be used for the multi-thread parallelized Smith-Waterman

algorithm on GPU. This method involves more than one dimensional memorization

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

variables, and it also reduces the recursive calls between parameters. The method can
create a pattern of computation, advancing diagonally on the multidimensional
memorization variable space. For the parallel formulation of the wavefront algorithm,
the distribution of threads is very important. Thread idle time needs to be minimized and

an equal amount of work needs to be assigned to each thread.

4wn |5

Thread0 | Thread 0

5Run4

Thread 1 Thread 1 |-

2 4rn|Hrn
'rémaz Thread2 | Thread2 |-

4 Run

Thread 3

4 Run 5 Run

Thread 4 | Thread 4

5w |G

Thread § m&"q

0 Run 1 Run | -3 Ruit

Thread 0 | Thread@ }i M
Sk

Thread 1 Thread 0

9 10

8 Run

Thread 2

Figure 11. Diagonal sweep wavefront

Same number will be calculated in one run time

4.3 Smith-Waterman CUDA System
System Structure

The Smith-Waterman implementation consists of five modules: sequence reading
module, pre-processing module, CPU Smith-Waterman processing module, GPU Smith-

Waterman processing module, and output display module.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Read Query sequence (FASTA) | Sequence reading

1
Load DB sequence (FASTA) -

Y

- Initialization : . .| Pre-processing
Q seq size, DB seq size, thread number

. Loéd substitution matrix

1 .
Create Sequence matrix

]
T B ’ GPU
RS Initialize tc";DA device Smith-Waterman

""", Convert Sequence matrix
* -to anti-diagonal matrix
1 cPU
Split anti-diagonal matrix X sm'th'wafe’ma“

GPU Sequential ‘Smith-Wat‘erm’a:n' !
CincPU .

" Kemel2 . b
et —
" Kemel3
Parallelized Smith-Waterman .
using Wavefront algorithm H
Copy memory fromICUDA device to host

Convert anti-diagonal matrix
to Sequence matrix

Find the maximum score

1

Track the alignment results :

1

" Print out the results . -

Output displaying

To next sequence in Sequence DB

Figure 12. Diagram of Smith-Waterman CUDA system

Sequence Reading : The sequence reading module reads a query sequence file and the

database files in the FASTA format [32]. It checks that the files are correct FASTA files.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It reads the protein (or DNA) sequences from the files, and stores the sequences to

variables containing sequence names, sequence lengths, and the sequences.

Pre-processing : The second module is the pre-processing module. This module prepares
all the required variables. It initializes the sequence alignment matrix, and it loads the

substitution matrix in order to create the substitution matrix array.

CPU Smith-Waterman : The CPU implementation of Smith-Waterman is the third

module. It uses the classic method in the implementation.

GPU Smith-Waterman : The fourth module is the GPU implementation of Smith-
Waterman. The code is written in CUDA, utilizing multiple streaming processors in the
GPU. G80 and CUDA support the Single Programming Multiple Data (SPMD)

parallelization.

Output Display : The last module is output display. It shows the results of the alignment:
the number of matched or ignored sequences, the running time, alignment scores, and so

on.

4.4 CUDA Implementation
An advantage of using CUDA is that G80 supports many simultaneous threads.
The basic concept of our implementation is how to process all cells in an anti-diagonal at

the same time using threads.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4.1 Pre-processing
The Sequence matrix: From two input sequences of lengths m and n, we can

create the sequence alignment matrix using an int4 type 1-dimensional dynamic array.

The size of the matrix is m plus one (all 0 in the first row) times n plus one (all 0 in the
first column). It stores the score, the x coordinate, the y coordinate, and the direction
(from the top, from the left, or from the upper left diagonal) for the purpose of

backtracking.

n+1

Figure 13. The sequence matrix

Pre-defined macro: Smith-Waterman needs a lot of comparisons of scores in each cell.
We use a pre-defined C macro to speed up the comparison of two numbers. In GPU

programming, it may be advantageous to avoid function calls.

