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Abstract

A Bayesian network (BN) is a compact graphic representation of the probabilistic re-

lationships among a set of random variables. The advantages of the BN formalism

include its rigorous mathematical basis, the characteristics of locality both in knowl-

edge representation and during inference, and the innate way to deal with uncertainty.

Over the past decades, BNs have gained increasing interests in many areas, including

bioinformatics which studies the mathematical and computing approaches to under-

stand biological processes.

In this thesis, I develop new methods for BN structure learning with applications to bi-

ological network reconstruction and assessment. The first application is to reconstruct

the genetic regulatory network (GRN), where each gene is modeled as a node and an

edge indicates a regulatory relationship between two genes. In this task, we are given

time-series microarray gene expression measurements for tens of thousands of genes,

which can be modeled as true gene expressions mixed with noise in data generation,

variability of the underlying biological systems etc. We develop a novel BN structure

learning algorithm for reconstructing GRNs.

The second application is to develop a BN method for protein-protein interaction (PPI)

assessment. PPIs are the foundation of most biological mechanisms, and the knowl-

edge on PPI provides one of the most valuable resources from which annotations

of genes and proteins can be discovered. Experimentally, recently-developed high-

throughput technologies have been carried out to reveal protein interactions in many

organisms. However, high-throughput interaction data often contain a large number of
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spurious interactions. In this thesis, I develop a novel in silico model for PPI assess-

ment. Our model is based on a BN that integrates heterogeneous data sources from

different organisms.

The main contributions are:

1. A new concept to depict the dynamic dependence relationships among random

variables, which widely exist in biological processes, such as the relationships among

genes and genes’ products in regulatory networks and signaling pathways. This con-

cept leads to a novel algorithm for dynamic Bayesian network learning. We apply it

to time-series microarray gene expression data, and discover some missing links in a

well-known regulatory pathway. Those new causal relationships between genes have

been found supportive evidences in literature.

2. Discovery and theoretical proof of an asymptotic property of K2 algorithm ( a

well-known efficient BN structure learning approach). This property has been used

to identify Markov blankets (MB) in a Bayesian network, and further recover the BN

structure. This hybrid algorithm is evaluated on a benchmark regulatory pathway, and

obtains better results than some state-of-art Bayesian learning approaches.

3. A Bayesian network based integrative method which incorporates heterogeneous

data sources from different organisms to predict protein-protein interactions (PPI) in

a target organism. The framework is employed in human PPI prediction and in as-

sessment of high-throughput PPI data. Furthermore, our experiments reveal some

interesting biological results.

4. We introduce the learning of a TAN (Tree Augmented Naïve Bayes) based net-

work, which has the computational simplicity and robustness to high-throughput PPI

assessment. The empirical results show that our method outperforms naïve Bayes and

a manual constructed Bayesian Network, additionally demonstrate sufficient informa-

tion from model organisms can achieve high accuracy in PPI prediction.
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1. Introduction

1.1 Motivation

A Bayesian network (BN) is a probabilistic graphical model that characterizes a joint probability

distribution among a set of random variables, using a directed acyclic graph (DAG) and a condi-

tional probability table (CPT) for each variable in the network given its parent set. The graphical

representation visually captures conditional dependencies among the variables and allows for en-

coding expert knowledge in uncertain domains. Bayesian networks also provide a natural way

to incorporate heterogeneous data into a single model and integrate existing knowledge with new

informations. Therefore, Bayesian networks have been widely applied to a variety of fields.

In the medical field, a Bayesian network has long been used for diagnosis, prognosis, and

treatment selection [1–7]. In artificial intelligence area, Bayesian networks have been used in

natural spoken dialog systems [8], vision recognition [9], expert system [10]. Recently, Bayesian

networks have been used in data mining, search engine optimization, computational molecular

Biology, Bioinformatics [11], and biological data integration.

There are three main tasks for BNs: probabilistic inference, parameter learning, and structure

learning [12]. Inference refers to the task of computing the posterior distribution over a set of query

variables given some evidence variables in the network. It is only possible if we know in advance

the network structures and the associated CPT. Parameter learning also assumes that the network

structure is available and focuses on predicting the probability distribution for every variable con-

ditional on its parents in the network. Apparently, the most fundamental task in applying BNs is

to construct the network structures.

In some simple applications, the network structure of a DAG is manually constructed by experts

and is then used for inference. For example, one can build a belief network by thinking in terms
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of causal relationships between diseases and symptoms (e.g., fatigue, loss of appetite, sore throat,

cold, strep throat, or something more serious). There are many other applications, however, which

are either time consuming or too complex for experts to build a network. Alternatively, one may

construct the network structure from data via computational learning methods.

Bayesian networks are a succinct and efficient way to represent a joint probability distribution

among a set of variables. Besides their ability for density estimation [13], their semantics lend

them to what is sometimes loosely referred to as causal discovery, namely directional relationships

among quantities involved. It has been widely accepted that the most parsimonious representation

for a Bayesian net is one that closely represents the causal independence relationships that may

exist. For these reasons, there has been great interest in automatically inducing the structure of

Bayesian nets from data, preferably also preserving the independence relationships in the process.

1.2 Problem Statement

In this thesis, I will focus on developing effective and efficient methods for learning structures

of Bayesian networks and applying the new methods for biological data analyses. My motiva-

tions for structure learning are (1) to learn a model for reconstructing domain structures (e.g.,

genetic regulatory networks) and (2) to use the model for classification tasks (e.g., assessment of

protein interactions). I will address two significant problems of BN structure learning, risen in

bioinformatics applications, namely limited sample size and high dimensionality. For example, in

microarray-based genetic regulatory network reconstruction tasks, one typically has, on one hand,

less than 200 instances and on the other hand, several thousands of genes. As a result, small sam-

ple sizes tend to introduce many false positives and high dimensionality leads to computationally

intractable problems.
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2. Background and Related Work

2.1 Bayesian Networks

A Bayesian network is a probabilistic graphical model that typically consists of two components:

(1) a DAG with nodes representing random variables and edges characterizing causal relationships

between nodes, and (2) a probability table that describes the conditional dependencies among

nodes. Fig. 2.1 shows an example of a BN with five binary nodes (variables) and five edges.

The necessary condition for a DAG G to be a Bayesian network of a probability distribution

P is for P to admit the product decomposition dictated by G , as given below [14] :

P(X1, · · · ,Xn) = ∏
i

P(Xi|π(Xi)) (2.1)

Where, X1, · · · ,Xn are n random variables in the distribution P , also n nodes in DAG G . π(Xi)

is the set of nodes(variables) which directly precede Node Xi, namely, the parent set of Xi. The

left side of Equation 2.1 is the joint probability of the n random variables, and P(Xi|π(Xi)) is

the probability of Xi conditioned on its parent set. Equation 2.1 is also called the decomposition

property of a Bayesian network. If a distribution and a DAG satisfy the above relationship, they

are said compatible or Markov related. The decomposition property is the theoretical foundation

of Bayesian network inference and greatly simplifies the process.

In this work, we only consider discrete variables and complete datasets (i.e., no missing data).

In the following definitions, I will use an upper-case letter to represent a variable (e.g., X) and the

same lower-case letter to denote a state of that variable (e.g., x). The structure of a BN represents

the conditional independence among variables, which is defined as follows:

Definition 1 (conditionally independent) [15]: Considering three distinct variables X , Y and Z

in a variable set V , random variables X and Y are conditionally independent given Z if ∀x,y,z and

3



Figure 2.1 – A synthetic Bayesian network with a directed acyclic graph and conditional probability

tables, where each value represents the conditional probability of a node given its parent nodes.

P(Z = z)> 0,

P(X = x,Y = y|Z = z) = P(X = x|Z = z)×P(Y = y|Z = z) (2.2)

This conditional independence is denoted as (X ⊥ Y |Z).

The relationship between the conditional independence and certain graphical structures can be

described by a DAG property called d-separation, which is defined on the basis of paths:

Definition 2 (d-separation) [14]: A path p is said to be d-separated (or blocked) by a set of

nodes Z if and only if

1. p contains a chain i→ m→ j or a fork i← m→ j, such that the middle node m is in Z, or

2. p contains an inverted fork (or collider) i→ m← j, such that the middle node m is not in Z

and no descendant of m is in Z

A set Z is said to d-separate X from Y if and only if Z blocks every path from a node in X to a

node in Y , denoted as (X �Y |Z ). If X and Y are not d-separated by Z, they are called d-connected,

written as (X ↔ Y |Z).

The concept of d-separation is often used in graphically testing whether a variable X is inde-
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pendent of another variable Y given a set of variables Z in a DAG. This practice is based on the

assumption of the faithfulness condition (defined next) between a DAG and a probability distribu-

tion.

Definition 3 (faithfulness condition) [15]: Suppose we have a joint probability distribution

P of the random variables in a set V and a DAG G = (V ,E) (V is the set of vertices, E is a

set of directed edges). Then (P,G ) satisfy the faithfulness condition if and only if all and only

conditional independencies in P are identified by d-separation in G . G is called a perfect map of

P if they satisfy the faithfulness condition.

Definition 4 (Markov Blanket) [15]: Let V be a set of random variables, P be their joint

probability distribution, and X ∈V . Then a Markov blanket Mb(X) is any set of variables such that

X is conditionally independent of all the other variables given Mb(X). That is,

X ⊥ {V −X−Mb(X)}|Mb(X) (2.3)

Markov boundary of X is defined as any Markov blanket such that none of its proper sub-

sets is a Markov blanket of X. In other words, Markov boundary is the smallest Markov blanket.

Thereafter in this thesis, when Markov blanket is mentioned, we actually mean Markov boundary.

In a Bayesian network (G ,P ) where G and P satisfy the faithfulness condition, the Markov

blanket of a node X is the set of its parents, children and children’s parents(spouse).

As illustrated in Figure 2.2, the Markov Blanket of the node X , Mb(X), contains its parents (B

and C), children (D and E) and the direct parent of the direct child (A - parent of D), i.e., Mb(X) =

{B,C,D,E,A}. When given Mb(X), X is independent to the outside nodes Z = {U,V,W,S}, or

X ⊥ Z|Mb(X).

2.2 Struture Learning Methods

Without knowing the structure and the probability table of a Bayesian network in advance, the goal

of structure learning is to reconstruct the network based on the data available. A fundamental as-
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Figure 2.2 – An example of Markov Blanket in a Bayesian network: the Markov Blanket of the node

X , Mb(X) contains its parents (B and C), children (D and E) and the direct parent of the direct child

(A, parent of D), i.e., Mb(X) = {B,C,D,E,A}

sumption in structure learning is that the dataset contains independently and identically distributed

(i.i.d.) instances generated from an underlying distribution P , which is induced by a Bayesian

network G . Following this assumption, a number of computational methods have been developed

for structure learning, which can be roughly grouped into three classes: constraint-based, search-

and-score based, and hybrid methods.

