
EFFECTIVE DATA PARALLEL COMPUTING ON MULTICORE PROCESSORS

by

Jong-Ho Byun

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Electrical and Computer Engineering

Charlotte

2010

Approved by:

 Dr. Arun Ravindran

 Dr. Arindam Mukherjee

 Dr. Bharat Joshi

 Dr. Gabor Hetyei

UMI Number: 3439255

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI 3439255

Copyright 2011 by ProQuest LLC.
All rights reserved. This edition of the work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106-1346

ii

©2010
Jong-Ho Byun

ALL RIGHTS RESERVED

iii
ABSTRACT

JONG-HO BYUN. Effective data parallel computing on multicore processors.
(Under direction of DR. ARUN RAVINDRAN)

The rise of chip multiprocessing or the integration of multiple general purpose

processing cores on a single chip (multicores), has impacted all computing platforms

including high performance, servers, desktops, mobile, and embedded processors.

Programmers can no longer expect continued increases in software performance without

developing parallel, memory hierarchy friendly software that can effectively exploit the

chip level multiprocessing paradigm of multicores. The goal of this dissertation is to

demonstrate a design process for data parallel problems that starts with a sequential

algorithm and ends with a high performance implementation on a multicore platform.

Our design process combines theoretical algorithm analysis with practical optimization

techniques. Our target multicores are quad-core processors from Intel and the eight-SPE

IBM Cell B.E. Target applications include Matrix Multiplications (MM), Finite

Difference Time Domain (FDTD), LU Decomposition (LUD), and Power Flow Solver

based on Gauss-Seidel (PFS-GS) algorithms. These applications are popular computation

methods in science and engineering problems and are characterized by unit-stride (MM,

LUD, and PFS-GS) or 2-point stencil (FDTD) memory access pattern. The main

contributions of this dissertation include a cache- and space-efficient algorithm model,

integrated data pre-fetching and caching strategies, and in-core optimization techniques.

Our multicore efficient implementations of the above described applications outperform

naïve parallel implementations by at least 2x and scales well with problem size and with

the number of processing cores.

iv
ACKNOWLEDGMENTS

First of all, I would like to deeply thank my advisor Dr. Arun Ravindran for his

great support, guidance, patience and encouragement. I would also like to thank Dr.

Arindam Mukherjee and Dr. Bharat Joshi for their special help and encouragement. I am

also indebted to Dr. Gabor Hetyei for devoting his time to the review of my work.

I would also like to thank David Chassin at Pacific Northwest National Lab

(PNNL) for his special support. Specially thanks to all of my friends for their

encouragement.

Finally, I deeply thank my dear family; my parents, sisters’ families and my

aunt’s family for their love, support and encouragement. I cannot imagine myself going

through all this work without them.

v
TABLE OF CONTENTS

LIST OF FIGURES ix

LIST OF TABLES xiii

CHAPTER 1: INTRODUCTION 1

1.1� Rise of Multicore Computing 1�

1.2� Research Goals 2�

1.3� Dissertation Contributions 6�

1.4� Dissertation Outline 7�

CHAPTER 2: TRENDS IN MULTICORE COMPUTING 9

2.1� Introduction 9�

2.2� Multicore Architectures 10�

2.2.1� Historical Trends 10�

2.2.2� Architectural Elements 12�

2.2.3� Case Studies 15�

2.2.3.1� Intel Gainestown 15�

2.2.3.2� Sun UltraSPARC T2 17�

2.2.3.3� IBM Cell Broadband Engine 19�

2.2.3.4� Nvidia Fermi 24�

2.3� Multicore Programming Tools 26�

2.3.1� Parallel Libraries 27�

2.3.1.1� Shared Address Space 28�

2.3.1.2� Distributed Address Space 29�

2.3.1.3� Stream Processing 30�

vi
2.3.2� Parallel Languages 31�

2.3.2.1� Shared Address Space 32�

2.3.2.2� Partitioned Global Address Space 32�

2.3.3� Parallelizing Compilers 34�

2.4� Multicore System Software 34�

2.4.1� Shared Memory OS 35�

2.4.2� Multikernel OS 37�

2.4.3� Virtualization 39�

CHAPTER 3: DESIGNING CACHE- AND SPACE-EFFICIENT DATA 40
PARALLEL ALGORITHMS FOR MULTICORES

3.1� Introduction 40�

3.2� Background 43�

3.2.1� Computational Models 43�

3.2.2� Cache-oblivious Model 45�

3.2.3� Multicore Schedulers 47�

3.3� Parallel Cache-oblivious Design Methodology 48�

3.3.1� Computational Model 48�

3.3.2� Recursive Geometric Decomposition 50�

3.3.3� Red-Blue Pebble Game 51�

3.3.4� Nominal Parallel Pebbling Strategy 53�

3.3.5� Weighted-vertex Parallel Pebbling Strategy 54�

3.3.6� Data-aware Scheduling 56�

3.4� Case Studies 58�

3.4.1� Matrix Multiplication 59�

vii
3.4.2� Finite Difference Time Domain 64�

3.5� Conclusion 69�

CHAPTER 4: INTEGRATED DATA PREFETCHING AND CACHING IN 71
MULTICORES

4.1� Introduction 71�

4.2� Background 72�

4.3� Computation and Data Transfer Parallelism in the IBM Cell/B.E. 73�

4.4� Machine Model and General Bounds 75�

4.5� Matrix Multiplication 77�

4.5.1� Theoretical Bounds 77�

4.5.2� Discussion 86�

4.6� Finite Difference Time Domain (FDTD) 88�

4.6.1� Theoretical Bounds 88�

4.6.2� Discussion 94�

4.7� Conclusion 96�

CHAPTER 5: EXPERIMENTAL STUDIES IN COMPUTING ON 98
COMMERCIAL MULTICORE PROCESSORS

5.1� Introduction 98�

5.2� Experimental Systems 99�

5.3� In-core Optimization Techniques 102�

5.3.1� Matrix-Vector Multiplication 103�

5.3.2� Data Transformation: Data Layout Scheme 104�

5.3.3� Loop Transformation: Loop Blocking (Loop Tiling) 108�

5.3.4� Loop Transformation: Loop Unrolling 112�

5.3.5� Loop Transformation: Loop Interchange (Computational Reordering) 113�

viii
5.3.6� Vectorization 115�

5.4� Case Studies: Experimental Results and Performance Analysis 120�

5.4.1� Dense Matrix Multiplication (DMM) 120�

5.4.1.1� Multicore-efficient Implementation 122�

5.4.1.2� Optimization at Register Level 126�

5.4.1.3� Performance Analysis 130�

5.4.2� Finite Difference Time Domain (FDTD) 136�

5.4.2.1� Multicore-efficient Implementations 138�

5.4.2.2� Optimization at Register Level 141�

5.4.2.3� Performance analysis 144�

5.4.3� LU Decomposition 148�

5.4.3.1� Multicore-efficient Implementations 150�

5.4.3.2� Optimization at Register Level 155�

5.4.3.3� Performance Analysis 155�

5.4.4� Power Flow Solver based on Gauss-Seidel method (PFS-GS) 158�

5.4.4.1� Multicore-efficient Implementations 161�

5.4.4.2� Optimization at Register Level 163�

5.4.4.3� Performance Analysis 167�

5.5� Conclusion 170�

CHAPTER 6: CONCLUSION AND FUTURE WORK 173

6.1� Conclusion 173�

6.2� Future work 175�

REFERENCES 177�

ix
LIST OF FIGURES

FIGURE 1.1: Design flow for multicore-efficient software design. 4�

FIGURE 2.1: Organization of the Nehalem processors. 15�

FIGURE 2.2: Organization of the UltraSPARC T2 processor. 17�

FIGURE 2.3: Organization of the Cell Broadband Engine. 19�

FIGURE 2.4: Organization of the Nvidia Fermi. 25�

FIGURE 2.5: Multikernel model. 37�

FIGURE 2.6: Organization of Barrelfish. 38�

FIGURE 2.7: A simplified representation of the virtualized software stack, 39
demonstrating the deployment of a hypervisor and several VMs,
each of which is managing a subset of the cores and a subset of
the processes.

FIGURE 3.1: The cache hierarchy of the Intel quad-core Clovertown processor. 50�

FIGURE 3.2: A 2-level geometric decomposition of A, B, and C matrices. 60�

FIGURE 3.3: Illustrative level-(i+1) and level-i DAGs for matrix multiplication. 60�

FIGURE 3.4: The weighted-vertex pebble game: (a) Initial vertex weight 60
assignment for level-(i+1) DAGs of Figure 3.2 under �s; (b) An
intermediate step in the pebbling of the level-(i+1) DAGs under
�s.

FIGURE 3.5:� A 2-level geometric decomposition of the E- and H-field cubes. 65�

FIGURE 3.6: DAGs for FDTD: Note that there are 6 DAGs corresponding to 65
Ex, Ey, Ez and Hx, Hy, Hz.

FIGURE 4.1:� Simultaneous computing and DMA transfer: (a) Execution 74
sequence for single read buffering; (b) Execution sequence for
double read buffering.

FIGURE 4.2: Matrix multiplication with 3×3 blocks. 77�

FIGURE 4.3: Simultaneous computing and data transfer for single buffer each 79
for matrix A and B: (a) Execution sequence obtained by
considering no reuse of the data present in the local memory; (b)
Execution sequence obtained by considering reuse of the data
present in the local memory.

x
FIGURE 4.4: Simultaneous computing and data transfer for single buffer for 83

matrix A and double buffer for matrix B obtained by considering
reuse of the data present in the local memory: (a) Data transfer
bound case; (b) Compute bound case.

FIGURE 4.5: Simultaneous computing and data transfer for double buffer for 85
both matrix A and B obtained by considering reuse of the data
present in the local memory: (a) Data transfer bound case; (b)
Compute bound case.

FIGURE 4.6: Theoretical lower bounds for matrix multiplication on IBM Cell/B.E. 88�

FIGURE 4.7: Simultaneous computing and data transfer for single buffer for E- 91
field computation: (a) Execution sequence obtained by
considering no reuse of the data present in the local memory. This
scheme requires the storage of 4 blocks of data in the local
memory; (b) Execution sequence obtained by considering reuse of
the data present in the local memory between Ex, Ey and Ey, Ez.
This scheme requires the storage of 4 blocks of data in the local
memory; (c) Execution sequence obtained by considering reuse of
the data present in the local memory between Ex, Ey, and Ez. This
scheme requires the storage of 5 blocks of data in the local
memory; (d) Execution sequence obtained by considering reuse of
the data present in the local memory between Ex, Ey, and Ez but
with all the data fetched initially. This scheme requires the storage
of 9 blocks of data in the local memory.

FIGURE 4.8: Simultaneous computing and data transfer for double buffers for 92
E-field computation as data transfer bound cases: (a) Execution
sequence obtained by considering no reuse of the data present in
the local memory. This scheme requires the storage of 4 blocks of
data in the local memory; (b) Execution sequence obtained by
considering reuse of the data present in the local memory between
Ex, Ey, and Ez but with all the data fetched initially. This scheme
requires the storage of 9 blocks of data in the local memory.

FIGURE 4.9: Theoretical lower bounds for FDTD on IBM Cell/B.E. 96�

FIGURE 5.1: Dell Precision 690 with dual Intel quad-core Xeon E5345. 99�

FIGURE 5.2: SONY PlayStation3 with one PPE and eight SPEs. 100�

FIGURE 5.3: The PPE-centric programming models. 101�

FIGURE 5.4: Matrix-vector multiplication with n=4 and m=4. 104

xi
FIGURE 5.5: Data Layout Schemes of 4×4 Matrix: (a) Row-major order; 104

(b) Column-major order; (c) Space-filling-curve order; (d) Z-
Morton order.

FIGURE 5.6: Performance of data layout schemes for matrix-vector multiplication 106
with fixed m = 1024: (a) The performance in seconds; (b) The
performance in MFLOPS.

FIGURE 5.7: Implementation of loop blocking algorithm in row-major layout 109
scheme with n=4, m=4 and 2×2 blocks.

FIGURE 5.8: Memory access pattern of matrix-vector multiplication with n=4 110
and m=4.

FIGURE 5.9: The data dependency the standard matrix multiplication with n×n 121
square matrices.

FIGURE 5.10: The example of the scheduling schemes on the weighted DAGs at 127
register level blocking with b0=2; Note, the number on right side
of each computational vertex represents the sequential scheduling
order.

FIGURE 5.11: The example of vector computations for two multiplications 128
following by two addition operations simultaneously: (a) Based
on 1DF or 1BF scheduling scheme; (b) Based on hybrid
scheduling scheme.

FIGURE 5.12: Vectorization implementation at register level blocking with b0=4 129
using hybrid scheduling scheme and Intel x86_64 SSE2 intrinsics
for Intel Clovertown platform.

FIGURE 5.13: Overall performance on Intel Clovertown platform: (a) Performance 133
in GFLOPS per core; (b) Execution time in seconds on single
core.

FIGURE 5.14: Overall performance on IBM Cell/B.E. platform: (a) Performance 135
in GFLOPS per SPE; (b) Execution time in seconds on single
SPE.

FIGURE 5.15: Example of data dependency in space domain for a cell of Ex 138
computation.

FIGURE 5.16: An example distribution of threads among four cores: (a) Data 139
partitioning scheme for the naïve parallel algorithm; (b) Mapping
threads to cores for both (a) and (c) data partitioning schemes; (c)
Data partitioning scheme for the multicore efficient algorithm.

xii
FIGURE 5.17: The hybrid scheduling scheme for the four Ex computations for 141

the register level blocking; the number on the right side of each
computational vertices indicates the SIMDize scheduling order.

FIGURE 5.18: The example of the conflict alignment of 128-bit vector registers 142
for Hy(i,j,k) and Hy(i,j,k-1).

FIGURE 5.19: Overall performance on Intel platform: (a) Performance in GFLOPS 146
per core; (b) Execution time in seconds on a single core.

FIGURE 5.20: Overall performance on IBM platform: (a) Performance in GFLOPS 148
per SPE; (b) Execution time in seconds on a single SPE.

FIGURE 5.21: The data dependency of the LU decomposition based on Gaussian 150
elimination method.

FIGURE 5.22: The block partition with the four different types in sub-matrix Ak 153
at d-level.

FIGURE 5.23: The example of data dependency of LU decomposition for a matrix 154
A with 4×4 blocks.

FIGURE 5.24: Overall performance on Intel platform: (a) Performance in GFLOPS 156
per core; (b) Execution times in seconds on a single core.

FIGURE 5.25: Overall performance on IBM Cell BE platform: (a) Performance in 157
GFLOPS per SPE; (b) Execution time in seconds on a single SPE.

FIGURE 5.26: The sample power network computation with 5 buses and 5 branches. 159�

FIGURE 5.27: Vectorized Unified-Bus-Computation Module. 164�

FIGURE 5.28: Overall performance on Intel Clovertown platform: (a) Performance 167
in GFLOPS per core; (b) Execution time in seconds on a single
core.

FIGURE 5.29: Overall performance on IBM Cell/B.E. platform: (a) Performance 169
in GFLOPS per SPE; (b) Execution time in seconds on a single
SPE.

xiii
LIST OF TABLES

TABLE 5.1: Pseudo code of the matrix-vector multiplication for different data 105
layout schemes.

TABLE 5.2: The memory access pattern obtained by following a row-major 107
computational order in the nested loop with the 4×4 matrix A laid
out in a row-major layout scheme.

TABLE 5.3: The memory access pattern obtained by following a row-major 107
computational order in the nested loop with the 4×4 matrix A laid
out in a column-major order layout scheme.

TABLE 5.4: The memory access pattern obtained by following a row-major 108
computational order in the nested loop with the 4×4 matrix A laid
out in a space-filling curve order layout scheme.

TABLE 5.5: An example of matrix vector multiplication with m×n matrix A 109
using loop blocking (c = A×b).

TABLE 5.6: The performance of loop blocking algorithm with varying block size. 111�

TABLE 5.7: An example of matrix-vector multiplication with m×n matrix A 112
using loop unrolling (c = A×b).

TABLE 5.8: The performance of loop unrolling algorithm with varying unrolling 113
factor.

TABLE 5.9: Examples of matrix-vector multiplication with m×n matrix A using 113
loop interchange (c = A×b).

TABLE 5.10: The memory access pattern for the loop interchange algorithm 114
with 4×4 matrix A in column-major order layout scheme shown in
Table 5.9 (b).

TABLE 5.11: The performance of loop interchange algorithm with varying 115
problem size n.

TABLE 5.12: The example of matrix-vector multiplication with m×n matrix A 117
using vectorization (c = A×b).

TABLE 5.13: The performance of vectorization algorithms with a varying 119
problem size n and a fixed m=1024.

TABLE 5.14: The conventional serial algorithm for multiplying of two n×n 121
square matrices.

xiv
TABLE 5.15: The summary of our implementation techniques of matrix 126

multiplication used for our platforms.

TABLE 5.16: The performance (GFLOPS) for varying schedules and sizes of 130
L1-block (b1) with fixed size of L2-block (b2=512) and register-
block (b0=4) on a single core of Intel Clovertown platform. We
use 1DF scheduling scheme for L1-level and L2-level blocking,
and vary the scheduling scheme at the register level.

TABLE 5.17: Cache miss rate (%) and system bus bandwidth utilization (%) on 132
Intel Clovertown platform.

TABLE 5.18: The performance (GFLOPS) for different multi-buffering schemes 134
and size of LS-block (b1) with fixed size of the register-block
(b0=4) on a single SPE of IBM Cell/B.E. platform. We use the
1DF scheduling scheme for both level blocking.

TABLE 5.19: The naïve serial 3D-FDTD algorithm. 138�

TABLE 5.20: The summary of our implementation techniques of 3D FDTD for 140
our platforms.

TABLE 5.21: The pseudo code for the SPE 3D-FDTD E-field computation 143
using double buffers.

TABLE 5.22: The performance (GFLOPS) for different register level schedules 144
and sizes of L1-block (b1) with fixed size of L2-block (b2=64) and
register-block (b0=4) on a single core of the Intel Clovertown
platform. We use 1DF scheduling scheme for L1-level and L2-
level blocking, and vary the scheduling scheme at the register
level.

TABLE 5.23: Cache miss rate (%) and system bus bandwidth utilization (%) on 145
Intel Clovertown platform.

TABLE 5.24: The LU decomposition based on Gaussian elimination method 149
with n×n square matrix A.

TABLE 5.25: The summary of our implementation techniques of LU 151
Decomposition for our platforms.

TABLE 5.26: The different tasks of the four blocks at d-level. 153�

TABLE 5.27: Pseudo-code of naïve serial algorithm for the bus and branch 160
computations.

TABLE 5.28: The summary of our implementation techniques of PFS-GS for 163
our platforms.

xv
TABLE 5.29: Pseudo code of the multicore-efficient implementation for PFS- GS 166

on the IBM Cell/B.E. platform.

TABLE 5.30: GFLOPS with varying DMA transfer size in bytes on single SPE. 168�

TABLE 5.31: Distributed speedup and % of computation on single SPE; Note 169
our multicore-efficient implementation combines both double-
buffering scheme and vectorized unified-bus-computation
module.

CHAPTER 1: INTRODUCTION

1.1 Rise of Multicore Computing

Since the introduction of the microprocessor in the mid-70s the computer industry

has pursued a uniprocessor hardware architecture paradigm accompanied by a sequential

programming model. The steady growth in performance over the years was achieved

primarily through a steady increase of clock frequency enabled by scaling of the

underlying transistors. Architectural innovations such as hardware controlled on-chip

memory hierarchies (caches) were introduced so that the increasing gap between the

processor speeds and the memory access latencies could be hidden from the programmer.

At the chip level, application parallelism was primarily exploited at the instruction level

in a manner transparent to the programmer through multiple execution pipelines and out-

of-order processing controlled by complex logic.

However, by the middle of this decade, the traditional uniprocessor architecture

performance had hit a roadblock due to a combination of factors, such as excessive power

dissipation due to high operating frequencies, growing memory access latencies,

diminishing returns on deeper instruction pipelines, and a saturation of available

instruction level parallelism in applications. An attractive and viable alternative to

improve performance are multicore processors where multiple processor cores,

interconnects, and both shared and private caches are integrated on a single chip. The

individual cores are often simpler than uniprocessor counterparts, exploit instruction level

2
parallelism adequately, and typically achieve better performance-power figures.

Moreover, multicore architectures allow the programmer to exploit multiple levels of

parallelism at the data and task level than was possible with a traditional uniprocessor.

From a modest beginning of dual and quad cores, multicore processors are expected to

include hundreds of cores in a single chip in the near future. Currently almost all of the

high performance processors offered by leading industry vendors such as Intel, IBM,

AMD and Sun subscribe to the multicore paradigm.

1.2 Research Goals

As discussed in the previous section, programmers can no longer expect

continued increases in software performance without developing parallel, memory

hierarchy friendly software that can effectively exploit the chip level multiprocessing

paradigm of multicores. Further, due to power issues favoring architectures with lower

clock frequencies and simpler in-order processing cores, the single threaded performance

of commercial multicores may actually suffer in the coming years. Unfortunately, there is

no easy solution to this problem. In many cases, serial code cannot be parallelized

without investing considerable time and effort. Also, existing parallel libraries are often

not designed to exploit the on-chip shared memory hierarchy characteristic of multicore

processors. Piecemeal solutions developed for specific architectures run the risk of being

non-portable not only across different architectures, but also across future versions of the

same architecture. Considerable effort continues to be made in developing tools that seek

to generate parallel code starting from a serial code base with minimal effort. Although

this approach has its merits in terms of short term productivity, we argue in this

dissertation that over the long term, a systematic design process that starts from the

3
sequential algorithm of the problem and develops a scalable, parallel, memory hierarchy

friendly algorithm with tunable parameters has the best chance of avoiding technology

obsolescence. Note that the choice of an appropriate machine model is an important

element of this approach. The goal of this dissertation is to demonstrate a design process

for data parallel problems that starts with a sequential algorithm and ends with a high

performance implementation on a multicore platform. The dissertation focuses on data

parallel algorithms since they are the basis of several scientific computing kernels where

high performance is critical.

While elements of the proposed design process have been reported previously, the

focus has tended to be either on theoretical algorithm analysis or on code engineering,

limiting its utility to programmers. The focus of our work is to provide the programmer

with a design process that integrates algorithm development with actual implementation

on commercial multicores. We identify and integrate recently reported research results

into this design process and innovate where necessary. The flowchart shown in Figure 1.1

summarizes the multicore-efficient software design process proposed in this dissertation.

4

FIGURE 1.1: Design flow for multicore-efficient software design.

5
The inputs to the design process shown in Figure 1.1 are the target multicore

platform, the parallel programming tools available for the multicore platform, and the

sequential workload for the problem. The design process consists of four major steps -

We first profile the sequential workload on the target architecture to determine the

set of candidate compute tasks whose multicore efficient implementation would improve

the overall performance of the workload. This step uses available statistical profilers such

as GNU’s gprof, Oprofile, Intel Vtune Performance Analyzer, and Sun CoolTool. Note

that in this dissertation we do not explicitly demonstrate this step but assume that the

candidate compute kernels are known.

The second step theoretically analyzes the candidate tasks with the goals of

identifying data and task parallelism, improving data locality for cache-efficient and

space-efficient implementation, and identifying opportunities for overlapping computing

and data transfer. The theoretical analysis is based on an appropriate machine model for

the target multicore platform. The primary outputs of this step are parallel schedules for

computation at different levels of the memory hierarchy, theoretical bounds on execution

time under these schedules, and candidate tuning parameters.

The third step focuses on developing multicore-efficient software

implementations of the candidate tasks by integrating the results of the theoretical

analysis with processor specific performance optimization techniques utilizing

appropriate parallel programming tools. While this step is platform and programming

environment specific, many of the optimization techniques are portable across different

multicore platforms.

6
The fourth step involves verification and tuning of the performance of multicore-

efficient implementation using available performance analysis tools, such as Intel

Performance Analyzer, Intel ThreadChecker, Intel ThreadProfiler, Sun Microsystems

CoolTool, Sun Microsystems Thread Analyzer and IBM Cell B.E. SDK (see Chapter 2

and 5 for more details). These tools help in monitoring parallel performance including

parallel overhead, synchronization and load-balance. The programmers can attempt to

optimize the run-time performance by varying the tuning parameters.

The steps outline above may have to be repeated iteratively until the desired

performance is achieved.

1.3 Dissertation Contributions

The goal of our research is to help programmers analyze and improve the

performance of data parallel applications on multicore architectures. The major

contributions of this dissertation are:

(1) We present a novel weighted-vertex pebble strategy for determining efficient

block size to improve data locality on multicores. The weighted-vertex pebble

strategy is an extended pebble game for devising space-efficient and cache-

efficient algorithm through maximal data sharing between concurrent tasks under

a given scheduling strategy.

(2) We describe an innovative data prefetching and caching strategy to determine the

optimal multi-buffering scheme for compute bound and data transfer bound

algorithms. The integrated data prefetching and caching strategy improves the

performance by overlapping between computations and data transfers while

simultaneously effectively exploiting data locality.

7
(3) We illustrate a muliticore efficient design process that blends theoretical results

with practical performance optimization techniques on commercial multicores.

Specifically, we integrate our theoretical results with a series of in-core

optimizations to develop a robust set of design techniques that scale well both

with the problem size and the number of cores on a variety of multicore

architectures.

(4) We develop multicore efficient high performance computing kernels for several

important scientific computing algorithms such as matrix multiplication, finite

difference time domain, LU decomposition and power flow solver based on

Gauss-Seidel method. These highly optimized, multithreaded libraries could be

used in science and engineering applications that require maximum performance.

1.4 Dissertation Outline

This dissertation describes effective data parallel computing on multicore

platforms motivated by our experiences working with commercial multicore platforms.

The dissertation begins with an overview of trends multicore computing in Chapter 2. We

focus on the important developments in multicore architecture, programming tools and

system software.

Chapter 3 presents a design methodology that aids in the development of parallel

cache-efficient and space-efficient algorithms for shared cache multicore processors. The

methodology uses a weighted vertex pebbling game for maximal data sharing between

concurrent tasks under a given scheduling strategy at each level of the memory hierarchy.

Chapter 4 presents algorithm specific integrated software caching and pre-

fetching strategies. We introduce a general purpose machine model and present

8
conditions for when the total execution time is compute bound or data transfer bound.

Through case studies we illustrate the choice of optimal buffering strategy when both

pre-fetching and caching is considered.

Chapter 5 describes the multicore-efficient implementations of data parallel

algorithms on commercial multicore platforms. In this chapter we highlight the synthesis

of the theoretical results of Chapters 3 and 4 with practical in-core optimization

techniques to derive scalable multicore efficient implementations of some of the widely

used scientific computing kernels. Extensive measurement results are presented on the

Intel Clovertown and IBM Cell/B.E. platforms.

Chapter 6 concludes the dissertation and provides directions for future work on

programming of emerging multicore architectures.

CHAPTER 2: TRENDS IN MULTICORE COMPUTING

2.1 Introduction

The rise of chip multiprocessing or the integration of multiple general purpose

processing cores on a single chip (multicores), has impacted all computing platforms

including high performance, servers, desktops, mobile, and embedded processors. As

discussed in Chapter 1, the introduction of parallel computing at the chip level was

motivated by the need to deliver Moore’s law type advances in computing performance

within an acceptable power budget. With this paradigm shift in computing still its early

years, open questions remain on architecturally the best way to achieve this objective.

Moreover, a large part of the performance of multicores hinges on the performance of

parallel software that runs on them. Unfortunately, despite the progress made in

developing parallel algorithms and software in the past two decades, the considerable

challenges remain in its widespread adoption to the entire software stack.

Traditionally, parallel computing was largely confined to scientific computing

where either custom made supercomputers or clusters of general purpose computers were

employed. The parallel code necessary for these platforms were developed by application

domain specialists. The rise of internet led to the development of data centers with

clusters consisting of thousands of computing nodes and terabytes of storage. In the past

few years, the rising costs in maintaining these data centers as well as the availability of

broadband connections, has led to the emergence of “cloud computing” where both

10
computing resources and software are available on the “cloud” as a service [81].

However, the parallel code running on these platforms is largely web based applications

characterized by embarrassing amounts of parallelism.

We note that the successful adoption of multicore processors for general purpose,

scientific, and embedded computing will depend on jointly developing both the processor

architecture and the software stack necessary for code developers to efficiently exploit

the many types of parallelism that may exist in a computing problem. In this chapter, we

review the state-of-the-art in multicore architectures (Section 2.2), parallel programming

languages and tools (Section 2.3), and system software (Section 2.4). We pay special

attention to the underlying trends that portend developments in each of these areas in the

next few years.

2.2 Multicore Architectures

In this section we examine the architectures of popular commercial multicore

processors. While a plethora of such architectures exists in the embedded domain, we

limit ourselves to high performance multicores where power dissipation is an important

but not a dominating design issue.

2.2.1 Historical Trends

The architectures of today’s multicore processors are based on the uniprocessor

and the shared addressed space and message passing parallel architecture designs from

the past two decades. Uniprocessors have evolved from a simple RISC based pipeline of

the eighties to the superscalar, RISC-CISC architectures with deep execution pipelines

and out-of-order execution. Also, the increasing gap between processor and the external

memory latencies requires the use of deep on-chip cache hierarchies for good memory

11
performance. The architectural goal of these processors was to exploit as much single

thread performance as possible through aggressive exploitation of Instruction Level

Parallelism (ILP). Considerable logic and power budget was devoted to dynamically

finding and scheduling instructions to maximally utilize the pipelines. However, the

diminishing returns on the power-performance of this approach limited the continued

pursuit of performance solely through ILP.

Parallel machines evolved from the Cray vector machines implementing the

Single Instruction Multiple Data (SIMD) paradigm to commodity processors connected

by Commercial-Off-The-Shelf (COTS) network implementing the Single Program

Multiple Data (SPMD) paradigm. Parallel machine organization can be classified into

two main types – a) Shared Memory Processors (SMP) where all the processors share a

common memory address space and b) Message Passing Processors (MPP) where the

memory address space is disjoint and explicit messages are sent between the processors.

Commercial SMPs typically employ a bus based interconnect and provide hardware

cache coherence. Bus contention and the difficulties in scaling the cache coherence

protocols limit the number of processors to around 32. MPPs employ point-to-point

COTS network such as Ethernet (Beowulf cluster) or specialized network (IBM Blue

Gene/L). The disjoint address space, lack of hardware memory coherence, and the use of

scalable interconnect allows for MPPs with hundreds of processors. A great majority of

the TOP500 supercomputers are MPPs.

As will be seen in the next couple of sub-sections chip level multiprocessing has

borrowed a number of ideas from the above described sequential and parallel computer

architectures.

12
2.2.2 Architectural Elements

Architecturally multicore processors can be classified on the basis of a) the

processing elements, b) the memory system, and c) interconnect.

Processing Elements:

High performance multicore processors today adopt a mix of two design extremes

– for a given transistor budget integrate a small number of complex superscalar, super-

pipelined cores with out-of-order processing (example Intel Xeon Clovertown quadcore),

or a large number of simple in-order cores (example Sun UltraSPARC T1). The complex

cores are geared towards applications requiring good single thread performance while the

large number of simple cores target applications with abundant thread level parallelism.

Interestingly in multicores with simple cores, the operating frequency is far below the

maximum allowed by the process technology so as to manage the power budget. In either

case, Symmetric Multi-Threaded (SMT) cores are utilized to manage the memory

latency. While most high performance multicores have homogenous cores, processors

with heterogeneous cores specialized for different application domains have also made

their appearance. The Instruction Set Architecture (ISA) of the cores is an extension of

the ISA of the corresponding unicores (example x86, SPARC, Power) with additional

instructions such as atomic operations to support synchronization. The use of legacy ISAs

allows the execution of the existing software without recompilation.

Memory System:

Most of the high performance multicore processors in the market today follow the

shared address space architecture described in Section 2.2.1. However, shared memory

multicore processors differ from traditional SMPs in the following three significant ways-

13
(1) The processing cores, the interconnect, and a part of the shared memory hierarchy

are on the same chip/module resulting in potentially lower communication and

synchronization costs.

(2) The shared memory (typically the L2 or L3 cache) is not only shared by all or a

subset of the processing cores but is of a limited size.

(3) The integration of the processing cores, the interconnect, and the cache hierarchy

on a single chip necessitates micro-architectural tradeoffs between the

performance, die area, and power budgeted to the different components.

Hardware support for cache coherence is typically provided following either the

broadcast (ordered interconnect) or directory based protocols (ordered and unordered

interconnects). In principle the concept of a shared addressed space makes programming

simple. However, in practice, since shared memory does not provide implicit

synchronization of parallel tasks, memory consistency models and synchronizations

routines are needed to provide the necessary synchronization. The complex interaction of

synchronization, coherence, and consistency has the potential to complicate the

programming and also limit the core scaling in these processors. An example of a

commercial processor using the shared memory paradigm is the Intel Xeon Clovertown

quad-core processor (see Section 2.2.3).

Message passing multicores have also made their appearance commercially. Here

the processing cores are cache-less but instead has software managed local memory.

Messages are passed between the cores on high speed on chip interconnect through

Direct Memory Access (DMA) type operation. The sending and receiving of the

messages implicitly synchronizes the processors. While a better hardware

14
power/performance is possible with this approach, the machines are harder to program.

An example of a commercial processor using the shared memory paradigm is the IBM

Cell Broadband Engine Processor (See Section 2.2.3).

Taking advantage of the ample on-chip bandwidth in multicores, a new protocol

known as Transactional memory Coherence and Consistency (TCC) has been introduced.

TCC is an extension of the shared address space paradigm, where, instead of load/store

operations, atomic transactions are the basic unit of parallel work, communication,

coherence, and consistency [36]. As described by Hammond et. al. “TCC hardware

combines all writes from each transaction region in a program into a single packet and

broadcasts this packet to the permanent shared memory state atomically as a large block.

This simplifies the coherence hardware because it reduces the need for small, low-latency

messages and completely eliminates the need for conventional broadcast cache coherence

protocols, as multiple speculatively written versions of a cache line may safely coexist

within the system. Meanwhile, automatic, hardware-controlled rollback of speculative

transactions resolves any correctness violations that may occur when several processors

attempt to read and write the same data simultaneously. The cost of this simplified

scheme is higher interprocessor bandwidth”. A commercial processor incorporating TCC

is the Sun Microsystems’ Rock multicore (see Section 2.2.3).

Interconnect:

The on-chip interconnect found in today’s commercial high performance

multicores include point-to-point, ring, bus, and crossbar. Bus has the simplest design and

has global ordering that supports broadcast cache coherence protocols. However, buses

do not scale well. Crossbar is unordered and offers low latency but does not scale well

15
either. Point-to-point interconnect (such as Intel QPI and AMD Hyper transport) has

good performance but scales poorly.