#define max(A,B) ((A)>(B)?(A):(B))

Figure 14. Pre-defined macro code

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C 0000000000000 0000000000000000O |
C0O 0000000000000 000000O0O00OTTTOOC O |
OO0 0000000000000 00000000000TTO0GS O |
C 0000000000000 00000000O0CTTOOOG O |
OO0 0000000000000 00000000TO0000O0GC O |
0000000000000 00000000000C0O000O O |
C 0000000000000 000000T0O0TOOTOOO O |
C0 0000000000000 00O000000000O00TOO |
OO0 0000000000000 0000000000000000 O |

T T T NI TN T T T T TN TSR T T T T S0 0000000 X%
oo @Yoo o T Y o NG NG TS SSSS 5SS SN
N s o Sy d@yaoowsYywaN-oScoSSSSSm
S Y T YT TP T PNCPTOTP o000 00S >
R I I R A R L R
PP TP T PP PPV YTP e PO pgoccocccocoo=
-~
T R R L
Fe oo S CmoddrdaNYNaN SO SSSoS eSS S n
B I e St UL -t JRE S S iy SO . i o
i 1 [|] 1 I 1] 1 1 1 1 i - |])]] 1]]
YNy Py ooy gy-ryyfddSsdsddSn
FaayaCaG S NGaNSTa Y S g T doSooSSS 0=
Rk R R R - g e
N Y YN NP Y PNS PO r o ryP 000000000
TP TYPY T TP NN OO O T oYy roc00SS000 —
No-r@rogoy@o o NG NYSorsooocosoox
=
S e TR NP ENYFNOPTYONPEfragococcococows
S NGNCS S Yo ram T I maNG 6 S S oS 5SS oW
CC @R B NS Y o C @YY SocosoSo S0
T rd N AN NS SSSSSSS S L
| I N SR B |] 1 1 1 1 1 1 1 1 1] 1 1 i] [|
CEN NN S -G YoaYaN - SYNG Yo SoSsoSSSSS =
NN TS ey O OO O g0, 000000000 X
TPt It
]]]] 1] 1 1 1 1 1] 1 t] 1 1 1 ~
~
T TR TR T T T T T e e T e T T T T T T T T TR T T T e T T e e L L
¥ X X X X X *x ¥ X X X ¥ X X x X X X X ¥ % X *x X x *x *x K ¥ x X ¥
X X Z00C LU0 I — I 1L DE=>>oOoMN2> 1 8 80 1 1+ 11
¥ X ¥ ¥ X Xk X Kk X X x Xx X X ¥ ¥ X ¥ ¥ X X ¥ X ¥ ¥ *x ¥ % ¥ x ¥ ¥
T e T T T TR T T T T T TR TR R T T TR TR TR TR TR TR TR TR TR e TR e T T e

Figure 15. BLOSUMS50 Substitution matrix for SW CUDA
Substitution matrix: The substitution matrix is stored as a 32 by 32 array as shown in
Figure 16. There are only 23 symbols in the alphabet. However, we add 9 padding
symbols so that the size of the matrix is a power of 2 for faster addressing. In CUDA,
31

float calculation is faster than integer calculation. Thus, we convert an int type

substitution matrix array to a float type array.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4.2 Extraction of the Anti-diagonals

In using a diagonal sweep wavefront algorithm, we need to extract anti-diagonals
and form an anti-diagonal matrix. The conversion from the original sequence alignment
matrix té the anti-diagonal matrix is illustrated in Figure 17. The number of threads will
be n, and the number of anti-diagonals will be m-n. We store this matrix in a float 1-

dimensional array, and the array consists of three parts.