2.2.1 Constraint-based methods

Constraint-based methods try to find a DAG by exploring the independence in a BN [12]. They run

some conditional dependence and independence tests in the training data and construct a network

that is consistent with these tests (constraints) [16–24]. For example, Geiger et al. [17] developed

a recovery algorithm to reconstruct a simplified DAG, called polytree (a singly-connected DAG

that satisfies three properties: composition, intersection and marginal weak transitivity), in a poly-

nomial time. They assumed a data distribution that was close to Gaussian. Meek [19] proposed a

dependency model-based method (a dependency model is a set of independence statements), which

consists of several steps including building an undirected graph first and assigning directions for
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edges. The background knowledge was also introduced for extending the DAG. de Campos and

Huete [20] proposed an independence test- based approach to learn a special class of DAGs with

priori limiting structures , called simple graphs. A simple graph is a DAG satisfying the following

condition: two couple nodes (nodes sharing a common direct child) are d-separated by the empty

set. Although structurally limited, simple graphs represent richer sets of independence relation-

ships than polytrees (indeed, polytrees can be treated as a special case of simple graphs). The

structure recovery algorithm developed by de Campos and Huete [20] includes two main steps:

detecting the skeleton and assigning the head-to-head connections. One year later, de Campos [21]

studied the class of dependency models in singly connected networks using d-separation criterion

and developed efficient algorithms (both exact and approximate) for singly connected networks

learning from data. To reduce the computational complexity of structure learning, de Campos and

Huete [22] proposed the use of conditional independence tests of order zero and one (the cardi-

nality of a conditional independence test) to detect an initial structure and then some additional

higher-order tests for network refinement. The conditional independence tests are conducted in

terms of the Kullback-Leibler cross-entropy. In this approach, it is assumed that the perfect or-

dering of the nodes is known. Cheng et al. [23] employed an information theoretic dependency

analysis method to assess the conditional independence relationships. They developed two algo-

rithms, one for cases with given node ordering information and the other without such information.

The algorithms consist of three phases called drafting, thickening and thinning: drafting builds an

initial network based on mutual information for node pairs; thickening creates an I-map of the

dependency model; finally thinning removes spurious edges using conditional independence tests.

There are two disadvantages of the methods in this category: exponential execution times, and

proneness to errors in dependence tests used.

2.2.2 Search-and-score based methods

Among these structure learning methods, search-and-score method is the most commonly used

strategy. It identifies a DAG that fits the data better in terms of a pre-defined criterion. As the name

7



suggested, a search-and-score method typically requires a scoring function and a search strategy.

The scoring function is used to assess how well a network fits with the given data and the search

method is employed to identify the highest scoring structure over a typically large search space of

possible network structures.

Two of the most obvious choices for scoring functions are likelihood score and Bayesian score.

Likelihood scoring functions measure P(D|S), the probability of the observed data D given a

structure S, i.e., how likely we will observe the training data given a network structure. Bayesian

scoring functions, on the other hand, test P(S|D), the posterior probability of the structure given the

observed data, by introducing a prior distribution P(S) over the possible values of each network

parameters in a likelihood estimation. Note that a prior probability reflects the purely subjec-

tive assessment of a network and the posterior probability P(S|D) is proportional to the product

of the prior P(S) and the likelihood P(D|S). Cooper and Herskovits [24] described a posterior

probability-based scoring function with the assumption of uniform-distributed density function for

the probability of parameter vectors given a structure. Interestingly, as pointed out by Bouck-

aert [25], the Bayesian score developed in [24] may not be the same for two networks with the

same set of independency statements. Enlightened by the applications from coding theory, a new

measure function based on the minimum description length (MDL) was also proposed [25–27] .

The MDL measure introduced a penalty term, which induced the principle of Occams razor by

penalizing network structures with more edges. Similar scores including AIC criterion and BIC

criterion were also introduced for structure learning of Bayesian networks [28]. A potential prob-

lem with these scoring methods is that there might exist many network structures with the same

score, which makes the search difficult. To address this problem, Heckerman and Geiger [29] in-

troduced some practical methods to assign likelihoods and parameter priors for structure learning.

Particularly, they described a new prior called the Dirichlet distribution for the parameter variables

and derived a score metric called the likelihood equivalence Bayesian Dirichlet score (BDe) [30].

Another issue with score-based structure learning is that many structures may fit the given data

equally well. Friedman and Koller proposed an approach called model averaging to address this
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problem [31].

Search problem is also referred to as the identification problem, which attempts to identify

one or more DAGs with the highest value for a pre-selected scoring criterion. Since the number

of possible structures increases exponentially as the number of nodes grows, an exhaustive (brute

force) search of all network structures is not computationally feasible even for networks of mod-

erate size. For example, for three nodes, the number of possible structures is 25; for ten nodes,

this number grows to 4.2×1018 [24]. Indeed, Chickering and his fellow researchers [32, 33] have

shown that learning Bayesian networks from data is NP-hard, even when each node has at most

two parents. To reduce the time complexity for structure learning, heuristic search methods are

often used. For example, Cooper and Herskovits [24] developed a greedy-search based method,

called K2 algorithm, which assumed that the node ordering information is available. It started from

an empty set of nodes and added nodes incrementally according to the probability of the resulting

structures. Madigan and York [34] introduced Markov Chain Monte Carlo (MCMC) simulation

method for structure search. Other search methods, such as genetic algorithms [35, 36], simulated

annealing [37], tabu search [38] , and branch and bound [39] were also introduced for network

search.

2.2.3 Hybrid methods

Hybrid methods [40–46] combine constraint and search-and-score methods. In general, indepen-

dence tests are used to build an initial network in order to reduce the search space and search-and-

score methods are then applied to the initial networks to detect the DAG that optimizes the score

function. Singh and Valtorta used conditional-independence tests to detect the ordering on the

nodes and then a Bayesian score to recover the network structures [40, 41]. Spirtes and Meek [42]

used the PC algorithm [18] to construct an initial network structure and then a greedy Bayesian

search algorithm to construct the final networks. Dash and Druzdzel [43] proposed to search the

space of equivalent classes of structures using constraint-based approaches and then to score with

Bayesian methods. Acid and de Campos [44, 45] developed a hybrid method that emphasized the
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balance between model complexity and accuracy. Most recently, Tsamardinos et al. [46] devel-

oped a new algorithm, called Max-Min Hill Climbing, which utilized methods in local learning

and constraint-based to construct an undirected network, and search-and-score based methods to

assign directions.

2.3 Bioinformatics Applications

Structure learning of Bayesian networks has been applied in many fields in computational biology.

In some cases, the ultimate goal is to learn the network structures [11, 47–59]. In other cases,

structure learning is a necessary step for inference [60, 61] .

In regulatory network reconstruction, we are given time-series microarray gene expression

measurements for tens of thousands of genes. Our goal is to reconstruct the regulatory networks

from these high-throughput expression data. The assumption underlying computational recon-

struction of biological networks from microarray data is that the expression levels of a gene are

closely tied to those of its transcription factors, which are products of some other genes. In re-

constructing regulatory networks, each gene is modeled as a node (variable) and the vector of its

expression measurements is modeled as true gene expressions mixed with noise in data generation,

variability of the underlying biological systems etc. With this setting, we use the structure learning

methods to identify a network structure that maximizes a pre-determined scoring function. We can

use the original expression measures, which are continuous, or discretized expression levels (e.g.,

up-regulated, no change, and down-regulated) [11, 47–57].

Care should be taken when one interprets the reconstructed structures. First, the structure of a

Bayesian network is just a simplified version of the biological system as a high-level abstraction. It

reflects the roles and interactions of different genes. Second, a Bayesian network may not be able

to distinguish the causal relationship between genes. This is because for some cases, two networks

of the same architecture may generate the same scores even though some of the edge directions in

those networks are different. Possible solutions are to use biologically interventional expression

data (e.g., gene knockouts) and to integrate biological knowledge (e.g., transcriptional factors) into
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the learning process.

In discovering protein signaling pathways, we are modeling intracellular multicolor flow cy-

tometry data, which are simultaneous observation of multiple phosphorylated protein and phos-

pholipid components in several thousands of human immune system cells [58]. In this application,

nodes are molecules in signaling pathways and edges represent the dependencies between these

molecules. A Bayesian network learning method is applied to search for the structure that repre-

sents a model average from 500 results of high scores. In order to detect the causal influences in

cellular signaling networks, the cells are perturbed with a series of stimulatory cues and inhibitory

interventions.

Structure learning in Bayesian networks can be applied to many other problems in addition to

regulatory networks and signaling pathways. For example, in genome wide association studies,

structure learning can be used to model association of hundreds of thousands of single nucleotide

polymorphisms with a particular disease or phenotype using genotyped data [59]. In addition, BN

methods have been applied for inference tasks in bioinformatics [60,61]. The rapid growth in high-

throughput technologies and decreasing price in high-throughput experiments will likely provide

many more large-scale and large-dimensional biological data, which will offer new applications

and significant challenging for Bayesian network learning.

2.4 Challenges and the aims of the thesis

Both constraint-based and search-and-score methods have their own advantages and limitations.

By constraining the search space in terms of conditional independence tests, constrain-based meth-

ods are relatively quick and do not require the node ordering information. However, in order to

accurately recover the network structures, constraint-based approaches often need an exponential

number of conditional independence tests with a large number of variables; furthermore, an early

mistake in individual independence tests may subsequently lead to a wrong network construc-

tion [12]. Search-and-score techniques, on the other hand, focus on the evaluation of the network

as a whole and generate networks that fit the training data well (in terms of likelihood or posterior
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probability). However, due to the computational complexity, most of the search-and-score methods

require the node ordering information, which is not readily available in real applications. Hybrid

approaches provide a balanced learning that possesses the search power of a constraint-based al-

gorithm while maintains the efficiency of a search-and-score algorithm.

Regardless of which methods we use, the performance (e.g., network accuracy) of the three

classes are quite similar if the sample size is sufficiently large. However, when we apply the

methods to bioinformatics problems where sample sizes are very limited, we need to carefully

design the structure learning methods and select appropriate evaluation functions. Direct use of

the current methods may fail to reliably reconstruct the networks, mainly for the following two

reasons:

Sample complexity: It has been shown [61] that many learning algorithms will asymptotically

converge to the same ’true’ model. With small to medium-size samples, however, the accuracy

of learning models will decrease significantly. Ideally, for reliable structure reconstruction, the

number of training samples should increase exponentially with the number of nodes. Unfortunately

this is not true for our applications: for microarray-based gene network reconstructions, there are

typically thousands of genes (each of which is a random variable) and only a few hundred data

points (instances).

Computational complexity: Due to the exponential number of possible networks, it has been

shown that structure learning is a NP-hard problem, even when each node has at most two parents

[32, 33]. With gene expression data having several thousands of nodes, identifying an optimal

structure with respect to a given evaluation criterion is computationally intractable. Thus, one has

to use heuristic search methods to find ’suboptimal’ solutions.