2.2.3 Case Studies

In this section, we briefly describe the architectural features of the state-of-the-art

high performance multicores available in the market today. The multicore processors

presented illustrate the different design elements described in the previous sections.

2.2.3.1 Intel Gainestown

Intel Gainestown (Xeon W5500 series) was released in November 2008 by Intel

based on the Nehalem microarchitecture and is currently manufactured in a 45 nm

process. Nehalem is based on a multicore design philosophy of integrating a modest

number of homogeneous complex cores with good single thread performance. Figure 2.1

shows the organization of the Nehalem processors.

FIGURE 2.1: Organization of the Nehalem processors.

16
Processor Cores:

Gainestown is a true quad core processor with an operation frequency of up to 3.2

GHz consuming about 130W. The x86 based cores are out-of-order and is

Simultaneously Multi Threaded (SMT) supporting two threads per core. Each core can

issue 4-double precision floating point operations per clock. The cores incorporate Intel’s

Turbo Boost Technology which allows active processor cores to run faster when there is

available headroom with power, temperature, and temperature specification limits.

Gainestown also incorporates Application Targeted Accelerators (ATA) which are low

latency, low power, and fixed function accelerators on the processor die targeted at

specific applications. The seven ATAs target string and text processing operations.

Integrated power gates allow the individual idling cores to be reduced to near-zero power

independent of other cores, reducing the idle power consumption to 10 W.

Memory System:

Gainestown has a three level on-chip cache hierarchy with private 64 KB L1

cache (32 KB data + 32 KB instruction), 256 KB L2 cache, and an 8 MB L3 cache shared

by all cores [82]. A 512 entry second level TLB is included to improve performance. The

Nehalem implements a cache coherent Non Uniform Memory Architecture (ccNUMA)

with a broadcast based MESIF cache coherence protocol [53]. The MESIF protocol

extends the MESI protocol with a “Forwarding” state that allows unmodified data shared

by two processors to be forwarded to a third processor. Programmers must consider the

NUMA nature of the architecture in accessing data from a remote socket compared to a

local DRAM.

17
Interconnect:

The Nehalem micro-architecture uses a point-to-point interconnect that uses the

Intel QuickPath Technology. The interconnect uses up to 6.4 Giga transfers/second links,

delivering up to 25 GB/s of total read bandwidth per core. Each processor integrates a

triple channel integrated memory controller with a peak bandwidth of 32 GB/s with

DDR3-1333 DIMMs.

2.2.3.2 Sun UltraSPARC T2

The Sun UltraSPARC T2 was released in 2007 by Sun Microsystems based on the

UltraSPARC architecture and the SPARC ISA. The UltraSPARC T2 is currently

manufactured in a 65 nm process. UltraSPARC micro-architecture is based on a

multicore design philosophy of integrating a large number of homogeneous simple highly

multithreaded cores targeting application task level parallelism. Figure 2.2 shows the

organization of the UltraSPARC T2 processor.

FIGURE 2.2: Organization of the UltraSPARC T2 processor.

18
Processor Cores:

The UltraSPARC T2 is an 8 core processor each with full hardware support for

executing 8 independent threads. The in-order cores run at an operating frequency of up

to 1.4 GHz with a total power consumption of about 84W. Each core consists of two

integer execution units, a floating point and graphics unit, and a cryptographic stream

processing unit [63]. UltraSPARC T2 implements a fine-grained multi-threading scheme

where the threads are switched on a cycle-by-cycle basis between the available threads

within the two statically partitioned thread groups of 4 threads each. When a thread

encounters a cache-miss it is made unavailable and the instructions from it are not issued.

In each cycle two instructions can be issued from each thread group. UltraSPARC T2

seeks to minimize power consumption through limited execution speculation, control and

data-path clock gating, and through external power throttling.

Memory System:

The UltraSPARC T2 has a two level on-chip cache hierarchy with a private L1

cache and a shared L2 cache. The 4 MB L2 cache is 16-way set associative with a line

size of 64 bytes and organized as 8 banks. The L1 data cache is 8 KB and the instruction

cache is 16 KB. The L1 caches are write through, with allocate on loads and no-allocate

on stores. The L2 cache maintains a directory of L1 tags. The directory maintains a

shares list at the level of L1 line granularity. Local caches are not update by stores till the

L2 is updated. However, in the meantime, the same thread can see its stores.

Interconnect:

The UltraSPARC T2 uses non-blocking pipelined crossbars interconnect that

connects the 8 cores to the 8 banks and the I/O port. The crossbar has a total write

19
bandwidth of 90 GB/s and a read bandwidth of 180 GB/s. The L2 cache connects to a 4

on-chip memory controllers interfacing to FBDIMM channels. The peak memory

bandwidth is 50 GB/s for read and 26 GB/s for writes. The crossbar establishes memory

order between transactions from the same and different L2 banks.

2.2.3.3 IBM Cell Broadband Engine

The Cell Broadband Engine introduced by IBM in 2006 is a heterogeneous

multicore processor initially targeted for game consoles and consumer media

applications. The processor is currently manufactured in a 45 nm technology. Figure 2.3

shows the organization of the Cell Broadband Engine.

FIGURE 2.3: Organization of the Cell Broadband Engine.

The Cell processor consists of a Power Processor Element (PPE) and 8 identical

Synergistic Processor Elements (SPE). The PPE contains a 64 bit PowerPC architecture

core and is primarily intended for control processing, running operating systems,

managing system resources and running SPE threads. The SPE is a vector processor

supporting a specialized SIMD instruction set architecture for compute intensive

operations. An important difference between the SPE and the PPE is in the way memory

20
is accessed. The PPE uses load and store instructions to transfer instructions and data

from the main memory to the register files using a two level cache hierarchy. The SPE

uses Direct Memory Access (DMA) to transfer data from the main memory to a private

Local Store (LS) memory through the high speed Element Interconnect Bus (EIB). Note

that the SPE and PPE have two distinct ISAs necessitating the use of two different

compilers. A more detailed description of the different units of the Cell processor

emphasizing the different levels of parallelism supported by each is given below.

Power Processing Element:

The PPE is a Power ISA based dual issue, in-order execution design, 2-way

Symmetric Multi-Threaded (SMT) processor with the design optimized for frequency and

power efficiency [42]. The two simultaneous threads of execution give software the

effective appearance of two independent processing units with shared data flow. The PPE

cache hierarchy consists of a 32 KB L1 data cache, a 32 KB L1 instruction cache, and

512 KB unified L2 cache. The second-level cache and the address translation caches use

replacement management tables that allow the software to direct entries with specific

address ranges to a particular subset of the cache [42]. The PPE consists of the Instruction

Unit (IU), the fixed point unit (XU) and the vector scalar unit (VSU). The IU fetches four

instructions per cycle per thread into an instruction buffer and after decode and

dependency checking dual issues these to the execution unit. All dual issue combinations

are possible with the exception of instructions to the same execution unit and some

exceptions as described in [42]. The XU has 32 64-bit general purpose register file per

thread, a fixed point execution unit and a load store unit. The L1 D-cache associated with

the XU is non-blocking allowing cache hits under misses. The VSU issue queue

21
decouples vector and floating point pipelines from the other pipelines allowing vector and

floating point instructions to be issued out of order with respect to other instructions. The

VSU floating point units has 32 64-bit register file per thread and a 10-stage double

precision floating point unit. The VSU vector unit has 32 128-bit vector register file per

thread and all instructions are 128-bit SIMD with varying lengths [42].

As can be seen from the above description of the architecture, the PPE allow

exploitation of parallelism at multiple levels. The dual-issue nature of the architecture

allows exploitation of ILP [35]. Further, ILP partially hides memory latency by

concurrently servicing multiple outstanding cache misses [35]. Such Memory Level

Parallelism (MLP) can also be used between threads to increase overall memory

bandwidth utilization by enabling interleaving of multiple memory transactions.

However, lack of instruction re-ordering capability and sharing of execution units limits

the effective exploitation of ILP on the PPE. The architects favored these limitations of

dual-issue for power efficiency [35]. The SIMD instruction set enables exploitation of

Data Level Parallelism (DLP). The dual threaded nature of the PPE supports Thread

Level Parallelism (TLP).

Synergistic Processing Element:

The SPE consists of a Synergistic Processing Unit (SPU) and a Memory Flow

Controller (MFC). The SPU is a RISC core with a 256 KB software-controlled LS for

instruction and data, and a 128-bit 128 entry unified register file. The execution units of

the SPU are 128-bit wide and all instructions are 128-bit SIMD with varying widths [42].

The SPE ISA provides a rich set of vector such as arithmetic, logical, and load/store

operations that can be performed on 128-bit vectors of either fixed point or floating point

22
values. The ISA also provides instructions to access scalars from vector registers

enabling scalar operations on the SPE. Up to two instructions are issued per cycle, with

one slot support fixed/floating point instructions and the other slot supporting load/store,

byte permutation operations, and branch instructions. Single precision instructions are

performed in 4-way SIMD fashion and are fully pipelined, while double precision

instructions are performed in 4-way SIMD fashion, and are only partially pipelined. Also,

double precision operations stalls the dual issue of other instructions making the Cell

processor less suited for applications with massive use of double-precision instructions.

The SPU assumes sequential execution of instructions leading to serious performance

degradation on branch mispredictions. The ISA provides branch hint instructions

enabling software to pre-fetch instructions at the target branch address.

Similar to the PPE, the SPE allows exploitation of parallelism at multiple levels.

The SIMD instructions support DLP. ILP is obtained through the dual issue execution

unit of the SPE. TLP is supported through the multiple SPE cores available on the Cell

processor. At 3.2 GHz each SPE provides a theoretical peak performance of 25.6

GFlops/s of single precision performance and 2.6 GFlops/s of double precision

performance.

Memory Flow Controller:

The MFC implements the communication interface between the SPE and PPE

elements, and serves as a high-performance data transfer engine between the LS and Cell

system memory. Data and instructions are transferred between the LS and the system

memory through asynchronous coherent DMA commands. Since the address translation

is governed by the PowerPC address and page tables, addresses can be passed between

23
the PPE and the SPE enabling the operating system to share memory and manage all

resources in the system in a consistent manner. Also, LS to LS DMA transfers between

SPEs are possible. The MFC controls DMA transfers and communicates with the system

by means of unidirectional message interfaces known as channels. The channels support

enqueueing of DMA commands and other facilities such as mailbox and signal-

notification messages. The PPE and other devices in the system, including other SPEs,

can also access the MFC state of an SPE through the MFC’s memory-mapped I/O

(MMIO) registers and queues, which are visible to software in the main-storage address

space [3]. Each MFC can independently process DMA commands from its associated

SPU and from other devices. Also, the MFC can autonomously process a list of DMA

commands with up to 2048 such DMA transfers. The MFC supports naturally aligned

DMA transfer sizes of 1, 2, 4 or 8 bytes and multiples of 16 bytes, with a maximum

transfer size of 16 KB per DMA transfer. Peak transfer performance is achieved if both

the effective address and the LS address are 128-byte aligned and the size of the transfer

is an even multiple of 128 bytes.

A unique feature of the SPE is support of Compute Transfer Parallelism (CTP)

where computation is parallelized with data and instruction transfer that feeds the

computation. CTP is made possible by the asynchronous data transfers made possible by

the MFC.

Element Interconnect Bus:

The Element Interconnect Bus (EIB) connects 12 elements – the PPE, 8 SPEs, the

Memory Interface Controller (MIC) and the Bus Interface Controller (BIC) to each other

[46]. The EIB runs at half the processor frequency and can transfer a maximum of 192

24
bytes per processor cycle. It has 12 ports for the elements each of which can read and

write 16 bytes of data per bus cycle. Physically, the EIB consists of 4 rings with 2 rings

transferring data clockwise and 2 rings transferring data counter clockwise. Each ring can

transfer 16 bytes of data and supports 3 concurrent non-overlapping transfers. The EIB

can thus support 102.4GB/s of coherent commands with transient rates as high as 307.2

GB/s. The Cell BE's external memory bandwidth is 25.6GB/sec inbound and outbound to

the Rambus Dual XDR memory controller, roughly 3-8 times the bandwidth of a typical

DDR memory bus [46].

The high bandwidth of the EIB supports streaming of data by allowing the SPEs

to be arranged in a pipeline fashion, where each SPE kernel acts on the data, produce

intermediate results, and pass on the data to the next SPE. Compared to SIMD, the stream

model supports data parallelism at a larger granularity level and supports more complex

data transformations. Although EIB supports simultaneous transactions, care must be

taken to ensure that the transactions to do not block each other [46].

2.2.3.4 Nvidia Fermi

GPU computing refers to the use of Graphics Processing Units (GPUs) for high

performance data parallel applications beyond graphics. The Fermi architecture to be

released in early 2010, represents the latest in the evolution of Nvidia Compute Unified

Device Architecture (CUDA), a software and hardware architecture that enables GPUs to

be programmed with a variety of high level programming languages. The GPU design

philosophy is based on the integration of a large number of specialized processing cores

to support massive hardware thread level parallelism. Nvidia Fermi is currently

25
manufactured in the 40 nm process. Figure 2.4 shows the organization of the Nvidia

Fermi.

FIGURE 2.4: Organization of the Nvidia Fermi.

Processing Cores:

The Nvidia Fermi architecture consists of 512 computing cores known as CUDA

cores designed to execute one instruction per clock cycle for a thread before switching to

another thread. Each CUDA core has a fully pipelined integer arithmetic logic unit

(ALU) and floating point unit (FPU). Unlike the general purpose processor cores, the

CUDA cores lack individual register files, caches, or load store units to access memory.

Instead, a set of 32 CUDA cores (known as a streaming multiprocessor: SM) share

resources such as registers, caches/local memory and load store units. The 32 CUDA

cores operate in parallel on 32 instructions from 32 threads (also known as “warp”). Each

streaming processor features two warp schedulers and two instruction dispatch units thus

allowing two warps to be issued and executed concurrently. Each streaming

26
multiprocessor can manage 48 such warps for a total of 1,536 threads. Additionally it

features 4 texture engines and 4 polymorphic engines for graphics. The Fermi

architecture consists of 16 such streaming multiprocessors with a capability of handling

24,575 parallel threads with 512 executed at a time. A central scheduler (Giga Thread

Scheduler) schedules the warps on to the streaming multiprocessors. The Fermi

architecture also incorporates 4 Special Function Units (SFUs) for complex math

operations. The Fermi GPU is expected to run at 1.5 GHz and dissipate about 240 W.

Memory System:

Each streaming multiprocessor has a shared L1 instruction cache and a 64 KB of

configurable local memory that can be partitioned as an L1 data cache and a general-

purpose shared memory. The 16 streaming multiprocessors share a unified cache-

coherent 768 KB L2 cache. The GPU is attached to up to 6 GB of local DRAM through 6

GDDR5 memory controllers with 172.8GB/s of memory bandwidth. Access to the

system memory of the host CPU is through a PCI express bus. A special feature of the

Fermi architecture compared to earlier GPU architectures is the extensive support for

hardware error-correction codes to protect the external DRAM, L1 and L2 caches, and

the register files from soft errors. From a programmer’s perspective, unlike its

predecessors, the Fermi has a unified memory space of shared and global memory

enabling C++ code to execute on the GPU.

2.3 Multicore Programming Tools

Historically, parallel software was limited to high performance computing, where

domain specialists wrote parallel code which was often optimized for a given parallel

architecture. With the advent of multicore processors, developing parallel software has

27
become a mainstream requirement. The success of the multicore revolution hinges

critically on the availability of high productivity programming tools that enable a broad

class of programmers to effectively develop software that exploits the parallelism

inherent in the problem. In this section, we review the state-of-the-art programming tools

to express parallel algorithms. The programming tools reviewed follow three principal

approaches – parallel libraries, parallel languages, and parallelizing compilers. Since a

large number of parallel programming libraries and languages exist, we limit our review

to commercially available tools which support programming of multicore platforms in

C/C++.

2.3.1 Parallel Libraries

The library based approach provides Application Programming Interfaces (API)

that allows programmers to both explicitly generate parallel tasks and manage the

communication and synchronization between the tasks. Parallel libraries are available for

both shared memory and distributed memory machines. Libraries enable programmers to

operate within the framework of popular sequential languages such as C, C++, Java and

Fortran and incorporate parallelism through library calls. Although this approach gives

programmers the greatest degree of control, beyond a small number of threads/processes

such an explicit management of parallelism is bug prone and does not scale well to a

large number of processing cores. However, currently the library approach is popular due

to the availability of standardized parallel libraries on a wide variety of machines, and

programmer familiarity. A brief review of popular parallel libraries for multicore

computing is given below.

28
2.3.1.1 Shared Address Space

PThreads:

A thread is a single stream of control that can be independently scheduled by the

operating system. In UNIX environments, threads exist within a process sharing

resources with other threads while independently maintaining its own stack and data. In

particular, inter-thread communication occurs within the shared address space. POSIX

Threads (Pthreads) refers to the IEEE POSIX standard API for creating and managing

threads. The implementation of the API is available on all commonly used UNIX flavors,

Windows (Pthreads-win32), and Mac OS X. Pthreads is defined as a set of C language

programming types and procedure calls implemented with a pthread.h header file.

Pthreads are popular because of their ease of programming and portability. Some of the

basic Pthread operations include creation and termination of threads, implementation of

critical sections through mutual exclusion locks (mutex-locks), and thread

synchronization through condition variables. While Pthread gives the programmer

extensive control over threading operations, the inherently low level-API requires

multiple operations to perform thread management tasks, thus making it more

challenging to use. Pthreads is a good choice for event based, or I/O based parallelism.

OpenMP:

Open MultiProcessing (OpenMP) is a compiler directive based standardized API

for programming shared address space machines. OpenMP enjoys support for C, C++

and Fortran and is available on many UNIX flavors, Windows, and Mac OS X. Unlike

Pthreads, OpenMP is a higher level API where the user instructs the compiler through

pragmas the concurrency, synchronization and data handling operations without

29
explicitly setting up and scheduling threads, mutex-locks and so on. It should be noted

that OpenMP requires compiler support. Widely used compilers such as GNU GCC, IBM

XL compiler for C/C++/Fortran, Intel compliers for C/C++/Fortran, and Microsoft Visual

Studio 2008 C++ support OpenMP. A major advantage of OpenMP over Pthreads is that

it does not tie the application to a pre-set number of threads. Also, the compiler directive

based approach simplifies parallel programming since many of the tasks associated with

thread creation and management are handled automatically. OpenMP is a good choice for

data intensive computing with loop level parallelism.

Intel TBB:

Intel Thread Building Blocks (TBB) is a C++ template library from Intel Corp.

for shared address space parallel programming on multicores. TBB includes algorithms,

highly concurrent containers, locks and atomic operations, a work stealing task scheduler

and a scalable memory allocator. Further Intel TBB provides generic parallel patterns

such as parallel for-loops, parallel while-loops, data-flow pipeline models, parallel sorts,

and prefixes. Similar to OpenMP, Intel TBB frees programmer from the explicit

management of threads. However, unlike OpenMP Intel TBB does not require explicit

compiler support. It is a good choice for compute intensive, highly object oriented C++

code. Intel TBB is open-source and is available on many UNIX flavors, Windows, and

Mac OS X.

2.3.1.2 Distributed Address Space

MPI:

Message Passing Interface (MPI) is a language-independent communications

library for parallel programming with processes, on distributed address space machines.

30
MPI provides for both point-to-point (send/receive) and collective communication

(broadcast) operations between processes. Typically, the processes run on separate

processor cores with no sharing of memory. However, the processes could also be located

in a shared address space with inter-process communication through explicit memory

copy. Similar to Pthreads, in MPI, parallelism is explicit since the programmer is

responsible for generating and managing parallel processes. However, unlike Pthreads,

the message passing paradigm of MPI implies explicit user control of the inter-process

communication as well. While this makes it difficult to program with MPI, it encourages

the development of parallel code with good data locality. MPI implementations such as

Open MPI are available on all commonly used UNIX flavors, Windows, and Mac OS X.

MPI is the parallel library of choice for massively parallel machines and workstation

clusters.

2.3.1.3 Stream Processing

Stream processing is a form of data parallelism, where data is streamed through a

multiple computational units subjecting the data to a series of operations. Stream

processing works well for certain applications such as signal processing and image

processing where the data undergoes a series of transformations. Stream processors such

as Graphics Processing Units (GPUs) employ both shared and distributed memory

paradigms. The paradigm of GPU computing seeks to extend the use of GPUs for non-

graphics high performance computing applications. We describe the OpenCL framework

targeted at GPU computing.

31
OpenCL:

Open Computing Language (OpenCL) is a royalty free C and API based parallel

programming framework targeted at a heterogeneous computing system consisting of a

host processor connected to one or more OpenCL devices (processors and GPUs) [54].

OpenCL comprises of a C-based language for programming the compute kernel and

platform and runtime APIs for control and communication operations. Compute kernels

is the basic unit of executable code and is similar to C functions. The execution domain

of a kernel is defined by an N-dimensional computation domain. Each element in the

execution domain is a work-item and OpenCL provides the ability to group together

work-items into work-groups for synchronization and communication purposes. OpenCL

defines a multi-level memory model with memory ranging from private memory visible

only to the individual compute units in the device to global memory that is visible to all

compute units on the device. Depending on the actual memory subsystem, different

memory spaces are allowed to be collapsed together. OpenCL is supported by a number

of GPU vendors including Nvidia (GeForce and Qaudro series) and AMD (ATI Radeon

series).

2.3.2 Parallel Languages

The language based approach provides new language constructs that enables

programmers to express parallel operations independent of the underlying machine.

Although numerous parallel languages have been developed by the research community,

this approach has not been popular due to the diversity of parallel architectures and the

corresponding support need to develop the compiler infrastructure. However, the

emergence of multicores and the need parallel programming productivity has given

32
impetus to developing parallel languages. In this section we briefly review the shared

memory parallel language Cilk++ and the partitioned global address space parallel

language UPC.

2.3.2.1 Shared Address Space

Cilk++:

Cilk++ is a shared address space parallel programming language based on C++

with an associated Cilk++ compiler. Cilk++ extends C++ with a few key words for

parallel programming while maintaining the serial semantics of the original program.

Similar to OpenMP and Intel TBB, Cilk++ frees programmers from explicit management

of threads. However, unlike OpenMP which targets loop-level data parallelism, Cilk++

relies on parallelizing function calls through a divide-and-conquer approach. Also,

compared to OpenMP, Cilk++ has better support for nested parallelism and provides

guaranteed space bounds (on P processor Cilk++ does not occupy more than P times the

serial space). The Cilk++ run time system uses a dynamic work-stealing scheduler that

supports dynamic load balancing. Cilk++ also comes with productivity enhancing tools

such as a parallel performance analyzer to estimate the parallel code performance (such

as processor scalability) and a race detector to find race conditions. Cilk++ was recently

acquired by Intel Corp. from Cilk Arts Inc. and is currently available on Linux and

Windows for x86 architectures.

2.3.2.2 Partitioned Global Address Space

The Partitioned Global Address Space (PGAS) programming model has a

logically shared global address space that is logically partitioned such that each partition

is local to one processor. Thus unlike a shared address space programming model, the

33
threads have affinity to one or more of the partitions. The PGAS programming model is

the basis of Unified Parallel C.

Unified Parallel C:

Unified Parallel C (UPC) is a parallel extension of the C programming language

supporting both shared and distributed memory machines through the PGAS

programming model. UPC uses a thread based parallel execution model with data

declared as either shared between threads or private to each thread. For shared data the

same address refers to the same memory location while for private data the same address

corresponds to different memory locations. The language provides constructs for

specifying a thread ownership (affinity) of shared data. All scalar data including pointers

and user defined aggregate types have affinity with thread 0 while the thread affinity of

array data is specified at the cyclic, blocked-cyclic, or blocked level. UPC provides

constructs for explicit synchronization between the threads. Currently available UPC

compilers include GCC UPC, IBM XL UPC, HP UPC, Cary UPC, and Berkeley UPC.

The Berkeley UPC compiler infrastructure is a layered design including a top level

Open64 compiler based UPC to C translator, followed by a run time system (performance

instrumentation, communication tracing and debugging), and a GASNet communication

system (language and network independent low-level networking layer providing high

performance communication primitives) [15]. UPC is available on all commonly used

UNIX flavors, Windows (Pthreads-win32) and Mac OS X. Hardware platforms supported

including x86, SPARC, MIPS, PA-RISC and PowerPC architectures, clusters (Ethernet,

Infiniband, Myrinet) and massively parallel processors (Cray XT3, IBM Blue Gene).

34
2.3.3 Parallelizing Compilers

Parallel compilers seek to automatically recognize parallel structures and generate

multi-threaded a sequential code with minimum programmer input. While successful

automatic parallelization of sequential code can greatly enhance programmer

productivity, in practice efficient parallelization of sequential code continues to be a

challenging task. Parallelizing compilers have been most successful on array loops where

precise memory dependence analysis is possible. However, the use of pointers, recursion,

and dynamic data structures in C/C++ code makes hard for compilers to analyze

dependences. Recently the technique of Thread Level Speculation, where possibly

parallel sections of the code are speculatively executed and the execution rolled back if

dependence violations are detected, have been used in research compilers [49]. Profile

driven parallelization, where sequential code instrumentation of memory access is used to

detect parallelization opportunities, has also been proposed in the literature as a means to

find parallelizable tasks [49, 67]. Automatic parallelization option is available on popular

compilers such as GNU GCC, Intel ICC, and IBM XLC.

2.4 Multicore System Software

Operating System (OS) serves as an interface between the hardware architecture

and user level applications. Unlike traditional high performance computing applications,

general purpose parallel computing using multicore processors require much more OS

support spanning a diverse range of applications. Moreover, the diversity in multicore

architectures implies that portability of architecture specific OS optimizations is limited

across architectures and even among successive generations of the same architecture,

making design of OS for multicores a challenging task.

35
The types of parallel OS are closely tied to the underlying parallel architecture.

Common parallel OS designs include – 1) Separate OS per processor, common in

message passing clusters 2) Master-Slave OS where the master processor runs the OS,

while the slave processor runs the user processes. This paradigm is common in

Asymmetric Multiprocessing Systems (ASMPs) and 3) Shared memory OS for shared

memory multiprocessors, where the OS can run on any of the processors. Since most of

the commercial general purpose multicore processors today use the shared memory

paradigm, we briefly review support for shared memory in popular operating systems.

However, scalability limitations of the shared memory OS design approach have led to

research on message passing approaches as used in the multi-kernel OS design and the

factored OS (FOS) [74, 75]. We briefly review the recently introduced multi-kernel

Barrefish OS. A related development in dealing with scalability limitations of complex

monolithic OS is the use of virtualization, where multiple (and often diverse) operating

systems run on a hypervisor layer, with the hypervisor layer managing the machine’s

physical resources. We briefly review the benefits of OS virtualization of multicores.

2.4.1 Shared Memory OS

Shared memory OS associated with shared memory processors has one copy of

the OS kernel in memory which can be executed by any of the processors. System calls

are trapped and served by the processor on which it is issued. However, the need to

prevent concurrent access to shared resources such as OS tables results in performance

bottlenecks. Although splitting the shared resources into fine-grained critical sections

ameliorates some of these bottlenecks, the need to keep track of these critical sections

and guard against deadlocks and race conditions limits the robustness and portability of

36
this approach. Popular OS such as Linux and Windows have shared memory support. We

briefly review SMP support in Linux.

Linux:

From its early days Unix (and its flavors such as Linux) has provided abstractions

that that enable memory sharing of well defined regions of the process space as well as

synchronous and asynchronous inter-process communication through semaphores and

message queues. Support for shared memory in Linux has improved considerably with

the introduction of Linux kernel 2.6. The pre-2.6 scheduler used a poorly scaling O(n)

scheduling algorithm. Also, the pre-2.6 scheduler used a single run-queue for all

processors which meant that a task could be scheduled on any processor. While this was

good for load balancing, it was resulted in poor cache efficiency. The pre-2.6 scheduler

also used a single run-queue lock resulting in decreased efficiency when processors were

idled waiting for release of the lock. Also, the earlier scheduler did not allow preemption,

resulting in possible execution of lower priority tasks when the higher priority tasks were

awaiting execution. The Linux 2.6 version, uses an O(1) scheduler based on the number

of task priorities rather than the number of active tasks resulting in good scaling of the

performance of the scheduler with the number of threads. Moreover, each processor now

maintains a separate run-queue with a separate lock on each run-queue. The separate run-

queue per processor allows for better cache affinity of the task. To maintain load balance

across the processors, every 200 ms, the scheduler does a cross-CPU balancing of tasks.

The Linux 2.6 scheduler also supports task preemption and dynamic task prioritization.

37
2.4.2 Multikernel OS

Microsoft in collaboration with ETH Zurich has unveiled a new multicore

oriented message-based OS known as the Barrelfish [7]. As shown in Figure 2.5, the OS

is designed as a distributed system of cores that communicate using messages and share

no memory. The motivation behind the multikernel approach include the emergence of

on-chip message passing interconnects, portability limitations of shared memory OS

kernel optimizations, and the scalability limitations of cache coherent shared memory.

Note that although the microkernel approach also uses messages between processes,

unlike the multikernels, it follows a shared memory paradigm with multithreaded micro

kernels.

FIGURE 2.5: Multikernel model.

Baumann et. al. list the following three design principles behind the multi-kernel

design [7] −

(1) Make all inter-core communication explicit through the use of explicit messages.

38
(2) Make OS structure hardware-neutral by separating the OS structure as much as

possible from the hardware with only the message transport mechanism and

interface to hardware being dependent on the machine.

(3) View state as replicated instead of shared by treating access and updates of shared

states in a multi-kernel as local replicas while maintaining consistency through

messaging.

The organization of Barrelfish is shown in Figure 2.6. The privileged mode CPU

drivers are local to a core and handles functions such as protection, authorization, time

slicing of processes and interface to hardware. The CPU driver is event-driven, single

threaded and non-preemptable. These features make it easier to develop and maintain the

CPU driver compared to a conventional kernel. The user mode monitor process

collectively co-ordinates system wide states such as memory allocation tables and

address space mappings through inter-core message based agreement protocols. Initial

evaluation results show good core scaling on microbench marks such as TLB shootdown

and compute bound parallel benchmarks such as NAS and SPLASH.

FIGURE 2.6: Organization of Barrelfish.

39
2.4.3 Virtualization

Xen:

Hypervisor is a hardware/software platform that serves as an interface between

the hardware and the OS. Hypervisor enables virtualization where multiple OS can run on

the same hardware. Processor vendors have recently introduced hardware support for

virtualization such as the Intel VT-x technology in the Nehalem architecture, allowing for

root operation for hypervisors, and non-root operation for guest OS. Virtualization

provides several benefits including better utilization of hardware, better security through

isolation of virtual operating systems, and the ability to run legacy software and OS.

Figure 2.7 demonstrates one approach proposed by Youseff and Wolski for using the

virtualization paradigm as a means for customizing the OS for the core architecture and

the associated workloads in heterogeneous multicores [80]. The virtualization paradigm

also leads to better cache efficiency on cc-NUMA multicore architectures by pinning

virtual OS instances to a core thus improving cache locality. Moreover, virtualization can

also help in saving power by consolidating low utilization loads to one processing core,

and turning the other processing cores off.

FIGURE 2.7: A simplified representation of the virtualized software stack, demonstrating
the deployment of a hypervisor and several VMs, each of which is managing a subset of
the cores and a subset of the processes.

CHAPTER 3: DESIGNING CACHE- AND SPACE-EFFICIENT DATA PARALLEL
ALGORITHMS FOR MULTICORES

3.1 Introduction

In this chapter, we present a design methodology that aids in the development of

parallel cache-efficient and space-efficient algorithms for shared cache multicore

processors. Shared cache multicore processors differ from traditional shared memory

processors in two significant ways (See Chapter 2) –

 (1) The processing cores, the interconnect, and a part of the shared memory hierarchy

are on the same chip/module resulting in potentially lower communication and

synchronization costs. For example the Sun UltraSparc T2 processor has 8 cores,

a crossbar interconnect, L1, and L2 cache integrated on a single chip. The Intel

Clovertown processor has four cores, the bus interconnect, L1 and L2 caches

integrated on a single chip/module.

 (2) The shared memory (typically the L2 or L3 cache) is not only shared by all or a

subset of the processing cores but is of a limited size. For example in the Sun

UltraSparc T2, the 4MB L2 cache (8 banks) is shared by all 8 processing cores.

The quad-core Intel Clovertown processor has private L1 caches, pairs of cores

sharing the 4MB L2 cache while all 4 cores share the main memory.

The integration of the processing cores, the interconnect, and the cache hierarchy

on a single chip necessitates micro-architectural tradeoffs between the performance, die

41

area, and power budgeted to the different components. Power constraints have led

processors vendors to incorporate lower frequency simple in-order processing cores. For

example, the Sun UltraSparc T2 processor cores have a simple 8-stage pipeline and

operate at a frequency of 1.4 GHz. The reduction in single threaded performance in favor

of better multithreaded performance requires algorithms that are parallel and scalable for

continued high performance on multicores. The increasing latencies up the multiple

levels of the memory hierarchy, and sharing of the limited sized cache between multiple

processing cores motivates the need to formulate scalable parallel algorithms that are

optimal both with respect to the memory used (space-efficient), and to the number of

read/write operations between the different levels of the cache hierarchy (cache-

efficient). While utilizing the concurrency in the problem enables development of work

efficient parallel algorithms, space- and cache-efficiency can be achieved by exploiting

the data locality in the problem.

In achieving the above described objectives, we note the importance of a

computational model of the targeted multicore architecture that offers a good trade-off

between simplicity and accuracy. Cache-aware and cache-oblivious algorithms that are

both cache-efficient and space-efficient can then formulated on this model. Scheduling

algorithms are then employed that map the concurrent tasks to the computing cores such

that the load is balanced and the data locality demands of shared and private caches are

satisfied. In the past few years considerable work has been reported on computational

models, cache-oblivious algorithms, and schedulers for multicore processors. In this

chapter, we contribute to the existing body of knowledge by proposing a parallel cache-

42

oblivious algorithm design methodology for devising space-efficient and cache-efficient

algorithms through maximal data sharing between concurrent tasks.

The computing problems considered in this chapter are data parallel where the

concurrency in the problem is best described in terms of decomposition of the underlying

data structures. Further, we limit ourselves to problems where the underlying data

structures are multidimensional arrays usually representing the inherent geometry of the

problem. In such cases, the decomposition of the arrays along one or more dimensions

into sub-arrays represents a geometric decomposition of the problem. Computations with

the above mentioned characteristics are widespread in scientific computing especially in

numerical solutions of partial differential equations, and in image processing. Owing to

the increasingly large data sizes inherent in these applications, a geometric decomposition

of the problem facilitates the effective utilization of limited size cache hierarchies as well

as a parallel solution of the problem.