0
1|8
n
m 2]9 1186
"3 |10) 47 [ial
0.1 |23 o5
8 |9 [107 11 51219 | 26
n m-n
181719 | 20 6 | 13| 2027
24| 25| 26727 7 |14 |21 28
Run S
n-1
(m -1) + (n-1) +1
|
|

Thread number

n

Figure 16. Anti-diagonal matrix conversion

First anti-diagonals: From the upper left corner of the sequence alignment matrix to the
first full anti-diagonal, the code uses fewer threads than what can be deployed and will

increase the number of threads one by one up to the end of the first part. The first and last

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

values of each row are 0, because they are initialized with 0 in the sequence alignment
matrix.

Mid anti-diagonals: From the second row of full anti-diagonals to the end of the full
anti-diagonals, the code uses all available threads.

Last anti-diagonals: From the end of the full anti-diagonals to the lower right corner of

the matrix, the code does not use all threads. The number of threads is decreased one by

one.
First anti-diagonal Mid anti-diagonal Last anti-diagonal
Figure 17. Data dependency of each anti-diagonal part
4.4.3 CUDA Kernels

The sizes of the three anti-diagonal parts are different, and the data dependency of
the last anti-diagonal part is different from the first two parts. If we use the same CUDA
kernel for all three parts, several conditional statements will be included to distinguish the
parts. However, when conditional statements are used in a kernel function, different
threads may follow different conditional paths during execution, leading to divergence of
SPMD. For this reason we use three kernels for the three parts without conditional
statements in the code. The 32 bit integer multiplication on the GPU takes 16 clock

cycles, whereas floating point addition, subtraction, and multiplication take 4 clock

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cycles [19]. Thus integer multiplication should be avoided. Since two previous anti-
diagonals are needed to calculate the current anti-diagonal, calculation should start from
the third row of each part. Because the first and last elements in the first part of the anti-
diagonal matrix are initialized to zeroes, we do not need to calculate them.

The kernels use many variables to store data. Before calling the kernels, we need
to allocate memory in the GPU device memory, and copy all the data from the memory
of the host computer to the device using the function cudaMemcf)y(). Since the partial
anti-dagonal 1-dimensional array contains critical data, it will lead to good performance
if bank conflicts are avoided. We can check for bank conflict using the function

CUT BANK_CHECKER().

#def ine CHECK_BANK_CONFLICTS 0
#if CHECK_BANK_CONFLICTS

#define H(i) CUT_BANK_CHECKER(((float*)&d_H[0], i)
#else

#define H(i) d_H[il

#endi f

Figure 18. Bank conflict checker code

4.4.4 Substitution Matrix

The location of the current cell is storéd as the X and Y coordinates in an int2
type variable, and actual sequences are stored as strings in a char type array. We can use
a subscript to the sequence array to retrieve the actual sequence symbol. The substitution

matrix is a 32 by 32 array, and each amino acid is converted to a number as shown in

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2. Therefore, when we look up the score in the substitution matrix, we use the

numbers that correspond to the symbols of the amino acids. The scores are stored as

floating point numbers.

Table 2

Protein conversion in Substitution matrix

20

21

22

23

__global__ void

swTestmid(float* d_H, int aSize, int bSize, int2* gLoc, float* sbt)

{
const unsigned int t_num = blockDim.x + 1; // Block index
const unsigned int tid = threadldx.x + 1; // Thread index
unsigned int num = t_num + t_num;
for(unsigned int i=3; i < (aSize - (bSize - 1) + 2); i++){
num += t_num; // To reduce integer multiplication
H(num + tid) = max(0.0, max(H((num - t_num) + tid - 1),
max(H((num - t_num) + tid), H((num - t_num - t_num) + tid -1)
- sbt{((gLoc[num + tid].y) << 5) + (gLoc[num + tid].x) 1)));
__syncthreads() ;
}
}