The combination of limited sample size (e.g., number of experiments) and high dimensionality

(e.g., number of genes) presents a significant challenge for structure learning in biological network

reconstruction. With the exponential number of possible structures and limited sample sizes, it

is highly likely for search-and-score methods to produce many models (structures) that have the

same high score. In cases like this, one randomly selects a structure generated from these models
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as the true DAG [31]. As Friedman and Koller pointed out in [31], ’we have no guarantees that

these structural features are even likely relative to the set of possible structures’. In addition, in

gene network reconstruction tasks, one node can potentially have many parents and children nodes

(e.g., a transcription factor (TF) binding proteins can have several TFs as its parent nodes). For

these nodes, the conditional independence tests many not be reliable. My thesis work will address

these challenging problems by developing effective structure learning methods for limited sizes of

samples with high dimensionality. Our targeted application is to reconstruct gene networks using

gene expression data.

Another application of BN in bioinformatics is classification. While most of work has been

devoted to structure learning, limited research has been done to address the classification tasks

using structure learning. Most of the existing work treats classification as a direct result of struc-

ture learning. Since classification and structure learning are different tasks with different goals, an

optimal prediction performance may not be reachable if we use the criterion function designed for

structure learning. In this thesis, we will develop structure learning methods that are for classifica-

tion, which is applied to the assessment of protein-protein interactions.
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3. Gene Regulatory Network Reconstruction Using Dynamic

Bayesian Network Methods

3.1 Introduction

The structure and biological functions of a living cell are attributed to complex interactions be-

tween the cell’s numerous constitutes, such as proteins, DNA and RNA [62, 63]. Thus, there is

a critical need to understand how these molecules interact with each other and the dynamics of

the interactions. With the advent of high throughput microarray technologies, mRNA expression

levels of tens of thousands of genes can now be measured simultaneously [64, 65]. Knowledge of

mRNA levels under different time points provides hints about the effect of external stimuli and the

expression levels of other genes on a particular gene, which helps understand the underneath reg-

ulatory networks or signaling pathways. Analysis of time-series gene expression data has shown

great potential in deciphering cellular networks.

Among a variety of modeling methods, Bayesian networks (BNs) have shown particular promise

to infer biological pathways from observational time-series gene expression data [48,54,55,66–68].

BNs are especially suitable for learning regulatory networks or biological pathways for the follow-

ing reasons: (1) the sound probabilistic semantics allows BNs to deal with the noises that are

inherent in experimental measurements; (2) BNs can handle missing data and permit the incom-

plete knowledge about the biological system; and (3) BNs are capable of integrating the prior

biological knowledge into the system.

While static BNs have been successfully applied to reconstruct gene networks from microarray

data, BNs have their limitations in that they cannot construct cyclic networks and feedback loops.

Since a real gene regulatory mechanism has cyclic regulation including feedback loops, a dynamic

Bayesian network (DBN) is preferable to model complex biological networks with feedback loops.
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DBNs are capable of capturing cyclic information and dynamic characteristics of regulatory path-

ways of a cell. Friedman et. al. [69] and Murphy and Mian [70] first applied DBN for time-series

gene expression data modeling. Ong et. al. [71] modeled regulatory pathways in E. coil using

DBNs and biological knowledge. Perrin et. al. [72] used a DBN to test against experimental data

relative to the S.O.S. DNA repair network of the Escherichia coli bacterium. Parameters and miss-

ing data were handled via a penalized likelihood maximization approach. Kim et. al. [73] proposed

a nonlinear regression based DBN model for constructing a gene network from continuous time

series gene expression data.

Successful studies on DBNs in biological pathway reconstruction have been reported, two

major problems associated with the current DBN methods may limit their applications in large-

scale network analysis: relatively low accuracy of regulatory network prediction and excessive

computation time [56]. Zou and Conzen [56] proposed to alleviate the two problems associated

with standard DBNs by selecting a set of potential regulators for each gene first. The selection of

regulators was based on the time points of the initial expression change (up-regulation or down-

regulation) for each gene, which was heuristic in nature: for each gene, the genes that have earlier

up-regulation would be considered as potential regulators. The proposed method was tested on

yeast cell cycle data and predicted genetic networks with significantly improved accuracy and

reduced computational time compared to the standard DBN methods. However, cautions have

to be paid to the selection of appropriate cutoffs for defining up-regulation and down-regulation.

Furthermore, the method would miss some potential genes that were initially down-regulated but

together with some other initially up-regulated genes, also served as other genes’ regulators. While

the approach was much faster than standard DB approach, the specificity was low, especially for

the cases of no prior knowledge of transcript factors.

In this study, we present a novel DBN-based approach for reconstructing the underlying gene

networks from both simulated data and real time-series gene expression data. The proposed method

uses differential mutual information to select potential parents for each node. Furthermore, we

propose to adjust Dirichlet prior in a Bayesian scoring metric for network regulation in small
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Figure 3.1 – An Example of a dynamic network with cyclic regulations. (a) The directed cyclic graph

representation. (b) The directed acyclic graph representation.

sample learning problems. This score is applied to each node to evaluate its parents. The proposed

method is first evaluated for recovering two complex networks from simulated data. It is then

applied to real yeast time-series gene expression data for reconstructing a cell cycle pathway.

3.2 Structure Learning Methods

A dynamic Bayesian network (DBN) is a directed graphic model used for modeling time-series

data. It is an extension of BN to model temporal processes. The arcs between the nodes in a

DBN are parameterized by conditional probability distributions that model temporal dependencies

between variables. Figure 3.1 shows an example of a discrete DBN with four variables, where

Figure 3.1(a) is the directed cyclic graph representation of the network, which cannot be learnt by

a Bayesian network; Figure 3.1(b) is the corresponding directed acyclic graph representation at

two time points t−1 and t. A DBN can be used to model a genetic regulatory network from time-

series gene expression data: each node represents a gene and the arcs between two nodes indicate

regulatory interactions between genes. Thus, reconstructing genetic networks is to learn network

structures from experimental data. In order to learn the network structures, we need to construct a

scoring metric for model evaluation. We choose to learn the network that maximizes the posterior

probability of the network, which is described next.
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3.2.1 Bayesian Scoring Metric

Consider a dataset of T samples, D = (X [1],X [2], · · · ,X [T ])T , where the tth sample is X [t] =

(X1[t],X2[t], · · · ,Xn[t])T and n is the number of nodes (vertices) in a DBN (the superscript T

represents transpose). In microarray data analysis, T is the total number of time points (or the

number of microarrays), n is the number of genes, and X [t] is the gene expression level vec-

tor measured at time t. Fully characterizing a dynamic network requires a joint probability dis-

tribution over all the random variables, which could be extremely complex. To reduce model

complexity, two assumptions are typically made in DBN [69]: (1) Markovian assumption, i.e.,

P(X [t + 1]|X [t], · · · ,X [0]) = P(X [t + 1]|X [t]); and (2) stationary assumption, i.e., P(X [t + 1]|X [t])

is a constant, i.e., independent of t. Given these assumptions, the joint probability can be written

as

P(D|G,Θ) =
n

∏
k=1

T

∏
t=2

θk(t) (3.1)

where G is the directed network and Θ represents the set of parameters that quantifies the

network with components of conditional probabilities θk(t) = P(Xk(t)|XPa(t− 1)), XPa(t− 1) is

the parent set of Xk(t) in G, which contains nodes at t − 1. Note that we are interested in the

transition network and accordingly the probability of the prior network (at t = 1) is ignored.

Using the Bayes rule, the posterior distribution is P(G|D) = P(G,D)/P(D). Since P(D) is

independent of the graph G, maximizing the posterior distribution is equivalent to maximize

P(G,D) = P(G) ·P(D|G) , where the likelihood of the data D given a network structure G can

be expressed as

P(D|G) =

ˆ
P(D|G,Θ)P(Θ|G)dΘ (3.2)

Under the assumption that the prior distribution over parameters Θ follows the Dirichlet dis-

tribution with hyperparameters αi jk > 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ qi and 1 ≤ k ≤ ri, where qi is the

number of states the parents of node i as a group can take and ri is the number of states node i
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can take [69], the likelihood P(D|G) can be solved in a closed-form [24]. Furthermore, like many

others, we assume that no prior knowledge exists about the structure G. Thus, a non-informative

uniform prior is used for P(G) (we will drop this term thereafter). An interesting and useful prop-

erty of the scoring function is that the posterior probability score S(G : D) of the network structure

G given the data D is decomposable [24]. As a result, instead of computing S(G : D) for the whole

structure, we may evaluate each nodes (and their parents) independently by the following scoring

function:

Si(XPa
i (t−1) : D) =

qi

∏
j=1

Γ(∑ri
k=1 αi jk)

Γ(∑ri
k=1(αi jk +Ni jk))

·
ri

∏
k=1

Γ(αi jk +Ni jk)

Γ(αi jk)
(3.3)

where Ni jk is the number of times we observe in the data that Xi(t) = k and XPa
i (t− 1) = s j,

and Γ is the gamma function.

In microarray-based genetic regulatory network reconstruction, one of the challenging prob-

lems is the small sample size leading to poor prediction performance. We herein propose to adjust

the hyper-parameters αi jk in order to alleviate the small sample problems and to improve predic-

tion accuracy. While there are many ways to specify αi jk, we investigate a special case where αi jk

are set to be a constant. Note that the commonly-used BDe (Bayesian Dirichlet equivalence) score

can be considered as a special case with αi jk = N/(riqi) [30].

The optimal graph can be obtained by maximizing the score in Eq. 3.3 for each node indepen-

dently. For each node, however, the number of possible sets of parents is quite large. Consequently,

searching for the optimal structure is too computationally expensive. Next, we introduce the dif-

ferential mutual information to limit the possible of sets of parents for each node.

3.2.2 Differential Mutual Information

Mutual information (MI) has been applied in BN-based structure learning [48,67]. In this section,

we propose the differential MI (DMI) for use in DBNs. The MI between two random variables

Xi and Xj, denoted by I(Xi,Xj), is defined as the amount of information shared between the two
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variables. It is used to detect general dependencies in data. I(Xi,Xj) is mathematically defined as

follows:

I(Xi,Xj) = H(Xi)−H(Xi|Xj) (3.4)

where, H(Xi) represents the entropy of the random variable Xi and H(Xi|Xj) represents the con-

ditional entropy of random variable Xi given the random variable Xj [74]. Entropy and Conditional

Entropy are mathematically defined by the following equations:

H(Xi) =−
ri

∑
k=1

P(Xi = k) · log(P(Xi + k)) (3.5)

and

H(Xi|Xj) =−
ri

∑
k=1

r j

∑
l=1

P(Xi = k,Xj = l) · log(P(Xi = k|Xj = l)) (3.6)

Here, P(Xi = k,Xj = l) is the joint probability distribution of the two random variables Xi and

Xj, and P(Xi = k|Xj = l) is the conditional probability of the random variable Xi given the random

variable Xj.

In a DBN, all the parents (potential regulators) {Xj} of a node (gene) Xi at time t come from

nodes at time t − 1. Thus, for each node Xi, in order to find its potential parents {Xj}, we need

to consider the mutual information between the node Xi to all the other nodes (including itself) in

previous time slot. This can be achieved by calculating the joint probability in Eq. 3.6 as follows

(the conditional probability can be computed based on the joint probability):

P(Xi = k,Xj = l) =
T−1

∑
t=1

δ (Xi(t +1),Xj(t))/T (3.7)

where, δ (Xi(t+1),Xj(t)) = 1, if Xi(t+1) = k and Xj(t) = l; δ (Xi(t+1),Xj(t)) = 0, otherwise.