The remainder of the chapter is organized as follows – Section 3.2 reviews the

existing literature on computational models, design of cache-oblivious algorithms, and

schedulers for multicore processors. In Section 3.3, we describe the proposed parallel

cache-oblivious algorithm design methodology for multicores. In Section 3.4, we present

case studies on the application of the proposed methodology to two representative data

parallel problems from scientific computing – matrix algebra (dense matrix

multiplication), and stencil computing (Finite Difference Time Domain). Section 3.5

concludes this chapter with a step-by-step elucidation of the design methodology for

developing space-efficient and cache-efficient algorithms on multicores.

43

3.2 Background

In this section we review the existing literature on parallel computational models,

the cache-oblivious model, and scheduling strategies that have been proposed for

multicore computing.

3.2.1 Computational Models

The development of sequential algorithms has benefitted greatly from the

Random Access Model (RAM) of computing which has been very successful in

abstracting a great variety of uniprocessors. However, the parallel extension of the RAM,

the Parallel RAM (PRAM) has been far less successful in accurately capturing the

behavior of parallel machines primarily due to its assumption of a global infinite address

space shared by P processors accessible in constant time [50]. A variety of parallel

computational models such as the Bulk Synchronous Processor model (BSP) [66, 68],

Parallel Disk Model (PDM) [72, 73], and the Log-P model [24] have been proposed to

remedy the situation. In general, these models seek to include all or a subset of

parameters such as computational parallelism, communication latency, communication

overhead, communication bandwidth, execution synchronization, memory hierarchy, and

network topology [50]. With the introduction of parallel machines in the form of chip

multiprocessors (multicores), researchers have sought to adapt the existing parallel

computational models to this new platform.

In [69] Valiant extends the BSP model to multicore processors. The model uses

4d parameters {pi, gi, Li, and Mi} where d is the depth of the memory hierarchy, and at

level-i, pi is the number of i-1 components in i, gi is the communication bandwidth, Li is

the latency, and Mi is the size of the memory not inside an immediately lower level.

44

General lower bounds are established for communication and synchronization

complexities and optimal multi-BSP algorithms are derived for matrix multiplication,

FFT, and sorting. Savage and Zubair [62] have proposed a Unified Model for multicores,

where for a d-level memory hierarchy, the parameters at level-i include, pi the number of

cores sharing a cache, �i the number of caches, and �i the size of the cache. The

application of the model is illustrated for matrix multiplication, FFT, and binomial

options pricing. Blelloch et. al. [11] have proposed a computational model for multicores

based on the Parallel Disk Model (PDM) with a two level cache hierarchy with a private

L1 cache and a shared L2 cache. The model parameters include p the number of

processing cores, C1 the size of the L1 cache, C2 the size of the L2 cache, and B the size

of the L1 and L2 cache blocks transfers. An online scheduler is proposed for divide-and-

conquer algorithms including matrix multiplication, matrix inversion, sorting, and the

Gaussian elimination paradigm. A similar multicore model is used by Chowdhury and

Ramachandran [23] with additional parameters B1 and B2 for the size of the L1 and L2

cache blocks. The model is applied to derive parallel dynamic programming algorithms

for the local dependence dynamic programming problems, the Gaussian elimination

paradigm, and the parenthesis problem.

While the multi-BSP model is the most general of the multicore models, the large

number of parameters makes the model difficult to use. The model used by Blelloch et.

al. [11] and Chowdhury et. al. [23] are limited to a two level memory hierarchy with

private and shared caches. However, modern processors have deep memory hierarchies

(upto three levels of on-chip cache, main memory and disk storage), which is more

accurately modeled by Savage and Zubair’s Unified Model for Multicores [62]. In our

45

work on cache-oblivious multicore algorithms, we therefore utilize the Unified Model for

Multicores.

3.2.2 Cache-oblivious Model

The cache oblivious model was proposed by Frigo et. al. to design portable

algorithms for uniprocessors with deep memory hierarchies [29, 32]. The model

simplifies the Parallel Disk Model (PDM) by ignoring the parameters B (the cache line

size or block size) and M (size of the memory). Further the model assumes an optimal

cache-line replacement strategy where the cache line evicted will be accessed furthest in

the future. Note that the real caches use replacement policies such as Least Recently Used

(LRU) or replacing the oldest block (FIFO). However, as shown in [29], the cache- and

space-complexity of the optimal replacement policy differs from those of LRU and FIFO

by a constant factor. Also, the caches are assumed to be fully associative and the cache is

assumed to be taller than it is wide. Among the advantages of the model are [27] –

 (1) If the algorithms perform well for two levels of memory, it easily extends to any

two levels in an arbitrarily deep memory hierarchy due to the inclusion property.

 (2) If the memory transfers are optimal to within a constant factor between any two

levels of the memory hierarchy, then any weighted combination of the memory

transfers between different levels of the memory hierarchy, with weights

corresponding to the relative memory speeds, is optimal to within a constant

factor.

(3) Since the model makes minimal assumptions about the machine, the resulting

algorithms are portable on a wide variety of machines. However, in practice, the

cache parameters B and M are required to determine the base case of recursions.

46

Note that the algorithms designed using the cache-oblivious model does not

explicitly manage the cache since that would involve explicit use of cache parameters. As

described in Chapter 2, in many of today’s multicore shared cache architectures the block

replacement is decided by the cache hardware according to a fixed cache-line

replacement strategy and is not under programmer control. However, emerging multicore

architectures such as the IBM Cell/B.E. (See Chapter 2) are cache-less and allow the

programmer to explicitly control of the local memory.

Cache-oblivious algorithms are formulated typically using the recursive divide-

and-conquer strategy where the underlying problem is repeatedly divided until the

smallest instance fits into the cache (base case of recursion). Recurrence relations for the

number of memory transfers are then developed and solved to estimate performance

bounds [27]. Cache-oblivious algorithms rely on cache-oblivious data structures where

data is laid out in the cache in a recursive fashion. Examples of cache-oblivious data

structures include space filling Peano curves for matrix operations [6], van Emde Boas

layout for static search trees [70], cache-oblivious B-trees [8], priority queues [4], and

linked lists [9]. Similar to the memory transfers, the space requirements for cache-

oblivious data structures are estimated by solving appropriate recurrence relations [27].

Cache-oblivious algorithms and data structures have been developed for a number of

problems including searching, sorting, and matrix operations [29], graph operations,

computational geometry [4], stencil computing [31], and dynamic programming

algorithms [22].

47

3.2.3 Multicore Schedulers

Consider the computations as modeled by Directed Acyclic Graphs (DAGs). The

number of vertices in the DAG determines the total work while the depth corresponds to

the longest path in the DAG. A scheduler maps each vertex to a (time step, processor)

pair such that each processor has at most one task per time step and no dependence is

violated [10]. An off-line scheduler has knowledge of the DAG before start of the

computation, while the structure of the DAG is revealed to an on-line scheduler as the

computation proceeds. In our work, we only consider problems amenable to off-line

scheduling.

Different sequential and parallel scheduling algorithms have been proposed in the

literature. In a breadth-first sequential schedule (1BF), a node is scheduled only after all

the higher level nodes have been scheduled. In a depth-first sequential schedule (1DF) the

scheduling is as follows – at each step, if there are no scheduled nodes with a ready child,

a root node is scheduled; else the ready child of the most recently scheduled node with a

ready child is scheduled. A greedy parallel p-schedule schedules nodes such that if at

least p nodes are ready then p nodes are scheduled; else if fewer than p nodes are ready,

all the ready nodes are scheduled. A greedy scheduler thus attempts to do as much work

as possible on each time step. Among the state-of-the-art greedy schedulers are Parallel

Depth First (PDF) and Work Stealing (WS). In a depth-first parallel schedule (PDF) the

ready-to-execute nodes are prioritized based on a 1DF schedule. In a WS scheduler each

processor maintains a local queue of ready-to-execute nodes. If the local-queue of a

processor is empty, then the nodes from the bottom of a non-empty queue are scheduled

on that processor. Recent work suggests that for computation with fine-grained data

48

parallelism, a PDF scheduler performs better then a WS scheduler on shared cache

multicores due to constructive cache sharing [21]. Hybrid schedulers that combine the

PDF with WS [55] and the 1DF with PDF [11] have also been reported. While the former

has only been evaluated experimentally for certain benchmarks, the latter has been shown

to have provably good performance on multicores for many divide-and-conquer

algorithms.

3.3 Parallel Cache-oblivious Design Methodology

We now describe a parallel cache-oblivious algorithm design methodology for

developing cache-efficient and space-efficient data parallel algorithms using a weighted-

vertex red-blue pebbling game.

3.3.1 Computational Model

We use Savage and Zubair’s Unified Model for Multicores [62] as a basis for

developing cache and space-efficient algorithms. Our model consists of 2d parameters

where d is the depth of the shared cache hierarchy. For a multicore processor, the RAM

storage can be considered to be the top most level of the memory hierarchy (level-d). The

level-d memory is shared by all the processing cores and is considered to be sufficiently

large enough to hold the input data set. For 1 ≤ i ≤ d, the model parameters include –

o Pi : The effective number of level-(i-1) caches (or processing components)

contained in level-i. P1 is the number of processing cores/threads associated with

the L1 cache.

o Mi : Total memory available (in bytes) on a component at level-i.

To simplify analysis with this model we adopt the following assumptions

proposed by Blelloch et.al. for a tree-of-caches hierarchy [12] –

49

 (1) The memory hierarchy is considered to be inclusive – each cache line at level-i is

also cached in its parent cache at level-(i+1). Further we assume that Mi+1 > �iMi

where �i ≥ Pi.

 (2) The caches in the hierarchy are considered to be fully associative.

 (3) The model assumes a variant of the DAG consistency cache consistency model

that uses an optimal cache-line replacement strategy where the cache line evicted

will be accessed furthest in the future.

 (4) Caches are considered non-interfering in that cache misses by one processor can

be analyzed independently of other processors. To maintain this property, the

BACKER cache-coherence protocol proposed by Blumofe et.al. [14] is used. The

protocol ensures that while instructions in a DAG see writes by their ancestors,

concurrent writes by instructions with no path between them are not seen. Such

writes are only seen in the shared memory and are reflected in other cache copies

when the descendant instructions tires to access them.

The proposed set of parameters models most commercially available homogenous

multicore processors with all inter-processor communication occurring through the

memory hierarchy. The values of the parameters Pi, and Mi, can be obtained from the

processor data sheets. For the Intel Clovertown processor (d = 3), our computational

model uses a total of 6 parameters. Here, level-1 of the cache hierarchy is the L1 cache

and level-3 is the main memory. As shown in Figure 3.1, the effective number of

processors for each level-i are P1 = 1, P2 = 2, and P3 = 2.

50

FIGURE 3.1: The cache hierarchy of the Intel quad-core Clovertown processor.

We now detail a design methodology that enables the development of scalable

cache-efficient and space-efficient parallel algorithms under the above described

computational model. The resulting algorithms seek to be optimal with respect to the

memory used (space-efficient), and with respect to the number of read/write operations

between the different levels of the cache hierarchy (cache-efficient).

3.3.2 Recursive Geometric Decomposition

As mentioned in the introduction, the computing problems considered in this

chapter employ multidimensional arrays with the arrays typically representing the

inherent geometry of the problem. The arrays can be broken along one or more

dimensions into sub-arrays (also known as blocks) and the computation described in

terms of updates of these blocks. Further, these blocks can be divided recursively without

explicit consideration of the cache parameters into smaller blocks representing a finer

granularity of decomposition. Blocking exploits the temporal locality inherent in these

computations thus reducing the memory traffic. If the updates require the use of boundary

values, the decomposition may require overlapping of blocks which include the boundary

values needed to update that block. For a size limited cache-hierarchy, the goal is to find

the maximum size of the recursively decomposed block Bi at memory hierarchy level-i

51

such that the read-write operations between the different levels of memory are minimized

by maximally exploiting the temporal locality of the decomposed Bi problem. We now

describe the use of Hong-Kung’s red-blue pebble game [40] to achieve this objective.

3.3.3 Red-Blue Pebble Game

The red-blue pebble game proposed by Hong and Kung [40] is a graph pebbling

game that enables the determination of the lower bound for memory read/writes in a

computing machine with a two level memory hierarchy. Red pebbles represent the lower

level faster memory while the blue pebbles represent the higher level slower memory.

The number of red pebbles is finite, modeling the limited size of the faster memory while

the number of blue pebbles is infinite, modeling the large size of the slower memory. We

represent the computation as a Directed Acyclic Graph (DAG) G(V,E) with V vertices

and E edges. Here the vertices represent the input, output, and intermediate data while the

edges represent the data dependencies. The input nodes of G(V,E) are initially pebbled

with blue pebbles. Red pebbles can replace blue pebbles and vice-versa modeling the

read/write operations between the faster and slower levels of memory. However, red

pebbles can only be placed on non-input vertices of G(V,E) if all the parent vertices hold

red pebbles. This constraint models the fact that a vertex can only be computed if all the

parent vertices are present in the faster memory. Also, a pebble holding the input to a

vertex can be reused to hold the results of the computation of a vertex. The goal of the

red-blue pebble game is to pebble all the output vertices of G(V,E) with red pebbles. The

red pebbles on the output vertices are then replaced by blue pebbles thus completing the

pebble game. The total memory read/write between the faster and slower memory is then

calculated by the number of times the red and blue pebbles replace each other. Note that

52

for a given G(V,E) and a finite number of red pebbles, different pebbling strategies are

possible.

For a graph G(V,E) and a pebbling strategy �, the total number of two level

memory read/write operations is at least equal to the number of input and output vertices

since the input has to be read from the slower to the faster memory and the output has to

be written from the faster to the slower memory. Also, the number of red pebbles

required to play the red-blue pebble game is at least as much as the maximum degree of

input to any vertex in G(V,E). This follows from the requirement that a vertex can only be

pebbled with a red pebbled if its parent vertices hold red pebbles. These observations are

stated in the following two lemmas.

Lemma 3.1 Let NR/W be the number of two level memory read/write operations and

|In(G)| and |Out(G)| be the number of input and output vertices respectively of G(V,E).

Then,

NR/W ≥ |In(G)| + |Out(G)| (3.1)

Lemma 3.2 Let S be the number of red pebbles used by a pebbling strategy � and � be

the maximum input degree of G(V,E). Then,

S ≥ � (3.2)

Lemma 3.1 gives the lower bound on the number of memory operations required

for computing a graph G(V,E) such that the temporal locality of the problem is fully

exploited. For a pebbling game with a finite number of red-pebbles S, we use the

following result originally by Hong and Kung and modified by Savage [60, 61] to

estimate the lower bound on NR/W.

53

Lemma 3.3 Let �(S,G) be the S-span of G(V,E) where the S-span of DAG G(V,E) is

defined as the maximum number of vertices of G that can be pebbled with S red pebbles

in the red-blue pebble game maximized over all initial placements of S red pebbles [61].

Let NR/W be the number of two level memory read/write operations and let |In(G)| and

|Out(G)| be the number of input and output vertices respectively of G(V,E). Then,

/ (| | | () |)
(2 ,)

R W S V In G
N

S Gρ
−≥

(3.3)

Intuitively, the Hong-Kung lower bound given by Lemma 3.3 represents the

tradeoff between the data read/write time and memory usage. For a finite number of red-

pebbles S, our goal is to develop a pebbling strategy � that is optimal with respect to the

Hong-Kung lower bound. By ensuring the minimum number of read/write operations

between two levels of memory, the computation determined by such a pebbling strategy

best exploits the temporal locality of data.

3.3.4 Nominal Parallel Pebbling Strategy

For the data parallel problems considered in this chapter, the computation at

memory hierarchy level-i can be described using a DAG Gi(V,E) with Gd(V,E) describing

the computation on the whole problem. From a data point of view, Gi+1(V,E) represents

computation on the data block Bo
i+1 at level-(i+1) with the vertices of size |Bo

i|. Due to

the recursive geometric decomposition of the problem as described in Section 3.3.2, Bo
i is

a subset of Bo
i+1 with Bo

d representing the whole data set. Thus Gi(V,E) is a sub-DAG of

Gi+1(V,E) with ko
i such sub-DAGs modeling the computation at level-i where ko

i is given

by,

1| |
| |

o
o i
i o

i

B
k

B
+=

(3.4)

54

We then utilize the red-blue pebble game and develop a pebbling strategy �o

utilizing So number of pebbles at level-i to pebble the DAG Gi(V,E) while seeking to be

optimal to within a constant factor of the Hong-Kung lower bound. Here level-i is

considered to be the faster memory while level-(i+1) is considered to be the slower

memory. Note that the due to the recursive geometric decomposition of the problem, the

DAGs and sub-DAGs at all levels of the memory hierarchy have the same topology but

differ in the size of the data represented by their vertices. Hence the number of pebbles So

used by the pebbling strategy �o is the same for all the DAGs at all levels. The block size

|Bo
i| is then given by the inequality,

1

1

| |o i
i o

i

M
B

S P
+

+

≤ (3.5)

Here |Bo
0| is the size in bytes of the underlying data type. Note that assuming a

work-efficient scheduling strategy, Pi such DAGs Gi(V,E) are pebbled in parallel. The

details of the scheduling strategy are presented in Section 3.3.6.

The nominal pebbling strategy thus helps determine the block size at each level-i.

In the cache-oblivious model the block size represents the base case of the recursions

used to determine the space complexity and cache complexity of the algorithm (See

Section 3.2.2).

3.3.5 Weighted-vertex Parallel Pebbling Strategy

The nominal pebbling strategy �o pebbles a given DAG Gi+1(V,E) by parallel

pebbling Pi sub-DAGs Gi(V,E) independently such that the pebbling of each Gi(V,E) is

optimal respect to the Hong-Kung lower bound. However, the resulting pebbling of the

parent DAG Gi+1 is not optimal since, depending on the degree of sharing, the shared

vertices between the individual sub-DAGs Gis may be pebbled more than once. We now

55

outline a weighted-vertex DAG pebbling strategy �s that considers the degree of vertex

sharing in pebbling the sub-DAGs Gis to minimize multiple pebbling of these vertices.

As shown in Section 3.4, the pebbling strategy �s thus results in an equal or lower

number of read-writes between memory hierarchy levels i and i+1 compared to �o.

Consider the ks
i sub-DAGS Gi(V,E) of DAG Gi+1(V,E) where ks

i is given by,

1| |
| |

s
s i
i s

i

B
k

B
+=

(3.6)

Here |Bs
i| is the size of the block under �s. As in the nominal case, we assume a

work-efficient scheduling strategy (See Section 3.3.6) such that Pi such sub-DAGs are

computed in parallel. The pebbling strategy �s in pebbling this Pi sub-set of Gis is as

follows –

(1) Assign a weight w to each vertex corresponding to its out-degree. In determining

w, presence of the vertex in other Gis of the subset (sibling DAGs) must be

considered.

(2) Decide on a computational order in calculating the sub-set of Gis.

(3) To start the game, pebble any �i input vertices of Gi with red pebbles following

the pebbling strategy �o following computational order of the problem.

(4) When a vertex is pebbled, all the vertices representing the same data in the sibling

DAGs (data sharing) is also covered by that pebble. We refer to this pebbling

operation as pebble cloning.

(5) To pebble the remaining vertices use the following rules consistent as follows:

(a) If w > 1, the red pebble on a vertex can neither be deleted nor moved to

another vertex.

56

(b) If w = 1, a red pebble on a vertex can only be moved to the immediate child

vertex.

(c) If w = 0, a red pebble on a vertex is moved to any other vertex.

(d) A new pebble is introduced into the game when no currently used pebble can

neither be deleted nor moved.

(e) When a vertex is pebbled, the weights w of the parent vertices are decreased

by 1.

(6) When all the output vertices of the sub-set of Gis are pebbled once, the game

ends.

(7) Repeat this game for the different ks
i/Pi subsets. Note that sharing of pebbles

between the different ks
i/Pi subsets may also be possible.

Let Ss be the average number of pebbles required for pebbling sub-DAGs Gis at

level-i. Assuming the typical case of ks
i >> Pi, the block size |Bs

i| is then given by the

inequality,

1

1

| |s i
i s

i

M
B

S P
+

+

≤ (3.7)

Note that |Bo
0| = |Bs

0| and |Bo
d| = |Bs

d|. The weighted DAG pebbling strategy is

applied to all levels of the cache hierarchy to obtain the parallel algorithm for the

problem.

3.3.6 Data-aware Scheduling

Scheduling for multicores is challenging due to the conflicting data sharing

demands of private and shared caches. Private cache performance is good when the

processors work on disjoint cache sets. On the contrary shared cache performance is good

when the processors work on the same cache blocks at the same time. For the parallel

57

pebbling strategies described in Sections 3.3.5 and 3.3.6, we use the CONTROLLED-

PDF scheduling algorithm [11] proposed by Blelloch et. al. for divide-and-conquer

problems. The algorithm is a hybrid combination of the 1DF and PDF schedulers outlined

in Section 3.2.3. The scheduler assumes a multicore computational model with a two

level cache hierarchy having a private L1 cache and a shared L2 cache. The model

parameters include p the number of processing cores, C1 the size of the L1 cache, C2 the

size of the L2 cache, and B the size of the L1 and L2 cache blocks transfers.

Similar to the hierarchical DAGs described in Section 3.3.4, a given computation

DAG G(V,E) with n nodes is contracted to n2 L2-supernodes each of which are in turn

recursively contracted into n1 L1-supernodes. The L2-supernodes (L1-supernodes)

represent the granularity of computation at the L2 (L1) cache level. Blelloch et. al. [11]

describes the CONTROLLED-PDF scheduling as follows – the L2-supernodes are

scheduled one at a time following the 1DF schedule. Within each L2-supernode the L1-

supernodes are scheduled based on the PDF schedule using all p processors. Each L1-

supernode scheduled is entirely executed on that processor. After all L1-supernodes of an

L2-supernode have been executed, the scheduler moves on to the next L2-supernode. The

number of cache misses is then proved to be within a constant factor of the sequential

cache complexity through the following Lemma.

Lemma 3.4 Consider the multicore-cache model in which C2 ≥ � · C1, where � ≥ p is a

constant. If a multicore hierarchical recursive algorithm incurs QL1(n) L1 cache-misses

and QL2(n) L2 cache-misses under the CONTROLLED-PDF scheduler, then

(a) QL1 (n) = O(Q (C1, n)), and (b) QL2 (n) = O(Q (C2, n)). (3.8)

where Q is the sequential cache complexity.

58

Proof: See [11].

The following Lemma gives the parallel time complexity of the CONTROLLED-

PDF scheduler.

Lemma 3.5 For an L2-supernode, let T(n2) denote the sequential time complexity, Tp(n2)

denote the p processor parallel time complexity under the CONTROLLED-PDF

scheduling and T�(n2,n1)) denote the inherent parallel time complexity. Then we have,

2
2 2 1

()
() (,)p

T n
T n T n n

p ∞≤ + (3.9)

Proof: The upper bound follows from the standard Brent-Graham scheduling. For details

see [11] and [13].

For our computation model described in Section 3.3.1, Lemmas 3.4 and 3.5 hold

for any level-i of the d-level hierarchy, because of the following assumption in our

computation model (see Section 3.3.1) –

(1) An inclusive memory hierarchy implies that misses at level-i do not affect the

misses at level > i.

(2) An inclusive memory hierarchy also implies that cache lines evicted at level-i are

also evicted for level < i.

(3) Mi+1 > �iMi where �i ≥ Pi

3.4 Case Studies

We demonstrate the parallel algorithm design methodology using two widely used

data parallel problems – matrix multiplication and the solution of Maxwell’s equations

using the Finite Difference Time Domain (FDTD) method. In each case, the data

structures used are arrays – 2D for matrix multiplication, and 3D for FDTD. We state the

equations describing the computations, highlight the opportunities for recursive array

59

decomposition, and demonstrate the parallel pebbling of the associated DAGs under the

weighted vertex (�s) pebbling strategy. Further, for these two cases, we derive problem

specific bounds for communication (cache) and space complexities.

3.4.1 Matrix Multiplication

Matrix multiplication refers to the standard dense matrix multiplication algorithm

for multiplying two n×n square matrices A and B to get a result matrix C = AB. The

computational complexity of the algorithm is O(n3) while the data access time and space

requirements are O(n2). As shown in Figure 3.2, a possible geometric decomposition of

the problem involves recursive binary decompositions of the A, B and C matrices into

sub-matrices (blocks) along both the dimensions.

Level-(i+1) DAGs and the level-i sub-DAGs for a possible two level

decomposition of the A, B, and C matrices are shown in Figure 3.3. Note from Figure 3.3

that all the Ci level-(i+1) DAGs can be computed independently but each share data with

the other sub-DAGs.

In formulating the weighted pebbling strategy for level-(i+1) DAGs of Figure 3.3,

we first assign weights to the individual vertices as outlined in Section 3.3.5. Figure

3.4(a) shows the initial weighting of the vertices of the level-(i+1) DAGs of Figure 3.3

under �s along with the initial assignment of pebbles. Figure 3.4(b) shows an

intermediate step in the pebbling of the DAGs associated with the computation of C2

where all the inputs B0 to B3 have been pebbled. For pebbling the level-(i+1) DAGs of

Figure 3.3, a total of 6 pebbles are required with 16 read/write operations. Note that here

we count both the reads and writes of the outputs (matrix C).

60

FIGURE 3.2: A 2-level geometric decomposition of A, B, and C matrices.

FIGURE 3.3: Illustrative level-(i+1) and level-i DAGs for matrix multiplication.

(a)

(b)

FIGURE 3.4: The weighted-vertex pebble game: (a) Initial vertex weight assignment for
level-(i+1) DAGs of Figure 3.2 under �s; (b) An intermediate step in the pebbling of the
level-(i+1) DAGs under �s.

61

We now derive bounds for space and cache complexities under �s with d=2 (2-

level memory hierarchy) and P2 = P1 = 1 (a single core) for matrix multiplication.

Theorem 3.1 Consider the multiplication of matrices A and B each of size n×n to

generate an n×n matrix C. Let |Bi| be the size of the geometrically decomposed square

sub-matrix of A, B, and C at level-i such that |B2| = n2, |B1|= b2, and |B0|=1 (single

element) for a two level cache hierarchy. Let G2 be a DAG with vertices of size|B1| with

G2 representing the computation of a single block of the C matrix at level-2, while let G1

be a sub-DAG of G2 with vertices of size |B0| representing the computations of a single

element of the C matrix at level-1. The level-2 memory is considered infinite while level-1

memory is of size M. The number of two level memory read/write operations Nb
R/W

required in computing the b2 G1s representing the single block level multiplication of A

and B satisfies the following lower bound:

/ 24R W
bN b≥ (3.10)

Proof: From Lemma 3.1, each sub-DAG G1 requires at least |In(G1)| + |Out(G1)| =

(2b+1) +1 read and write operations, and there are b2 G1s. Thus, a total b2×(2b+2)

read/write operations are required to compute b2 G1s. Each element of the input sub-

matrix A and B can be reused at most (b-1) times between the b2 G1s. Since there are 2b2

elements of sub-matrices A and B, a total of at most 2b2×(b-1) pebbles can be reused

without any additional read/write operation between the b2 sub-DAGs G1s. Therefore, at

least b2×(2b+2) – 2b2×(b-1) = 4b2 read/write operations are required for b2 G1s.

Theorem 3.2 Consider the multiplication of matrices A and B each of size n×n to

generate an n×n matrix C. Let |Bi| be the size of the geometrically decomposed square

sub-matrix of A, B, and C at level-i such that |B2| = n2, |B1|= b2, and |B0|=1 (single

62

element) for a two level cache hierarchy. Let G2 be a DAG with vertices of size|B1| with

G2 representing the computation of a single block of the C matrix at level-2, while let G1

be a sub-DAG of G2 with vertices of size |B0| representing the computations of a single

element of the C matrix at level-1. The level-2 memory is considered infinite while level-1

memory is of size M. Then, the lower bound on the number of pebbles Ss required to

pebble b2 G1s under the weighted-vertex pebbling such that the cache read/write lower

bound of Theorem 3.1 is satisfied is

2 2sS b b≥ + + , where b>2 (3.11)

Proof: Consider a row major computation of C. Pebbling the b2 G1s requires at most b2

pebbles for A (input), b3 pebbles for B (input), 1 pebble for C (output), and 1 pebble for

the intermediate node. However, the weighted-vertex pebbling strategy (See Section

3.3.5), assigns an initial weight w=b for the input vertices representing elements of

matrix A and B since these are shared (cloned) by b such G1s. Further, w=1 is assigned to

the intermediate vertices of G1 and w=0 for the output node. The number of pebbles

required is thus reduced by a factor of b - that is b pebbles for A, and b2 pebbles for B.

Therefore, the total number of pebbles needed is no more than b2 + b + 2. Also, since

the elements of the blocks of A and B are reused b-1 times in the weighted pebbling

strategy, following the arguments presented in the proof of Theorem 3.1, the resulting

number of read/write operations is lower bounded by 4b2.

Corollary 3.1 As a consequence of Theorem 3.2 and Equation 3.7, the block size b

satisfies the following upper bound:

1 4 3
2

M
b

� �− + −≤ � �� �
� �

 (3.12)

63

Theorem 3.3 Consider the multiplication of matrices A and B each of size n×n to

generate an n×n matrix C. Let |Bi| be the size of the geometrically decomposed square

sub-matrix of A, B, and C at level-i such that |B2| = n2, |B1|= b2, and |B0|=1 (single

element) for a two level cache hierarchy. Let G2 be a DAG with vertices of size|B1| with

G2 representing the computation of a single block of the C matrix at level-2, while let G1

be a sub-DAG of G2 with vertices of size |B0| representing the computations of a single

element of the C matrix at level-1. The level-2 memory is considered infinite while level-1

memory is of size M. The total number of two level memory read/write operations Ntotal
R/W

required in the multiplication of A and B satisfies the following lower bound:

3
/ 23R W

total

n
N b

b
� �

≥ +� �
� �

 (3.13)

Proof: There are a total (n/b)3 sets of G1s at level-1 with b2 G1s per set. From Theorem

3.1 the total number of read/write operations without considering data sharing between

these sets is at least 4b2×(n/b)3 = 4(n3/b). Since from Theorem 3.2 level-1 can hold at

least one complete block of size b2, the total data sharing that is possible between the G1

sets is at most b2×((n/b)3 – 1). Hence the lower bound on the number of read/write

operations between level-1 and level-2 cache is at least 4(n3/b) – b2×((n/b)3 – 1) = 3(n3/b)

+ b2.

We refer to [30] for extending our two-level cache tree to multilevel cache tree.

We invoke the same assumptions as [30]; (a) that caches satisfy the inclusion property

[39], which says that the data stored in cache at level-i are also stored in cache at level-

(i+1), and (b) that if two elements belong to the same cache line at level-i, then they

belong to the same line at level-(i+1). Additionally, we assume that Mi+1 > �iMi where �i

≥ Pi (See Section 3.3.1). These assumptions ensure that each cache at level-(i+1) includes

64

at least the contents of Pi caches at level-i. Therefore, we can also apply the weighted-

vertex pebble game between level-i and level-(i+1) with the vertex size |Bi|.

3.4.2 Finite Difference Time Domain

Finite-Difference Time-Domain (FDTD) method is based on Yee’s algorithm and

computes the electric-field (E-field) and magnetic-field (H-filed) in both time and space

domain. The characteristic features of our 3D-FDTD algorithm are (a) it is a

computation and data-intensive problem performing O(n3) computations with O(n3) data

access time and space requirement, (b) there is data dependency between E- and H-field

computation in time domain, (c) there is no risk of a race condition for each field

computation in space domain, and (d) a cell (e.g. Ex(i,j,k)) computation of each field in

each direction refers to nearest-neighbors as 2-point stencil communication pattern in the

space domain. The following difference Equations 3.14 and 3.15 describe the FDTD

computations for Ex and Hx components. Similar equations hold for the other Ey, Hy and

Ez, Hz.

��������	
� ��
� � ���������	
� ��
� �� ����	������ ����	����������	���������� ��� �	�������� �	���������! " (3.14)

#�	����	
� ��
� � �#��	
� ��
� ����$ %& ��'
���	�������& ��'���	���������! ��&���'���	�������&���'���	���������� ((3.15)

As shown in Figure 3.5, a possible geometric decomposition of the problem

involves recursive binary decompositions of the 3D Ex, Ey, Ez and Hx, Hy, Hz matrices

into sub-matrices (blocks) along both x-, y-, z-directions.

The DAGs describing the FDTD computation are shown in Figure 3.6. Note the

data dependence between the E- and H-field DAGs.

65

FIGURE 3.5: A 2-level geometric decomposition of the E- and H-field cubes.

FIGURE 3.6: DAGs for FDTD: Note that there are 6 DAGs corresponding to Ex, Ey, Ez
and Hx, Hy, Hz.

We now derive bounds for space and cache complexities under �s with d=2 (2-

level memory hierarchy) and P2 = P1 = 1 (a single core) for 3D-FDTD. Note that we

compute E-field first and then H-field since there is data dependency between the two in

the time domain. Here we only consider E-field computations.

66

Theorem 3.4 Consider the E-field computation in a cube of size n3. Let |Bi| be the size of

the geometrically decomposed sub-cube at level-i such that |B2| = n3, |B1|= b3, and

|B0|=1 (single cell) for a two level cache hierarchy. Let G2 be a DAG with vertices of size

|B1| with G2 representing the computation of the E-field of a single block at level-2,

while let G1 be a sub-DAG of G2 with vertices of size |B0| representing the computations

of a single cell at level-1. The level-2 memory is considered infinite while level-1 memory

is of size M. The number of two level memory read/write operations Nb
R/W required in

computing the 3b3 G1s representing the single block level E-field computation satisfies

the following lower bound:

/ 3 2 12 6 4R W
bN b b≥ + + (3.16)

Proof: From Lemma 3.1, each sub-DAG G1 requires at least |In(G1)| + |Out(G1)| = 10

read/write operations (See Figure 3.6). Since there are 3b3 sub-DAGs for each Ex, Ey and

Ez computation, a total of at least 3×b3×(10) read/write operations are required. The input

constant parameter (∆t) can be reused at most 3b3–1 times while the input constant

parameters ∆x, ∆y and ∆z each can be reused at most 2b3–1 times. The input Hx is used

in the computation of both Ey and Ez. Also, the input Hx is shared between two adjacent

cells and hence can be reused at least b3 + 2b2(b-1) = 3b3-2b2 times. The same argument

applies for Hy and Hz. Therefore, the total number of two level memory read/write

operations is at least 30×b3 – (3b3 – 1) – 3× (2b3 – 1) – 3× (3b3-2b2) = 12b3 + 6b2 + 4.