Figure 19. Mid anti-diagonal kernel code

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4.5 CUDA Configuration
In our implementation of the CUDA Smith-Waterman, there is only one block of
512 threads in the grid. The for loop in the kernel processes one row of the anti-diagonal
matrix at a time, and the 512 cells in the row are computed by 512 threads simultaneously.
After running thé three kémelé, the resulte(i data in the GPU are copied to the host
memory using the fﬁhction cudaMemcpy(). The CUDA utility cutTimer() is used to
determine the time used by the computation and data transfer. The results can be

displayed on a screen or saved as a file.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

RESULTS AND CONCLUSION

The performance of the GPU implementation of Smith-Waterman is affected by
the number of simultaneous threads and the time for data transfers between the host aﬁd
the device. Furthermore, the implementation is constrained by several hardware specific
properties of the G80 and the CUDA language. In the present work, the efféi‘ts are
focused on reducing the calculation cycles and the running time by making simple code

and using the appropriate data types.

5.1 Environment

We have implemented the Smith-Waterman algorithm using CUDA on the
Geforce 8800GT (600MHz G92 core with total 112 SPs in 14 SMs, 1.5GHz shader
clocks, and 1GB 1.8GHz 256-bit DDR3 memory), a latér version of G80, in an
Alienware machine (Pentium-D 3.0GHz with 2GB RAM). We compared computation

performance on three different lengths of query and DB sequences.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Results
Table 3 shows that the parallelized Smith-Waterman with the wavefront algorithm
on the GPU using 1 grid and 1 block can be from 1.5 to 3.7 times faster than the

sequential Smith-Waterman on the CPU.

Table 3

Experimental result between CPU-SW and GPU-SW with 1 block

DB (ch":;gz; | CPUErSn\:; GPUErSn\:; Speed

512 256 v 4.9055 1.4638 33

1024 256 8.9378 4.1006 2.1

2048 256 16.5376 9.3348 1.7

4096 256 31.7367 19.7967 1.6

8192 256 61.3310 40.2662 1.5

1024 512 18.6674 4.9486 3.7

2048 512 34.2762 14.4870 2.3

4096 512 66.0518 34,9783 1.8

- 8192 512 124.5451 77.9419 1.6

5.3 Conclusion

The present work is focused on parallelizing the Smith-Waterman algorithm with
the following results. First, we presented a simple approach to parallelize Smith-
Waterman with the wavefront algorithm. Second, we conducted preliminary experiments
and found that the parallelized Smith-Waterman algorithm on the GPU is at least 1.5

times faster than Smith-Waterman on the CPU. It is likely that an even better

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performance may be achieved by employing a more sophisticated arrangement of threads,

blocks, and the grid.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

[1]J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. E. Lefohn, and T. J.
Purcell, “A SURVEY OF GENERAL-PURPOSE COMPUTATION ON GRAPHICS
HARDWARE?”, Computer Graphics Forum, 26(1): pp. 80 - 113, 2007

[2] V. Anand, “NVIDIA GEFORCE 8800 GTX / GTS (G80) - THE WORLDS’S FIRST
DX10 GPU”, <http://www.hardwarezone.com/articles/view.php?cid=3&id=2107>,
Web article, Nov. 2006

[3] P. Trancoso and M. Charalambous, “EXPLORING GRAPHICS PROCESSOR!
PERFORMANCE FOR GENERAL PURPOSE APPLICATIONS”, In Proceedings
of the Euromicro Symposium on Digital System Design, Architectures, Methods and
Tools (DSD 2005), IEEE Computer Society, pp. 306 - 313, Porto, Portugal, August
2005.