Since this MI is based on nodes from different time, we call it differential mutual information

(DMI). DMI measures the dependency between two random variables. The greater the DMI values

between two random variables, the more closely they are related. If there is a direct edge (con-
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nection) between two nodes Xi and Xj, there exists a strong dependency between these two nodes.

Thus, we can identify a set of potential parents for each node based on the DMI values between

this node and other nodes. Instead of considering all the nodes as potential parents which is too

computationally expensive (exhaustive search methods) or applying some heuristic rules such as

hill-climbing, which may find local optimum, we identify a small set of potential parents, and run

exhaustive search on the reduced set of parents. As the experimental results demonstrate in next

section, the proposed method can improve both prediction accuracy and computational efficiency.

3.3 Experimental Results

We first use simulated data drawn from known structures to evaluate the proposed method (Sec-

tion 3.3.1), which is compared with the commonly-used BDe score, Maximum Likelihood (ML)

score, and Bayesian information criterion (BIC ) score. Our method is then applied to real expres-

sion data to recover the cell cycle pathway in yeast (Section 3.3.2).

3.3.1 Experiment on simulated data

Data collection and network evaluation

To evaluate the proposed method, we simulate two randomly generated networks: one with

10 nodes and 11 edges (Fig. 3.2-(a)), and the other with 15 nodes and 21 edges (Fig. 3.2-(b)).

Both networks are cyclic with feedback loops. The conditional probability tables are randomly

generated with three states for each node. The existence of the known network structures allows

us to define two important terms, which indicate the performance of the algorithm:

1. missing edges - edges present in the original network but not in the learnt network structure

2. wrong edges - either edges not present in the original network but included in the learnt

network structure or edges present in the learnt network structure, but having opposite ori-

entation when compared to the corresponding edge in the original network structure.
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(a) (b)

Figure 3.2 – Two cyclic networks: (a) A network of 10 nodes and 11 edges; (b) A network of 15 nodes

and 21 edges

Experimental results

We use existing DBN software (Bayes Net Toolbox, downloaded from http://bnt.sourceforge.net/)

for BIC and ML methods. The parameter maximum fan-in (the maximum allowable number of par-

ents) in all the methods is chosen as 5. For each network, 50 independent datasets are generated.

The reconstructing results are averaged over 50 datasets for each network. The number of samples

generated from each network ranges from 60 to 200, which are typical sample sizes available in

microarray datasets. In our experiment, the larger the hyper-parameters are, the more true edges

(true positives) are predicted correctly; however, the more false edges (false positives) are intro-

duced as well. To reduce false positives, a small value for the hyper-parameters is preferable. One

may determine the hyper-parameters through cross-validation methods. In this study, for all the

networks, we choose αi jk = 0.96. We observed that for αi jk ∈ [0.9,1], the prediction results are

quite similar.

Figure 3.3 and Figure 3.4 show the number of missing and wrong edges for the two networks

predicted with different number of samples. Both BDe and our method miss less number of edges

than BIC and ML methods (Figure 3.3(a) and Figure 3.4(a)). While it can identify the largest

number of true edges, BDe method introduces a much larger number of false positives compared
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(a)

(b)

Figure 3.3 – Experimental results: (a) Number of missing edges; and (b) number of wrong edges versus

number of samples for the network of 10 nodes.
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(a)

(b)

Figure 3.4 – Experimental results:(a) Number of missing edges; and (b) number of wrong edges versus

number of samples for the network of 15 nodes.
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Figure 3.5 – Cell cycle pathway. Squares represent complex with more than one gene

to our method (Figure 3.3(b) and Figure 3.4(b)). Overall, our method produces the best results in

terms of the prediction accuracy (both false positive and true positive). Furthermore, our method

is much faster than BIC and ML methods. For example, with 200 samples, for the network of 10

nodes, our method needs 3.9s and BIC and ML methods need 9s. The computational time for BIC

and ML methods increases significantly as the number of nodes increase. For the network of 15

nodes, our method needs only 8s and BIC and ML methods need 114s. Note that BDe method

requires same amount of time as our method needs, as BDe is a special case of the proposed

methods.

3.3.2 Experiment on Real Expression Data

We apply our method to analyze S.cerevisiae cell cycle time-series expression data [75]. A 3-level

quantization scheme is chosen to discretize the continuous expression data. We consider a cell

cycle pathway that is extracted from the KEGG database (www.genome.jp/kegg). The cell cycle

pathway consists of 15 genes involved in G1 phase and S phase (Figure 3.5).

For the cell cycle pathway, our method identifies 14 edges: nine of them are correct (Table 3.1).
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Table 3.1 – Identified gene-gene interactions in cell cycle pathway

Corrected identified gene-gene interactions
FAR1-CLN1 CLN1-CLN2 CLN1-SWI6 SWI4-SWI6 MBP1-SWI6

CLB5-CLB6 CDC28-CDC6 CDC4-SCF FAR1-CDC4

Identified gene-gene interactions not shown as direct edges in the original network
FUS3-SCF CLN2-CLB6 CLN2-CLN3 SIC1-FAR1 CLN3-CDC6

Among the five incorrect ones, four edges (interactions) are existent through a single intermediate

node (or genes). Indeed, other experiments demonstrate that some of the predicted gene pairs that

are not shown in the KEGG pathway do form interactions with each other in cell cycle pathway. For

example, Basco et al. [76] conducted biological experiments and showed that CLB6 interacted with

CLN2. They observed that (1) the acceleration of the G1-to-S phase transition conferred by CLB6

was mediated via interactions with CLN2, and (2) CLB6 is responsible for down-regulation of the

protein kinase activities associated with CLN2 during cell cycle progression in vivo. Similarly,

Wijnen and Futcher [77] demonstrated biologically that CLN 3 activities transcription of CLN2

during the G1-S transition in the cell cycle of Saccharomyces cerevisiae.

3.4 Conclusions

A genetic regulatory network often contains feedback loops for further regulation of genes. To

characterize the cyclic nature with feedback loops, DBNs have been extensively applied for learn-

ing regulatory networks from gene expression data. In this study, we propose a novel method to ad-

dress two limitations in standard DBN methods, namely, low accuracy of prediction and extremely

large computational time. This method is tested on two simulated networks and a real biological

pathway. Our experimental results show that the proposed method produces better overall perfor-

mance than the commonly-used BDe, ML, and BIC methods. Furthermore, our method is much

faster than BIC and ML methods, especially for networks of moderate size. This is attributed to

the fact that we only evaluate a limited number of potential parents (selected by our DMI) for each
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node. Thus, our method can be applied to very large networks learning where standard DBN is

infeasible. Experimental results carried out on the cell cycle pathway of Saccharomyces cerevisiae

further demonstrate the effectiveness of the proposed method. We predicted some new interactions

that were not included in the original KEGG pathways, but verified by biological experiments

elsewhere.
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4. Markov Blanket Based Structure Learning Method and its

Applications

4.1 Introduction

The Markov blanket , Mb(X), of a random variable X in a variable set (V ) (or its correspond-

ing node in DAG) is the smallest set of variables, such that X ⊥ {V −X −Mb(X)}|Mb(X); or,

from a DAG point of view, Mb(X) is the set of its parents, children and spouses (children’s par-

ents) [15] (refer to Chapter 2, page 3). The concept of Markov blankets reflects a fundamental

property of a Bayesian network. Explicitly using Markov blankets in the Bayesian structure learn-

ing can effectively limit unnecessary computation, since the Markov blanket of a node contains

great information of its local structure [78].

As we know, in order to accurately recover the network structures, constraint-based approaches

often need an exponential number of conditional independence tests with a large number of vari-

ables; furthermore, an early mistake in individual independence tests may subsequently lead to a

wrong network construction [12]. Many structure learning methods are restricted from large size

network applications because of their exponential execution times and proneness to errors in de-

pendence tests. However, when the knowledge of Markov blankets of the nodes is available, we

only need to focus on limited number of close nodes , which makes structure discovery much faster

and more reliable.

The above definition of Markov blanket also suggests a way to identify it: Markov blanket

of a variable is a strong relevant set of the variable. Thus, one can find Markov blanket, using

many existing feature selection methods. Tsamardinos and Aliferis [79] showed that under faithful

distributions, the Markov blanket of a variable is exactly the set of strongly relevant features, and

proved its uniqueness. Pellet and Elisseeff [80] also theoretically analyzed the equavilence between
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relevance sets and Markov blankets. They proved under the assumption that feature selection

returns the Markov blankets of the variables, the approximate moral graph based on the Markov

blankets can be adjusted locally into correct PDAG (partially directed acyclic graph) depicting

the causal structure. The moral graph is the counterpart of a directed acyclic graph, formed by

connecting nodes that have a common child, and then making all edges in the graph undirected.

Equivalently, a moral graph of a directed acyclic graph G is an undirected graph in which each

node of the original G is now connected to its Markov blanket [81, 82].

In this work, we first rely on feature selection to return Markov blankets of each node in a

Bayesian network, then exam the dependence relationships in the neighborhood to further deter-

mine the local structures which satisfy the dependence constrains.

4.2 Method

This section is organized as follows. In Section 4.2.1, we analyze the likeness between the outcome

of feature selection and Markov blanket, then review a feature selection algorithm we use in this

study. In Section 4.2.3, we show the correctness and efficiency of Collider Set algorithm proposed

by Pellet et.al. [80], an algorithm we use in local structure recovery. In Section 4.2.4, we describe

our algorithm.

4.2.1 Feature selection and Markov blanket construction

Feature selection

Feature selection (FS) is an important step in many machine learning and statistics tasks. It

removes redundant and irrelevant features to reduce computational complexity and build robust

learning models. In classification, ideally, FS returns a set of strongly relevant features related to

the class variable (target). Strong relevance is defined as:

Definition 1 (Strong relevance) [83]: In a variable set V , a variable X ∈V is strongly relevant

to a target Y ∈ V , if P(Y |{V −X}) 	= P(Y |V ). In other words, a variable is strongly relevant to
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a target if it carries information about the target that no other variable provide. According to the

definition of conditional independence, we have, X 	⊥ Y |{V −X −Y} (refer to Chapter 2, page 3),

i.e., given all the other variables, X and Y are still conditionally dependent.

If we denote the set of strongly relevant features of target Y as FY , then

FY = {X |(X 	⊥ Y |{V −X−Y}} (4.1)

In other words, FY is the set of the variables that are dependent on the target Y , conditioned on

all others. Based on the symmetry of the conditional independence, we have, X ∈ FY ⇔ Y ∈ FX ,

where FX is the strongly relevant set of X .