Theorem 3.5 Consider the E-field computations in a cube of size n3. Let |Bi| be the size

of the geometrically decomposed sub-cube at level-i such that |B2| = n3, |B1|= b3, and

|B0|=1 (single cell) for a two level cache hierarchy. Let G2 be a DAG with vertices of size

|B1| with G2 representing the computation of the E-field of a single block at level-2,

67

while let G1 be a sub-DAG of G2 with vertices of size |B0| representing the computations

of a single cell at level-1. The level-2 memory is considered infinite while level-1 memory

is of size M. Then, the lower bound on the number of pebbles Ss required to pebble 3b3

G1s under the weighted-vertex pebbling such that the cache read/write lower bound of

Theorem 3.4 is satisfied is

22 2 10sS b b≥ + + (3.17)

Proof: Based on the degree of sharing, the weighted-vertex pebbling strategy (See section

3.3.5), assigns initial weights w to the G1 vertices as follows – w∆t = 3b3, w∆x = w∆y = w∆z

= 2b3, and wHx = wHy = wHz = 4. Without loss of generality, we assume the computation

proceeds along the z-direction followed by y-direction, and x-direction. In that case, at

least b pebbles are required for Hx due to data dependency along the z- (at least 2 pebbles

to hold values Hx along the z-direction) and y-directions (at least b pebbles to hold b Hx

values along the z-direction). For Hy due to data dependency along the z- (at least 2

pebbles to hold Hy values along the z-direction) and x-direction (at least b2 pebbles to

hold b2 Hx values on the yz-plane) at least b2+2 pebbles are required. For Hz due to data

dependency along the x- (at least b2 pebbles to hold b2 Hz values on the yz-plane) and the

y-direction (at least b pebbles to hold b Hz values along the x-direction). Following the

weight assignments of ∆t, ∆x, ∆y and ∆z described above a total of at least 4 pebbles are

required to hold these parameters. Similarly, at least 3 pebbles are required for holding

the epx, epy, and epz values, at least 2 pebbles for storing intermediate vertices and one at

least pebbles for the DAG output. Thus, summing up all the pebbles the calculation of

3b3 G1 DAGs requires at least 2b2+2b+10 pebbles. Since the above pebble estimation

68

considers data sharing as described in Theorem 3.4, the resulting number of read/write

operations is lower bounded by 12b3 + 6b2 + 4.

Corollary 3.2 As a consequence of Theorem 3.5 and Equation 3.7, the block size b

satisfies the following upper bound:

11 8
2
M

b
� �− + −

≤ � �� �
� �

 (3.18)

Theorem 3.6 Consider the E-field computations in a cube of size n3. Let |Bi| be the size

of the geometrically decomposed sub-cube at level-i such that |B2| = n3, |B1|= b3, and

|B0|=1 (single cell) for a two level cache hierarchy. Let G2 be a DAG with vertices of size

|B1| with G2 representing the computation of the E-field of a single block at level-2,

while let G1 be a sub-DAG of G2 with vertices of size |B0| representing the computations

of a single cell at level-1. The level-2 memory is considered infinite while level-1 memory

is of size M. The total number of two level memory read/write operations Ntotal
R/W

required in the E-field computation satisfies the following lower bound:

33
/ 3 212() 3 4 4R W

total

n n
N n b

b b
� � � �≥ + + +� � � �

� �� �
 (3.19)

Proof: We have a total (n/b)3 sets of sub-DAGs G1s at level-1 (total number of block

computations). Since from Theorem 3.4, each G1 requires at least 12b3 + 6b2 + 4

read/write operations, a total of at least 12(n3) + 6(n3/b) + 4(n/b)3 read/write operations

are required when data sharing between the blocks is not considered. Since at most 3b2

cells can be shared between any neighboring b3-sets of G1 (corresponding to a block), the

total number of read/write operations is at least 12(n3) + 6(n3/b) + 4(n/b)3 – 3b2×((n/b)3 –

1) = 12(n3) + 3(n3/b) + 4(n/b)3 + 4b2.

69

As shown in Figure 3.6, DAGs for H-field computations are similar as DAGs for

E-field computations. Instead of three parameters epx, epy and epz for E-field

computations, we consider only one parameter � for H-field computations.

3.5 Conclusion

In order to derive scalable parallel algorithms for shared cache multicore

machines with the properties described above, we propose the following design

methodology in formulating space- and cache-efficient parallel algorithms for the

geometrically decomposable problems –

 (1) Develop a computational model that captures the salient features of the multicore

processor under consideration. Although a variety of multicore architectures exist

today, many of them have a shared cache architectural paradigm where a subset of

processing cores share the cache hierarchy.

 (2) Recursively decompose the data arrays representing the problem into sub-arrays

such that overall solution is obtained by solving the problem on the sub-arrays.

The depth of the recursive decomposition is determined by the depth of the cache

hierarchy.

 (3) Express the computation on the arrays as Directed Acyclic Graphs (DAG) G(V,E)

with V vertices and E edges. Here the vertices represent the input, output, and

intermediate data while the edges represent the data dependencies.

 (4) At each level of the memory hierarchy, map the DAGs representing the sub-array

computations between the processing components sharing that level of the cache

hierarchy such that the load is balanced.

70

 (5) Between each pair of levels of the memory hierarchy formulate a weighted vertex

red-blue pebbling strategy on the DAGs so as to determine the minimum number

of pebbles that minimizes the memory read/write operations. The pebbling

strategy essentially describes the parallel algorithm for the problem.

 (6) Based on the computational model, estimate bounds on the space, compute,

cache, and synchronization complexities.

 (7) Using a suitable parallel programming model, implement the algorithm on the

targeted multicore processor. Measure the performance and if necessary, tune the

performance of the code using machine specific optimizations.

CHAPTER 4: INTEGRATED DATA PREFETCHING AND CACHING IN
MULTICORES

4.1 Introduction

To bridge the growing latency gap between the processing cores and the memory

hierarchy, multicore processor designers have sought to exploit Compute Transfer

Parallelism (CTP) where data transfer and computing are decoupled and can be executed

in parallel. Compute transfer parallelism utilizes the architecture’s ability to explicitly

and independently sequence data transfer operations. Using application-level knowledge

the software programmer can explicitly fetch large blocks of data ahead of time thus

reducing resource idle time. A related technique in reducing processor stall time

examined extensively in Chapter 3 is caching, where temporal and spatial data locality is

exploited to minimize data movement (cache efficiency). Although the two techniques

CTP and caching are architecturally independent, in practice there is a strong interaction.

Given the limited sizes of the cache hierarchy, if data is pre-fetched too early, cache

blocks needed in the near future could get evicted thus adversely affecting temporal

locality. On the other hand, holding the blocks in cache for too long, negatively affects

the ability to pre-fetch data. While previous work has considered both caching and pre-

fetching in multicores separately, in this chapter, we propose algorithm specific

integrated software caching and pre-fetching strategies. Specifically, by using a simple

model for data transfer, we attempt to theoretically determine the size and number of

72

read buffers implemented on machines with a limited size local memory and different

compute and data transfer capabilities.

The rest of the chapter is organized as follows – In Section 4.2 we examine

related work done in integrated caching and pre-fetching for managing disk access

latencies. We also review work done in pre-fetching on multicores. Section 4.3 briefly

reviews the capability of the Cell Broadband Engine as an example of a multicore

processor that supports compute transfer parallelism. In Section 4.4 we introduce a

general purpose machine model and present conditions for when the total elapsed time is

compute bound or data transfer bound. Section 4.5 and 4.6 illustrate our approach for

integrating caching and prefetching in multicores using matrix multiplication and the

FDTD algorithms as case studies. Section 4.7 concludes the chapter with our

observations on the choice of an optimal buffering strategy when both pre-fetching and

caching is considered.

4.2 Background

Integrated caching and pre-fetching techniques for disk systems have been

reported in the literature since the mid 90s. Since the disk access latencies are far larger

(~ 1 million times) the memory access latencies, pre-fetching is important in the hiding of

expensive disk access latencies. Cao et. al. [17] introduced two integrated caching-

prefetching algorithms - Conservative and Aggressive for single disks. The Conservative

algorithm pre-fetches a missing block by evicting a cache block that is used as far as

possible in the future. The Aggressive algorithm pre-fetches blocks as soon as possible.

Specifically, a missing block in a computational sequence is pre-fetched if it can evict a

cache block that is not used before the missing block. [43] and [44] extend these

73

algorithms to parallel disk systems. Albers and Buttner [2] generalized these algorithms

by introducing a family of algorithms called Delay(d) where the pre-fetch operation is

delayed for d time units.

Regarding pre-fetching in multicore processors, Chen et. al. [20] investigated the

choice of buffering scheme and the size of the buffer on the IBM Cell processor. They

introduced a DMA model that accounted for the set-up time latency and transfer rates.

However, their work was focused on pre-fetching only and did not consider its interaction

with caching. Sancho and Kerbyson [59] experimentally investigated the performance of

double buffering on the quadcore AMD Opteron and the IBM Cell processor. They

observed a performance improvement of 1.4x and 2.2x for the Opteron and the Cell

processors when double buffering was employed for fictitious computing and data access

patterns. Again, the effects of caching were not considered. Also, the reliance on

empirical study without analytical performance modeling limits the extrapolation of their

results to realistic data parallel benchmarks. Experimental studies on the performance

bottlenecks in pre-fetching on the Cell architecture for an encryption/decryption

workload were reported in [57].

4.3 Computation and Data Transfer Parallelism in the IBM Cell/B.E.

The architectural features of the IBM Cell/B.E. processor were introduced in

Chapter 2. In this section we focus on the DMA capabilities of the Synergistic Processing

Elements (SPEs). Each SPE consists of a Synergistic Processor Unit (SPU) and a

Memory Flow Controller (MFC). The SPU is a RISC-style processor with a 256 KB non-

cached Local Store (LS) that holds program instructions and data. The SPU cannot access

main memory directly, but it can issue DMA commands to the MFC to bring data into LS

74

or write computation results back to main memory [45]. The MFC includes a DMA

controller, a Memory Management Unit (MMU), a bus interface unit, and an atomic unit

for synchronization with other SPUs and the PPE. The MFC supports naturally aligned

DMA transfer size of 1, 2, 4 or 8 bytes and multiples of 16 bytes. The maximum size of a

DMA transaction is 16 KB and the minimum recommended size is 128 bytes, the size of

a cache line of the PowerPC processor. In addition, larger DMA transactions can be

issued by DMA-list operation. The DMA-list transaction can be composed of up to 2,048

regular DMA transactions. The user can initiate multiple DMA transactions at a time that

are queued for processing by the DMA engine [59]. The queue has 16 entries, and so the

total number of outstanding DMA transactions can be 16×2,048 using DMA-list.

Moreover, the SPE dual-pipelines allow the overlap of data transfer and computation,

with one pipeline performing most of the arithmetic instructions while the other pipeline

performing load and store instructions [47].

FIGURE 4.1: Simultaneous computing and DMA transfer: (a) Execution sequence for
single read buffering; (b) Execution sequence for double read buffering.

75

Figure 4.1 illustrates a possible execution sequence highlighting the possible

overlap of compute and DMA operations. In Figure 4.1(a), no overlapping is possible

since DMA transfer as well as computing utilizes a single buffer. However, with an

additional buffer, data transfer and computing operations can be overlapping from

separate buffers with the buffers swapped in alternate cycles. For example as shown in

Figure 4.1(b), while the computing operation uses the data in buffer 1, data is pre-fetched

into buffer 2. The computing operation then utilizes data from buffer 2, while data is pre-

fetched into buffer 1. Note that double buffering is only effective if the data to be pre-

fetched in known in advance of the current computation. Also, additional buffers (n-

buffering scheme) can be utilized for better overlap between the computations and data

transfer. However, the limited size of the local store limits the number of additional

buffers that can be employed.

4.4 Machine Model and General Bounds

We utilize a simple model of the data transfer operation of a machine fetching

data from the main memory to its local memory. For a single data transfer operation, the

total data transfer time (Tdata) includes a setup time (Ts), the transfer time for one byte

(Tmem) from the memory to the local store, and the number of bytes transferred (B).

Tdata = Ts + B×Tmem (4.1)

The total elapsed time (Ttotal) for execution sequence with single buffering is

Ttotal = Ndata×Tdata + Ncomp×BTcomp (4.2)

where Ndata is a number of data transfer operations, Ncomp is a total number of

computations, and BTcomp is a computing time associated with a single B data transfer. In

a machine capable of concurrently scheduling compute and data transfer operations, with

76

double buffering scheme the total elapsed time (Ttotal) can be reduced by overlapping the

two operations. Depending on the relative magnitudes of the machine specific parameters

we can classify program execution into two regimes – data transfer bound and compute

bound.

Let BTcomp be the time required to perform computations on data of size B

transferred to the local memory from the main memory in time BTmem with setup time Ts.

Then, the resulting program execution is data transfer bound if the data transfer

operations can be scheduled back-to-back without a break. This condition holds when

BTcomp ≤ BTmem – Ts. Such a back-to-back data transfer operations can help hide the

setup time of an individual data transfer through overlap with subsequent data transfers.

Note that data transfer bound execution results in stalling of the processor. Similarly, the

program execution is compute bound if computations can be scheduled back-to-back

without the processor stalling. This condition holds when BTcomp ≥ BTmem + Ts. Note that

compute bound execution does not allow overlap of the setup time. If program execution

is such that BTmem – Ts < BTcomp < BTmem + Ts, then stalls occur both in computation and

data transfer. However, for large enough size B, the set up time Ts can be ignored, and

hence program execution is either only compute bound or only data transfer bound.

Ignoring temporal locality of data if we let Ndata be the equal number of Ncomp, then the

total number of operations (Noper) that can be overlapped between compute and data

transfer operations is at most (Ncomp – 1) for data transfer bound and at most (Ndata – 1)

for compute bound. Using the double buffering scheme, the overlap of computations with

data transfer reduces the total elapsed time (Ttotal) as follows:

Ttotal ≥ Ts + Ndata×(BTmem) + BTcomp for data transfer bound (4.3)

Ttotal ≥ Ts + BTmem + Ncomp×BTcomp for compute bound (4.4)

77

Note that if the application has sufficient temporal locality between DMA

transfers then caching can reduce the total elapsed time (Ttotal) by reducing the number of

data transfers (Ndata).

4.5 Matrix Multiplication

4.5.1 Theoretical Bounds

We consider the multiplication of two n×n matrices A and B to obtain an output

n×n matrix C. The matrices are partitioned into blocks of size b×b such that all

multiplication operations are carried out at the block level. As described in Chapter 3,

blocking promotes cache efficient computation. Let the number of blocks in each matrix

be N×N where N is (n/b). The example of N=3 is shown in Figure 4.2.

FIGURE 4.2: Matrix multiplication with 3×3 blocks.

To simplify our analysis we only consider the integrated caching and pre-fetching

involving the reading of matrices A and B. Let M be the size of memory available for the

input buffers and let Tcomp be the computation time required for a floating point operation

(double or single precision). We consider the data transfer operation from the main

memory to the local memory (cache) to involve a set-up time and a data transfer time and

use Equation 4.1 to model the time taken to transfer a block of data. We derive upper and

lower bounds for the total elapsed time for different buffering strategies. Here total

78

elapsed time is defined as the total time taken to multiply the two matrices and includes

both the computation and the data transfer time.

Case I: Single buffer each for matrix A and B

Initially two data blocks of both A and B matrices have to be fetched before

computation proceeds. Since only a single buffer is used for matrix A and B, we need to

complete the computation involving the two blocks before the next data transfer

operation is scheduled. Theorem 4.1 provides bounds for the total number of data

transfers involved and Theorem 4.2 provides bounds on the total elapsed time.

Theorem 4.1 Let A and B be two N×N matrices each consisting of N2 blocks. If the local

memory (cache) is large enough to hold not more than a single block each of A and B,

the upper and lower bounds for the total number of block-level data transfers Ndata is

given by

N3 + N ≤ Ndata ≤ 2N3 (4.5)

Proof: The upper bound is obtained by considering no reuse of the data present in the

local memory. Thus two blocks of data needs to be fetched for each multiplication. Since

there are N3 such computations in multiplying matrices A and B, a total of not more than

2N3 blocks transfers block level data transfers is required. The lower bound is obtained

by considering reuse of the data present in the local memory (temporal locality). We note

that each block of matrix A is multiplied with an N-block row of matrix B. Thus, each

block of matrix A can be re-used at most N-1 times. Since there are N2 blocks of matrix A,

a total of at most N2×(N-1) blocks can be reused without additional data fetches.

Therefore, the total number of data transfer operations transfers of matrix A is at least N3

– (N2×(N-1)) = N2. For matrix B, at most one block from each row of matrix B can be

79

reused. Since each row of matrix B is required N times for multiplying with one column

of matrix A, at most N-1 blocks can be reused across all operations involving a single row

of matrix B. There are N rows of B, so at most N×(N-1) blocks can be reused. Hence the

total number of block data transfer operations for matrix B is at least N3 – (N× (N-1)) =

N3 –N2 + N. Thus, the total number of data transfer operations for both A and B is at least

N3 + N.

(a)

(b)

FIGURE 4.3: Simultaneous computing and data transfer for single buffer each for matrix
A and B: (a) Execution sequence obtained by considering no reuse of the data present in
the local memory; (b) Execution sequence obtained by considering reuse of the data
present in the local memory.

Corollary 4.1 If Ts is the set up time for each data transfer operation, Tmem the time

required to transfer one data from the main memory to the local memory (cache), and

Tcomp the time required for a single floating point operation, then the total elapsed time

(Ttotal) satisfies the following upper and lower bounds,

80

Ts×N3 + Tmem×b2×(N3+N) + Tcomp×2b3×N3 ≤ Ttotal ≤ Ts ×N3 + Tmem × b2×(2N3) + Tcomp

× 2b3×N3 (4.6)

Proof: The upper bound is obtained by considering no reuse of the data present in the

local memory. As shown in Figure 4.3(a), single buffering of A and B permits no overlap

of data transfer and computation, the total elapsed time is at most the sum of the times

required for computation (N3) and data transfer (2N3, Theorem 4.1). However, the set up

time for transfer of a block of B can be overlapped with the data transfer of block of A,

the setup need be done at most N3 times. A similar argument holds for the lower bound as

well with the lower bound on the number of data transfers (see Figure 4.3(b)) given by

Theorem 4.1.

Case II: Single buffer for matrix A and double buffer for matrix B

The bound on the number of data transfers of matrix A is same as Case I since

only a single buffer is used for matrix A. However, the number of data transfers of matrix

B can potentially be reduced due to the double buffering of B. Moreover, the double

buffering allows for overlap of data transfer and computation times, potentially reducing

the total elapsed time.

Theorem 4.2 Let A and B be two N×N matrices each consisting of N2 blocks. If the local

memory (cache) is large enough to hold not more than a single block of A and two blocks

of B, the upper and lower bounds for the total number of block-level data transfers Ndata

is given by

N3 – N2 + 2N ≤ Ndata ≤ 2N3 (4.7)

Proof: The upper bound on the number of data transfers for matrix A and B considering

no reuse of data is same as Theorem 4.1. The lower bound on the number of data

81

transfers for matrix A considering data reuse is N2 and follows the same argument given

in the proof of Theorem 4.1. Double buffering for matrix B, enables the sharing of two

blocks of data for every row of B. Since each row of matrix B is required N times for

multiplying with one column of matrix A, at most 2×(N -1) blocks can be re-used across

all operations involving a single row of matrix B. There are N rows of B, so at most

2×N×(N-1) blocks can be reused. Hence the total number of block data transfer

operations for matrix B is at least N3 – (2×N×(N-1)) = N3 –2N2 + 2N. Thus, the total

number of data transfer operations for both A and B is at least N2 + (N3 –2N2 + 2N) = N3

– N2 + 2N.

Theorem 4.3 Let A and B be two N×N matrices each consisting of N2 blocks. If the local

memory (cache) is large enough to hold not more than a single block of A and two blocks

of B, the lower bound for the total number of operations Noper that cannot be overlapped

is given by

Noper ≥ N3 + N2 +1 (4.8)

Proof: We note that double buffering of B possibly allows for overlapping of all data

transfer operations of B with computations operations except for the first block. However,

since A is single buffered at least N2 block data transfer operations are required for A.

Since there are a total of N3 computations, the total number of operations is at least N3 +

N2 +1.

Corollary 4.2 If Ts is the set up time for each data transfer operation, Tmem the time

required to transfer one data from the main memory to the local memory (cache), and

Tcomp the time required for a single floating point operation, then the total elapsed time

(Ttotal) satisfies the following upper and lower bounds,

82

Data Transfer Bound: b2×Tmem > 2b3×Tcomp + Ts

Ts×N2 + Tmem×b2×(N3 – N2+ 2N) + Tcomp×2b3×(2N2 – 2N+1) ≤ Ttotal ≤ Ts×N3 +

Tmem×b2×(2N3) + 2b3×Tcomp (4.9)

Compute Bound: 2b3×Tcomp > b2×Tmem + Ts

Ts×N2 + Tmem×b2× (N2+1) + Tcomp×2b3×N3 ≤ Ttotal ≤ Ts ×N3 + Tmem×b2×(N3 + 1) +

2b3×Tcomp ×N3 (4.10)

Proof: The upper bound for the total elapsed time is obtained by considering no reuse of

the data present in the local memory. For the data transfer bound case, at most N3 – 1 of a

total of N3 block multiplications can be overlapped with the 2N3 data transfer operations.

The total elapsed time is thus at most the sum of the times required for the maximum

number of data transfer operations (upper bound of Theorem 4.2), the set up time for the

single buffered blocks of A, and the computation time for one block. In the compute

bound case, at most N3 -1 data transfer operations can be overlapped with the N3

computations. Thus, the total elapsed time consists of at least 2N3 – (N3 – 1) = N3 + 1

data transfers, N3 computations, and N3 set up time for blocks of A.

The lower bound is obtained by considering reuse of the data present in the local

memory. From Theorem 4.2 the number of block-level data transfer operations is at least

N3 – N2+ 2N, while from Theorem 4.3 the total number of non-overlapped operations is

at least N3 + N2 +1. For the data transfer bound case (see Figure 4.4(a)), the number of

compute operations that cannot be overlapped with is at least (N3 + N2 +1) – (N3 – N2+

2×N) = (2N2 -2N + 1). On the other hand, in the compute bound case (see Figure 4.4(b)),

the number of data transfer operations that cannot be overlapped with computations is (N3

+ N2 + 1) – N3. In either case, the single buffering of A requires at least N2 setup times.

83

And in data transfer bound case, N2–N additional setup times are required. The lower

bound is given by the sum of the setup time, non-overlapped (compute bound) data

transfer time and non-overlapped (data transfer) compute time.

(a)

(b)

FIGURE 4.4: Simultaneous computing and data transfer for single buffer for matrix A
and double buffer for matrix B obtained by considering reuse of the data present in the
local memory: (a) Data transfer bound case; (b) Compute bound case.

Case III: Double buffers for matrix A and B

The bound on the number of data transfers is same as given by Theorem 4.2 since

the added double buffering of A cannot reduce the total number of data transfer

operations required to less than N2. However, double buffering of A the increases

possibility of overlap between computations and the data transfer reducing the total

number of operations that cannot be overlapped.

84

Theorem 4.4 Let A and B be two N×N matrices each consisting of N2 blocks. If the local

memory (cache) is large enough to hold at most two blocks each of A and B, the lower

bound for the total number of operations Noper that cannot be overlapped is given by

N3 + 2 ≤ Noper (4.11)

Proof: We note that double buffering of A and B possibly allows for overlapping of all

data transfer operations of A and B with computations operations except for the first

block of A and B. Since there are a total of N3 computations, the total number of

operations is at least N3 + 2.

Corollary 4.2 If Ts is the set up time for each data transfer operation, Tmem the time

required to transfer a single data from the main memory to the local memory (cache),

and Tcomp the time required for a single floating point operation, then the total elapsed

time (Ttotal) satisfies the following upper and lower bounds,

Data Transfer Bound: (b2Tmem > 2b3Tcomp + Ts)

Ts + Tmem×b2×(N3 – N2+ 2N) + Tcomp×2b3×(N2 – 2N+2) ≤ Ttotal ≤ Ts + Tmem×b2×(2N3)

+ 2b3×Tcomp (4.12)

Compute Bound: (2b3Tcomp > b2Tmem + Ts)

Ts + 2×Tmem×b2 + Tcomp×2b3×N3 ≤ Ttotal ≤ Ts + Tmem×b2×(N3 + 1) + 2b3×Tcomp ×N3

 (4.13)

Proof: The upper bound for the total elapsed time is obtained by considering no reuse of

the data present in the local memory. For the data transfer bound case, at most N3 – 1 of a

total of N3 block multiplications can be overlapped with the 2N3 data transfer operations.

Also, the double buffering of both A and B implies that only the initial set time involved

in the data transfer of the first block cannot be overlapped. The total elapsed time is thus

85

at most the sum of the times required for the maximum number of data transfer

operations (upper bound of Theorem 4.2), the set up time for a single block, and the

computation time for one block. In the compute bound case, at most N3 – 1 data transfer

operations can be overlapped with the N3 computations. Thus, the total elapsed time

consists of at least 2N3 – (N3 – 1) data transfers, N3 computations, and the set up time for

a single block.

(a)

(b)

FIGURE 4.5: Simultaneous computing and data transfer for double buffer for both matrix
A and B obtained by considering reuse of the data present in the local memory: (a) Data
transfer bound case; (b) Compute bound case.

The lower bound is obtained by considering reuse of the data present in the local

memory. From Theorem 4.2 the number of data transfer operations is at least N3–N2+2N

while from Theorem 4.4 the total number of non-overlapped operations is at least N3 + 2.

For the data transfer bound case (see Figure 4.5(a)), the number of compute operations

86

that cannot be overlapped with data transfer is at least (N3+2) – (N3–N+2N) = (N2–

2N+2). On the other hand, in the compute bound case (see Figure 4.5(b)), the number of

data transfer operations that cannot be overlapped with computations is (N3 + 2) – N3. In

either case, the double buffering of A and B requires a setup time only for the data

transfer of the first block. The lower bound is given by the sum of the setup time, non-

overlapped (compute bound) data transfer time and non-overlapped (data transfer)

compute time.

4.5.2 Discussion

A fair comparison between the different buffering schemes presented above

requires the expressing the total elapsed time in terms of the problem size n (number is

single precision floats) and the size of the local storage M (expressed in terms of number

of single precision floats). Although use of a higher order buffering scheme enables a

better overlap between the computations and the data transfer, with a fixed size memory,

the block size is smaller, resulting in lesser opportunities for exploiting temporal locality.

Note that buffer size is same as the block size. We assume the maximum size of a single

buffer to be M and scale the buffer size down by the number of buffers that needs to be

maintained in memory. The theoretical lower bounds for the elapsed time can then be

expressed as follows –

Case I: Single buffer each for matrix A and B

)* + �,-,.�/ + 0/ ��)1 21 + �,-,. + 0/ � ,.,- + 0�� ��)341 5 + 	6 + 0/� (4.14)

87

Case II: Single buffer for matrix A and double buffer for matrix B

Data transfer bound:

)* + 7�8,9,:;
- + 0-< �)1 21 + 8,9,: + 0/ ��0- � 6 + ,:,9 + 0�;

���������������������)341 5 + 76 + �6 + ,.,/ + 0- � �6 + �,.,/�- + 0 ���,.,/�/"< (4.15)

Compute bound:

)* + �,/,.�- + 0- ��)1 21 + �0- � �,.,/�-�" ��)341 5 + 	60/� (4.16)

Case III: Double buffers for matrix A and B

Data transfer bound:

)* �)1 21 + 8,=,: + 0/ � 0- � 6 + ,:,= + 0�;

�)341 5 + 76 + �,.,> + 0- � 6 + �,.,>�- + 0 � 6 + �,.,>�/"< (4.17)

Compute bound:

)* ��)1 21 + �6 + �,.,>�-�" ��)341 5 + 	60/� (4.18)

Performance Evaluation on the Cell B.E.:

We evaluate the lower bound performance for the three buffering schemes

discussed above on the Cell BE. For the Cell/B.E. the setup time is on the order of 130 ns

[20], while Tmem is the order of 0.018 ns per single precision float (the theoretical peak

data bandwidth of 204.8 GB/s). Note that Equation 4.1 is an approximation of the DMA

transfer time of the Cell/B.E. since the setup time depends on the data alignment in

memory and the transfer time depends on the congestion in the network. Tcomp is the order

88

of 0.036 ns for one single precision floating operation calculated from theoretical peak

25.6 GFLOPS performance per SPU. We assume the local memory size M available for

computation is 0.25 million single precision floats (100 KB) per LS. For these machine

parameters matrix multiplication is a compute bound application. Figure 4.6 shows the

theoretical lower bound for the three different buffering schemes. As shown in Figure

4.6, all three buffering schemes show similar performance with scaling of problem size

with double buffering of A and B (Case III) showing less than 1% performance

improvement than the single buffering of A and double buffering of B (Case II). This

surprising result can be explained by the fact that on the Cell/B.E. the compute time is

about 99% of the total elapsed time.

FIGURE 4.6: Theoretical lower bounds for matrix multiplication on IBM Cell/B.E.

4.6 Finite Difference Time Domain (FDTD)

4.6.1 Theoretical Bounds

We consider the E-field computation in cubes of size n3. The cubes are partitioned

into blocks of size b3 such that all E-field operations are carried out at the block level. As

�

��

���

���

���

���

���

���

��� ���� ���� ��	
 ��	� �
���

�
�
��
�
��

�
�
	�

�
�

�
�
	�
�

�

��
�

�������
����
���

��
��� ��
���� ��
�����

89

described in Chapter 3, blocking promotes cache efficient computation. Let the number

of blocks in a cube be N3 where N is n/b.

We analyze the integrated caching and pre-fetching involving the reading of the

nine parameters Ex, Ey, Ez, Hx, Hy, Hz, epx, epy and epz. To simplify our analysis we only

consider sharing of boundary data within a block and not between blocks. Note that the

constant parameters ∆t, ∆x, ∆y and ∆z are not considered in our analysis since they need

only be fetched once and stored in the local memory. Let M be the size of memory

available for the input buffers and let Tcomp be the computation time required for a

floating point operation (double or single precision). We consider the data transfer

operation from the main memory to the local memory (cache) to involve a setup time and

a data transfer time and use Equation 4.1 to model the time taken to transfer a block of

data. We derive upper and lower bounds for the total elapsed time for different buffering

strategies. Here the total elapsed time is defined as the total time taken to both E-filed

computations and the data transfer time.

Case I: Single buffer for E-field computations

Initially at least four data blocks of data have to be fetched before computation of

either Ex, or Ey or Ez can proceed. Since only a single buffer is used for each data set, we

need to complete the computation involving the data set before the next data set transfer

operation is scheduled. Theorem 4.5 provides bounds for the total number of data

transfers involved and Corollary 4.3 provides bounds on the total elapsed time.

Theorem 4.5 Let Ex, Ey, Ez, Hx, Hy, Hz, epx, epy and epz each be b3 sized blocks with a

total of 9N3such blocks. If the local memory (cache) is large enough to hold not more

90

than a single block each of Ex, Ey, Ez, Hx, Hy, Hz, epx, epy and epz, the upper and lower

bounds for the total number of block-level data transfers Ndata is given by

9N3 ≤ Ndata ≤ 12N3 (4.19)

Proof: The upper bound is obtained by considering no reuse of the data present in the

local memory to compute Ex, Ey and Ez (see Figure 4.7(a)). Here four blocks of data

needs to be fetched for each computation. Since there are at most N3 such computations

in computing each of Ex, Ey and Ez, a total of not more than 12N3 block level data

transfers are required. The lower bound is obtained by considering reuse of the data

present in the local memory between Ex, Ey and Ez computations (see Figure 4.7(d)). We

note that each of Hx, Hy and Hz data blocks are used at most twice to compute Ex, Ey and

Ez. Hence, at most 3N3 blocks can be reused. Thus, the total number of block data transfer

operations for E-field computations is at least 12N3 – 3N3 = 9N3.

Corollary 4.3 If Ts is the set up time for each data transfer operation, Tmem the time

required to transfer one data from the main memory to the local memory (cache), and

Tcomp the time required for a single floating point operation, then the total elapsed time

(Ttotal) satisfies the following upper and lower bounds,

N3×(Ts + 9b3 ×Tmem + 27b3×Tcomp) ≤ Ttotal ≤ N3×(3Ts + 12b3 ×Tmem + 27b3×Tcomp)

(4.20)

Proof: The upper bound is obtained by considering no reuse of the data present in the

local memory. As shown in Figure 4.7(a), single buffering of data transfer permits no

overlap of data transfer and computation, the total elapsed time is at most the sum of the

times required for computation (9×3N3) and data transfer (12N3, Theorem 4.5). However,

the setup time for transfer of a set of blocks can be overlapped with the data transfer of

91

blocks, the setup need be done at most 3N3 times. A similar argument holds for the lower

bound as well with the lower bound on the number of data transfers (see Figure 4.7(d))

given by Theorem 4.5. A set time of at least N3 is required if all the data required for

computing Ex, Ey, and Ez are fetched initially.

 (a)

 (b)

 (c)

 (d)

FIGURE 4.7: Simultaneous computing and data transfer for single buffer for E-field
computation: (a) Execution sequence obtained by considering no reuse of the data present
in the local memory. This scheme requires the storage of 4 blocks of data in the local
memory; (b) Execution sequence obtained by considering reuse of the data present in the
local memory between Ex, Ey and Ey, Ez. This scheme requires the storage of 4 blocks of
data in the local memory; (c) Execution sequence obtained by considering reuse of the
data present in the local memory between Ex, Ey, and Ez. This scheme requires the storage
of 5 blocks of data in the local memory; (d) Execution sequence obtained by considering
reuse of the data present in the local memory between Ex, Ey, and Ez but with all the data
fetched initially. This scheme requires the storage of 9 blocks of data in the local
memory.

92

Case II: Double buffers for E-field computations

The bound on the number of data transfers is same as given by Theorem 4.5 since

the added double buffering cannot reduce the total number of data transfer operations

required to less than N3. However, double buffering increases possibility of overlap

between computations and the data transfer reducing the total number of non-overlapped

operations.

(a)

(b)

FIGURE 4.8: Simultaneous computing and data transfer for double buffers for E-field
computation as data transfer bound cases: (a) Execution sequence obtained by
considering no reuse of the data present in the local memory. This scheme requires the
storage of 4 blocks of data in the local memory; (b) Execution sequence obtained by
considering reuse of the data present in the local memory between Ex, Ey, and Ez but with
all the data fetched initially. This scheme requires the storage of 9 blocks of data in the
local memory.