[4] GPGPU.org, “GENERAL-PURPOSE COMPUTATION USING GRAPHICS
HARDWARE”, <http://www.gpgpu.org/>

[5] N. Goodnight, R. Wang, and G. Humphreys, “COMPUTATION ON
PROGRAMMABLE GRAPHICS HARDWARE?”, IEEE Computer Graphics and
Applications, 25(5): pp. 12 — 15, 2005

[6] A. L. Shimpi, and D. Wilson, “NVIDIA'S 1.4 BILLION TRANSISTOR GPU”,
<http://www.anandtech.com/video/showdoc.aspx?i=3334&p=21>, Web article, Jun.
2008 -

[7] AMD, “ATI RADEON™ HD 4800 SERIES”,
<http://ati.amd.com/products/radeonhd4800/specs2.html>

[8] P. Hanrahan, and J. Lawson, “A LANGUAGE FOR SHADING AND LIGHTING
CALCULATIONS”, Proceedings of the 17th conference on Computer graphics and
interactive techniques, Dallas, USA, pp. 289 — 298, 1990

[9] K. Moreland, and E. Angel, “THE FFT ON A GPU”, Proceedings of the ACM

SIGGRAPH/Eurographics Workshop on Graphics Hardware, San Diego, USA, pp.
112 -119, 2003

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[10] D. Blythe, "THE DIRECT3D 10 SYSTEM", ACM Transactions on Graphics, 25(3):
pp. 724 — 734, Jul. 2006 '

[11] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard, “CG: A SYSTEM FOR
PROGRAMMING GRAPHICS HARDWARE IN A C-LIKE LANGUAGE”, ACM
Transactions on Graphics, 22(3): pp. 896 — 907, 2003

[12] J. Kessenich, D. Baldwin, and R. Rost, “THE OPENGL SHADING LANGUAGE?”,
<http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.20.8.pdf>

[13] M. D. McCool, Z. Qin, and T. S. Popa, “SHADER METAPROGRAMMING?”,
Proceedings of the ACM SIGGRAPH/Eurographics Workshop on Graphics
Hardware, Saarbruecken, Germany, pp. 57 - 68, 2002

[14] T. R. Halfhill, “PARALLEL PROCESSING WITH CUDA”, Microprocessor Report,
<http://www.mdronline.com>, Jan. 2008

[15] AMD, “ATI CTM GUIDE”,
<http://ati.amd.com/companyinfo/researcher/documents/ATI_CTM_Guide.pdf>

[16] 1. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P.
Hanrahan, “BROOK FOR GPUS: STREAM COMPUTING ON GRAPHICS
HARDWARE”, ACM Transactions on Graphics, 23(3): pp. 777-786, 2004.

[17] AMD, “AMD STREAM SDK?”,
<http://ati.amd.com/technology/streamcomputing/index.html>

[18] T. Krazit, “INDUSTRY GROUP TO EVALUATE APPLE’S OPENCL AS
STANDARD?”, <http://news.cnet.com/8301-13579_3-9970617-37.html>, Jun. 2008

[19] NVIDIA, “COMPUTE UNIFIED DEVICE ARCHITECTURE PROGRAMMING
GUIDE VER 1.17,
<http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Progra
mming_Guide 1.1.pdf>, Nov. 2007

[20] Rys, “NVIDIA G80: ARCHITECTURE AND GPU ANALYSIS”,
<http://www.beyond3d.com/content/reviews/1/5>, Nov. 2006

[21] M. J. Atallah, “ALGORITHM AND THEORY OF COMPUTATION
HANDBOOK” Boca Raton, FL: CRC Press, 1998.

[22] S. Ryoo, “PROGRAM OPTIMIZATION STRATEGIES FOR DATA-PARALLEL
MANY-CORE PROCESSORS”, PhD Dissertation, University of Illinois, Urbana, IL,
2008.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[23] L. Marziale, G. G. Richard III, and V. Roussev, "MASSIVE THREADING: USING
GPUS TO INCREASE THE PERFORMANCE OF DIGITAL FORENSICS TOOLS",
Proceedings of the 7th Annual Digital Forensics Research Workshop (DFRWS 2007),
Boston, MA, 2007

[24] S. Needleman, and C. Wunsch. “A GENERAL METHOD APPLICABLE TO THE
SEARCH FOR SIMILARITIES IN THE AMINO ACID SEQUENCES OF TWO
PROTEINS”, Journal of Molecular Biology, 48: pp. 443 - 453, 1970.