Markov blanket

Property of Markov Blanket (Total conditioning) [80]: In the context of a faithful causal

network (G ), we have:

∀X ,Y ∈V : (X ∈Mb(Y )⇔ (X 	⊥ Y |{V −X−Y}) (4.2)

Namely, the Markov blanket of a node is the set of all variables that are dependent on the node

conditioned on all other variables, which means Markov blanket contains all the information rele-

vant to the node. In this thesis, Markov blanket also refers to Markov boundary, i.e., no redundant

variables are allowed in a MB. Summarily, the Markov blanket of a target, Y , contains all relevance

and no redundancy, i.e., it has the same property as the strongly relevance set of Y . Thus, we draw

the conclusion that strongly relevance set of a variable is equivalent to its Markov blanket:

FY ≡Mb(Y ) (4.3)

4.2.2 Markov blanket identification algorithm

In this work, we apply an efficient feature selection algorithm proposed by Margarits and Thrun

[78] to identify the Markov blanket of each node in the graph. The algorithm is summarized in
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Table 4.1 – The Grow and Shrink algorithm to indentify Markov Blankets

Compute Markov Blankets : Let X ∈V , compute the Markov blanket Mb(X)

1. S← φ
2. While ∃Y ∈V −{X} such that Y 	⊥ X |S, do S← S∪{Y}. Growing phase

3. While ∃Y ∈ S such that Y ⊥ X |S−{Y}, do S← S−{Y}. Shrinking phase

4. Mb(X)← S

Table 4.1. It consists grow and shrink two phrases. Initially, let the relevant set S of X be empty. In

the growing phrase, as long as the Markov blanket property of X is violated, that is, there exists a

variable Y ∈V dependent on X , we add Y to the current set S until there are no more such variables.

In this process, however, there may be some variables that were added to S that were really outside

the blanket. Such variables would have been rendered independent from X at a later point when

’intervening’ nodes of the underlying Bayesian net were added to S. This observation necessitates

shrink step, which identifies and removes those variables. The algorithm is efficient, requiring

only O(n) conditional tests, making its running time O(n|D|) , where n = |V | and D is the set of

samples.

4.2.3 Construction of Causal graphs using feature selection

It is a common practice to use Bayesian network to represent causal relationships, however a

directed edge from X to Y doesn’t require that Y is causally dependent on X . This can be explained

by the fact that X → Y → Z and X ← Y ← Z are equivalent, i.e., they imply the same conditional

independence requirements.

A causal network is a Bayesian network with an explicit requirement that the relationships be

causal. The additional semantics of the causal networks specify that if a node X is actively caused

to be in a given state x (an action written as do(X = x)), then the probability density function
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changes to the one of the network obtained by cutting the links from X’s parents to X , and setting

X to the caused value x [14]. Using these semantics, one can predict the impact of external inter-

ventions from data obtained prior to intervention. In the rest of this Chapter, we assume that the

Bayesian networks being learnt are causal networks.

If we make the Causal Sufficiency assumption [84], that is, assume that no hidden common

cause of two variables exists, we can write:

∀S⊆ (V −{X ,Y}) : (X 	⊥ Y |S)⇒ (X → Y or Y → X) (4.4)

Using Equation 4.4, we can theoretically determine all adjacencies of the causal network with

conditional independence tests, but we cannot orient the edges. The only causational pattern where

conditional-independence tests can reveal the direction of causation is V-structure. This is known

as causal under determination (refer to Spirtes’ book [84], p.62), i.e., for the structure learning task

given observational data, a correct graph is specified by its adjacencies and its V-structures only.

Partially oriented DAG (PDAG) returned by structure learning algorithms represent observation-

ally equivalent classes of causal networks (refer to Pearl’s book [14], p.19). The fact narrates that

for a given joint probability distribution P(V ), the set of all conditional independence statements

that hold in P(V ) does not yield a unique perfect map (refer to Chapter 2, page 3) in general.

V-structure [14] consists of two common causes X , Y and one common effect Z (called col-

lider). X and Y initially independent, become dependent when conditioned on a Z. To identify

V-structure, first, we certify the existence of a link between X and Z and between Y and Z, Z is

then identified as an unshielded collider if conditioning on it creates a dependency between X and

Y .

The result of feature selection can be graphically shown by an undirected graph G = 〈V,E〉
where (X ,Y ) ∈ E ⇔ X ∈ FY . This graph is close to the original causal graph in that it contains

all arcs as undirected links, and additionally links spouses together, and is called the moral graph

of the original directed graph (refer to Lauritzen and Spiegelhalter’ book [82], p.166). The extra
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step needed to transform this graph into a causal PDAG is the deletion of the spouse links and

the orientation of the arcs. Pellet and Elisseeff [80] proposed a fast algorithm named Collider Set

algorithm (CS algorithm) for finding hidden spouse link and V-structure, by identifying collider

nodes. Collider set is defined as:

Definition 2 (Collider set) [15]: In an undirected graph G = 〈V,E〉, the Collider set of a pair

of adjacent nodes (X and Y , (X ,Y ) ∈ E), denoted as Tri(X −Y ), is the set of vertices forming a

triangle with X and Y :

Tri(X−Y ) = {Z ∈V |(X ,Z) ∈ E, (Y,Z) ∈ E} (4.5)

Suppose that G is the moral graph of the DAG representing the causal structure of a faithful

data set. A set of vertices Z ⊆ Tri(X −Y ) then has the Collider Set property for the pair (X ,Y ) if

it is the largest set that fulfills:

∃SXY ⊆ {V −X−Y −Z} : (X ⊥ Y |SXY ) and ∀Zi ∈ Z : (X 	⊥ Y |SXY ∪{Zi}) (4.6)

The set SXY is then a d-separating set for X , Y . Pellet and Elisseeff [80] proved that in the

content of a faithful causal network, for a given pair (X ,Y ), the set Z that has the Collider Set

property exists if and only if X is neither a direct causal nor a direct effect of Y . This set Z is

unique when it exists. In the large sample limit, for faithful, causal sufficient data sets, the CS

algorithm correctly identifies all V-structures and all spouse links, assuming consistent statistical

tests.

It is sometimes possible to orient further arcs in a graph by looking at already-oriented arcs

and propagating constraints, preventing acyclicity and the creation of additional V-structures other

than those already detected. The graph after this constraint-propagation step is called complete

PDAG.
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Table 4.2 – Causal Network Learning Algorithm

1: procedure StructureLearning

Input D : n×d dataset with n d-dimensional data points

Output G : maximally oriented partially directed acyclic graph

2: /* Step 1: Markov blanket construction */

for each variable X ∈V do

FX ←GrowShrinkAlgorithm(X ;D)
end for

for each pair (X ,Y ) such that Y ∈ FX and X ∈ FY do /* symmetry check */

add X to Mb(Y ) and Y to Mb(X)
end for

3: /* Step 2: Spurious arc removal and V-structure detection */

G← CSAlgorithm[Mb(.)]
4: /* Step 3: Constraint propagation */

G← CompletePDAGAlgorithm[G]

5: end procedure

4.2.4 Algorithms

Our method for causal network learning using Markov blankets can be divided into three steps:

first, employ Grow and Shrink algorithm [78] (refer to Section 4.1, page 30) to identify Markov

blankets for all the nodes in the graph; second, construct morph graph based on Mb(.), and apply

Collider Set (CS) algorithm [80] explained in Section 4.2.3 to remove spouse links and orientate

V-structure; finally, use the Complete PDAG algorithm [80] to orientate PDAG maximally. The

above procedure is illustrated in Table 4.2, and the details of Collider set algorithm and Complete

PDAG algorithm are lists in Table 4.3 and Table 4.4 respectively.

4.3 Experiment: RAF pathway learning with small sample datasets

Objective

The experiment is designed to compare our algorithm with two well-known structure-learning

algorithms: Hill-climbing and MCMC. We are especially interested in the comparison of their

performance with limited sample sizes, a common situation in processing biological data. We

33



Table 4.3 – Collider Set Algorithm

1: procedure: CSAlgorithm

Input: Mb(X) : the Markov blanket information for each node X ∈V
Output: G : partially oriented DAG

2: G← moral graph according to Mb(X)
3: C← {}, an empty list of orientation directives

4: for each edge X−Y part of a fully connected triangle do

5: SXY ← null /* search for d-separating set */

6: B← smallest set of {Bd(X)\Tri(X−Y )\{Y}; Bd(Y )\Tri(X−Y )\{X}}
7: for each S � Tri(X−Y ) do /* subset search */

8: Z← B∪S
9: if CondIndep(X ;Y |Z)then

10: SXY ← Z
11: break to line 23

12: end if

13: D← B∪ {nodes reachable by W in G\XY |W ∈ Tri(X−Y )\S}
14: B′ ← B\D
15: for each S′ � D do /* descendant of collider may be opening a path */

16: Z← B′ ∪S′ ∪S
17: if CondIndep(X ;Y |Z) then

18: SXY ← Z
19: break to line 23

20: end if

21: end for

22: end for

23: if SXY 	= null then /* save orientation directive */

24: mark link X−Y as spouse link in G
25: for each Z ∈ (Tri(X−Y )\SXY )do

26: C←C∪{(X → Z← Y )}
27: end for

28: end if

29: end for

30: remove all spouse links (i.e., marked links) from G
31: for each orientation directive (X → Z← Y )∪Cdo /* orient edges */

32: if edges X−Z and Y −Z still exist in G then

33: orient edges as X → Z← Y
34: end if

35: end for

36: return G
37: end procedure
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Table 4.4 – Complete PDGA algorithms

1: procedure CompletPDAGAlgorithm

Input G : partially directed acyclic graph

Output G : maximally oriented partially directed acyclic graph

2: while G is changed by some rule do /* fixed-point iteration */

3: for each X ,Y,Zsuch that X → Y −−Z do

4: orient as X → Y → Z /* no new V-structure */

5: end for

6: for each X ,Y s.t. X−−Y and ∃ directed path from X to Y do

7: orient as X → Y /* preserve acyclicity */

8: end for

9: for each X ,Y s.t. X−−Y and ∃ nonadj. Z,W s.t. X−−Z→ Y and X−−W → Ydo

10: orient as X → Y /* three-fork V with married parents */

11: end for

12: end while

13: return G
14: end procedure

apply Bootstrapping technique which is a frequent choice for handling the limit sample issue.

dataset description

The data for our experiments are from both real world and synthetics. The real data from flow

cytometry experiments [57], which can simultaneously measure protein expression levels in thou-

sands of individual cells, are used to learn RAF biological regulation pathway. The Ras/Raf/MEK-

pathway is at the heart of signalling networks that govern proliferation, differentiation and cell

survival [85]. The deregulation of the Raf pathway can lead to carcinogenesis, and the pathway

has therefore been extensively studied in the literature(e.g., [57,85,86].The RAF pathway includes

11 proteins and 20 causal connections as shown in Figure 4.1.

Sachs et al [57] did a series of stimulatory and inhibitory interventions targeting on different

proteins in the RAF pathway, and collected nine datasets under different biological conditions.

Each dataset contains more than 700 samples (cells), and for each sample, the expression levels

of the 11 proteins in the pathway were recorded. Table 4.5 summarizes the nine datasets: two

datasets without intervention (called Original) and seven with interventions (called Perturbation).
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Figure 4.1 – Raf signalling pathway. The graph shows the currently accepted signalling network, taken

from [57]. In the interventional studies, the following nodes were targeted. Activations: PKA and PKC.