Theorem 4.6 Let Ex, Ey, Ez, Hx, Hy, Hz, epx, epy and epz each be b3 sized blocks with a

total of 9N3such blocks. If the local memory (cache) is large enough to hold not more

93

than two blocks each of Ex, Ey, Ez, Hx, Hy, Hz, epx, epy and epz, the lower bound for the

total number of operations Noper that cannot be overlapped is given by

N3 + 1 ≤ Noper (4.21)

Proof: We note that double buffering possibly allows for overlapping of all data transfer

operations with computations except for the initial set of blocks. Since there are a total of

N3 E-field computations, the total number of operations with maximal overlap between

computing and data transfer is at least N3 + 1.

Corollary 4.4 If Ts is the set up time for each data transfer operation, Tmem the time

required to transfer data from the main memory to the local memory (cache), and Tcomp

the time required for a single floating point operation, then the total elapsed time (Ttotal)

satisfies the following upper and lower bounds,

Data Transfer Bound:

Case A (max. data sharing): (9b3Tmem > 27b3Tcomp + Ts)

Ttotal ≥ Ts+ Tmem×9b3×N3+ Tcomp×27b3 (4.22)

Case B (no data sharing): (4b3Tmem > 9b3Tcomp + Ts)

Ttotal ≥ Ts + Tmem×12b3×N3 + Tcomp×9b3 (4.23)

Compute Bound:

Case A: (27b3Tcomp > 9b3Tmem + Ts)

Ttotal ≥ Ts+ Tmem×9b3+ Tcomp×27b3×N3 (4.24)

Case B: (9b3Tcomp > 4b3Tmem + Ts)

Ttotal ≥ Ts + Tmem×4b3 + Tcomp×27b3×N3 (4.25)

Proof: To achieve maximal data sharing between the blocks (Case A), the memory must

be capable of holding at least 18 blocks needed to compute Ex, Ey, and Ez under the

94

double buffering scheme. If the total elapsed time is data transfer bound (see Figure

4.8(b)), then the (N3 + 1) non-overlapped operations given by Theorem 4.6 consists of N3

data transfers of 9 blocks each and E-field computations for a single block. On the other

hand if the total elapsed time is compute bound, then the (N3 + 1) non-overlapped

operations given by Theorem 4.6 consists of E-field computations for N3 blocks and an

initial transfer of 9 blocks. When no data sharing between the blocks is considered, the

memory need only hold the minimum of 8 blocks needed to compute Ex (or Ey, or Ez)

under the double buffering scheme. However, without data sharing at least (3N3+1)

operations (computation or data transfer) cannot be overlapped. If the total elapsed time

is data transfer bound (see Figure 4.8(a)), then the (3N3+1) operations consists of

(4b3×3N3) data transfers and the Ex (or Ey, or Ez) computation for a single block. For the

compute bound case, the (3N3 + 1) operations consist of 9b3×3N3 E-field computations,

and initial data transfer of 4 blocks required to calculate Ex (or Ey, or Ez). In all cases, all

setup times except for the initial one can be overlapped with either data transfer or

computation.

4.6.2 Discussion

A fair comparison between the theoretical lower bounds presented above requires

the expressing the total elapsed time in terms of the problem size n and the size of the

local storage M. Although use of a higher order buffering scheme enables a better overlap

between the computations and the data transfer, with a fixed size memory, the block size

is smaller, resulting in lesser opportunities for exploiting temporal locality. Also, unlike

matrix multiplication in the FDTD algorithm, the number of blocks to be held in memory

depends on the degree of data sharing between the blocks. Note that buffer size is same

95

as the block size. We assume the maximum size of a single buffer to be M and scale the

buffer size down by the number of buffers that needs to be maintained in memory. The

theoretical lower bounds for the elapsed time can then be expressed as follows –

Case I: Single buffer

)�4�?@�A �)* + B. + 0/ ��)1 21 + 	C + 0/�� ��)341 5 + 	6D+ 0/� (4.26)

Case II: Double buffers

Data transfer bound:

Case A: (9b3Tmem > 27b3Tcomp + Ts) for 9 blocks space

Ttotal ≥ Ts+ Tmem×9n3+ Tcomp×27(M/9) (4.27)

Case B: (4b3Tmem > 9b3Tcomp + Ts) for 4 blocks space

Ttotal ≥ Ts + Tmem×12n3 + Tcomp×9(M/4) (4.28)

Compute Bound:

Case A: (27b3Tcomp > 9b3Tmem + Ts)

Ttotal ≥ Ts+ Tmem×(M/2)+ Tcomp×27n3 (4.29)

Case B: (9b3Tcomp > 4b3Tmem + Ts)

Ttotal ≥ Ts + Tmem×(M/2) + Tcomp×27n3 (4.30)

Performance Evaluation on the Cell B.E.:

We evaluate the lower bound performance for the three buffering schemes

discussed above on the Cell BE. For the Cell/B.E. the setup time is on the order of 130 ns

[20], while Tmem is the order of 0.018 ns per single precision float (the theoretical peak

data bandwidth of 204.8 GB/s). Tcomp is the order of 0.036 ns for one single-precision

floating-point operation calculated from theoretical peak 25.6 GFLOPS performance per

SPU. We assume the local memory size M available for computation is 0.25 million

96

single precision floats (100 KB) per LS. For these machine parameters FDTD is a

compute bound application with the compute time constituting about 80% of the total

elapsed time. Figure 4.9 shows the theoretical lower bound for the two buffering

schemes. As shown in Figure 4.9, double-buffering with integrated caching shows 14%

better performance over single buffering with integrated caching.

FIGURE 4.9: Theoretical lower bounds for FDTD on IBM Cell/B.E.

4.7 Conclusion

In order to derive efficient data transfers for multicore, we propose algorithm

specific integrated prefetching and caching strategies for realizing compute-transfer

parallelism. The goal of our analysis is to determine the best buffering strategy for

limited memory size while simultaneously exploiting data locality. Higher performance

improvement is expected on data transfer bound problem with prefetching while a lesser

performance improvement is expected for compute bound problems. For example, for

matrix multiplication on the IBM Cell BE, where computing is 99% of the total elapsed

time, we predict less than 1% performance improvement for prefetching with double

�

����

����

����

����

����

���

��� ���� ���� ��	
 ��	� �
���

�
�
��
�
��

�
�
	�

�
�

�
�
	�
�

�

��
�

�������
����
���

��
���

��
�������
���

��
�������
���

97

buffering, as compared to the case when prefetching is not used. On the other hand, for

the FDTD algorithm on the IBM Cell BE, where computing is about 80% of the total

elapsed time, the double-buffering with prefetching is expected to show a 14%

performance improvement over the case when prefetching is not used. We conclude that

even in compute bound problems prefetching can result in improvement in the overall

performance. Note that we have considered system peak performance of the IBM

Cell/B.E. platform in our analysis. Measuring the actual system parameters using micro-

kernels that capture the compute and data transfer characteristics of the algorithms under

consideration can result in better accuracy. For example, the data transfer time Tmem

depends on data transfer size [45] while Tcomp is independent with data transfer size.

CHAPTER 5: EXPERIMENTAL STUDIES IN COMPUTING ON COMMERCIAL
MULTICORE PROCESSORS

5.1 Introduction

In this chapter, we investigate multicore efficient implementations of data parallel

algorithms on commercial multicore platforms. We initially identify a set of in-core

optimization techniques that allow us to improve the sequential performance of an

algorithm on a single core. While the exact implementation of these in-core optimization

techniques depends on the architecture, compiler and the parallel programming tools,

most of the commercial multicores architectures, compilers and parallel programming

tools support these techniques is some fashion. We utilize the effective blocking and data

prefetching techniques discussed in Chapters 3 and 4 to obtain multicore efficient

implementations of the algorithms under considerations. The algorithms considered are

data parallel algorithms drawn from scientific computing and includes matrix

multiplication, FDTD, LU decomposition and Gauss-Seidel power flow solver. We

present extensive measurements of the performance of these algorithms on the Intel

Colvertown and IBM Cell BE multicores. The two architectures represent two ends of the

multicore architecture design philosophies. The Intel Colvertown is a shared cache quad-

core processor with complex out-of-order processors and hardware controlled cache

coherence. On the other hand, the IBM Cell BE has 8 self contained vector processors

with programmer controlled local memory.

99

The chapter is organized as follows – we briefly discuss about our experimental

systems in Section 5.2. We illustrate in-core optimization techniques in Section 5.3. We

discuss about case studies in Section 5.4. The conclusion is in Section 5.5.

5.2 Experimental Systems

In this section, we briefly discuss about our experimental systems based on

multicore processors. For our experimental studies, we consider two commercial

platforms: (1) Intel Clovertown platform: Dell Precision-690 as a homogenous multicore

platform and (2) IBM Cell/B.E. platform: SONY PlayStation3 as a heterogeneous

multicore platform.

Intel Clovertown Platform:

Intel Clovertown platform consists of two Intel Xeon E5345 quad-core processors

(Clovertown) on a dual-socket shown in Figure 5.1.

FIGURE 5.1: Dell Precision 690 with dual Intel quad-core Xeon E5345.

The characteristics of our system are that a) each core runs at 2.33 GHz, b) it is

capable of fetching and decoding four instructions per cycle, and fully support 128-bit

SSE for the theoretical peak performance of 9.32 GFLOPS per core for single-precision

floating-point operations, c) each socket provides the theoretical peak memory bandwidth

100

of 10.66 GB/s, and d) all 8 cores share 16 GB off-chip memory interfaced to four FB-

DIMM DDR2-533 SDRAM channels providing 17 GB/s of the theoretical memory

bandwidth. Each core has a private 32 KB L1 cache, and each chip (two cores) has a

shared 4 MB L2 cache.

IBM Cell/B.E. Platform:

IBM Cell/B.E. platform consists of IBM PowerPC-based Power Processing

Element (PPE) and eight Synergistic Processing Elements (SPEs) shown in Figure 5.2.

The characteristics of the platform are that a) each SPE runs at 3.2 GHz, b) it is capable

of fetching and decoding four instruction per cycle, and fully support 128-entry 128-bit

SIMD organization for the theoretical peak performance of 25.6 GFLOPS per SPE for

single-precision floating-point operations, c) Element Interconnect Bus (EIB) provides

the theoretical peak data bandwidth of 204.8 GB/s, and d) all 8 SPEs share 200 MB

DRAM off-chip memory interfaced to EIB. Each SPE has an efficient software-

controlled DMA engine which transfers data between DRAM and the private 256 KB

Local-Store (LS) from execution. The LS holds both instructions and data.

FIGURE 5.2: SONY PlayStation3 with one PPE and eight SPEs.

101

As shown in Figure 5.3, there are three ways in which the SPEs can be used in the

PPE-centric model. Figure 5.3(a) shows the multistage pipeline model, the parallel stages

model is shown in Figure 5.3(b) and the services model is shown in Figure 5.3(c). The

multistage pipeline model is typically avoided because of the difficulty of load balancing.

In addition, the multistage model increases the data-movement requirement because data

must be moved for each stage of the pipeline. The parallel stages model is used for a task

which has a large amount of data that can be partitioned and acted on at the same time. In

the services model, the PPE assigns different services to different SPEs, and the PPE’s

main process calls upon the appropriate SPE when a particular service is needed. We use

parallel stages model for our IBM Cell/B.E. implementations.

 (a) Multistage Pipeline Model (b) Parallel Stage Model (c) Service Model

FIGURE 5.3: The PPE-centric programming models.

Operating Systems, Compilers and Performance Analysis Tools:

The Intel Clovertown platform runs Fedora-9 with version 2.6 of the Linux

kernel, and the IBM Cell/B.E. platform runs Yellow Dog Linux-6.1 with version 2.6 of

the Linux kernel. All of our applications use single-precision floating-point across both

architectures. Intel compiler icc-11.0 is used with –O3 compiler optimization option for

all implementations on the Intel platform, and IBM spu-gcc compiler is used with –O3

compiler optimization option for all implementations on the IBM Cell/B.E. platform.

102

Additionally, we use Intel VtuneTM Performance Analyzer with Intel Thread Profiler to

analyze multi-thread and cache performance for Intel Clovertown platform.

5.3 In-core Optimization Techniques

Many data parallel scientific and engineering algorithms spend most of their

execution time on loop iterations and use multi-dimensional arrays as the principal data

structure.

When the referenced data is reused in an algorithm, the deep cache hierarchy of

multicore processor allows the exploitation of data locality [48, 52, 58, 77]. The two

forms of data reuse are temporal and spatial reuse. Temporal reuse (temporal locality)

occurs when the same data is reused in a short time period. Spatial reuse (spatial locality)

occurs when data in the same cache line or a block of memory at same level of the

memory hierarchy is used (unit-stride memory access is the most common type of spatial

locality). Wolf and Lam provide a concise definition and summary of important types of

data locality [77].

The performance of optimization techniques depends on both the algorithm and

the machine architecture. Recent research has shown ways to improve performance using

optimization techniques to exploit spatial and temporal locality on multicore architectures

[25, 26, 28, 41, 76]. However, there exists no such universal way to utilize these

optimization techniques. Therefore, understanding the use of these optimization

techniques in developing programs for classes of algorithms and machines is essential in

achieving high performance on multicore architectures.

In this section, we describe practical optimization techniques based on data

transformation, loop transformation and vectorization to improve the single thread

103

performance through the standard dense matrix-vector multiplication with single-

precision floating-point.

The performance of the in-core optimization techniques described in this section

has been experimentally evaluated on single core of the Intel Clovertown platform shown

in Figure 5.1. The platform runs Fedora-9 with version 2.6 of the Linux kernel. In this

section, we implement all algorithms in C program language and compile using GNU

gcc-4.3 with optimization level –O3. In general, use of a higher level compiler

optimization increases the compile time and the resulting code size. Although compilers

with optimization flags attempt to generate optimized version of the code, compilers

often fail at effective optimization. Therefore, additional improvements in performance

are possible through manual optimizations.

5.3.1 Matrix-Vector Multiplication

Matrix-vector multiplication is an important computational kernel used in

scientific computation, signal and image processing, and many other applications. As

shown in Equation 5.1, the matrix-vector multiplication algorithm multiplies an m×n

matrix A and n vector b to get a result m vector c. The computational and data read/write

aspects of the algorithm is shown in Figure 5.4. The computational complexity is O(m×n)

while the data space requirement is O(m×n).

c = A×b (5.1)

As shown in Figure 5.4, each element of the matrix A is only read once while each

element of both vectors b and c are used m times and n times respectively. Therefore,

only spatial locality is critical for matrix A, but both temporal and spatial localities are

important for c and b vectors.

104

FIGURE 5.4: Matrix-vector multiplication with n=4 and m=4.

5.3.2 Data Transformation: Data Layout Scheme

Programming languages that offer support for multi-dimensional arrays generally

use one of two linear layouts − row-major or column-major layout, to translate from

multi-dimensional array indices to locations in the memory space. C/C++ and Pascal uses

the row-major layout scheme while Matlab and Fortran uses the column-major layout

scheme.

 (a) (b) (c) (d)

FIGURE 5.5: Data Layout Schemes of 4×4 Matrix: (a) Row-major order; (b) Column-
major order; (c) Space-filling-curve order; (d) Z-Morton order.

A computational order (also known as scheduling) that traverses an array in the

same order as it is laid out in memory leads to better spatial locality. However, traversing

a row-major order layout in column-major computational order or vice-versa, can lead to

reduced performance. Computation orders that seek to exploit data locality also rely on

105

an appropriate data layout scheme [19, 65]. Some of the well-known data layout schemes

of two-dimensional arrays are shown in Figure 5.5.

The row-major and column-major order layout schemes shown in Figure 5.5(a)

and (b), respectively, are generally easy to implement and no extra time is required for re-

structuring the data layout. The space-filling-curve order layout scheme shown in Figure

5.5(c) potentially achieve better locality than row-major or column-major order layout

schemes for some applications, such as matrix multiplication. However, since extra effort

is required to perform with this layout, it may lead to degradation in the overall

performance. The Morton order layout schemes such as Z-Morton shown in Figure 5.5(d)

can be useful with loop blocking optimization technique in a limited space. Any of the

layout schemes can be combined if necessary. Efficient data layout schemes for an

algorithm should be selected by matching data layout with computational order to

achieve good performance.

TABLE 5.1: Pseudo code of the matrix-vector multiplication for different data layout
schemes.

1:
2:
3:

for (i=0;i<m;i++)
 for (j=0;j<n;j++)
 c[i]+=A[i][j]*b[j];

1:
2:
3:

for (i=0;i<m;i++)
 for (j=0;j<n;j++)
 c[i]+=A[j][i]*b[j];

1:
2:
3:
4:
5:
6:

for (i=0;i<m;i++)
 for (j=0;j<n;j++) {
 if (i%2==0)
 c[i] += A[i][j]*b[j];
 if (i%2==1)
 c[i] += A[i][j]*b[n-j]; }

(a) Row-major layout (b) Column-major layout (c) Space-filling-curve layout

The pseudo code describing the nested loop of the matrix-vector multiplication

algorithm is shown in Table 5.1. In Table 5.1(a) the algorithm traverses matrix A in row-

major computing order. As shown in Table 5.1(b) and (c) respectively, the computations

106

are re-ordered in both column-major order layout and space-filling-curve order layout for

correctness of the original row-major computational order algorithm.

Performance Analysis:

Figure 5.6 shows the performance of the layout schemes described above for

matrix-vector multiplication with varying problem size n with m fixed at 1024. The

computational order is same as the row-major order for all layout schemes. In this study,

we vary the layout schemes for matrix A while vectors c and b are stored in memory as

unit-stride fashion.

(a) (b)

FIGURE 5.6: Performance of data layout schemes for matrix-vector multiplication with
fixed m = 1024: (a) The performance in seconds; (b) The performance in MFLOPS.

The row-major order layout scheme incurs (m-1)-times non-unit-stride memory

access penalty in accessing vector b while matrix A and vector c are accessed in unit-

stride fashion. The non-unit-stride memory access can lead poor locality. An example

memory access pattern for a 4×4 array laid out in a row-major layout scheme is shown in

Table 5.2.

0

5

10

15

20

25

30

35

40

512 2048 8192 32786 131072 524288

E
xe

cu
tio

n
T

im
e (

se
co

nd
s)

Problem Size (n)

Row-major
Column-major
Space-filling

0

200

400

600

800

1000

1200

1400

1600

512 2048 8192 32786 131072 524288

M
FL

O
PS

Problem Size (n)

Row-major
Column-major
Space-filling

107

TABLE 5.2: The memory access pattern obtained by following a row-major
computational order in the nested loop with the 4×4 matrix A laid out in a row-major
layout scheme.

Memory address by each column of matrix A

Column 1 Column 2 Column 3 Column 4

Matrix A 1 � 2 � 3 � 4� 5 � 6 � 7 � 8� 9 � 10 � 11 � 12� 13 � 14 � 15 � 16

Vector b 1 � 2 � 3 � 4� 1 � 2 � 3 � 4� 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4

Vector c 1 � 1 � 1 � 1� 2 � 2 � 2 � 2� 3 � 3 � 3 � 3 � 4 � 4 � 4 � 4

From Figure 5.6 we observe that the column-major order layout is more than

twice slower compared to the row-major order layout. Note that the matrix A laid out in

the column-major order is traversed following the row-major computation order of the

nested loop algorithm. The column-major order layout scheme has (n×m+m-2)-times

non-unit-stride memory access penalty in accessing vector b and matrix A. An example

memory access pattern for a 4×4 array laid out in a column-major layout scheme is

shown in Table 5.3.

TABLE 5.3: The memory access pattern obtained by following a row-major
computational order in the nested loop with the 4×4 matrix A laid out in a column-major
order layout scheme.

Memory address by each column of matrix A

Column 1 Column 2 Column 3 Column 4

Matrix A 1 � 5 � 9 � 13 � 2 � 6 �10 � 14� 3 � 7� 11� 15 � 4� 8� 12 � 16

Vector b 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4� 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4

Vector c 1 � 1 � 1 � 1 � 2 � 2 � 2 � 2� 3 � 3 � 3 � 3 � 4 � 4 � 4 � 4

From Figure 5.6 we note that the space-filling-curve layout scheme shows slightly

better performance than the row-major order scheme for large problem sizes. In this case,

the temporal locality of vector b is increased by the triangular-stride memory access

108

pattern when all of vector b does not fit in the cache due to space limitations. An example

memory access pattern for a 4×4 array laid out in a column-major layout scheme is

shown in Table 5.4. As shown in Table 5.4, all arrays are accessed in unit-stride fashion.

However, the performance is slightly worse than row-major order layout scheme with

small problem size (n < 32786) as shown in Figure 5.6. In this case, the size of vector b

which has temporal locality is less than 128 KB. Here a trade off exists between the gain

due to temporal locality and the extra computation required for the triangular stride

access pattern [48].

TABLE 5.4: The memory access pattern obtained by following a row-major
computational order in the nested loop with the 4×4 matrix A laid out in a space-filling
curve order layout scheme.

Memory address by each column of matrix A

Column 1 Column 2 Column 3 Column 4

Matrix A 1 � 2 � 3 � 4� 5 � 6 � 7 � 8� 9 � 10 � 11 � 12� 13 � 14 � 15 � 16

Vector b 1 � 2 � 3 � 4� 4 � 3 � 2 � 1� 1 � 2 � 3 � 4 � 4 � 3 � 2 � 1

Vector c 1 � 1 � 1 � 1� 2 � 2 � 2 � 2� 3 � 3 � 3 � 3 � 4 � 4 � 4 � 4

5.3.3 Loop Transformation: Loop Blocking (Loop Tiling)

Loop blocking (tiling) is a well-known compiler optimization that helps improve

cache performance by dividing the loop iteration space into smaller blocks (tiles) [56].

Loop blocking has been shown to be useful for many algorithms in linear algebra. For

example, the Basic Linear Algebra Library (BLAS) provides high-level matrix operations

using blocked algorithms. Previous research has shown the utility of multi-level blocking

techniques such as cache blocking and register blocking (also known as unrolling-and-

jam), when applied to multicore architectures with deep memory hierarchy. The optimal

109

block sizes can be determined by the cache-efficient and space-efficient data parallel

algorithm design methods discussed in Chapter 3.

Advantages of loop blocking include improvement in the data locality (temporal

and spatial) when memory is limited and better utilization of the memory bandwidth by

reducing communication cost. However, loop blocking may require extra index

computations and an increase in non-unit-stride memory access penalties.

TABLE 5.5: An example of matrix vector multiplication with m×n matrix A using loop
blocking (c = A×b).

1:
2:
3:

for (i=0;i<m;i++)
for (j=0;j<n;j++)

c[i] = c[i] + A[i][j]*b[j];

1:
2:
3:
4:
5:

for (i=0;i<m;i+=2)
for (j=0;j<n;j+=2)

for (ii=i;ii<i+2;ii++)
for (jj=j;jj<j+2;jj++)

c[ii] = c[ii] + A[ii][jj]*b[jj];

(a) Without loop blocking (b) Loop blocking with 2×2 blocks

FIGURE 5.7: Implementation of loop blocking algorithm in row-major layout scheme
with n=4, m=4 and 2×2 blocks.

For the matrix-vector multiplication algorithms shown in Table 5.5 matrix A is

laid out in a row-major order. The loop blocking algorithm with a block size of 2×2 is

shown in Table 5.5(b). The loop blocking algorithm uses a row-major computing order

110

both within a block and in traversing the individual blocks of matrix A. An example

implementation of the loop blocking algorithm in row-major order layout scheme is also

shown in Figure 5.7.

Performance Analysis:

Figure 5.8 shows the memory access pattern with and without blocking for doubly

nested matrix-vector multiplication algorithm. Both implementations use a row-major

order layout for 4×4 matrix A. We note that the loop blocking algorithm leads to a

memory access pattern of matrix A in the same order as the Z-Morton order while the

algorithm with blocking traverses matrix A in the same order as laid out in memory

space.

 (a) Without blocking (b) Loop blocking with 2×2 blocks

FIGURE 5.8: Memory access pattern of matrix-vector multiplication with n=4 and m=4.

Traversing matrix A using the loop blocking algorithm reduces spatial locality by

increasing the non-unit-stride memory access penalties. As shown in Figure 5.6,

accessing vector b in the loop blocking algorithm improves temporal locality, but reduces

spatial locality if the block size of vector b is greater than 2 (n>2). If due to space

�

�

�

�

��

��

��

�

��

� � � � �
 � � 	 �� �� �� �� �� �� �

�

��
�
�

	������������
�����

�

�

�

�

�

�

�

��

��

��

�

��

� � � � �
 � � 	 �� �� �� �� �� �� �

�

��
�
�

	������������
�����

�

�

�

111

limitations, blocked vector c does not fit in memory, accessing vector c in the loop

blocking algorithm leads to poor temporal locality compared to the non-blocked

algorithm.

The performance of the loop blocking algorithm for matrix-vector multiplication

with varying block size is shown in Table 5.6. We use a fixed problem size with m=1024

and n=1048576 and double precision floating point.

TABLE 5.6: The performance of loop blocking algorithm with varying block size.

Block size 1 × 1 4 × 4 8 × 8 16 × 16 32 ×32 64 × 64 128×128

Vector b in Byte 4 16 32 64 128 256 512

Execution time (s) 6.4 4.5 5.2 10.6 15.6 10.5 7.8

Block size 256×256 512×512 1k × 1k 2k × 2k 2k × 4k 2k × 8k 2k × 16k

Vector b in Byte 1 K 2 K 4 K 8 K 16 K 32 K 64 K
Execution time (s) 5.7 4.6 4.3 4.0 3.9 3.9 4.0

Block size 2k× 32k 2k × 64k 2k×128k 2k×256k 2k×512k 2k×1M

Vector b in Byte 128 K 256 K 512 K 1 M 2 M 4 M

Execution time (s) 4.0 3.9 4.0 4.4 5.4 6.4

As shown in Table 5.6, the loop blocking algorithm reduces the execution time in

most cases. The highest speed-up of loop blocking algorithm over the non-blocked

version is about 1.4 and is achieved for several different block sizes. However, some

block sizes of the block algorithm lead to a worse performance than the non-blocked

case. For example, the performance with 32×32 block size shows 2.4 times slower worst

case performance. Note that even if the block size is small enough as compared to the

cache size, the other factors such as replacement policy and set-associative can lead to

poor locality by replacing useful entries leading to degradation in cache performance.

Also, other optimization techniques, such as choice of layout, padding (for alignment)

112

and computational reordering may be required to realize the potential benefits of loop

blocking.

5.3.4 Loop Transformation: Loop Unrolling

Loop unrolling is a well-known compiler optimization technique to convert a loop

into straight-line code. This technique helps in the elimination of branch instructions and

enables the implementation of a scheduling for efficient cache usage. However, it can

lead to an increase in the code size and extra computations with a compiler that does not

optimize well. Table 5.7 shows pseudo codes for multiplying (m×n) matrix A by n vector

b to get a result m vector c. The pseudo code describing the nested loop of the matrix-

vector multiplication algorithm is shown in Table 5.7. The nested loop implementation is

shown in Table 5.7(a), and the partial loop unrolling implementation with

unrolling_factor = 2 is shown in Table 5.7(b).

TABLE 5.7: An example of matrix-vector multiplication with m×n matrix A using loop
unrolling (c = A×b).

1:
2:
3:

for (i=0; i<m; i++)
for (j=0; j<n; j++)
 c[i] = c[i] + A[i][j]*b[j];

1:
2:
3:
4:

for (i=0; i<m; i++)
for (j=0; j<n; j+=2) {

 c[i] = c[i] + A[i][j]*b[j];
 c[i] = c[i] + A[i][j+1]*b[j+1]; }

(a) Nest loop implementation (b) Partial loop unrolling implementation with
unrolling_factor=2

Performance Analysis:

We investigate the performance of different loop unrolling factors with the

compiler optimization level –O3. We use a fixed problem size of m=1024 and n=1024

which performs in 7.6 milliseconds (260 MFLOPS) for the nested loop implementation,

unrolling_factor=0, with single-precision floating-point. Note that all implementations

113

use row-major layout scheme. As shown in Table 5.8, the highest performance of 365

MFLOPS is achieved with unrolling_factor=8. The performance does not vary much

when unrolling_factor is greater than 4.

TABLE 5.8: The performance of loop unrolling algorithm with varying unrolling factor.

unrolling_factor 0 2 4 8 16 32

Performance in MFLOPS 260 302 353 365 360 364

Execution time (ms) 7.6 6.6 5.6 5.4 5.5 5.4

5.3.5 Loop Transformation: Loop Interchange (computational reordering)

Loop interchange also known as loop permutation is the process of exchanging

the order of multiple loop iterations. This technique is useful in achieving simple

computational reordering [37]. For the matrix-vector multiplication shown in Table 5.9,

the outer loop becomes the inner loop or vice versa. This implies that the loop

interchange technique simply changes the computational ordering for matrix-vector

multiplication between depth first (1DF) and breadth first (1BF) ordering (see Chapter 3).

The effectiveness of loop interchange depends on the behavior of an algorithm and layout

scheme.

TABLE 5.9: Examples of matrix-vector multiplication with m×n matrix A using loop
interchange(c = A×b).

for (j=0; j<n; j++)
for (i=0; i<m; i++)

 c[i] = c[i] + A[i][j]*b[j];

for (j=0; j<n; j++)
 for (i=0; i<m; i++)
 c[i] += A[j][i]*b[j];

(a) Loop interchange in row-major order layout (b) Loop interchange in column order layout

114

As shown in Table 5.9, both implementations follow 1BF computational ordering,

but each implementation uses different layout schemes. The implementation shown in

Table 5.9(a) uses row-major order layout, and the implementation shown in Table 5.9(b)

uses column-major order layout scheme. The memory access pattern for the

implementation, shown in Table 5.9(b), for matrix multiplication with 4×4 matrix A is

shown in Table 5.10.

TABLE 5.10: The memory access pattern for the loop interchange algorithm with 4×4
matrix A in column-major order layout scheme shown in Table 5.9 (b).

Memory address by each column of matrix A

Column 1 Column 2 Column 3 Column 4

Matrix A 1 � 2 � 3 � 4� 5 � 6 � 7 � 8� 9 � 10 � 11 � 12� 13 � 14 � 15 � 16

Vector b 1 � 1 � 1 � 1� 2 � 2 � 2 � 2� 3 � 3 � 3 � 3 � 4 � 4 � 4 � 4

Vector c 1 � 2 � 3 � 4� 1 � 2 � 3 � 4� 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4

Performance Analysis:

The performance of the loop interchange algorithm for matrix-vector

multiplication with varying problem size n is shown in Table 5.11. We use single

precision floating point and fix m=1024, and vary n. The performance of the nest loop

algorithm with row-major and column-major order layouts is shown in Table 5.11. The

implementation with loop interchange, which changes the computational ordering from

1DF to 1BF for matrix multiplication algorithm, shows better performance for the

column-major order layout scheme.

115

TABLE 5.11: The performance of loop interchange algorithm with varying problem size
n.

(a) The performance in row-major order layout with loop interchange
n 512 1024 2048 4096 8192 16384

MFLOPS 477 270.16 214.89 183.39 154 154

ms 2.1 7.4 18.61 43.62 103.7 207.2

n 32768 65536 1311072 262144 524288 1048576
MFLOPS 30.57 30.1 29.56 30 29 28

ms 2093.4 4252.3 8659.4 16847.2 35208 72877.2

(b) The performance in column-major order layout with loop interchange
n 512 1024 2048 4096 8192 16384

MFLOPS 1377 1276 1153 1087 1087 1085
ms 0.73 1.56 3.5 7.35 14.7 29.4

n 32768 65536 1311072 262144 524288 1048576
MFLOPS 1080 1087 1086 1088 1086 1085

ms 59.24 117.73 235.57 470.23 942.28 1886.75

5.3.6 Vectorization

Vectorization is the process of converting a program from a scalar

implementation to a vector implementation. While the scalar implementation operates on

a pair of operands at a time, the vector implementation can perform multiple operations

on a pair of vector (series of adjacent values) operands at a time. Most of general purpose

commercial multicores support vectorization using Single Instruction Multiple Data

(SIMD) vector extensions to achieve high performance. However, vectorization is a

machine dependent optimization and depends on the alignment of data in memory. In

order to understand some of the possible vectorization implementation techniques on our

experimental setups, several SIMD vectorization (SIMDize) examples using pragmas or

Intel x86_64 SSE2 intrinsics are shown in Table 5.12. The pragmas are machine- or

operating system-specific by definition, and are usually different for every compiler. The

116

pragmas directive offer a way for each compiler to offer machine- and operating system-

specific features while retaining overall compatibility with the C and C++ languages. The

pragmas can be used in conditional statements, to provide new preprocessor

functionality, or to provide implementation-defined information to the compiler.

In the Table 5.12, we show six sample implementations of the SIMD

vectorization techniques for matrix-vector multiplication algorithm. The implementations

shown in Table 5.12(a), (b) and (c) use the pragmas directive and the loop unrolling

technique with unrolling_factor=4 (see Section 5.3.2) for performing four single-

precision floating-point operations simultaneously. We use the pragmas vector aligned to

support vectorization with unit-stride fashion. We also use the row-major order layout

scheme since the computational order is row-major. Note that the row-major order for

matrix-vector multiplication is same as following 1DF scheduling. The implementation

shown in Table 5.12(a) is a vector implementation without using any local variables

where as 5.12(b) and (c) employs local variables. The use of local variables enables

register level of intermediate results without incurring memory accesses. The

implementation shown in Table 5.12(b) uses one local parameter t to store the

intermediate computing value and updates output vector c in the inner loop. The

implementation shown in Table 5.12(c) uses four local parameters to store the

intermediate computing values, and updates output vector c in the outer loop.