[25] T. F. Smith, and M. S. Waterman, “IDENTIFICATION OF COMMON
MOLECULAR SUBSEQUENCES”, Journal of Molecular Biology, 147: pp. 195 -
197, 1981 ,

[26] Wikipedia, “DYNAMIC PROGRAMMING”,
<http://en.wikipedia.org/wiki/Dynamic_Programming>

[27] W. Liu, B. Schmidt, G. Voss, and W. Muller-Wittig, "STREAMING
ALGORITHMS FOR BIOLOGICAL SEQUENCE ALIGNMENT ON GPUS", IEEE
Transactions on Parallel and Distributed Systems, 18(9): pp. 1270 - 1281, Jun. 2007

\
[28] M. C. Schatz, C. Trapnell, A.L. Delcher, and A. Varshney, “HIGH-THROUGHPUT
SEQUENCE ALIGNMENT USING GRPHICS PROCESSING UNITS”, BMC
Bioinformatics, 8: pp. 474., 2007

[29] S. A. Manavski, and G. Valle, "CUDA COMPATIBLE GPU CARDS AS
EFFICIENT HARDWARE ACCELERATORS FOR SMITH-WATERMAN
SEQUENCE ALIGNMENT ", BMC Bioinformatics, 9(2): pp. S10, Mar. 2008

[30] T. Rognes, and E. Seeberg, “SIX FOLD SPEED-UP OF SMITH-WATERMAN
SEQUENCE DATABASE SEARCHES USING PARALLEL PROCESSING ON
COMMON MICROPROCESSORS?”, Bioinformatics. 2000 Aug;16(8):699-706

[31] M. Snir, “WAVEFRONT PATTERN”,
<http://www.cs.uiuc.eduw/homes/snir/PPP/patterns/wavefront.pdf>

[32] NCBI, “FASTA FORMAT DESCRIPTION”,
<http://www.ncbi.nlm.nih.gov/blast/fasta.shtml>

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CURRICULUM VITAE

Sungbo Jung

PERSONAL INFORMATION

Date of Birth: November 24", 1976
~Place of Birth: Bucheon, Republic of Korea
E-mail: sOjung03@louisville.edu

EDUCATION & TRAINING

Aug. 2005 - Present
Sep. 2001 - Aug. 2003

Mar. 1996 - Feb. 2000

AWARDS

Nov. 2008

Oct. 2002

Aug. 2002

M.S., Computer Engineering and Computer Science
University of Louisville, KY, U.S.A

M.E., Industrial Engineering

Korea University, Korea

B.A., Mass Communication

Korea University, Korea

Computer and Information Science - 1% Prize,
Graduate Research Competition Award,

Kentucky Academy of Science at Univ. of Kentucky
Bronze Medal,

Technological Automobile Competition,
Hyundai-Kia Motors

Research Prize,

Korea Intelligent Robot Competition at the Postech.

PROFESSIONAL SOCIETY MEMBERSHIP

ACM Student Member

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PROFESSIONAL EXPERIENCE
Sep. 2002 - Aug. 2003 WEB administrator,
College of Engineering, Korea University, Seoul, Korea
Sep. 2001- Aug. 2002 Instructor and Teaching Assistant,
Department of Industrial Engineering, Korea University,

Seoul, Korea :

Jan. 2000 - Apr. 2001 Reporter, ‘
MacMadang — Macintosh Magazine. Seoul, Korea

PUBLICATIONS
Journal:

S. Jung, K. Lee, and D. Jang, “A Study on Stand-alone Autonomous Mobile Robot
using Mono Camera”, The Korea Institute of Signal Processing and Systems,
Korea, Feb 2003

UNIVERSITY SERVICE

President of Korean Student Association at University of Louisville, 2006

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