Inhibitions: PIP2, AKT, PKC and MEK.

Table 4.5 – Datasets for RAF pathway experiments: Real datasets, where ’-’ stands for inhibit and ’+’

for activate

Dataset 1 2 3 4 5 6 7 8 9

Perturbation no no -AKT -PKC -PIP2 -MEK -AKT +PKC +PKA

Based on the RAF pathway and simulating the same biological conditions as the real datasets,

we also generate nine synthetic datasets, using software Netbuilder [87]. Therefore, the data can

be categorized as Real Original (RO), Real Original and Perturbation (ROP), Synthetic Original

(SO, 1400) and Synthetic Original and Perturbation (SOP). All the following experiments related

to comparison among the algorithms are executed under each of the four categories.

Data preprocess

For real data, we select same number of samples (700) from each of the nine datasets, then dis-

cretilize these 6300 continuous values into 2 levels and normalize them for each variable (protein).

Synthetics data are quantized and normalized in the same way.

Data sizes and algorithms performance

First, with all the samples under each data category as training samples, we learn the Bayesian

Network (BN) of the pathway, using Hill-climbing, MCMC, and our method. Second, we only

randomly select N (sample size) samples without replacement to train the BN. N is set at 54, 108,

162, 216, 270 and 324 in our experiments. Repeat the procedure 100 times for each sample size
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and average the performance for each algorithm.

Small datasets with bootstrapping

First, we construct a base dataset for bootstrapping under each data category, by randomly

selecting N (e.g., 324) samples without replacement. Second, randomly select 90% of N (324×
90% ≈ 292 ) samples with replacement from the base dataset to form a training set, then learn

the structure and obtain its adjacent matrix Ai. Repeat the previous step 100 times, and calculate

the average Av of the 100 adjacent matrices obtained from each algorithm, transform Av to a new

adjacent matrix Aad j by setting the (i, j) element ai j = 0 if the (i, j) element in Av is less than the

pre-specified threshold T , otherwise ai j = 1. Finally evaluate the performance of each algorithm

by comparing the new adjacent matrix Aad j with the one of the golden structure. Threshold T is set

at 0.5 in our experiments (we tried 0.3 and 0.2 as well in pre-test and the performance is worse).

All the conditional independence tests are based on partial correction and Fisher’s Z-transform

[88].

4.4 Results and Conclusion

In general, we evaluate the learned structure by comparing it with the golden structure and counting

the number of correctly predicted edges, the number of missing edges, the number of extra edges

and the number of wrongly oriented edges. However in our case, there are only two V-structures

in the golden net (Figure 4.1), which means that we can only determine the orientations of three

edges (i.e., PIP3→ AKT,ERK → AKT and PKA→ AKT ) out of the 20 edges by conditional

independence test. In other word, most of the wrongly oriented edges compared with the golden

structure can be counted as correct predictions in terms of Markov observational equivalence.

Based on the above observation, we also use the sum of missing and extra edges (SME) as our

evaluation criterion.

In Table 4.6, HC stands for Hill-climbing algorithm, MCMC for MCMC algorithm, MB for

MB based algorithm (our method). Table 4.6 shows the learning results when using the complete

datasets to train models. Figure 4.2 to Figure 4.11 present the comparison of learning accuracy in
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Table 4.6 – Comparison among learned BN graphs with Hillclimbing, MCMC and Markov Blanket

methods from different types of RAF datasets: In the table, RO, ROP, SO and SOP stand for original

real dataset, real data with perturbation (or intervention), simulated original dataset, simulated dataset

with perturbation respectively; HC stands for Hillclimbing search method; MB means Markov Blanket,

i.e., our method; SME means sum of missing and extra edges.

Data Category correct edge missing edge extra edge SME wrong orientation

(Num. of samples) HC MCMC MB HC MCMC MB HC MCMC MB HC MCMC MB HC MCMC MB

RO(1400) 3 6 8 12 13 12 3 3 6 15 16 18 5 1 0
ROP(6300) 8 7 8 5 4 9 19 17 11 24 21 20 7 9 3
SO(1400) 7 4 6 9 8 6 16 14 12 25 22 18 4 8 8

SOP(6300) 5 10 17 2 2 3 14 16 8 16 18 11 13 8 0

terms of number of correct edges, number of missing edges, number of extra edges, sum of missing

and extra edges and number of wrong directed edges among learned BN graphs with Hillclimbing,

MCMC and Markov Blanket methods from different types of RAF datasets and different sample

sizes. From Figure 4.2 to Figure 4.6, for a certain sample size (e.g. 216), the results are average

over100 datasets at the same sample size (e.g., 100 datasets all with 216 samples). From Figure 4.7

to Figure 4.11, for a certain sample size (e.g. 216), the results are averaged over 100 datasets

generated by bootstrapping resampling from the same original dataset at the sample size (e.g., 100

datasets generated by randomly selecting 216× 90% ≈ 194 samples with replacement from the

same randomly selected base dataset with 216 samples).

In Table 4.6, bold numbers indicate the best results in a category with the same metric and data

type. No best numbers are listed in the missing and extra metrics, as we are more interested in

the sum of missing and extra edge, which describes the overall and balanced aspect. As Table 4.6

shows, for the two data types with perturbation (ROP and SOP), our method obtains best results in

number of correct edge, sum of missing and extra and number of wrongly orientated; especially,

for simulated perturbation (SOP), our method produces apparently best performance among all

three methods.

In Figure 4.2, as we expect, for all three methods, datasets with perturbation information (ROP

and SOP) produce relatively better results than the dataset without those information; as sample

size increases form 54 to 324, in all data types and all methods, the number of correct edges
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Figure 4.2 – Plot of Sample Size vs Number of Correct edges in a graph learned by Hillclimbing,

MCMC or our Markov Blanket algorithm
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increases. The figure also shows that for all four data types, our method obtains more correct edges

than Hillclimbing and MCMC. An interesting observation is: for simulated data with perturbation,

our method obtains more correct edges (≈8) at the smallest sample size (54) than the most number

of correct edges(≈6) at the largest sample size (324) from Hillclimbing and MCMC.

In Figure 4.3, as we expect, for all three methods, datasets with perturbation information(ROP

and SOP) produce relatively better results than the dataset without those information; as sample

size increases form 54 to 324, in all data types and all methods, the number of missing edges

decreases. However, the three methods produce similar results,

In Figure 4.4, we see the number of extra edges increase as the sample size increases, which

means false positives increase. Still, our method produces least extra edges in SOP datasets.

In Figure 4.5, all lines are relatively flat, which means the sum of missing and extra edges is

not observably effected by sample size, at least in the range of sample sizes we are considering. In

spite of that, we still observe that our method perform best among all method for SOP data type.

In Figure 4.6, for all four data types, our method produces clearly best performance (least

number of wrong directed edges) among all methods, although as sample size increases, the errors

increase in all methods.

In Figure 4.7 to Figure 4.11, which present the results from bootstrapping, we obtain similar

observations as the group without bootstrapping, even though the lines are not smooth. The un-

evenless observed from bootstrapping group is caused by much less information (1/100) than the

first group. For instance, the results from sample size 216 in bootstrapping experiments, actually

only used information from 216 data points, in contrast, the results for sample size 216 in the non-

bootstrapping experiments, are derived from 216× 100 sample points. Only based on 1/100 of

information, bootstrapping produce similar results.

Conclusion

In this work, we devise a Bayesian structure learning method, using Markov Blankets to sim-

plify and expedite the local structure recovery. The Markov blanket identification is realized by a

fast feature selection based Grow-Shrink algorithm based on the assertion that Markov blanket is
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Figure 4.3 – Plot of Sample Size vs number of Missing edges in a graphs learned by Hillclimbing,

MCMC or our Markov Blanket algorithm
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Figure 4.4 – Plot of Sample Size vs Number of Extra edges in a graph learned by Hillclimbing, MCMC

or our Markov Blanket algorithm
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Figure 4.5 – Plot of Sample Size vs Sum of Missing and Extra edges in a graph learned by Hillclimbing,

MCMC or our Markov Blanket algorithm
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Figure 4.6 – Plot of Sample Size vs Number of Wrongly orientated edges in a graph learned by

Hillclimbing, MCMC or our Markov Blanket algorithm
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Figure 4.7 – Plot of Sample Size vs Number of Correct edges in a graph learned by Hillclimbing,

MCMC or our Markov Blanket algorithm, using Bootstrapping Resampling
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Figure 4.8 – Plot of Sample Size vs Number of Missing edges in a graph learned by Hillclimbing,

MCMC or our Markov Blanket algorithm, using Bootstrapping Resampling
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Figure 4.9 – Plot of Sample Size vs Number of Extra edges in a graph learned by Hillclimbing, MCMC

or our Markov Blanket algorithm, using Bootstrapping Resampling
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Figure 4.10 – Plot of Sample Size vs Sum of Missing and Extra edges in a graph learned by Hillclimb-

ing, MCMC or our Markov Blanket algorithm, using Bootstrap Resampling
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Figure 4.11 – Plot of Sample Size vs Number of Wrongly orientated edges in a graph learned by

Hillclimbing, MCMC or our Markov Blanket algorithm, using Bootstrap Resampling
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equivalent to strong feature set.

The algorithm is evaluated on a golden structure RAF pathway, compared with other popular

BN learning algorithms. The empirical results show that our method produces competitive per-

formance, even in limited sample size situation. The results also demonstrate that in our case,

bootstrapping is successful when a sample size is very small.
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5. K2-Based Markov Blanket Identification

5.1 Introduction

As we have studied in Chapter 4, the knowledge of Markov blankets of the nodes in a Bayesian

network is valuable in recovering the local structures and then the whole network. The information

of Markov blankets can also be applied in feature selection and classification.

Madden [89] argued that construction of a full Bayesian network for the purposes of classifica-

tion may be computationally inefficient, as the whole structure may not be relevant to classification.

Specifically, classification is unaffected by parts of the structure that lie outside the classification

node’s Markov blanket. MB as the strongly relevant nodes of a target, contains necessary and suf-

ficient information to determine the behavior of the target. Thus, identifying the MB of the target

in classification is desirable.

Koller and Sahami [90] first introduced Markov Blanket concept into the feature selection task.

Intuitively, if a feature Fi is conditionally independent of the class label given some small subset of

the other features, then we should be able to omit Fi without compromising the accuracy of class

prediction. Koller and Sahami formalize this idea using the notion of a Markov blanket.

Definition 1 (Markov Blanket) [90]: For a feature set G and class label C, the set Mi ⊆ G

(Fi /∈Mi) is a Markov Blanket of Fi(Fi ∈ G) if

Fi ⊥ G−Mi−Fi,C|Mi (5.1)

This definition is equivalent to the one stated in Chapter 2.

In Chapter 4, we investigate the approach of feature selection, i.e., Grow and Shrink algorithm,

to identify Markov blankets. Feature selection often involves correlation computation for depen-

dence test, which is prone to errors. This disadvantage becomes even more severe when sample
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sizes are limited, a common situation in biological data analysis.