117

TABLE 5.12: The example of matrix-vector multiplication with m×n matrix A using
vectorization (c = A×b).

for (i=0; i<m; i++)
 for (j=0; j<n; j+=4)
 #pragma vector aligned
 c[i] += A[i][j]*b[j];
 c[i] += A[i][j+1]*b[j+1];
 c[i] += A[i][j+2]*b[j+2];
 c[i] += A[i][j+3]*b[j+3];
 end for
end for

for (i=0;i<m;i++)
 for (j=0;j<n;j+=4)
 #pragma vector aligned
 t = A[i][j]*b[j] + A[i][j+1]*b[j+1]
 + A[i][j+2]*b[j+2] + A[i][j+3]*b[j+3];
 c[i] += t;
 end for
end for

(a) Row-major using pragma (b) Row-major using pragma and a local variable

for (i=0;i<m;i++)
 t[0]=0.0; t[1]=0.0; t[2]=0.0; t[3]=0.0;
 for (j=0;j<n;j+=4)
 #pragma vector aligned
 t[0] += A[i][j]*b[j];
 t[1] += A[i][j+1]*b[j+1];
 t[2] += A[i][j+2]*b[j+2];
 t[3] += A[i][j+3]*b[j+3];
 end for
 c[i] += t[0] + t[1] + t[2] + t[3];
end for

for (i=0;i<m;i++)
 for (j=0;j<n;j+=4)
 __m128 va = _mm_load_ps(&A[i][j]);
 __m128 vb = _mm_load_ps(&b[j]);
 __m128 vt = _mm_mul_ps(va,vb);
 _mm_store_ps(&t[0],vt);
 c[i] += t[0] +t[1]+t[2]+t[3];
 end for
end for

(c) Row-major using pragma and local variables (d) Row-major using Intel x86_64 SSE2 intrinsics

for (i=0;i<m;i++)
 __m128 vt = _mm_load_ps1(0.0);
 for (j=0;j<n;j+=4)
 __m128 va = _mm_load_ps(&A[i][j]);
 __m128 vb = _mm_load_ps(&b[j]);
 vt = _mm_add_ps(_mm_mul_ps(va,vb),vt);
 end for
 _mm_store_ps(&t[0],vt);
 c[i] += t[0] + t[1] + t[2] + t[3];
end for

for (j=0;j<n;j++)
 for (i=0;i<m;i+=4)
 __m128 va = _mm_load_ps(&A[j][i]);
 __m128 vb = _mm_load_ps1(&b[j]);
 __m128 vc = _mm_load_ps(&c[i]);
 vc=_mm_add_ps(_mm_mul_ps(va,vb),vc);
 _mm_store_ps(&c[i],vc);
 end for
end for

(e) Row-major using Intel x86_64 SSE2 intrinsics
and local variables in outer loop

(f) Colum-major with loop interchange using Intel
x86_64 SSE2 intrinsics

118

The implementations shown in Table 5.12(d), (e) and (f) use Intel x86_64 SSE2

intrinsics with loop unrolling technique with unrolling_factor=4 for four single-precision

floating-point operations simultaneously. Similar to the pragma implementations, Table

5.12(d) and (e) uses local variables. The implementation shown in Table 5.12(d) uses

row-major scheme and updates output vector c in the inner loop. The implementation

shown in Table 5.12(e) uses row-major scheme and updates output vector c in the outer

loop. The implementation shown in Table 5.12(f) uses column-major scheme and loop

interchange, and updates output vector c in the inner loop.

Performance Analysis:

The performance of vectorization techniques for matrix-vector multiplication with

varying problem size n is shown in Table 5.13. In this study, we use a fixed m=1024,

while varying the problem size n. All implementations for vecctorization techniques use

single precision floating point.

As shown in Table 5.13(a) and (b), the pragma implementations using

intermediate local variables to update output vector c in the inner loop, shows at most 2

times speed-up (n=512) compared with the simple implementation shown in 5.12(a). As

shown in Table 5.13(c), we observe similar performance for the implementations

irrespective of whether the vector c is updated in the inner or outer loop.

As shown in Table 5.13(d) and (e), when the vectorization is implemented using

the Intel x86_64 SSE2 intrinsics, the implementation using intermediate local variables to

update output vector c in inner loop, (Table 5.12(d)), shows similar performance as the

simple implementation (Table 5.12(a)). However, as shown in Table 5.13(f) the

implementation using intermediate local variables to update output vector c in the outer

119

loop, (Table 5.12(e)), performs at most 4.3 times speed-up (n=512) as compared to the

simple implementation (Table 5.12(a)).

TABLE 5.13: The performance of vectorization algorithms with a varying problem size n
and a fixed m=1024.

(a) The performance in row-major layout scheme using pragma
n 512 1024 2048 4096 8192 16384 32768 65536 1311072 262144 524288 1048576

MFLOPS 956 900 868 885 873 883 858 848 836 779 733 645

ms 1.04 2.22 4.6 9.03 18.3 36.2 74.57 150.87 306.19 656.54 1396.49 3172.56

(b) The performance in row-major layout scheme using pragma and a local variable
n 512 1024 2048 4096 8192 16384 32768 65536 1311072 262144 524288 1048576

MFLOPS 1901 1464 1196 1162 1142 1146 1086 1074 1040 907 786 707
ms 0.52 1.36 3.34 6.88 14.01 27.92 58.9 119.07 246.03 564.25 1301.77 2895

(c) The performance in row-major layout scheme using pragma and local variables
n 512 1024 2048 4096 8192 16384 32768 65536 1311072 262144 524288 1048576

MFLOPS 1893 1567 1205 1154 1148 1162 1074 1056 1015 908 785 662
ms 0.528 1.27 3.31 6.92 13.93 27.52 59.56 121.12 252.00 563.53 1303.14 3092

(d) The performance in row-major layout scheme SSE2 intrinsics
n 512 1024 2048 4096 8192 16384 32768 65536 1311072 262144 524288 1048576

MFLOPS 959 928 895 890 882 886 886 871 859 810 757 678
ms 1.04 2.15 4.46 8.97 18.12 36.09 72.23 126.88 297.88 632.09 1352.61 3019.65

(e) The performance in row-major layout scheme using SSE2 intrinsics and local
variables

n 512 1024 2048 4096 8192 16384 32768 65536 1311072 262144 524288 1048576

MFLOPS 4149 2328 1419 1275 1285 1315 1262 1270 1205 1100 897.9 739

ms 0.24 0.85 2.81 6.27 12.44 24.32 50.67 100.72 212.42 465.1 1140.43 2769.2

(f) The performance in column-major layout scheme with loop interchange using SSE2
intrinsics

n 512 1024 2048 4096 8192 16384 32768 65536 1311072 262144 524288 1048576

MFLOPS 3597 2249 1548 1361 1321 1317 1322 1324 1317 1327 1324 1323

ms 0.27 0.88 2.58 5.87 12.1 24.28 48.39 96.66 194.31 385.79 772.9 1547.06

Use of row-major order for both layout and computational order for vectorization

requires scalar operation to the update output vector c. The implementation shown in

Table 12(f) uses column-major layout and computational order to eliminate scalar

120

computations to update output vector c. The performance of this scheme, shown in Table

5.12(f), shows the highest performance for large problem sizes (n > 2048).

Therefore, for a given algorithm, efficient vectorization techniques depend on

both the layout and the computational order.

5.4 Case Studies: Experimental Results and Performance Analysis

In this section, we demonstrate the effectiveness of the proposed parallel

programming design methodology using several algorithms as benchmarks: Dense

Matrix Multiplication (DMM), Finite Difference Time Domain (FDTD), LU

Decomposition, and Power Flow Solver with Gauss-Seidel (PFS-GS). The algorithms are

popular computational methods in science and engineering. Moreover, the applications

have different memory access patterns on multi-dimensional arrays. The experimental

results and performance analysis of each algorithm are summarized in the following

sections. The performance analysis can be applied for other applications which have

similar memory access patterns.

5.4.1 Dense Matrix Multiplication (DMM)

In this subsection, we discuss the parallel implementations of the matrix

multiplication algorithm for multiplying two n×n square matrices A and B to get a result

n×n square matrix C = A×B where n is a power of 2 on both the Intel Clovertown and the

IBM Cell/B.E. platforms. The matrix multiplication is an important kernel in science and

engineering problems. Also it is closely related to other linear algebra algorithms and is

one of the most-studied algorithms in high performance computing [5, 6, 33, 38]. The

computational complexity of the conventional serial matrix multiplication algorithm

shown in Table 5.14 is O(n3) while the data access time and space requirements are

121

O(n2). The data dependency of the standard matrix multiplication is shown in Figure 5.9.

In the standard matrix multiplication operation, each output element of matrix C is

updated with the dot product of one row of matrix A and one column of matrix B.

Therefore, with O(n) = O(n3/n2) times of data reused for each element of the three

matrices, ensuring efficient memory access is an important challenges on multicores.

Moreover, for cache- and space-efficient computing, integrated prefetching and caching,

and the use of appropriate in-core optimization are also important factors in improving

the parallel performance on multicore platforms.

TABLE 5.14: The conventional serial algorithm for multiplying of two n×n square
matrices.

1:
2:
3:
4:

for (i=0;i<n;i++)
 for (j=0;j<n;j++)
 for (k=0;k<n;k++)
 C[i][j] = C[i][j] +A[i][k]×B[k][j];

FIGURE 5.9: The data dependency of the standard matrix multiplication with n×n square
matrices.

122

5.4.1.1 Multicore-efficient Implementation

We develop our multicore-efficient implementations on both the Intel Clovertown

and IBM Cell/B.E. platforms following our parallel programming methodology discussed

in Chapter 1. For benchmarking, we compare the effectiveness of our approach to that of

the naïve parallel implementation which uses three nested loops on the both platforms.

Additionally, on the Intel Clovertown platform we compare the effectiveness of our

approach to that of the General Matrix Multiply (GEMM) implementation from the Intel

Math Kernel Library (MKL). Intel MKL is a library of highly optimized, extensively

threaded math routines including Basic Linear Algebra Subprograms (BLAS) for science,

engineering, and financial applications that require high performance. Note all

implementations in this subsection are based on the conventional serial algorithm shown

in Table 5.14.

Naïve Parallel Implementation:

The naïve parallel implementation uses row-major order of the array layout for

matrix A and C, and column-major order of the array layout for matrix B. For

parallelizing the data among the cores, the row-wise array distribution [34] based on one-

dimensional partitioning of the output matrix C is used. Then the computing order of

each output partition follows depth first scheduling which is the computing order of the

conventional serial algorithm. We use the OpenMP parallel programming library for the

Intel Clovertown platform and the IBM libspe parallel programming library for the IBM

Cell/B.E. platform (see Chapter 2). Since DMA transfer of data is required on the IBM

Cell/B.E. platform, we use single buffer each for all matrices without considering caching

and prefetching (see Chapter 4). A total of 4 buffers are used (three reads and one write).

123

The each buffer size is chosen to be 16 KB corresponding to the maximum size of the

DMA transfer. The total buffer size of 64 KB is less than the available size of the SPE

local store. The GEMM implementation of Intel MKL uses the same data layout as our

naïve implementation. GEMM can be parallelized using OpenMP.

Mutlicore-efficient Implementation:

We design our multicore-efficient implementation based on our parallel

programming methodology (see Chapter 1) to improve the performance on both the Intel

Clovertown and the IBM Cell/B.E. platforms. The design steps for our multicore-efficient

implementation are as follows −

First, we determine the architecture characteristics of the target platforms to find

the model parameters (see Chapter 3) which include the depth of memory hierarchy (d),

the effective number of processing components (Pi) at each level, and the size of the

available memory on a component (Mi) at level-i where 0 ≤ i ≤ d. Note that level-d is the

main memory level and level-0 is the register level.

Our Intel Clovertown platform shown in Figure 5.1 has d=3, P1=1, P2=2, P3=4,

M1= 32KB, M2=4MB and M3=16GB. Our IBM Cell/B.E. platform shown in Figure 5.2

has that d=2, P1=1, P2=8, M1=256KB and M2=200MB.

Next, we use the Unified Multicore computational model, the weighted-vertex

parallel pebble strategy and data-aware scheduling on hierarchical DAGs (see Chapter 3)

to analyze the algorithm and to find the block sizes and scheduling at each level.

Additionally, we use integrated data prefetching and caching model discussed in Chapter

4 to analyze overlaps between computation and data transfer and determine the multi-

124

buffering scheme for data transfer. We then modify the block sizes based on the choice of

the multi-buffering scheme.

For our Intel Clovertown platform, we choose a three levels of blocking − L2-

block for L2 cache, L1-block for L1 cache and register-block for registers. Then, the

entire problem of n×n of each matrix (A, B and C) is partitioned into smaller L2-blocks

of size B2=|b2×b2|. Each L2-block is further partitioned into L1-blocks of size

B1=|b1×b1|. Then each L1-block is partitioned into register-block B0=|b0×b0|. We then

determine the size of block at each level using the weighted-vertex parallel pebble

strategy based on CONTROLLED-PDF scheduling illustrated in Chapter 3. The size of

the blocks at each level is shown in Table 5.15. The scheduling of the blocks among the

effective number of components is based on the CONTROLLED-PDF schedule at each

level.

For our IBM Cell/B.E. platform, we choose a two-level blocking, LS-block for

LS, and register-block for registers. The entire problem of n×n of each matrix (A, B and

C) is partitioned into smaller LS-blocks of size B1=|b1×b1|. Then, each LS-block is

further partitioned into register-blocks of size B0=|b0×b0|. We determine the size of block

at each level using the weighted-vertex parallel pebble strategy based on

CONTROLLED-PDF scheduling. Since we use DMA transfer between main memory

and LS, the size of LS-block is modified according to the double-buffering scheme used.

The LS-block size is chosen such that eight LS-blocks, three inputs (matrix A, B and C)

and one output (matrix C), is less than the available size of each LS. Note that we

consider the matrix C for both input and output. The size of the blocks at each level is

125

shown in Table 5.15. The distribution of blocks among the effective number of

components is based on CONTROLLED-PDF scheduling at each level.

In the third step, we design our multicore-efficient implementation with the

optimal block sizes and scheduling scheme determined in the second step. We use

parallel threading model libraries (see Chapter 2) and in-core optimization techniques

(see Section 5.3) to achieve close to theoretical performance of the machine. The

following in-core optimization techniques are used −

(1) To avoid the penalties of non-unit-stride memory access in multi-level blocking,

we determine optimal data layout scheme of the input/output arrays at each level.

(2) We use loop tiling technique to implement multi-level blocking and we reorder

computations using such as loop unrolling and loop interchange techniques to

achieve our computational scheduling at each level.

(3) We use vectorization technique for computation of the register-block to deliver

better performance since both Intel Clovertown and IBM Cell/B.E. support 128-

bit SIMD intrinsics. Although compiler with optimization flags attempt to

generate “SIMDized” version of the code, compilers often fail at effective

vectorization. We modify the scheduling at the register level as shown in Figure

5.10. Then we use loop unrolling and SIMD intrinsics techniques to implement

effective vectorization for register level as shown in Figure 5.10. Further details

of the scheduling and vectorization techniques at the register level are provided in

Section 5.4.1.2.

126

For our Intel Clovertown platform, we use Z-Morton order layout scheme of the

input/output arrays for 3-level blocking. We use Intel x86_64 SSE2 intrinsics for

vectorization and OpenMP for threading model library.

For our IBM Cell/B.E. platform, we use Z-Morton order layout scheme of the

input/output arrays for 2-level blocking. We use IBM SPU intrinsics for vectorization and

IBM libspe for threading model library.

The summary of our multicore-efficient implementation techniques is shown in

Table 5.15.

TABLE 5.15: The summary of our implementation techniques of matrix multiplication
used for our platforms.

Optimization
Techniques

Multicore Platforms

Intel Clovertown IBM Cell/B.E.

Multi-level blocking 3-level blocking (b0=4, b1=64, b2=512) 2-level blocking (b0=4, b1= 64)

Scheduling CONTROLLED-PDF
(except at register level)

CONTROLLED-PDF
(except at register level)

Layout Scheme Z-Morton ordering Z-Morton ordering

Multi-buffering Single buffering Double buffering

Vectorization for
register level

Intel x86_64 SSE2 intrinsics
with 128-bit registers

IBM Cell/B.E. SPU intrinsics
with 128-bit registers

Loop unrolling for
Vectorization unrolling factor=4 for register-block unrolling factor=4 for register-block

Threading OpenMP IBM libspe

5.4.1.2 Optimization at Register Level

Scheduling at Register Level:

As mentioned in Section 5.4.1, we use CONTROLLED-PDF scheduling at each

level of the memory hierarchy. The CONTROLLED-PDF schedule (see Chapter 3) uses

127

a 1DF scheduling scheme is used at register level blocking. However, we modify the

scheduling at register level blocking to better accommodate vectorication. We show the

example of scheduling schemes on the weighted DAGs for register level blocking with

b0=2 in Figure 5.10.

(a) Depth-First sequential Scheduling scheme (1DF)

(b) Breadth-First sequential Scheduling scheme (1BF)

(c) Hybrid scheduling scheme that combines the 1DF with 1BF

FIGURE 5.10: The example of the scheduling schemes on the weighted DAGs at register
level blocking with b0=2; Note, the number on right side of each computational vertex
represents the sequential scheduling order.

In Figure 5.10, the number on the right side of computational vertices for each

scheduling scheme indicates the sequential scheduling order. Figure 5.10(a) shows 1DF

scheduling scheme which is used in the CONTROLLED-PDF scheduling at register level

blocking. Figure 5.10(b) shows 1BF scheduling scheme and Figure 5.10(c) shows hybrid

scheduling scheme that combines 1DF and 1BF on weighted DAGs at the register level.

To motivate the choice of the scheduling scheme that supports vectorization efficiently,

128

consider the computation of the elements of the matrix C as shown in Figure 5.11. The

vectorization based on 1DF and 1BF the vector multiplication computes partial products

for the same element of matrix C (such as c00+=a00×b00 and c00+=a01×b10) as

shown in Figure 5.11(a). Scalar addition of the elements of the output vector is required

to obtain the final result. On the other hand, vectorization based on hybrid scheduling

scheme computes partial products for different elements of matrix C (such as

c00+=a00×b00 and c01+=a00×b0) as shown in Figure 5.11(b). The final result is then

obtained by vector addition of the output vectors. The hybrid scheme thus allows for

vector pipelining and hence is the preferred scheduling method at the register level.

(a) (b)

FIGURE 5.11: The example of vector computations for two multiplications following by
two addition operations simultaneously: (a) Based on 1DF or 1BF scheduling scheme; (b)
Based on hybrid scheduling scheme.

Vectorization at Register Level:

We now present the implementation details of vectorization using hybrid

scheduling at the register level on the Intel Clovertown platform. Intel x86_64 SSE2

intrinsics are used at with a register level block size of b0=4.

129

.

FIGURE 5.12: Vectorization implementation at register level blocking with b0=4 using
hybrid scheduling scheme and Intel x86_64 SSE2 intrinsics for Intel Clovertown
platform.

In Figure 5.12, first we load each element of the matrix A into a 128-bit register

using _mm_load_ps1 which is an instruction supported by Intel x86_64 SSE2 intrinsics

to load one single-precision floating-point data and copy it into all four words of a 128-

bit register. Note that each 128-bit register of matrix A represents four pebbles cloning on

the weighted-vertex pebble strategy. Then one corresponding row of the matrix B, is

loaded into a 128-bit register using _mm_load_ps which is an instruction supported by

Intel x86_64 SSE2 intrinsics to load four aligned single-precision floating-point into a

128-bit register. Also one-row of the matrix C, which is product one element of matrix A

and one-row of matrix B, is loaded into a 128-bit register using _mm_load_ps. Then we

multiply two 128-bit registers of matrix A and B using _mm_mul_ps which is an

instruction supported by Intel x86_64 SSE2 intrinsics to multiply two 128-bit registers

with single-precision floating-point data at a time, and we add into the 128-bit register of

matrix C using _mm_add_ps which is an instruction supported by Intel x86_64 SSE2

intrinsics to add two 128-bit registers with single-precision floating-point data at a time.

We repeat these operations until the multiplication of the two register-blocks with b0=4

130

of matrix A and B complete. We then store the matrix C into the upper level memory

using _mm_store_ps which is an instruction supported by Intel x86_64 SSE2 intrinsics to

store four single-precision floating-point data into the upper level memory. For our IBM

Cell/B.E. platform, we use the IBM SPU intrinsics instead of the Intel x86_64 SSE2

following the same processes as shown in Figure 5.12. Note that we also use loop

unrolling technique with unrolling_factor=4 (see Section 5.3) to implement vectorization

at register level blocking with b0=4.

5.4.1.3 Performance Analysis

Now, we compare the effectiveness of the multicore-efficient implementation to

that of the naïve parallel implementation on both platforms. Additionally for the Intel

Clovertown platform, we compare our multicore-efficient implementation to that of the

Intel MKL GEMM implementation.

Performance on Intel Clovertown Platform:

First, we show the effect of the L1 block size and register level scheduling on the

performance on a single core of the Intel Clovertown platform. The problem size is fixed

at n = 4096 (corresponding to 16 GB), L2 block size is fixed at b2 = 512 and the register

block size is fixed at b0 = 4. 1DF scheduling is used at the L1 and L2 cache levels.

TABLE 5.16: The performance (GFLOPS) for varying schedules and sizes of L1-block
(b1) with fixed size of L2-block (b2=512) and register-block (b0=4) on a single core of
Intel Clovertown platform. We use 1DF scheduling scheme for L1-level and L2-level
blocking, and vary the scheduling scheme at the register level.

The size of L1-block b1 4 8 16 32 64 128 256

The size of 3b1
2 in bytes 0.18 KB 0.75 KB 3 KB 12 KB 48 KB 192 KB 768 KB

Scheduling
scheme at
register level

1DF 5.78 5.35 5.18 5.95 5.22 5.69 5.02

1BF 5.88 5.75 5.78 5.85 5.32 5.39 4.92

Hybrid 5.91 5.90 5.99 6.01 6.19 5.82 5.64

131

As shown in Table 5.16, the highest performance of 6.19 GFLOPS on a single

core is achieved with the L1-block size of 64 and a hybrid scheduling scheme at the

register level. With an L1-block size of 64, the memory space required for all three L1-

blocks of matrix A, B and C is 48 KB. Unfortunately, this exceeds the 32 KB capacity of

the L1 cache of the Intel Clovertown processor. However, the maximum size of the L1-

block is b1=90 for a 32 KB L1 cache size. Thus the weighted vertex pebbling strategy

allows for larger block size compared to the nominal pebbling strategy (See Chapter 3 for

details).

To study the impact of multi-level blocking on performance, we show the cache

miss rates (%) and the system bus utilization (%) with respect to scaling of the problem

size (problem-scaling) and the number of cores (core-scaling) for both naïve parallel and

multicore-efficient implementations on the Intel Clovertown platform.

As shown in Table 5.17, our multicore-efficient implementation has negligibly

low miss rates demonstrating the benefits of data sharing (temporal locality) among the

block computation at each level of the memory hierarchy of the Intel Clovertown

platform. Moreover, the Z-Morton order layout minimizes the non-unit-stride access

penalties due to multi-level blocking. As seen in Table 5.17 the cache miss rates of the

multicore-efficient implementation is independent of core-scaling and problem-scaling

with low cache miss rates of 0.001% for the L2 cache miss rate and 1.7% for the L1

cache miss rate. On the other hand, the naïve parallel implementation shows almost a

linear increase in miss rate with problem scaling while showing no clearly identifiable

trend in core-scaling.

132

TABLE 5.17: Cache miss rate (%) and system bus bandwidth utilization (%) on Intel
Clovertown platform.

Problem
size (n)

cores

L2 cache miss rate (%) L1 cache miss rate (%) Bus utilization (%)

naïve
parallel

Multicore-
efficient

naïve
parallel

Multicore-
efficient

naïve
parallel

Multicore-
efficient

1024

1 0.7 0.001 2.5 1.7 69.77 1.23
2 1.1 0.001 1.5 1.7 48.24 1.5
4 1.7 0.001 2.1 1.7 30.14 1.34
8 1.6 0.001 2.2 1.7 34.14 1.14

2048

1 3.1 0.001 5.1 1.7 73.36 0.71
2 4.7 0.001 4.9 1.7 65.95 0.95
4 3.7 0.001 5.3 1.7 66.53 1.11
8 2.6 0.001 4.6 1.7 71.96 2.04

4096

1 4.2 0.001 10.3 1.7 72.7 0.82
2 8.1 0.001 10.6 1.7 71.1 1.12
4 5.2 0.001 10.4 1.7 87.09 1.52
8 4.2 0.001 10.2 1.7 76.2 0.69

The bus utilization is another concern because memory access times worsen with

increasing amounts of traffic on the bus. The low bus utilization (<2%) of our approach

correlates with the low L2 cache miss rate. On the contrary, the maximum bus utilization

is over 80% for the naïve parallel implementation. From Intel internal measurements and

experiments, the memory latencies increase at a rapid rate after ~60% FSB utilization

[51].

In Figure 5.13, we show the overall performance in GFLOPS per for problem-

scaling and core-scaling for both naïve parallel, Intel MKL, and our multicore-efficient

implementation on the Intel Clovertown platform.

133

 (a) (b)

FIGURE 5.13: Overall performance on Intel Clovertown platform: (a) Performance in
GFLOPS per core; (b) Execution time in seconds on single core.

In Figure 5.13(a), the naïve parallel implementation shows performance of 1.7

GFLOPS with small size of problem (n=1024). Here the total problem size of 12 MB for

each matrix A, B and C can fit into the four L2 caches. However, for larger problem sizes

(n=2048 and n=4096), the naïve parallel approach achieves only 0.2 GFLOPS

corresponding to the increased cache miss rates shown in Table 5.17. Our multicore-

efficient implementation performs at a performance of 6.2 GFLOPS/core for n=4096.

Similar performances are attained for smaller problems sizes (n=1024, n=2048). These

performance figures correspond to the low cache miss rates independent of the problem

size (see Table 5.17). The Intel MKL GEMM shows a peak performance of 6

GFLOPS/core. In all of our implementations, we observe an almost linear scaling of

performance with respect to the number of cores (core-scaling) when the problem size is

large (n=2048 and n=4096). However, for a smaller problem size (n=1024), the

performance per core gets reduced beyond four cores for both the GEMM

implementation of Intel MKL and our multicore-efficient implementation. We believe

that for small problem sizes (n=1024, 12MB) where the data fits into the four L2 caches,

0

1

2

3

4

5

6

7

1 2 4 8 1 2 4 8 1 2 4 8

G
F

LO
PS

/c
or

e

n=1024 n=2048 n=4096

�������������� ������� �� � ��!�"��#�$$!�!���

0

5

10

15

20

25

1024 2048 4098

E
xe

cu
tio

n
tim

e
(s

ec
)

�������
����
���

� ��!�"��#�$$!�!���

!%��

134

while the benefits of data sharing between level-2 blocks is not prominent, the L2

latencies increase with core scaling due to contention on the shared bus.

In Figure 5.13(b), we compare the performance of the naïve and the multicore-

efficient implementation with to the ideal computing performance on the Intel

Clovertown processor. The ideal execution time for matrix multiplication is the time

required for 2n3 floating point operations with the theoretical peak core performance of

9.32 GFLOPS on the Intel Clovertown processor. As seen in Figure 5.13(b) the

multicore-efficient implementation performs close ideal.

Performance on IBM Cell/B.E. Platform:

First, we show the effect of the LS block size (b1) and multi-buffering on the

performance on a single SPE of the IBM Cell/B.E. platform. The problem size is fixed at

n = 2048, the register block size is fixed at b0 = 4. 1DF scheduling is used at both levels.

TABLE 5.18: The performance (GFLOPS) for different multi-buffering schemes and size
of LS-block (b1) with fixed size of the register-block (b0=4) on a single SPE of IBM
Cell/B.E. platform. We use the 1DF scheduling scheme for both level blocking.

The size of LS-block b1 4 8 16 32 64

The size of 4b1
2 in bytes 0.24 KB 1 KB 4 KB 16 KB 64 KB

Single-buffering
with caching and prefetching 5.9 6.3 6.5 6.6 6.6

Double-buffering
without caching and prefetching 6.3 6.6 6.7 6.7 6.8

Double-buffering
with caching and prefetching 6.8 7.0 7.1 7.1 7.1

As shown in Table 5.18, the highest performance of 7.1 GFLOPS on a single SPE

is achieved with the LS-block sizes (b1=16, 32, and 64) and double-buffering with

caching and prefetching scheme at the LS-block level. With an LS-block size of 64, the

135

memory space required for all four LS-blocks of matrix A, B and C is 64-KB for single-

buffering scheme. However, with the block size the double-buffering scheme requires

128 KB (See Chapter 4). For a fixed memory size, the implementation using double-

buffering with caching and prefetching scheme shows an 8% improvement in

performance (in GFLOPS) compared to the single-buffering scheme with caching and

pre-fetching. This suggests that the gain performance due to overlapping of computation

and communication when double buffering offsets the reduced temporarily locality due to

smaller block sizes.

In Figure 5.14 we show the overall performance in GFLOPS per for problem-

scaling and core-scaling for both naïve parallel and our multicore-efficient

implementation on the IBM Cell/B.E. platform.

(a) (b)

FIGURE 5.14: Overall performance on IBM Cell/B.E. platform: (a) Performance in
GFLOPS per SPE; (b) Execution time in seconds on single SPE.

In Figure 5.14(a), the naïve parallel implementation shows a performance of 0.43

GFLOPS/SPE with the problem size (n=1024, n=2048). However, for a larger problem

size (n=4096), the performance per SPE reduces to 0.35 GFLOPS/SPE. For n=4096 the

0
1
2
3
4
5
6
7
8

1 2 4 1 2 4 1 2 4

G
F

L
O

P
S/

SP
E

n=1024 n=2048 n=4096

naïve parallel
multicore-efficient

0

10

20

30

40

50

60

70

1024 2048 4096

E
xe

cu
tio

n
tim

e
(s

ec
)

�������
����
���

� ��!�"��#�$$!�!���

!%��

136

total memory space requires is 192 MB which exceeds the available size of main memory

(180 MB) of our IBM Cell/B.E. platform. Hence swap space is needed on high latency

disk which in turn reduces the performance. Our multicore-efficient implementation

shows a performance of 7.1 GFLOPS/SPE for small problem sizes (n=1024, n=2048)

and 2.15 GFLOPS for a larger problem size (n=4096). In all of our implementations, we

observe an almost linear scaling of performance with respect to the number of cores

(core-scaling) for all problem sizes.

In Figure 5.14(b), we compare the performance of the multicore-efficient

implementation with that the ideal computing performance on the IBM Cell/B.E.

platform. The ideal time for matrix multiplication is the time required for 2n3 floating

point operations with the theoretical peak performance of 25.6 GFLOPS per SPE for

single precision floating point data on the IBM Cell/B.E. platform. As seen in Figure

5.14(b) the multicore-efficient implementation performs close ideal with the problem size

(n=1024, n=2048). However, as explained before, the high disk access latencies incurred

with n=4096, reduces the performance of our multicore efficient implementation.

5.4.2 Finite Difference Time Domain (FDTD)

In this section, we discuss the parallel implementations of the three-dimensional

Finite Difference Time Domain (3D-FDTD) method which is a numerical technique

proposed by Yee to solve Maxwell’s equations [79]. The FDTD method is based on Yee

Space Grid [1] and computes the electric-field (E-field) and magnetic-field (H-field)

vectors in both time and space domain [64, 71, 78]. E-field and H-field vectors are

updated at alternate half time steps in a leapfrog scheme [78] in time domain. Our

137

computational equations of E-field and H-field of the 3D-FDTD for analyzing planar

microstrip circuits are as follows –

��������	
� ��
� � ���������	
� ��
� �� ����	������ ����	����������	���������� ��� �	�������� � 	���������! " (5.2)

��������	
� ��
� � ���������	
� ��
� �� ��� 	������ ����	����������	���������! �����	����������	���������� � (5.3)

�!������	
� ��
� � ��!������	
� ��
� �� ����	������ �� � 	�������� � 	���������� �����	����������	���������� " (5.4)

#�	����	
� ��
� � �#��	
� ��
� ����$ %& ��'
���	�������& ��'���	���������! ��&���'���	�������&���'���	���������� ((5.5)

#�	����	
� ��
� � �#�� 	
� ��
� ����$ 7&���'
���	�������&���'���	���������! ��&���'���	�������&���'���	���������� < (5.6)

#!	����	
� ��
� � �#!�	
� ��
� ����$ %&���'
���	�������&���'���	���������� ��& ��'���	�������& ��'���	���������� ((5.7)

where, the indices i, j, k and t refer to the space and time of the standard Yee’s cell in the

x-, y-, z-direction and time step, respectively, and ∆x, ∆y, ∆z, and ∆t represent the unit

space interval in the x-, y-, z-direction and unit time interval, respectively. The dielectric

parameters are epx (�x), epy(�x), epz(�x) and � is the permeability.

The characteristic features of the 3D-FDTD method are (a) it is a computation and

data-intensive problem performing O(n3) computations with O(n3) space requirement, (b)

there is data dependency between E- and H-field computation in time domain, (c) there is

no risk of a race condition for each field computation in space domain since the Yee cells

can be computed independently for the E- and H-fields, and (d) a cell (e.g. Ex(i,j,k))

computation of each field in each direction refers to nearest-neighbors following a 2-

points stencil communication pattern in the space domain. For example, as shown in

138

Figure 5.15, in each cell, the x-directed E-filed (Ex) is updated with one cell of x-directed

dielectric parameter (epx), two cells of y-directed H-field (Hy) and two cells of z-directed

H-field (Hz).

FIGURE 5.15: Example of data dependency in space domain for a cell of Ex
computation.

TABLE 5.19: The naïve serial 3D-FDTD algorithm.

Algorithm: The naïve serial 3D-FDTD algorithm

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:

for t =1 to tmax do
 /* E-field computation */
 for i,j,k =1 to imax, jmax, kmax do
 update Electric-field of all-directions using Magnetic-fields
 end for;
 /* H-field computation */
 for i,j,k =1 to imax, jmax, kmax do
 update Magnetic-field of all-directions using Electric-fields
 end for
end for

5.4.2.1 Multicore-efficient Implementations

For both the Intel Clovertown and IBM Cell/B.E. platforms, we develop our

multicore-efficient implementations following our parallel programming methodology

139

discussed in Chapter 1. We compare the effectiveness of our approach to that of the naïve

parallel implementation based on the naïve serial algorithm shown in Table 5.19.

Naïve Parallel Implementation:

The naïve parallel implementation uses row-major order of the array layout for a

series of 2D yz-slices (yz-plane in x-direction) of each 3D Yee’s cells. The naïve parallel

implementation computes all E-field computations in space domain first, followed by all

H-field computations as shown in Table 5.19. The parallelization scheme for P cores uses

a data partitioning scheme in the x-direction (a series of 2D yz- slices) as shown in Figure

5.16(a). We implement naïve parallel algorithm using the OpenMP and IBM libspe in a

straightforward manner on the Intel Clovertown and IBM Cell/B.E. platform

respectively, relying mostly on compiler optimizations for performance. Additionally, we

synchronize all P cores between E- and H-field computations in the time domain so that

adjacent cores can update boundary data.

 (a) (b) (c)

FIGURE 5.16: An example distribution of threads among four cores: (a) Data
partitioning scheme for the naïve parallel algorithm; (b) Mapping threads to cores for
both (a) and (c) data partitioning schemes; (c) Data partitioning scheme for the multicore
efficient algorithm.

140

Multicore-efficient Implementation:

We design our multicore-efficient implementation based on our parallel

programming methodology (see Chapter 1) to improve the performance on both the Intel

Clovertown and IBM Cell/B.E. platforms. The design steps for our multicore-efficient

implementation are the same as for matrix multiplication implementation (see Section

5.4.1).