In this work, we devise a new method for Markov blanket identification, using K2 algorithm -

a theoretically sound, practically effective and efficient structure learning method. We investigate

an asymptotic property of K2, which facilitates accurate construction of Markov blankets. Our

method is compared with the approach proposed by Koller and Sahami (KS algorithm) [90] in

Markov blanket identification on a golden structure network and in classification on a benchmark

biological dataset.

The rest of the chapter is organized as follows: In Section 5.2, we introduce necessary back-

ground and review related works. Our method is discussed in details in Section 5.3. Section 5.4

shows the empirical comparison of our method and the KS algorithms. Finally, conclusions are

drawn in Section 5.5.

5.2 Background and Related works

5.2.1 Related work

Madden [89] seeked to directly construct an approximate Markov blanket around the classification

node. The algorithm involves three steps. In the first step, every node Xi ∈ Z−Xc is tested relative

to Xc to determine whether it should be considered to be a parent or a child of Xc as follows:

identify the set containing the parents of the class variable and the set containing the children of

the class variable, by comparing the overall probabilities of three networks: a new node added

as the parent of the class variable, as the child and the current structure. The network with the

highest probability will be kept as the base for the next node to be concerned. The second step is

expanding the children set of the class variable by adding the direct parents of the direct children

of the class variable, by running K2 algorithm. The third step is finding the dependence between

the nodes in the children set, by constructing a restricted tree structure. After the structure is

constructed, the conditional probabilities are calculated using K2 estimation. Then based on the

posterior probabilities of each class given the other nodes in the structure, the predicted class is
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assigned.

5.2.2 KS algorithm

Koller and Sahami [90] were the first to apply Markov Blanket concept into feature selection.

They proposed a theoretical framework for optimal feature selection and formalized the problem

as follows [91]:

Let G be a subset of the overall feature set F . Let fG denote the projection of f onto the

variables in G. Markov blanket filtering aims to minimize the discrepancy between the conditional

distributions P(C|F = f ) and P(C|G = fG), as measured by a conditional entropy:

ΔG = ∑
f

P( f ) ·D(P(C|F = f )||P(C|G = fG)) (5.2)

where D(P||Q) = ∑x P(x) · ln(P(x)/Q(x)) is the Kullback-Leibler divergence [92, 93], which

is a non-symmetric measure of the difference between two probability distributions P and Q.The

goal is to find a small feature set G for which ΔG is small.

The following proposition due to Koller and Sahami [90] establishes the relevance of the

Markov blanket concept to the measure ΔG .

Proposition: For a complete feature set F , let G be a subset of F ,and G′ = G\Fi. If ∃Mi ⊆ G

(where Mi is a Markov blanket of Fi), then ΔG′ = ΔG.

The proposition implies that once we find a Markov blanket of feature Fi in a feature set G, we

can safely remove Fi from G without increasing the divergence to the desired distribution. Koller

and Sahami [90] further prove that in a sequential filtering process in which unnecessary features

are removed one by one, a feature tagged as unnecessary based on the existence of a Markov

blanket Mi remains unnecessary in later stages when more features have been removed.

In most cases, however, few if any features will have a Markov blanket of limited size, and we

must instead look for features that have an ’approximate Markov blanket.’ For this purpose we
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Table 5.1 – KS algorithm: identify a Markov Blanket

◦ Initialize:

– G = F

◦ Iterate until the size of G reached the pre-defined number (m):

– For each feature Fi ∈ G, let Mi be the set of k features

Fj ∈ G−Fi for which the correlations between Fi and Fj are the highest

– Compute Δ(Fi|Mi) for each Fi

– Choose the Fi that minimizes Δ(Fi|Mi), and let G = G−Fi

define:

Δ(Fi|M) = ∑
fM , fi

P(M = fM,Fi = fi)×

D(P(C|M = fM,Fi = fi)||P(C|M = fM)) (5.3)

If M is a Markov blanket for Fi then Δ(Fi|M) = 0. Since an exact zero is unlikely to occur, we

relax the condition and seek a set M such that Δ(Fi|M) is small. Note that if M is really a Markov

blanket of Fi, then we have P(C|M,Fi) = P(C|M). This suggests an easy heuristic way to to search

for a feature with an approximate Markov blanket.

Since the goal is to find a small non-redundant feature subset, and those features that form an

approximate Markov blanket are most likely to be more strongly correlated to Fi, we construct a

candidate Markov blanket for Fi by collecting the k features that have the highest correlations (de-

fined by the Pearson correlations between the original nonquantized feature vectors) with Fi, where

k is a small integer. We have the KS algorithm proposed by Koller and Sahami, [90]) depicted in

Table 5.1
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5.2.3 K2 algorithm

The well-known K2 framework for induction of Bayesian network from data was developed by

Cooper and Herskovits [24]. We summarize their approach in two parts: (1) Determining network

structure (2) Determining network probabilities.

5.2.3.1 Determining network structure

Cooper and Herskovits’s framework is built on determining which of two Bayesian network struc-

tures is more likely. Assume D is a database of cases and Z is the set of variables represented by

D. BSi and BS j are two belief-network structures containing exactly those variables that are in Z,

then they aim to calculate P(BSi)/P(BS j). According to Bayes’ rule,

P(BSi |D)

P(BS j |D)
=

P(BSi ,D)/P(D)

P(BSi ,D)/P(D)
=

P(BSi ,D)

P(BS j ,D)
(5.4)

Therefore, the problem of calculating P(BS|D) reduces to computing P(BS,D). Cooper and

Herskovits’s equation for calculating P(BS,D) is based on four assumptions that they identified:

1. Variables are discrete and all are observed (i.e. there are no hidden or latent variables)

2. Cases occur independently, given a belief network model

3. There are no cases that have variables with missing values

4. The density function f (BP|BS) is uniform; we are therefore indifferent regarding the prior

probabilities to place on a network structure BS

Let Z be a set of n discrete variables, where a variable X in Z has r possible value assignments.

Let D be a database of m cases, where each case contains a value assignment for each variable in

Z. Let BS denote a network structure containing just the variables in Z. Each variable Xi in BS has a

set of parents, represented as a list of variables πi. Suppose there are qi such unique instantiations

55



of πi. Let Ni jk be defined as the number of cases in D in which variable Xi is in kth state and πi is

in jth state. Let Ni j be defined as:

Ni j =
ri

∑
k=1

Ni jk (5.5)

Then, given the assumptions outlined above,

P(BS,D) = P(BS)
n

∏
i=1

qi

∏
j=1

(ri−1)!

(Ni j + ri−1)!

ri

∏
k=1

Ni jk! (5.6)

Equation 5.6 can be combined with Equation 5.4 to give a computable method of comparing

the probabilities of two network structures, when given a database of cases for the variables in the

structures. Since, by the third assumption listed above, the prior probabilities of all valid network

structures are equal, P(BS) is a constant. Therefore, to maximize P(BS,D) just requires finding

the set of parents for each node that maximizes the second inner product of Equation 5.6. Cooper

and Herskovits develop this into their K2 algorithm which takes as its input a set of n nodes, an

ordering on the nodes, an upper bound u on the number of parents a node may have, and a database

D containing m cases. Its output is a list of the parents of each node. The K2 algorithm works

by initially assuming that a node has no parents, and then adding incrementally that parent whose

addition most increases the probability of the resulting network. Parents are added greedily to

a node until the addition of no one parent can increase the network structure probability. The

function used in this procedure is taken from the second inner product of Equation 5.6:

5.2.3.2 Determining network probabilities

Cooper and Herskovits present a simple formula for calculating conditional probabilities, after the

network structure has been found. Let θi jk denote the conditional probability that a variable Xi in

BS has the value vik, for some k from 1 to ri, given that the parents of xi, represented by πi, are

instantiated as wi j. Then θi jk = P(Xi = vik|πi = wi j) is termed a network conditional probability.

Let ξ denote the four assumptions of Section 5.2.3.1. Then, given the database D, the Bayesian
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network structure BS and the assumptions ξ , the expected value of θi jk is given by:

E[θi jk|D,BS,ξ ] =
Ni jk +1

Ni j + ri
(5.7)

g(i,πi) =
qi

∑
j=1

(ri−1)!

(Ni j + ri−1)!

ri

∑
k=1

Ni jk! (5.8)

In a single iteration of K2, an arc is added to node i from the node z that maximizes g(i,πi∪ z).

If g(i,πi)> g(i,πi∪ z), no arc is added.

5.2.4 Using a Bayesian Network for Classification

As pointed out by Friedman and Goldszmidt [94], inductive learning of general Bayesian networks

is unsupervised in the sense that no distinction is made between the classification node and other

nodes - the objective is to generate a network that ’best describes’ the data. Of course, this does

not preclude their use for classification tasks.

A Bayesian network may be used for classification as follows. Firstly, assume that the value

of the classification node Xc is unknown and the values of all other nodes are known. Then, for

every possible instantiation of Xc, calculate the joint probability of that instantiation of all variables

in the network given the database D. Cooper and Herskovits’ s formula for calculating the joint

probability of a particular instantiation of all n variables is:

P(X1 = xi, · · · ,Xn = xn) =
n

∏
i=1

P(Xi = xi|Πi = πi) (5.9)

By normalizing the resulting set of joint probabilities of all possible instantiations of Xc, an esti-

mate of the relative probability of each class instantiation is found. The vector of class probabilities

may be multiplied by a misclassification cost matrix, if available. Then, the class instantiation with

the highest probability is assigned as predicted class type.
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5.3 Method

The K2 algorithm [24] is a greedy search algorithm that learns the network structure of Bayesian

Networks (BN) from the data. It attempts to select the network structure that maximizes the net-

work’s posterior probability, given the experimental data. The K2 algorithm reduces computational

complexity by requiring a prior ordering of nodes as input, from which the network structure will

be constructed.

The ordering required in the K2 algorithm is such that if node Xi comes prior to node Xj in the

ordering, then node Xj cannot be a parent of node Xi. In other words, the potential parent set of

node Xi can include only those nodes that precede it in the input ordering. In K2, the candidate

parents Pai for node Xi is initially set to the empty set. The algorithm visits each node Xi according

to the sequence specified in the prior node ordering and greedily adds Pai to the parent set of node

Xi if the addition of the parent to the node Xi maximizes the score of the network. The algorithm

stops when any of the following conditions are met:

- The maximum number of parents for that particular node has been reached.

(This number is specified for each node. A good number for this is n−1).

- There are no more legal parents to add.

- No parent addition improves the score.

In this work, we use K2 algorithm with random ordering in a novel way to discover the direct

links in Bayesian Networks.

With very large sample size, K2 always finds an edge (undirected) regardless of ordering if the

edge truly exists in a BN. This is formally described in the following theorem.

Theorem 1: Assume the number of cases in the database D generated from a Bayesian belief

network G with positive conditional probabilities, approaches infinity. An edge between two nodes

can be identified by K2 algorithm in all node-orderings if and only if these two nodes are adjacent

in G .
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Figure 5.1 – Illustration for the theorem of K2 extension

We now provide an intuitive explanation of the theorem’s correctness (refer to the appendix -

page 88, for a complete proof of the theorem).