TABLE 5.20: The summary of our implementation techniques of 3D FDTD for our
platforms.

Optimization
Techniques

Multicore Platforms

Intel Clovertown IBM Cell/B.E.

Multi-level blocking 3-level blocking (b0=4, b1=16, b2=64) 2-level blocking (b0=4, b1=16)

Scheduling CONTROLLED-PDF
(except at register level)

CONTROLLED-PDF
(except at register level)

Layout Scheme Row-major ordering Row-major ordering

Multi-buffering Single buffering Double buffering

Vectorization for
register level

Intel x86_64 SSE2 intrinsics
with 128-bit registers

IBM Cell/B.E. SPU intrinsics
with 128-bit registers

Loop unrolling for
Vectorization unrolling factor=4 for register-block unrolling factor=4 for register-block

Threading OpenMP IBM libspe

The summary of our mutlicore-efficient implementation techniques for 3D FDTD

is shown in Table 5.20. For both platforms, similar to the naïve parallel implementation,

we use a row-major order layout scheme for the series of 2D yz-slices in the x-direction.

Unlike matrix multiplication, the Z-Morton layout for multi-level blockings suffers from

performance penalties due to need to access boundary data between nearest-neighbor

blocks at each level. As shown in Figure 5.16(c), the 3D blocks are divided into P 2D yz-

slices which are distributed among the P cores according to the CONTROLLED-PDF

141

schedule. Such a parallelization scheme simplifies the data movement between the cores

associated with the update of boundary conditions. Within each core a 1DF scheduling

scheme is used for blocks at each level. Additionally, for the IBM Cell/B.E. platform, we

fetch all the required LS-blocks of data associated with Ex (Hx), Ey (Hy), and Ez (Hz)

components initially prior to computation of the E-field (see Chapter 4). Similar to matrix

multiplication, we modify the scheduling and use vectorization techniques at the register

level for both platforms. Further details for register level scheduling are discussed in

Section 5.4.2.2.

5.4.2.2 Optimization at Register Level

Scheduling at Register Level:

Similar to matrix multiplication, we use a hybrid 1BF-1DF scheduling for register

level blocking to better accommodate vectorization. In Figure 5.17, we show the hybrid

scheduling scheme on the weighted DAGs for four Ex computations at the register level

blocking with b0=4. The hybrid scheduling scheme allows for vector pipelining and

hence is the preferred scheduling method at the register level.

FIGURE 5.17: The hybrid scheduling scheme for the four Ex computations for the
register level blocking; the number on the right side of each computational vertices
indicates the SIMDize scheduling order.

142

Vectorization at Register Level:

Although SIMD extensions are a cost effective way to exploit data level

parallelism, they show poor performance for unaligned (or misaligned) accesses on

memory. When there is an attempt to access an unaligned location, it is necessary to

perform a realignment process. As shown in Figure 5.18, the access of the boundary

values Hy(i,j,k-1) is un-aligned with respect to the aligned data Hy(i,j,k) where k is in unit-

stride direction.

FIGURE 5.18: The example of the conflict alignment of 128-bit vector registers for
Hy(i,j,k) and Hy(i,j,k-1).

Intel x86_64 SSE2 intrinsics supports _mm_loadu_ps vector instruction to load

unaligned four single-precision floating-point words into a 128-bit register even though it

is 4-times slower than _mm_load_ps to load aligned four single-precision floating-point

into a 128-bit register. For IBM Cell/B.E. platform, we load one row of the aligned

Hy(i,j,k) and for the unaligned Hy(i,j,k-1) data we shift by one in the k-direction. The

boundary data is stored into the first element of the next register-block in the k-direction.

Note that we also use loop unrolling technique with unrolling_factor=4 to implement

vectorization at the register block level.

143

In Table 5.21, we show the pseudo code for the multicore-efficient 3D-FDTD

implementation for SPEs. There are a total 15 data sets, including boundary data between

LS-blocks, required to compute the E-field. A total 13 DMA transfers from the main

memory to the LS are required before starting the computation, and 2 block sized spaces

for data alignment. Since we use the double-buffering scheme, there are a total 30 LS-

blocks in the LS. Three DMA transfers from the LS to the main memory are needed to

update the Ex, Ey, and Ez data in main memory. The boundary values of a current block

are stored into the first element of the next LS-block buffer in the k-direction as shown in

Figure 5.18.

TABLE 5.21: The pseudo code for the SPE 3D-FDTD E-field computation using double
buffers.

Algorithm: SPE thread main()
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

reserve tags for MFC (Memory Flow Controller)
initialize Double buffer for DMA Inputs / outputs
fetch effective addresses of initial parameters
wait for a “mailbox” message to start 3D-FDTD computations
for iter = 1 to ITERATIONS do
 // E-field computation
 DMA_get() for Ex, Ey, Ez, epx, epy, epz, Hx, Hy, Hz, Hx_j, Hy_i, Hz_i, Hz_j into in-buffers tin
 for j=1 to number_blocks do
 SWAP_in_buffer() between tin and tin^1
 DMA_get() for Ex, Ey, Ez, epx, epy, epz, Hx, Hy, Hz, Hx_j, Hy_i, Hz_i, Hz_j into in-buffers tin
 DMA_get_wait() for in-buffer tin
 Memcpy (Hx_k, Hx) for aligned Hx_k in k-direction
 Memcpy (Hy_k, Hy) for aligned Hy_k in k-direction
 DMA_put_wait() for out-buffers tout
 Call E-field computation()
 DMA_put() for Ex, Ey, Ez into out-buffers tout
 SWAP_out_buffer() between out-buffers tout and tout^1
 End for
 Swap_in_buffer() between tin and tin^1
 DMA_get_wait() for in-buffers tin
 Memcpy (Hx_k, Hx) for aligned Hx_k in k-direction
 Memcpy (Hy_k, Hy) for aligned Hy_k in k-direction
 Call E-field computation()
 DMA_put() for Ex, Ey, Ez into out-buffers tout
 DMA_put_wait() for out-buffers tout
 synchronize all SPEs
 // H-field computation
 // Similar processes as E-field computation
 synchronize all SPEs
end for

144

5.4.2.3 Performance analysis

We now compare the effectiveness of the multicore-efficient implementation to

that of the naïve parallel implementation on both platforms.

Performance on Intel Clovertown Platform:

First, we show the effect of the L1 block size and register level scheduling on the

performance on a single core of the Intel Clovertown platform. The problem size is fixed

at n = 512 (corresponding to 16 GB), L2 block size is fixed at b2 = 64 and the register

block size is fixed at b0 = 4. 1DF scheduling is used at the L1 and L2 cache levels.

TABLE 5.22: The performance (GFLOPS) for different register level schedules and sizes
of L1-block (b1) with fixed size of L2-block (b2=64) and register-block (b0=4) on a single
core of the Intel Clovertown platform. We use 1DF scheduling scheme for L1-level and
L2-level blocking, and vary the scheduling scheme at the register level.

 Single core
The size of L1-block b1 4 8 16 32 64
The size of 4b1

3 in bytes 1 KB 8 KB 64 KB 512 KB 4096 KB

Scheduling scheme
at register level

1DF 0.75 0.81 0.84 0.79 0.76
1BF 0.76 0.8 0.82 0.78 0.76

Hybrid 0.76 0.82 0.86 0.81 0.77

As shown in Table 5.22, the highest performance of 0.86 GFLOPS on a single

core is achieved with the L1-block size of 16 and a hybrid scheduling scheme at the

register level. This is an agreement with the theoretical L1 block size shown in Table

5.20. Note that for Ex computations if we attempt to hold all four L1-blocks of cubes Ex,

Hy, Hz, and epx in the L1 cache as traditional algorithms do, the L1 cache size would

have to 64 KB for b1=16.

To study the impact of multi-level blocking scheme on performance, we show the

cache miss rates (%) and the system bus utilization (%) with respect to scaling of the

145

problem size (problem-scaling) and the number of cores (core-scaling) for both naïve

parallel and multicore-efficient implementations on the Intel Clovertown platform.

TABLE 5.23: Cache miss rate (%) and system bus bandwidth utilization (%) on Intel
Clovertown platform.

Problem
size (n) # cores

L2 cache miss rate (%) L1 cache miss rate (%) Bus utilization (%)

naïve
parallel

Multicore-
efficient

naïve
parallel

Multicore-
efficient

naïve
parallel

Multicore-
efficient

128

1 0.2 1.2 0.6 1.2 25.85 15.92
2 0.5 1 0.6 1.1 28.42 15.96
4 0.5 0.4 0.8 0.5 27.87 16.43
8 0.4 0.4 0.8 0.4 29.15 26.92

256

1 0.6 1.6 0.8 1.2 29.17 17.66
2 0.7 1.4 0.8 1.1 27.74 33.13
4 0.7 1.1 0.8 1 26.4 27.4
8 0.7 0.7 0.8 0.8 29.56 31.67

512

1 0.9 1.5 1.2 1.2 30.61 17.35
2 0.8 1.4 1.4 1.2 28.62 23.13
4 0.8 1.1 1.5 1.1 27.36 26.12
8 0.7 0.9 1.5 1.1 31.91 36.87

As shown in Table 5.23, our multicore-efficient implementation has a high L2

miss rate although the theoretical analysis of Chapter 3 indicates good temporal locality

using multi-level blocking. We postulate that the non-unit-stride penalties due to blocking

outweigh the increased temporal locality. The miss rate is highest for the one core case

and falls as the number of cores increases since the available L2 cache size increases with

the number of cores. The L2 cache miss rate of the naïve parallel implementation on a

single core increases with respect to scaling of the problem size while the L2 cache miss

rate of the cache-efficient implementation does not vary much. Although we expect the

miss rate to be independent of the problem size, we have non-unit stride access along two

of the three directions using multi-level blocking for each Ex, Ey, Ez, Hx, Hy, or Hz

146

computations. The behavior of the L1D cache miss rate is similar to both L2 cache miss

rate behavior both for core and problem size scaling. However, note that the L1D cache is

more dependent on the L2 blocks and less on the problem size. The higher bus utilization

compared to matrix multiplication in Table 5.17 is due to the higher data access to

computation ratio for FDTD and possibly more cache coherence traffic due to boundary

value sharing.

In Figure 5.19, we show the overall performance in GFLOPS per for problem-

scaling and core-scaling for both our naïve parallel and our mutlicore-efficient

implementations on the Intel Clovertown platform.

(a) (b)

FIGURE 5.19: Overall performance on Intel platform: (a) Performance in GFLOPS per
core; (b) Execution time in seconds on a single core.

In Figure 5.19(a), the naïve parallel implementation shows a performance of

about 0.5 GFLOPS on single core which does not vary much with problem scaling. We

observe that our multicore-efficient implementation performs almost 1.8 times faster on a

single core compared to the naïve algorithm. However, for implementations the

performance decreases with core-scaling. For small problems sizes and level-2 block size

b2=64, the parallelism at level-2 is limited. For each core, we believe that the benefits of

�

�&�

�&�

�&�

�&�

�&�

�&

�&�

�&�

�&	

�

� � � � � � � � � � � �

G
FL

O
PS

/c
or

e

n=128 n=256 n=512

naïve parallel multicore-efficient

0

1

2

3

4

5

6

7

8

128 256 512

E
xe

cu
tio

n
tim

e
(s

ec
)

�������
����
���

� ��!�"��#�$$!�!���

!%��

147

data sharing among the block computations are less than the penalties of non-unit-stride

memory access between blocks. Moreover, where the data closely fits into the L2 cache,

the benefits of data sharing between level-2 blocks is not prominent, but the L2 latencies

increase with core scaling due to contention on the bus. Since there is only boundary data

reused, the performance of both implementation remains almost unchanged as the

problem size is scaled on a single core.

In Figure 5.19(b), we compare the performance of the multicore-efficient

implementation with an ideal computing performance on the Intel Clovertown processor.

The ideal time for 3D-FDTD is the time required for 48n3 floating point operations for

both E- and H-field computations at the theoretical peak core performance of the Intel

Clovertown processor.

Performance on IBM cell B.E. Platform:

Figure 5.20 shows the performance of our implementations on the IBM Cell/B.E.

platform. In Figure 5.20(a), we compare the naïve parallel and our multicore-efficient

implementations with respect to problem-scaling and core-scaling. The single buffering

scheme used in naïve algorithm allows a DMA size per transfer of 32KB (b=32) while

the double buffering scheme used in the multicore efficient algorithm limits the block

size to 4KB (b=16). Both algorithms require 120 KB of LS for all parameters including

boundary data. The naïve parallel implementation shows about 0.3 GFLOPS/SPE with

respect to both problem-scaling and core-scaling. We observe that our multicore-efficient

implementation achieves 4.6 times speedup over the naïve implementation for n=128.

Unlike the naïve implementation the multicore-efficient implementation has better

performance with problem-scaling as shown in Figure 5.20(a). The increased temporal

148

locality between blocks increases for large problem sizes. Moreover, unlike the poor

scalability on the Intel Clovertown platform with respect to core scaling, we achieve

almost linear performance increase with core scaling on the IBM Cell B.E. On the

Clovertown processor, the hardware cache coherence policy affects the amount of data

that can be shared between the cores. On the other hand, on the IBM Cell BE the explicit

control of the boundary data shared between the cores allows for maximal data sharing

between the cores.

(a) (b)

FIGURE 5.20: Overall performance on IBM platform: (a) Performance in GFLOPS per
SPE; (b) Execution time in seconds on a single SPE.

 In Figure 5.20(b), we compare the performance of the multicore-efficient

implementation to an ideal computing performance on the IBM Cell/B.E. platform. The

ideal computing time for the 3D-FDTD is the time required for 48n3 floating point

operations for both E- and H-field computations at the theoretical peak core performance

of the SPE.

5.4.3 LU Decomposition

In this section, we describe our multicore efficient implementation of the LU

decomposition algorithm. LU is a matrix decomposition algorithm which decomposes a

�

�&�

�&�

�&

�&�

�

�&�

�&�

�&

� � �
 � � �
 � � �

G
FL

O
PS

/S
PE

n=32 n=64 n=128

naïve parallel multicore-efficient

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
)

�������
����
���

� ��!�"��#�$$!�!���

!%��

149

matrix A into a lower triangular matrix L and an upper triangular matrix U (such that

A=LU). The computational complexity of the LU decomposition algorithm based on the

Gaussian elimination method shown in Table 5.24 is O(n3) while the data space

requirements are O(n2) for a n×n square matrix A. The data dependency of the algorithm

is shown in Figure 5.21. Notice that we use only one matrix A, with the triangular

matrices L and U overwriting matrix A.

TABLE 5.24: The LU decomposition based on Gaussian elimination method with n×n
square matrix A.

Algorithm: LU decomposition based on Gaussian eliminate method

1:
2:
3:
4:
5:
6:
7:
8:

for (k=0; k<n; k++)
 for (i=(k+1); i<n; i++)
 A[i][k] = A[i][k] / A[k][k];
 for (j=(k+1); j<n; j++)
 A[i][j] = A[i][j] – A[i][k]*A[k][j];
 end for
 end for
end for

Let Ak denote the sub-matrix which is the computing domain including only

elements a(i,j) with k < i ≤ n and k ≤ j ≤ n at k iteration step, where i, j and k refer to ith

row elements, jth column elements and kth element elimination step, respectively. As

shown in Figure 5.21, only the sub-matrix Ak is updated at k iteration step. As shown in

Table 5.24, the computation scheduling of 1DF in k iteration step consists of first

updating the element in the first column of Ak as shown in Line 3 of the pseudo-code of

Table 5.24, and then updating the remaining elements of a(i,j) of Ak as shown in Line 5 of

the pseudo-code of Table 5.24. Thus, for computing the element a(i,j), the updated k

elements of the ith row and jth column are required.

150

FIGURE 5.21: The data dependency of the LU decomposition based on Gaussian
elimination method.

5.4.3.1 Multicore-efficient Implementations

For both the Intel Clovertown and IBM Cell/B.E. platforms, we develop our

multicore-efficient implementations following our parallel programming methodology

discussed in Chapter 1. We compare the effectiveness of our approaches to that of the

naïve parallel implementation based on the Gaussian-elimination method shown in Table

5.24.

Naïve Parallel Implementation:

The naïve parallel implementation uses a row-major order of the array layout for

matrix A. For the parallelization scheme for P cores, we use the row-wise one

dimensional partitioning of the sub-matrix Ak in k iteration step. Notice that the kth row in

Ak is shared for all P cores at k iteration step. Then the computing order of each partition

follows the 1DF scheduling which is the computing order of the serial algorithm shown

in Table 5.24. We use OpenMP parallel programming library for the Intel Clovertown

platform and the IBM libspe for the IBM Cell/B.E. platform (see Chapter 2). Since DMA

transfer of data is required on the IBM Cell/B.E. platform, we use the single buffer

scheme without considering prefetching (see Chapter 4). A total of 4 buffers are used

151

(three reads and one write). The size of each buffer is chosen to be 16KB corresponding

to the maximum size of the DMA transfer. The total buffer size of 64KB is less than the

available size of the SPE LS.

Multicore-efficient Implementation:

We design our multicore-efficient implementation based on our parallel

programming methodology (see Chapter 1) to improve the performance on both

platforms. The design steps for our multicore-efficient implementations are the same as

for matrix multiplication implementations (see Section 5.4.1). The summary of the

multicore-efficient implementation techniques for LU decomposition is shown in Table

5.25.

TABLE 5.25: The summary of our implementation techniques of LU decomposition for
our platforms.

Optimization
Techniques

Multicore Platforms

Intel Clovertown IBM Cell/B.E.

Multi-level blocking 3-level blocking (b0=4, b1=64, b2=256) 2-level blocking (b0=4, b1=32)

Scheduling CONTROLLED-PDF
(except at register level)

CONTROLLED-PDF
(except at register level)

Layout Scheme Z-Morton ordering Z-Morton ordering

Multi-buffering Single buffering Double buffering

Vectorization for
register level

Intel x86_64 SSE2 intrinsics
with 128-bit registers

IBM Cell/B.E. SPU intrinsics
with 128-bit registers

Loop unrolling for
Vectorization unrolling factor=4 for register-block unrolling factor=4 for register-block

Threading OpenMP IBM libspe

For both platforms, we use Z-Morton order layout scheme of the matrix A for d-

level blocking to avoid the penalties of non-unit-stride memory access at each level

152

blocking. Here d=3 and d=2 for Intel Clovertown and IBM Cell/B.E. platform,

respectively.

Unlike matrix multiplication, the blocks for LU decomposition have different

types of computation. Let Ak denote the sub-matrix which is the computing area including

only block-(i,j) with k ≤ i,j ≤ n at k iteration step, where i, j and k refer to ith row blocks,

jth column blocks and kth block elimination step, respectively. At level-d the four different

types of computations (LUD-, L-, U-, and M-block) in sub-matrix Ak is shown in Figure

5.22. Note that the blocks with the same type (same color) can be executed in parallel in

each elimination step. Depending on the parent block, the computations of the remaining

blocks are a subset of the four types of computations described above. The computations

details for the different types of blocks are discussed later. For parallelism the d-level

blocks among P cores, the following steps are used – 1) First, the algorithm starts by

processing the LU-block on one core, 2) then, the U-blocks distributed among P cores are

updated, 3) finally, the remaining blocks (L-blocks and M-blocks), which are distributed

using the row-wise one-dimensional partitioning of sub-matrix Ak among P cores, are

updated in each k iteration step. The P cores synchronize at each step. Note that the

algorithm continues to iterate until it processes the last block as a LU-block. Within each

core, the computing order of the partitioned blocks at each level follows the 1DF

scheduling. Additionally, for the IBM Cell/B.E. platform, the L-block is stored until all

the computations of all M-blocks at the same row are completed (refer Chapter 4).

Similar to matrix multiplication, we modify the scheduling and use vectorization

techniques at the register level for both platforms. Further details for scheduling at the

register level are discussed in Section 5.4.3.2.

153

FIGURE 5.22: The block partition with the four different types in sub-matrix Ak at d-
level.

TABLE 5.26: The different tasks of the four blocks at d-level.

 LUD-block L-block U-block M-block

First Row No computation Multiplication (×) No computation Multiplication (×)

First
Column Divide (/) Divide (/) Multiplication (×) Multiplication (×)

Remaining
elements Multiplication (×) Multiplication (×) Multiplication (×) Multiplication (×)

Data
dependency Local LUD-block LUD-block

Local L-block
LUD-block

Local U-block

L-block in same row
U-block in same column

Local M-block

As mentioned previously, the four different types of blocks at d-level for LU

decomposition have different tasks as shown in Table 5.26. The LUD-block performs the

same computation as LU decomposition, and it requires only data of the current LUD-

block. The L-block performs similar computations as the LUD-block on all rows

excluding the first row. The first row elements are computed by multiplying the

corresponding element in the LUD block with the element in the previous column (same

row) of the L-block. Thus the L-block computation requires data of one LUD-block and

the current L-block. Excluding the first row, the U-block elements are computed by

multiplying the corresponding element of the LUD block with the element in the previous

154

row (same column) of the U-block. Thus the U-block computation requires data of one

LUD-block and the current U-block. The M-block is computed by multiplying the

corresponding element of the L-block with the corresponding element of the U-block.

Thus the M-block computation requires one L-block, one U-block, and the current M-

block. The example of the data dependency is shown in Figure 5.23.

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

���

��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ���

���

��� ��� ��� ���

��� ��� ��� ���

���

��� ���

���

���

��������	

���
����

��������	�

���
����

������	�

���
����

��������	

����
����

��������	�

����
����

������	�

����
����

��������	

����
����

��������	�

����
����

������	�

����
����

��������	

����
����

���

�������

�����������

�

�������

�����������

�

�������

�����������

�

�

��������	
����
 �
��
�������

FIGURE 5.23: The example of data dependency of LU decomposition for a matrix A
with 4×4 blocks.

155

As shown in Figure 5.23, for the LU decomposition of the matrix A, there are a

total of N elimination steps with N×N blocks (elements), where N is the number of blocks

(elements) in row (column). Each elimination step except the last requires three

synchronizations between the computations of the LUD-block, L- and U-blocks, and M-

block. Note that the L- and U-blocks can be computed in parallel and require no

synchronization between them. The last kth elimination step requires only an LUD-block

computation of the sub-matrix Ak. The depth of the DAG is (3×(N – 1) + 1). Unlike, the

matrix multiplication or FDTD algorithms, the LU decomposition can be described with

only one DAG. Thus, the parallelism at each level is limited to the breadth of the DAG.

5.4.3.2 Optimization at Register Level

For the register level, we modify the scheduling scheme and use vectorization

only for the M-block while other types of blocks use the 1DF scheduling scheme. The

implementation of M-block vectorization is similar to matrix multiplication (see Figure

5.12 in Section 5.4.1). The M-block vectorization uses a subtract operation instead of an

addition operation. We also use loop unrolling for register level blocking.

5.4.3.3 Performance Analysis

Performance on Intel Clovertown Platform:

In Figure 5.24, we show the overall performance in GFLOPS per core for

problem-scaling and core-scaling for both our naïve parallel and multicore-efficient

implementations on the Intel Clovertown platform.

156

(a) (b)

FIGURE 5.24: Overall performance on Intel platform: (a) Performance in GFLOPS per
core; (b) Execution times in seconds on a single core.

In Figure 5.24(a), for problem-scaling, the naïve parallel implementation shows a

performance of 1.3 GFLOPS on single core with the smaller size of problem (n=512).

Here the total problem size of 1 MB for the matrix A can fit into the single L2 cache.

However, the naïve parallel implementation shows 0.7 and 0.5 GFLOPS for n=1024 (4

MB) and n=2048 (16 MB), respectively. Our multicore-efficient implementation shows a

performance of 1.4 GFLOPS on single core which does not vary much with the problem-

scaling. We expect this performance trend to continue for larger sized (n > 2048)

problems. Our multicore-efficient implementation achieves 2.8 times speedup over the

naïve parallel implementation for n=2048. However, for both implementations, the

performance with respect to core-scaling shows poor scalability corresponding to the

reduced parallelism associated with the shrinking computing area (sub-matrix Ak) in each

k elimination step. Moreover, the number of available blocks in each parallel phase is

usually not exactly divisible by the number of cores. This creates a load imbalance at

each elimination step, with the associated overhead accumulating over time.

In Figure 5.24(b), we compare the efficiency of the multicore-efficient

implementation with the ideal computing performance on the Intel Clovertown platform.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 4 8 1 2 4 8 1 2 4 8

G
FL

O
PS

/c
or

e

n= 512 n=1024 n=2048

naïve parallel multicore-efficient

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

512 1024 2048

E
xe

cu
tio

n
tim

e
(s

ec
)

�������
����
���

� ��!�"��#�$$!�!���

!%��

157

The ideal time for LU decomposition is the time required for O(n3) floating point

operations at the theoretical peak core performance of a single core of the Intel

Clovertown.

Performance on IBM Cell/B.E. Platform:

In Figure 5.25, we show the overall performance in GFLOPS per SPE for

problem-scaling and core-scaling for both naïve parallel and multicore-efficient

implementations on the IBM Cell/B.E. platform.

(a) (b)

FIGURE 5.25: Overall performance on IBM Cell BE platform: (a) Performance in
GFLOPS per SPE; (b) Execution time in seconds on a single SPE.

Figure 5.25(a) shows a single SPE performance of 40 MFLOPS (n=512) for the

naïve parallel implementation and 180 MFLOPS (n=512) for the multicore efficient

implementation. For both implementations performance does not vary much with

problem-scaling. We expect this performance trend to continue for larger sized (n>2048)

problems. We observe that our multicore-efficient implementation achieves almost 2.8

times speedup over the naïve parallel implementation for all problem sizes. For both the

naïve and multicore efficient implementation, although the performance with respect to

core-scaling degrades with increasing number of cores, core-scalability is better than the

0
20
40
60
80

100
120
140
160
180
200

1 2 4 1 2 4 1 2 4

M
FL

O
PS

/S
PE

n= 512 n=1024 n=2048

naïve parallel multicore-efficient

0

5

10

15

20

25

30

35

512 1024 2048

E
xe

cu
tio

n
tim

e
(s

ec
)

�������
����
���

� ��!�"��#�$$!�!���

!%��

158

Intel Colvertown platform. The smaller LS-blocks (32×32) used on the IBM Cell BE

allows for better load balance compared to the larger blocks of the Intel Clovertown

(64×64) platform.

In Figure 5.25(b), we compare the efficiency of the multicore-efficient

implementation with that the ideal computing performance on the IBM Cell BE platform.

The ideal time for LU decomposition is the time required for O(n3) floating point

operations with the theoretical peak core performance on single core of the IBM Cell BE.

For both platforms, the dynamic repartitioning can be used to reduce load

imbalance at each step.

5.4.4 Power Flow Solver based on Gauss-Seidel method (PFS-GS)

In this section, we illustrate and analyze our multicore-efficient parallel

implementation of the Power Flow Solver based on Gauss-Seidel method (PFS-GS). It

determines the voltage magnitude and phase angle for each bus (network node) in a

power system network under balanced three-phase steady-state conditions. PFS-GS is

modeled as a set of buses (network nodes) interconnected by transmission branches

(network links) expressed as [16, 18]:

1

() ()
N

k k k n
n
n k

V G V H V
=
≠

� �
	 	∀ ← −
 �
	 	
�

�
 (5.8)

where, E	F� � �G� HI�� �+ �FJKL , #	F� � � HF �+�I�MK I��L in which N� and G� represent

the complex voltage and the complex power at each bus k, respectively, and I�M is

admittance between bus k and n. To compute the line current in a branch # in the power

network, we calculate admittance and line current injections from the source and

159

destination buses. This calculation depends on the line currents of all incident branches of

the source and destination buses.

The buses are categorized as SWING, PQ and PV. The SWING bus is a node that

is designated to compensate residual error and is also used for power generators which

control both real and reactive power injections. The PQ bus is a node that has both

constant real and reactive power injections. The PV bus is a node that has constant real

power injection but can control reactive power injections. The voltage and power

calculations of a bus do not depend on other bus computations as the line currents are

calculated during the branch computations.

The data dependency of a sample power network with 5 buses and 5 branches is

shown in Figure 5.26, and the pseudo-code of naïve serial algorithm for PFS-GS is shown

in Table 5.27.

FIGURE 5.26: The sample power network computation with 5 buses and 5 branches.

As shown in Table 5.27, the naïve serial algorithm first performs all branch

computations and then proceeds to the bus computations. For each branch computation,

data from the two buses connected by the branch is required. The branch computations

can be represented as matrix vector computations involving the multiplication of the

160

TABLE 5.27: Pseudo-code of naïve serial algorithm for the bus and branch computation.

Inputs:

Bus voltage Vold, Bus Power Sold, Admittance matrix Y, Acceleration factor ACC, Reactive
power limits Qmax and Qmin, Bus shunt conductance G and reactance B and Bus type
(PV/PQ/Swing)

Outputs:

Branch: self admittance Ys, self current Is
Bus: new bus voltage Vnew, New bus power Snew

Prototype Gauss-Seidel Solver Algorithm
1:
2:
3:
4:
5:

For iter = 1 to ITERATION Do
 Call Branch Function
 Call Bus Function
 Check CONVERGENCE; Continue if necessary
End for

Branch function()
1:
2:
3:
4:

For each branch between bus n and k on the network Do
 Calculate the self admittance vector term Ys with admittance matrix Y and voltage vector Vold
 Calculate the self current vector term Is with admittance matrix Y and voltage vector Vold
 End for

Bus function()
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

For each bus on the network Do
 If non-zero admittance matrix OR swing bus type Then
 Case bus type Of
 PV bus:
 Calculate new reactive power Qnew using Gauss-Seidel Algorithm
 If new reactive power Qnew exceeds Qlimit [Qmin, Qmax] Then
 Set new reactive power Qnew with Qlimit = [Qmax,Qmin]
 Continue Calculate new voltage Vnew as PQ bus
 Else
 Calculate intermediate voltage Vint with new reactive power Qnew using GS
 Calculate the new voltage Vnew with Magnitude of Vold and phase angle of Vint
 Break
 End if
 PQ bus:
 If non-zero current voltage Vold Then
 Calculate the intermediate voltage Vint with reactive power Qold for PQ or Qnew for PV using GS
 Calculate the new voltage Vnew = Vold + (Vint – Vold)×ACC
 Break
 End if
 SWING bus:
 Calculate the new power injection Snew
 Break
 OTHERS:
 Break
 End Case
 End if
End for

161

admittance matrix term Y (current matrix term I) by voltage vector V to compute the self

admittance vector Ys (current vector Is) for all buses. The bus computations involve

update of the voltage and power vectors and are independent of each other. Thus, in

principle all buses can be computed in parallel without considering any data dependency

as the self currents and admittances of all buses are calculated during the branch

computations.

5.4.4.1 Multicore-efficient Implementations

For both the Intel Clovertown and IBM Cell/B.E. platforms, we develop our

multicore-efficient implementations following our parallel programming methodology

discussed in Chapter 1. We compare the effectiveness of our approach to that of the naïve

parallel implementation.

Naïve Parallel Implementation:

 The naïve parallel implementation uses a row-major order of the array layout for

the matrices (admittance matrix Y and current matrix I). For the parallelization scheme

for P cores, we use row-wise one-dimensional partitioning of the matrices for the branch

computations, and we divide the total number of buses by P for the bus computations.

Then the computing order of each partition follows the 1DF scheduling. Additionally, we

synchronize all P cores between branch and bus computations. We use OpenMP parallel

programming library for the Intel Clovertown platform and the IBM libspe for the IBM

Cell/B.E. platform (see Chapter 2). Since DMA transfer of data is required on the IBM

Cell/B.E. platform, we use the single buffer scheme without considering caching and

prefetching (see Chapter 4). Note that each core (or SPE) performs assigned branch

162

computation followed by the bus computation. The total numbers of data transfers per

core (or SPE) for the branch and bus computations are given by:

OPQ0RST����	U + VWXY� =� + VWXYZ[(5.9)

O\]T�����������	 _̂ + VWXY�Z[(5.10)

And, the total numbers of computations per core (or SPE) for the branch and bus

computations are given by:

OPQ0RST���	 =̂ + VWXY+ VWXY�Z[(5.11)

O\]T����������	_^+ V`a� � bb+ V`c� � b̂+ VYd efg� � (5.12)

where, NBUS is the number of buses in the network, P is the number of used cores (or

SPEs), and NPV
i, NPQ

i, and NSWING
i represent the number of total PV, PQ, and SWING

buses assigned to corei (or SPEi), were 1≤ i ≤ P.

Multicore-efficient Implementation:

We design our mutlicore-efficient implementation based on our programming

methodology (see Chapter 1) to improve the performance on both platforms. The design

steps for our multicore-efficient implementations are similar to the multicore-efficient

matrix multiplication (see Section 5.4.1). The summary of the multicore-efficient

implementation techniques for PFS-GS is shown in Table 5.28.

For both platforms, we use the Z-Morton order layout scheme of the matrices Y

and I for d-level blocking to avoid the penalties of non-unit-stride memory access. Here

d=3 and d=2 for Intel Clovertown and IBM Cell/B.E. platform, respectively. We use the

same parallelization scheme for P cores as the naïve parallel implementation. For IBM

Cell/B.E. platform, we use double-buffering scheme with considering caching and

prefetching (see Chapter 4) for DMA transfer. However, there is no caching advantage

163

for bus computation since there is no data reused between buses. Similar to the

previously described algorithms, we modify the scheduling and use vectorization

techniques at the register level for both platforms. Further details for scheduling and

vectorization at the register level are discussed in Section 5.4.4.2.

TABLE 5.28: The summary of our implementation techniques of PFS_GS for our
platforms.

Optimization
Techniques

Multicore Platforms

Intel Clovertown IBM Cell/B.E.

Multi-level blocking 3-level blocking (b0=4, b1=32, b2=128) 2-level blocking (b0=4, b1=32)

Scheduling CONTROLLED-PDF
(except at register level)

CONTROLLED-PDF
(except at register level)

Layout Scheme Z-Morton ordering Z-Morton ordering

Multi-buffering Single buffering Double buffering

Vectorization for
register level

Intel x86_64 SSE2 intrinsics
with 128-bit registers

IBM Cell/B.E. SPU intrinsics
with 128-bit registers

Loop unrolling for
Vectorization unrolling factor=4 for register-block unrolling factor=4 for register-block

Threading OpenMP IBM libspe

5.4.4.2 Optimization at Register Level

Scheduling and Vectorization at the Register Level:

As mentioned previously, the branch computations use matrix-vector

multiplication by multiplying the admittance matrix by the voltage vector to compute the

self admittance vector and the self current vector for all buses. Hence we use similar

scheduling and vectorization scheme as the matrix multiplication algorithm at the register

level for branch computations (see Section 5.4.1.2).

For bus computations at register level, all bus types share some of the

computation with different input data. For example, the intermediate bus voltage

164

calculation is computed for both PV and PQ buses using the Gauss-Seidel method. We

can therefore take advantage of the shared computations between the different bus types.

However, the different types of buses require different computations, which can lead to

mispredictions in conditional statements. Each bus type executes conditional statements

depending on the voltage and power values. The mispredictions in these conditional

executions can lead to poor performance due to hardware pipeline stalls and limited

vectorization on the multicore platforms. Therefore, we implement a vectorized unified-

bus-computation module for all bus types to avoid such undesirable performance

degradation and to take advantage of the shared computations. For IBM Cell/B.E.

platform with IBM SPU intrinsics, the vectorized unified-bus-computation module with

single-precision floating-point data is shown in Figure 5.27. Each vector bus

computations consist of 4 scalar bus computations drawn from same or different bus

types depending on the network.

FIGURE 5.27: Vectorized Unified-Bus-Computation Module.

165

As shown in Figure 5.27, we design the vectorized unified-bus-computation

module to eliminate conditional statements and to take advantage of the shared

computations through the following steps – (1) compute intermediate power S_new

which is used for all three types of buses, (2) update new power S for each bus, (3)

compute intermediate voltage V_int which is used for PV and PQ bus, (4) compute new

PQ voltage Vnew_PQ, (5) compute new PV voltage Vnew_PV, (6) and then update new

voltage V for each bus. We use spe_sel intrinsic to select the individual bus power and

voltage from the vector registers. The select-bits instruction is the key in eliminating

branches for simple control-flow statements (for example, if and if-then constructs). An

if-then-else statement can be made branchless by computing the results of both the branch

conditions, and then the select-bits choose the result depending on the evaluation of the

if-then-else statement. If computing both the results costs less than a mispredicted branch,

then we have additional saving. Also, the select_bits enables efficient vectorization of if-

then-else statements. For the Intel Clovertown platform with Intel x86_64 SSE2

intrinsics, the design steps of the vectorized unified-bus-computation module are same as

those for the IBM Cell/B.E. platform. For our multicore-efficient implementation using

the vectorized unified-bus-computation at register revel, the total number of all bus

computations per core is given by:

O\]T���������_b+ 	V`a� �V`c� �Z=� � 	_ + VYd efg� � (5.13)

where, NPV
i, NPQ

i, and NSWING
i represent the number of total PV, PQ, and SWING buses

assigned to corei (SPEi), were 1≤ i ≤ P. Note that the numbers of data requirement and

branch computation are same as the naïve parallel implementation.

166

TABLE 5.29: Pseudo code of the multicore-efficient implementation for PFS-GS on the
IBM Cell/B.E. platform.

Algorithm: PPE main()
1:
2:
3:
4:
5:

Initialize Branch and Bus data
Create SPE threads for PFS-GS computations
Send “mailboxes” to instruct SPEs to SPE threads
Wait until PFS-GS computation of all SPEs is done
Terminate SPE threads

SPE thread main()
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

Reserve tags for MFC (Memory Flow Controller)
Initialize Double buffer for DMA Inputs/outputs
Fetch effective addresses of initial parameters
Wait for a “mailbox” message to start PFS-GS computations
For iter = 1 to ITERATIONS Do
 Call SPE Branch Function
 Synchronize all SPEs
 Call SPE Bus Function
 Synchronize all SPEs
 Check CONVERGENCE; Continue if necessary
End for

SPE Branch ()
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:

For i=0 to BLOCKS Do
 DMA FETCH for M input data (Ys, YVs) of i block
 DMA WAIT for input data (Ys, YVs) of M buses
 For j=0 to M Do
 DMA FETCH for M input data (Ymatrix, Bmatrix, V)
 For k=1 to (TOTAL_BUSES/M) Do
 SWAP input buffers of M input data (Y, B, V)
 DMA FETCH for M input data (Y, B, V) of k
 DMA WAIT for M input data (Y, B, V) of k-1
 Computing Branch of k-1
 Update M output data (Ys, Is) of i block
 End for
 DMA STORE for M output data (Ys, Is) of i block
 DMA WAIT for M output data to main memory
 End for
End for

SPE Bus ()
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:

DMA FETCH for M input data (Type, V, S, G, B, Qmax, Qmin, Ys, Is)
For i=1 to BLOKCS Do
 SWAP input buffers of M input data (Type, V, S, G, B, Qmax, Qmin, Ys, Is) of i block
 DMA WAIT for input data (Type, V, S, G, B, Qmax, Qmin, Ys, Is) of (i-1) block
 DMA WAIT for output data (V, S, Ys, Is) of (i-1) block
 Computing the vectorized unified-bus-computation of (i-1) block
 DMA STORE for M output data (V, S, Ys, Is) of (i-1) block
 SWAP output buffers
End for
SWAP input buffers
DMA WAIT for M input data (Type, V, S, G, B, Qmax, Qmin, Ys, Is) of BLOCKS block
Computing the vectorized unified-bus-computation of (BLOCKS) block
DMA STORE for M output data (V, S) of (BLOCKS) block

167

Pseudo Code for Multicore-efficient Implementation:

In Table 5.29, we show the pseudo code for multicore-efficient implementation

on the IBM Cell/B.E. platform.

5.4.4.3 Performance Analysis

For all implementations, we setup a network configuration with n number of

buses and n×n branches. The network includes 60% of PQ buses, 40% of PV buses, and

one SWING bus. The network is simulated for 100 iterations.

Performance on Intel Clovertown Platform:

In Figure 5.28, we show the overall performance in GFLOPS per core for

problem-scaling and core-scaling for both the naïve parallel and our multicore-efficient

implementation on the Intel Clovertown platform.

(a) (b)

FIGURE 5.28: Overall performance on Intel Clovertown platform: (a) Performance in
GFLOPS per core; (b) Execution time in seconds on a single core.

In Figure 5.28(a), the naïve parallel implementation shows performance of 0.38

GFLOPS on single core which does not vary much with respect to problem-scaling. We

observe that for n=3072, our multicore-efficient implementation performs 2.3 times

faster on a single core compared to the naïve parallel algorithm. In all of our

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 4 8 1 2 4 8 1 2 4 8

G
FL

O
PS

/c
or

e

n= 768 n=1536 n=3072

naïve parallel multicore-efficient

0

2

4

6

8

10

12

768 1536 3072

E
xe

cu
tio

n
tim

e
(s

ec
)

�������
����
���

� ��!�"��#�$$!�!���

!%��

168

implementations, we observe an almost linear scaling of performance with respect to the

core-scaling.

In Figure 5.28(b), we compare the efficiency of the multicore-efficient

implementation with an ideal computing performance on the Intel Clovertown platform.

The ideal time for PFS-GS is the time required for only computations following

Equations 5.11 and 5.12 assuming theoretical peak core performance on a single core of

the Intel Clovertown.

Performance on IBM Cell/B.E. Platform:

In Table 5.30, we show the effect of the LS-block size on the performance of

single SPE of the IBM Cell/B.E. platform for branch and bus computations. The problem

size is fixed at n=768. The best case performance is achieved with LS-block size of

b1=32 and b1=16 for branch and bus computations respectively.

TABLE 5.30: GFLOPS with varying DMA transfer size in bytes on single SPE.

LS-block size b1
Performance in GFLOPS

Bus Branch Bus + Branch
8 1.97 2.11 2.11
16 2.06 2.37 2.37
32 2.02 2.46 2.47
64 2.04 2.42 2.44

128 2.05 2.37 2.37

Table 5.31 shows the speedup and percentage computation times for four different

implementations of the PFS-GS algorithm on a single SPE. Here the problem size is

n=768. Our multicore-efficient implementation, which combines double-buffering

scheme and vectorized unified-bus-computation module, achieves the highest

performance improvement of 9.2 times speedup for bus computations, and 5.3 times

169

speedup in branch computations with respect to the naïve serial implementation. Both bus

and branch computations are compute bound. An interesting point here is that for the

naïve implementation (97% compute time) of the bus computations with double-

buffering shows poorer performance compared to single buffering. However, for the

vectorized unified-bus-computation technique (75% of compute bound) double buffering

(multicore-efficient) performs better than single buffering by about 20%. Here double

buffering enables overlap of DMA transfers with the vectorized operations in the SPE

dual pipeline.

TABLE 5.31: Distributed speedup and % of computation on single SPE; Note our
multicore-efficient implementation combines both double-buffering scheme and
vectorized unified-bus-computation module.

Optimization Performance Bus Branch Bus + Branch

The naïve serial
implementation

Speedup 1 1 1

% Computation 97 % 77 % 87 %

Double-buffering scheme
Speedup 0.96 1.13 1.15

% Computation 99 % 95 % 96 %

Vectorized
unified-bus-computation

Speedup 7.74 4.80 7.7

% Computation 75 % 62 % 72 %

Multicore-efficient
Speedup 9.25 5.31 9.2

% Computation 90 % 79 % 87 %

(a) (b)

FIGURE 5.29: Overall performance on IBM Cell/B.E. platform: (a) Performance in
GFLOPS per SPE; (b) Execution time in seconds on a single SPE.

0

0.5

1

1.5

2

2.5

3

1 2 4 1 2 4 1 2 4

G
FL

O
PS

/S
PE

n= 768 n=1536 n=3072

naïve parallel multicore-efficient

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

768 1536 3072

E
xe

cu
tio

n
tim

e
(s

ec
)

�������
����
���

� ��!�"��#�$$!�!���

!%��

170

In Figure 5.29, we show the overall performance in GFLOPS per core for

problem-scaling and core-scaling for both naïve parallel and our multicore-efficient

implementation on the IBM Cell/B.E. platform.

In Figure 5.29(a), the naïve parallel implementation shows a performance of 0.25

GFLOPS/SPE with the problem size (n=768 and n=1536). However, for a larger

problem size (n=3072), the performance on single SPE reduces to 0.05 GFLOPS. Our

multicore-efficient implementation shows performs well with problem scaling and

achieves a performance of 2.7 GFLOPS/SPE with the problem size n=1536. For both the

naïve parallel and multicore-efficient implementations, we observe an almost linear

scaling of performance with respect to the core-scaling for the problem sizes with n=768

and n=1536. For n=3072, the total required memory space exceeds the available size of

main memory of out IBM Cell/B.E. platform. Thus, the high disk access latencies

incurred with n=3072 reduces the performance of our implementations.

In Figure 5.29(b), we compare the efficiency of the multicore-efficient

implementation with that the ideal computing performance on the IBM Cell/B.E.

platform. The ideal time for PFS-GS is the time required for only computations with the

theoretical peak core performance on single core of the IBM Cell/B.E. platform.

5.5 Conclusion

In this chapter, we have presented experimental studies based on our effective

data parallel design methodology for two commercial available mutlicore platforms, Intel

Clovertown and IBM Cell/B.E. platform. Based on a weighted-vertex pebbling strategy,

data-aware scheduling, data prefetching and caching strategies (see Chapter 3 and 4), we

discuss multicore-efficient implementations of four algorithms, matrix multiplication,

171

FDTD, LU decomposition and power flow solver based on GS method. Note that the

theoretical case studies for matrix multiplication and FDTD algorithms are illustrated in

Chapter 3 and 4. For multicore efficient implementation, we present the in-core

optimization techniques of data transformation, loop transformations and vectorization in

Chapter 5. From theoretical bounds, we determine the size of each the block at each level

of the memory hierarchy, parallel scheduling strategy, and data buffering schemes

considering both the architecture and algorithm. At the register level, we illustrate the

computational ordering based on weighted-vertex pebbling strategy to achieve efficient

vectorized implementations. Also, the effects of data layout on performance are

investigated.

Our multicore efficient implementations seek to aggressively exploit data locality

to achieve good performance. For Intel Clovertown platform, our measurement results of

multicore-efficient implementations indicate a speed-up per core of 31x, 1.8x, 2.8x and

2.4x for matrix multiplication (n=4096), the FDTD algorithm (n=256), the LU

decomposition (n=2048) and the PFS-GS algorithm (n=3072), respectively, compared to

compiler optimized naïve parallel implementations. For IBM Cell/B.E. platform, our

measurement results of multicore-efficient implementations indicate a speed-up per SPE

of 16x, 4.3x, 4.7x and 10.6x for matrix multiplication (n=2048), the FDTD algorithm

(n=128), the LU decomposition (n=2048) and the PFS-GS algorithm (n=1536),

respectively, compared to compiler optimized naïve parallel implementations. We

observe good performance scalability both with the number cores (core-scaling) and the

problems size (problem-scaling) for both platforms. We also note that in algorithms

172

where data locality is limited, efficient vectorization can result in an overall improvement

in performance.

CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1 Conclusion

Multicore architectures attempt to achieve power efficient performance by

exploiting data locality, and data and task level parallelism in an application through

multiple processing cores and deep memory hierarchies integrated on a single chip.

Often, this performance is only realized by designing code that effectively maps the

application to the underlying architecture. A variety of multicore architectures exists in

the market today subscribing to different philosophies regarding the processing

complexity of the core, hardware control of the memory hierarchy and the nature of the

on-chip interconnect.

In this dissertation, we argue that robust portable multicore software is best

designed by focusing on designing algorithms that are parallel, cache friendly, and are

capable of exploiting compute-transfer parallelism. Further, optimization techniques that

are well established across a wide variety of architectures and programming platforms

need to be integrated into this design process to obtain the highest performance. In this

regards, we have presented an efficient software design process that combines algorithm

analysis with practical optimization techniques for data parallel algorithms. The resulting

code shows high performance on diverse commercial multicore platforms, and scales

well both with problem size and the number of cores. Among the algorithm analysis

techniques are a) weighted vertex pebbling game for designing space- and cache-

174

efficient algorithms targeting shared memory hierarchies b) parallel scheduling for

computations at different levels of the memory hierarchy and c) integrated data

prefetching and caching schemes for overlapping data transfer and computation. Among

the optimization techniques are a) efficient cache-friendly data transformation, b) loop

transformations and c) vectorization.

We developed multicore-efficient software developments based on weighted-

vertex pebbling strategy, integrated data prefetching and caching and in-core

optimization techniques for commercial available multicore platforms.

We present detailed case studies that highlight the approach listed above for

different data parallel kernels. In general our multicore efficient implementations

outperform naïve parallel implementation. In particular our multicore efficient

implementation scales well both with respect to problem size and the number of cores.

The multicore efficient matrix multiplication algorithm outperforms the Intel MKL

matrix multiplication library without the use of assembly code. For LU decomposition,

there are trade-offs between larger block sizes and load balancing and less parallel

partitioning. Large block size improve data locality but may result in reduced parallel

data partitions which resulting in poor load balance with core-scaling. For FDTD, we

observe trade-offs between spatial and temporal locality. Layouts such as Z-Morton that

promotes spatial locality within a block adversely affects spatial locality between blocks.

For PFS-GS, we note that although locality of data is limited exploiting data parallelism

through efficient vectorization can improve the overall performance. Also, in all the

above kernels we note that the choice of the scheduling scheme at the register level is

critical in promoting efficient vectorization.

175

6.2 Future work

Our design process identifies algorithm (for example block size) and

implementation parameters (for example loop unrolling depth) that can be tuned to

improve performance on a given multicore platform. For our multicore efficient

implementations on the Intel Clovertown and IBM Cell BE platforms, these parameters

were tuned manually to obtain the highest performance. An extension of our work is to

incorporate an autotuning framework that can automatically identify the best combination

of setting for these parameters that can result in the highest performance on the target

multicore computing platform. Note that since there are a large number of such

parameters with a large range of values combined with the execution time for each

iteration, an exhaustive search of the design space is computationally prohibitive.

Recently auto-tuning frameworks have been proposed for stencil based algorithms on

multicore platforms. Our design process can help identify the best set of tuning

parameters and their nominal values such that the design space exploration time is

minimized.

On the theoretical side, we have considered only static blocking at each level of

the memory hierarchy. In algorithms where there exists a trade-off between block size

and the number of blocks that can be processed in parallel (for example LU

decomposition), dynamically adjusting the block size may result in a better load balance

with good data locality. Such dynamic adjustment of block size may also be important in

virtualized environments where more than one operating system shares the processor. In

this dissertation our focus was on modeling the temporal data locality. In the future we

seek to model spatial data locality as well.

176

Experimentally, we have verified the applicability of the proposed design flow in

developing high performance kernels on the Intel Clovertown and the IBM Cell BE

platforms. In future projects, we will extend the applicability of the design process to

other commercial multicore platforms such as the Sun UltraSPARC T2 and GPUs (for

example Nvidia Tesla). Also, we have applied the integrated caching and prefetching

scheme only to the IBM Cell BE platform. Other multicores such as the Intel Clovertown

and AMD Barcelona have both hardware and software support for prefetching. However,

the cache is hardware controlled and it remains to be seen if the proposed integrated

prefetching and caching schemes will work well on these processors.

177

REFERENCES

[1] S. Adams, J. Payne, and R. Boppana, “Finite Difference Time Domain (FDTD)

Simulations Using Graphics Processors”, In Proc. DoD High Performance
Computing Modernization Program Users Group conference, Pittsburgh, PA, June
2007.

[2] S. Albers and M. Buttner, “Integrated Prefetching and Caching in Single and
Parallel Disk Systems”, Proc. 15th Ann. ACM Symp. Parallel Algorithms and
Architectures, June 2003.

[3] A. Arevalo, R. M. Matinata, M. Pandian, E. Peri, K. Rudy, F. Thomas, and C.
Almond, “Programming the Cell Broadband Engine Architecture Examples and
Best Practices”, IBM Redbooks, IBM International Support Organization, 2008.

[4] [Arge02] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and J. I.
Munro, “Cache-Oblivious Priority Queues and Graph Algorithm Applications”, In
Proceedings of the 34th Annual ACM Symposium on Theory of Computing, p.
268-276, 2002.

[5] D. Bader, V. Kanade, and K. Madduri, “SWARM: A Parallel Programming
Framework for Multicore Processors”, In: First Workshop on Multithreaded
Architectures and Applications (MTAAP) at IEEE IPDPS 2007.

[6] M. Bader and C. Zenger, “Cache oblivious matrix multiplication using an element
ordering based on the Peano curve”, Linear Algebra and its Applications, Elsevier,
2006.

[7] A. Baumann, P. Barham, P. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe, A.
Schüpbach, and A. Singhania, “The multikernel: a new OS architecture for scalable
multicore systems”, In Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles (Big Sky, Montana, USA, October 11 - 14, 2009).
SOSP '09. ACM, New York, NY, 29-44. DOI=
http://doi.acm.org/10.1145/1629575.1629579.

[8] M. A. Bender, E. D. Demaine, M. Farach-Colton, “Cache-Oblivious B-trees”, In
Proceedings of the 41st Annual Symposium on Foundations of Computer Science,
p.399-409, 2000.

[9] M. A. Bender, R. Cole, E. D. Demaine, and M. Farach-Colton, “Scanning and
Traversing: Maintaining Data for Traversals in a Memory Hierarchy”, In
Proceedings of the 10th Annual European Symposium on Algorithms, vol. 2461,
Lecture Notes in Computer Science, p. 139-151, 2002.

[10] G. E. Blelloch, P. B. Gibbons, and Y. Matias, “Provably Efficient Scheduling for
Languages with Fine-Grained Parallelism”, Journal of the ACM, Vol. 46, No.2, pp
281-321, March 1999.

178

[11] G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons, V. Ramachandran, S. Chen, and
M. Kozuch, “Provably Good Multicore Cache Performance for Divide-and-
Conquer Algorithm”, In Proceedings of the Nineteenth Annual ACM-SLAM
Symposium on Discrete Algorithms, Jan. 2006.

[12] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri, “Low Depth Cache-Oblivious
Algorithms”, Carnegie Mellon University Computer Science Technical Report,
CMU-CS-09-134, 2009.

[13] R. D. Blumofe, and C. E. Leiserson, “Space-efficient scheduling of multithreaded
computations”, In the Proceedings of the 25th Annual ACM Symposium on Theory
of Computing, p. 362-371, 1993.

[14] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H. Randall, “Dag-
Consistent Distributed Shared Memory”. In Proceedings of the 10th International
Parallel Processing Symposium, pages 132– 141, Honolulu, Hawaii, Apr. 1996.

[15] D. Bonachea, “GASNet specification v1.1”, U.C Berkeley Tech Report.
UCB/CSD-0201207, U.C. Berkeley, 2002.

[16] J. Byun, A. Ravindran, A. Mukherjee, B. Joshi, and D. Chassin, “Accelerating the
Gauss-Seidel power flow solver on a high performance reconfigurable computer”,
In Proceedings of the 17th IEEE Symposium on Field Programmable Custom
Computing Machines (FCCM), p.227-230, 2009.

[17] P. Cao, E. W. Felten, A. R. Karlin, and K. Li, “A study of integrated prefetching
and caching strategies”, In Proceedings of the ACM International Conference on
Measurement and Modeling of Computer System (SIGMETRICS), p. 188-196,
1995.

[18] D. Chassin, P. Armstrong, D. Chavarria-Miranda, R. Guttromson, “Gauss-Seidel
Accelerated: Implementing flow solvers on field programmable gate arrays”, Power
Engineering Society General Meeting, IEEE, 2006.

[19] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi,
“Nonlinear Array Layouts for Hierarchical Memory Systems”, In Proceedings of
the 13th ACM International Conference on Supercomputing (ICS’99), 1999.

[20] T. Chen, Z. Sura, K. O’Brien, and K. O’Brien, “Optimizing the Use of Static
Buffers for DMA on a CELL Chip”, Workshop on Language and Compiler for
Parallel Computing (LCPC), 2006.

[21] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki, G. E. Blelloch, B.
Falsafi, L. Fix, N. Hardavellas, T.C. Mowry, and C. Wilkerson, “Scheduling
Threads for Constructive Cache Sharing on CMPs”, Symposium on Parallel
Algorithms and Architectures, 2007.

179

[22] R. A. Chowdhury, and V. Ramachandran, “Cache-Oblivious Dynamic
Programming”, Symposium on Discrete Algorithms, p. 591-600, 2006.

[23] R. A. Chowdhury, and V. Ramachandran, “Cache-Efficient Dynamic Programming
Algorithms for Multicores”, Proceedings of the 20th ACM Symposium on Parallel
Algorithm and Architectures, p. 207-216, 2008.

[24] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, and T. von
Eicken, “Log-P: Towards a Realistic Model of Parallel Computation”, Proc. of the
ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming,
pp 1-12, 1993.

[25] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J.
Shalf, and K. Yelick, “Stencil computation optimization and auto-tuning on state-
of-the-art multicore Architectures”, In Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, Austin, Texas, November 15 - 21, 2008.

[26] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, K. Yelick, “Optimization and
performance modeling of stencil computations on modern microprocessors”,
LBNL-63192, 2009.

[27] E. D. Demaine, “Cache-Oblivious Algorithms and Data Structures”, In Lecture
Notes from the EEF Summer School on Massive Data Sets, LNCS, Springer, 2002.

[28] H. Dursun, K.Nomura, W. Wang, M. Kunaseth, L. Peng, R. Seymour, R. K. Kalia,
A. Nakano, and P. Vashishta, “In-Core Optimization of High-order Stencil
Computations”, In Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA), p. 533-538, 2009.

[29] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-Oblivious
Algorithms”, In Proceedings of the 40th Annual Symposium on Foundations of
Computer Science (FOCS), p. 285-297, 1999.

[30] M. Frigo, “Portable High-Performance Programs”, PhD Dissertation, MIT, 1999.

[31] M. Frigo, and V. Strumpen, “Cache Oblivious Stencil Computations”, Proceedings
of the 19th ACM International Conference on Supercomputing, 2005.

[32] M. Frigo and V. Strumpen, “The cache complexity of multithreaded cache
oblivious algorithms”, Proceedings of the eighteenth annual ACM symposium on
Parallelism in algorithms and architectures, 2006.

[33] K. Goto, and van de Geijn, “Anatomy of a high-performance matrix
multiplication”, ACM Transactions on Mathematical Software, 2008.

[34] A. Grama, A. Gupta, G. Karypis, and V. Kumar, “An Introduction to Parallel
Computing: Design and Analysis of Algorithms”, 2nd ed., Addison-Wesley,
Reading, MA, 2003.

180

[35] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and T.
Yamazaki, “Synergistic Processing in Cell’s Multicore Architecture”, IEEE Micro,
p. 10-24, 2006.

[36] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M.
K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun, “Transactional Memory
Coherence and Consistency”, in proceedings of the 31st Annual International
Symposium on Computer Architecture (ISCA’04), IEEE Computer Society, 2004

[37] T. Haung and C. Yang, “Further Results for Improving Loop interchange in Non-
adjacent and Imperfectly Nested Loops”, High-Level parallel programming models
and supportive environments, 1998.

[38] A. Heinecke, and M. Bader, “Parallel matrix multiplication based on space-filling
curves on shared memory platforms”, In Proceedings of the 2008 Workshop on
Memory Access on Future Processors: A Solved Problem? (Ischia, Italy, May 05 -
07, 2008). MAW '08. ACM, New York, NY, 385-392. DOI=
http://doi.acm.org/10.1145/1366219.1366223.

[39] J. L. Hennessy and D. A. Patterson, “Computer Architecture: A Quantitative
Approach”, Morgan Kaufmann, 2nd edition, 1996.

[40] J.-W. Hong and H. T. Kung, “I/O complexity: The red-blue pebble game”, In
Proceedings of 13th Annual ACM Symposium on Theory of Computing, p. 326-
333, 1981.

[41] E. Im, “Optimizing the Performance of Sparse Matrix-Vector Multiplication”,
Ph.D. Dissertation, U.C. Berkeley, 2000.

[42] J. Kahle, M. Day, H. Hofstee, C. Johns, T. Maeurer, and D. Shippy, “Introduction
to the Cell multiprocessor”, IBM Journal of Research and Development, p. 589-
604, 2005

[43] M. Kallahalla, and P. J. Varman, “Optimal prefetching and caching for parallel I/O
systems”, In Proceedings of the 9th Annual European Symposium on Algorithms
(ESA), LNCS, v. 2161, Springer-Verlag, p. 62-73, 2001.

[44] T. Kimbrel, and A. R. Karlin, “Near-optimal parallel prefetching and caching”,
SIAM Journal on Computing 29, p. 1051-1082, 200.

[45] M. Kistler, M. Perrone, and F. Petrini, “Cell multiprocessor Communication
Network: Built for Speed”, IEEE Micro, v.26, p.10-23, 2006

[46] D. Krolak, “Just Like Being There: Papers from the Fall Processor Forum 2005:
Unleashing the Cell Broadband Engine Processor-The Element Interconnect Bus”,
http://www.ibm.com/developerworks/power/library/pa-fpfeib/, 2005.

181

[47] J. Kurzak, W. Alvaro, and J. Dongarra, “Optimizing matrix multiplication for a
short-vector SIMD architecture – CELL processor”, Parallel Computing 35 (2009)
138-150, 2009.

[48] M. S. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance and
optimizations of blocked algorithms”, Proceedings of the fourth international
conference on Architectural support for programming languages and operating
systems, p.63-74, 1991.

[49] W. Liu, J. Tuck, C. Wonsun, A. Karin, S. J. Renau, J. Torrellas, “POSH: A TLS
Compiler that Exploits Program Structure”, Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and practice of parallel programming, 2006.

[50] B. M. Maggs, L. R. Matheson, and R. E. Tarjan, “Models of Parallel Computation:
A Survey and Synthesis”, Proceedings of the Twenty-Eight Hawaii International
Conference on System Sciences, p. 61-70, 1995.

[51] R. K. Malladi, “Using Intel VTune Performance Analyzer Events/Ratios &
Optimizing Applications”, Intel White Paper, 2004.

[52] K. S. Mckinley, S. Carr, and C. Tseng, “Improving Data Locality with Loop
Transformations”, ACM Transactions on Programming Languages and Systems
TOPLAS, v. 18, p. 424-453, July 1996.

[53] D. Molka, D. Hackenberg, R. Schöne, and M. S. Müller, "Memory Performance
and Cache Coherency Effects on an Intel Nehalem Multiprocessor System," pact,
p.261-270, 2009 18th International Conference on Parallel Architectures and
Compilation Techniques, 2009.

[54] A. Munshi, "OpenCL," http://s08.idav.ucdavis.edu/munshi-opencl.pdf, 2008

[55] G. J. Narlikar, “Scheduling threads for low space requirement and good locality”,
Theory of Computing Systems, 35(2), Springer, 2002.

[56] P. R. Panda, H. Nakamura, N. D. Dutt, and A. Nicolau, “Augmenting Loop Tiling
with Data Alignment for Improved Cache Performance”, IEEE Transactions on
computers, vol. 48, 1999.

[57] M. Rafique, A. Butt, and D. Nikolopoulos, “DMA-based prefetching for I/O-
intensive workloads on the Cell architecture”, In Proceedings of the 2008
conference on Computing frontiers, p. 23-32, 2008.

[58] G. Rivera, and C. Tseng, “Tilling Optimizations for 3D Scientific Computations”,
In Proceedings of the ACM/IEEE Conference on Supercomputing, 2000.

[59] J. C. Sancho and D. J. Kerbyson, “Analysis of double buffering on two different
multicore architectures: Quad-core opteron and the Cell-BE”, IEEE/ACM Int.
Parallel and Distributed Processing Symposium (IPDPS), p.1-12, 2008.

182

[60] J. E. Savage, “Extending the Hong-Kung Model to Memory Hierarchies”, In D.-Z.
Du and M. Li, editors, Computing and Combinatorics, volume 959 of Lecture
Notes in Computer Science, p.270-281, Springer Verlag, 1995.

[61] J. E. Savage, “Models of Computation: Exploring the Power of Computing”,
Addison-Wesley Longman Publishing Co., 1997.

[62] J. E. Savage and M. Zubair, “A Unified Model for Multicore Architecture”, In
Proceedings of 1st International Forum on Next-Generations Multicore/Manycore
Technologies (IFMT), Nov. 2008.

[63] M. Shah, J. Barreh, J. Brooks, R. Golla, G. Grohoski, N. Gura, R. Hetherington, P.
Jordan, M. Luttrell, C. Olson, B. Saha, D. Sheahan, L. Spracklen, and A. Wynn,
“Ultrasparc t2: A highly-threaded, power-efficient, sparc soc”, IEEE Asian Solid-
State Circuirts Conference, Nov. 2007.

[64] M. F. Su, I. El-Dady, D. A. Bader, and S. Lin, “A Novel FDTD Application
Featuring OpenMP-MPI Hybrid Parallelization”, In proceedings of the 2004
International Conference on Parallel Processing (ICPP’04), 2004.

[65] J. Thiyagalingam, O. Beckmann, and P. H. J. Kelly, “Improving the performance of
Morton layout by array alignment and loop unrolling: reducing the price of
naivety”, Proceedings of 16th International Workshop on Languages and
Compilers for Parallel Computing, v. 2958, p. 241-257, Springer-Verlag, 2003.

[66] A. Tiskin, “The bulk-synchronous parallel random access machine”, Theoretical
Computer Science, 196, 1-2, p. 109-130, Elsevier, 1998.

[67] G. Tournavitis, Z. Wang, B. Franke, and M. F. O’Boyle, “Towards a Holistic
Approach to Auto-Parallelization: integrating profile-driven parallelism detection
and machine-learning based mapping”, In Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and Implementation
(Dublin, Ireland, June 15 - 21, 2009). PLDI '09. ACM, New York, NY, 177-187.
DOI= http://doi.acm.org/10.1145/1542476.1542496.

[68] L.G. Valiant, “A Bridging Model for Parallel Computation”, Communications of
the ACM, 33(8), p. 103-111, August 1990. DOI=
http://doi.acm.org/10.1145/79173.79181.

[69] L. G. Valiant, “A Bridging Model for Multicore Computing”, In Proc. 16th
European Symposium on Algorithms, p.13-28, 2008.

[70] P. van Emde Boas, “Preserving Order in a Forest in Less Than Logarithmic Time
and Space”, Information Processing Letters, 6(3), p. 80-82, 1977.

[71] V. Varadarajan and R. Mittra, “Finite-Difference Time-Domain (FDTD) Analysis
Using Distributed Computing”, IEEE Microwave and Guided Wave Letters, Vol. 4,
May 1994.

183

[72] J. S. Vitter, and E.A.M. Shriver, “Algorithms for parallel memory I: Two level
memories”, Algorithmica, v. 12, n. 2-3, p. 110-147, 1994.

[73] J. S. Vitter, and E.A.M. Shriver, “Algorithms for parallel memory II: Hierarchical
multilevel memories”, Algorithmica, v. 12, n. 2-3, p. 148-169, 1994.

[74] D. Wentzlaff, and A. Agarwal, “Factored operating systems (fos): the case for a
scalable operating system for multicores”, SIGOPS Oper. Syst. Rev. 43, 2 (Apr.
2009), 76-85. DOI= http://doi.acm.org/10.1145/1531793.1531805.

[75] D. Wentzlaff, C. Gruenwald III, N. Beckmann, K. Modzelewski, A. Belay, L.
Youseff, J. Miller, and A. Agarwal, “A Unified Operating System for Clouds and
Manycore:fos”, Computer Science and Artificial Intelligence Laboratory Technical
Report, MIT-CSAIL-TR-2009-059, 2009.

[76] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of sparse matrix-vector multiplication on emerging multicore
platforms”, Proceedings of the 2007 ACM/IEE conference on Supercomputing,
2007.

[77] M. E. Wolf and M. Lam, “A data locality optimizing algorithm”, In Proceedings of
the SIGPLAN’91 Conference on Programming Language Design and
Implementation, Toronto, Canada, June 1991.

[78] M. Xu and P. Thulasiraman, “Parallel Algorithm Design and Performance
Evaluation of FDTD on 3 Different Architectures: Cluster, Homogeneous
Multicore and Cell/B.E.”, Proceedings of 10th IEEE International Conference on
High Performance Computing and Communications (HPCC), p. 174-181, 2008.

[79] K. S. Yee, “Numerical solution of initial boundary value problems involving
Maxwell’s equations in isotropic media”, IEEE Transaction on Antennas and
Propagation, v. AP-14, p. 203-307, May 1966.

[80] L. Youseff, and R. Wolski, “Vshmem: Shared-Memory OS-Support for Multicore-
based HPC systems”, Technical report, UC-Santa Barbara, 2009,
http://www.cs.ucsb.edu/research/tech_reports/reports/2009-15.pdf.

[81] M. Vouk, “Cloud computing Issues, research and implementations”, In 30th
International Conference on Information Technology Interfaces (ITI 2008), p. 31-
40, 2008.

[82] First the tick, now the tock: Next generation Inter microarchitecture (Nehalem),
Intel White paper, 2008.