On one hand, we show if an edge exists in a BN, for instance, the edge between X1 and X2

in Figure 5.1, K2 can detect it in any ordering. For a given ordering, either X1 is in front of X2

or reverse, K2 can find either X1 ∈ Pa2 or X2 ∈ Pa1, i.e., detect e(X1,X2) in all cases. On other

hand, we show that if two nodes don’t have direct link (e.g., X2 and X4), in some ordering, K2

doesn’t return the link between the two nodes. In our case, X2 and X4 are related through X3. In

the orderings where X3 is after both X2 and X4, K2 can find e(X2,X4); but in the ordering where

X3 is before X2 as in the true BN, X2 is blocked away from X4 by X3, then K2 can’t see e(X2,X4).

Combining these two aspects, we argue that K2 can always detect the edges if and only if the edges

truly exist in a BN.

5.3.1 Identifying Markov Blanket

Parents and Children

Theorem 1 provides an approach to detect true links between two nodes, namely, the con-

nections between a node and its parents and children. We run K2 multiple times (2000 in our

experiments) in random ordering. If an edge between the target X and a node Y exists in all learnt

structures from any ordering, it is a true edge and Y is either a parent or child of X .

Spouse

So far the only missing nodes in MB are spouses of the target node. Spouses are related through

their child (see Figure 5.2). Y and X are spouses because of their common child Z. We denote the

set of parents and children of the target Y , PC(Y ), which has been found by K2 learning. If a node

X ∈ V −PC(Y ) , a node Z ∈ PC(Y ) , X ⊥ Y and X 	⊥ Y |Z , then X is a spouse of Y through Z. In
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Figure 5.2 – V structure shows spouses and child relationship

the experiments, we apply partial correction and Fisher’s Z-transform for independence test.

5.4 Experimental Results

In this selection, we present empirical comparison of our method and KS algorithm on both accu-

racy of identifying Markov Blanket and classification.

5.4.1 Identify Markov Blankets

Data

The ALARM network is a medical diagnostic system for patient monitoring. It consists of 37

nodes and 46 edges connecting them. The random variables in the ALARM network are discrete

in nature. The number of discrete states depends on the node. The random variables in the network

can take two, three, or four states (Figure 5.3).

Based on the given probabilities for the network, we generated 11 datasets with different sample

sizes (from 10,000 to 60). Node 32 is chosen as our target node since it has the most complicate

neighborhood, Mb(32) ={31 33 34 35 36 10 14 4} , in which the first 5 are direct neighbors (parent

or child) and the rest 3 nodes are spouses.

In KS algorithm, we need to specify two parameters - k (MB size of individual nodes) and size

of feature set (the number of features to keep). We set k = 2 since it produces the best results in this

experiment, and size Of feature set to be 8, which is the actual size of Mb(32). For our method, the

only parameter concerned is confidence level α for independence test when identifying spouses.

In this study, we set α = 0.05.
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Results

The Markov blankets of Node 32 identified on each dataset are listed in Table 5.2. To evaluate

induction results, we use sensitivity and specificity. Sensitivity is defined as the ratio of matching

positives between predicted and observed over all observed positives. Specificity is defined as the

ratio of matching negatives between predicted and observed over all observed negatives.

In this case, positives are the nodes in MB, while negatives are the nodes not in MB. For Node

32, numbers of real positives and negatives are 8 and 28 respectively. The learnt Markov blankets

from all datasets and all methods are listed in Table 5.2.

As we can see in Table 5.2 and Figure 5.4, when sample size is sufficient, both KS and our

method correctly identify all 8 nodes in MB with both sensitivity and specificity to be 1. When

sample size drops to 800, KS only detect 5 true positives, while our method still produces perfect

MB. When sample size is 60, sensitivity drops to 50% for KS, and 63% for our method. One

interesting observation is that our method produce only one (Node 37 which is secondary neighbor

of the target) or none false positive with all datasets. When sample size is very small (80, 60),

the sensitivity is still perfect for our method. Overall, for all 11 datasets in both sensitivity and

specificity categories, our method outperforms KS methods (Figure 5.4).

5.4.2 Classification

Data

We use molecular database [95] from UCI Repository to evaluate our method’s performance for

classification. 106 instances in the dataset have 57 attributes, which are 57 sequential nucleotide

(’base-pair’) positions, each with 4 values of state (A, G, T, C). Each instance is labeled as promoter

or not promoter.

KS algorithm

We randomly partition the whole dataset into three subsets at an approximate ratio of (3 : 1 : 1),

used as training set (60 instances), validation set (20 instances), and testing set (26 instances),

respectively. The three datasets have roughly the same ratio of positive (promoter) to negative (not
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Figure 5.3 – Illustration of the Markov Blanket of Node 32 in the Alarm network: Mb(32)={ 36, 35,

34, 33, 14, 10, 4}, the first 5 nodes in blue are parents and children of Node 32, the other 3 nodes in

green are spouses.

Table 5.2 – Markov Blankets of Node 32 in the ALARM network learned by KS algorithm and our

extended K2 algorithm from a wide range of sample sizes from 60 to 10,000

Sample Markov Blanket of Node32
Size KS K2 Extended

10000 36 35 34 33 31 14 10 04 36 35 34 33 31 14 10 04
5000 36 35 34 33 31 14 10 04 36 35 34 33 31 14 10 04
800 36 34 31 10 04 29 26 24 36 35 34 33 31 14 10 04
500 36 35 33 31 14 10 04 22 36 35 34 33 31 14 10 04 37

400 36 34 33 31 10 29 25 20 36 35 34 33 31 14 10 37

300 36 35 33 14 10 04 29 22 36 35 31 14 04 37

200 36 35 14 10 30 29 25 20 36 35 34 33 31 14 10 37

150 36 35 34 14 10 04 29 24 36 35 34 33 31 14 10
100 36 35 33 14 10 20 18 36 35 34 33 31 14 37

80 36 35 34 14 04 22 20 18 36 35 34 33 31
60 36 35 34 14 29 22 20 16 36 34 33 31 10
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Figure 5.4 – Accuracy Comparison of two Markov Blanket learning algorithms (KS and ours) in terms

of Sensitivity and Specificity, testing on Node 32 in the Alarm network. The nodes in the true Mb(32)

are considered as positives, all the others are treated as negatives.

63



Table 5.3 – The results of feature selection and classification using KS and our methods on the Molec-

ular dataset

KS Ours
MB(C) positions {19, 40} { 7, 16, 17, 18, 19, 40 }

Correctly classified 18 (69%) 23 (88%)

Incorrectly classified 8 (31%) 3 (12%)

promoter). The validation set is set aside for selecting the optimum size of feature set in the KS

algorithm.

Markov blanket of the class variable (Mb(C)) is learnt using KS algorithm for all candidate

feature sizes (1 to 10, in this study). Each resulting Markov blanket (Mb(C)) is then applied as the

feature set for Bayesian classifier training. Learned classifiers are evaluated on the validation set.

The feature size which produces the best classification result on the validation set is chosen as the

feature size parameter (m) in KS algorithm.

The validation set is added to form new expanded training set (80 instances) to identify Markov

blanket of the class variable (Mb(C)) using KS algorithm with the feature size m determined in the

previous step. The Bayesian classifier is trained with learnt Mb(C) as the feature set , and evaluated

on the testing set.

Our Method

In this study, we set the only parameter α = 0.05, the confidence level of independence test

using partial correlation and Fisher-Z transform. The expanded training set formed in the above KS

experiment are used to train our model, then tested on the same testing set as the KS experiment.

Results

The feature size which produces the best performance in the KS algorithm is m = 2. As Ta-

ble 5.3 is shown, when sample size is small in our study (80 training instances), our method per-

forms better than KS algorithm (8% higher accuracy than the best result from KS).
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5.5 Conclusions

In this chapter, we developed a K2-based approach to detect links between variables. Our method

can quickly and accurately identify Markov blankets in the graph. Empirical results demonstrate

that our method obtains more accurate Markov blankets than the representative MB learning al-

gorithm (KS algorithm). When the learned MB is applied as the feature set for classification, our

method also outperforms KS algorithms on the benchmark Molecular dataset. Furthermore, when

sample sizes are small, our method obtains better performance than KS algorithm for both tasks of

MB identification and feature selection.
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6. Tree-augmented naïve Bayesian for protein-protein interac-

tion assessment

6.1 Introduction

Proteins are fundamental to many biological processes from DNA replication and transport to sig-

nal transduction [96]. Investigations of protein functions have been the growing efforts in diverse

disciplines, such as biochemistry, molecular medicine, structural biology, and computational biol-

ogy. In general, proteins do not act isolated, instead through protein-protein interactions (PPI)

in living cells. Identification of protein-protein interactions is crucial to functional genomics.

The known function of a protein can disclose a clue on defining the functions of other proteins

within the same interacting protein complex. PPI networks also find important applications, for

instances, mapping cellular pathways and their intricate cross-connectivity, and discovering new

drugs [97–99].

Computational approaches developed over the years for protein-protein interaction prediction

differ in feature information and methodologies. Estimation of interaction sites, analysis of ge-

nomic sequences, and protein domain information are some of the frequent subjects for PPI pre-

diction in the earlier stage. To evaluate interaction sites, Kini and Evan [100] investigated in

recognizing specific residue motifs, Jones and Thornton [101] studied solvent accessible surface

area and hydrophobicity, and Bock and Gough [102] explored protein primary structure and associ-

ated physicochemical properties. For genomic sequence analysis, researchers examined correlated

mutations in amino acid sequences between interacting proteins [103], conservation of gene neigh-

borhoods and gene order [104], gene fusion method or ’Rosetta stone’ [105,106], genomic context

to infer functional protein interactions [107], and the principle of co-evaluation [108–110]. Protein

domain information is considered for PPI prediction with correlated sequence-signatures as mark-
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ers [111], statistical prediction [112] and integrative approach [113], and random decision forest

framework [114].

Recently, integrating complementary data for PPI prediction has been demonstrated prospec-

tive, and has gained an increasing interest. Integrative methods including probabilistic decision

tree [115], logistic regression model [116], Bayesian network [117], and naïve Bayesian classi-

fier [118, 119], have been employed to a variety of complementary data in different scales. Zhang

et al. [115] predicted co-complexed protein pairs from high-throughput protein interaction datasets

and twelve major categories of gene- and protein-pair characteristics. Zhong and Sternberg [116]

combined five features of identical anatomical expression, phenotype, function annotation, mi-

croarray co-expression, and the presence of orthologs. Jansen et al. [118] incorporate direct ex-

perimental PPI data, mRNA expression, gene function, and protein essentiality in a naïve Bayes

model. Myers et al. [117] integrated information of interaction data from PPI databases, cellular

localization data, transcription factor binding sites from the Saccharomyces cerevisiae Promoter

database, and biological complex curated literature from the Saccharomyces cerevisiae Genome

Database to discover query-based pathway-specific networks. Rhodes et al. [119] employed a

naïve Bayesian network to combine ortholog interaction datasets, gene expression data, shared

biological function, and enriched domain pairs.

A naïve Bayesian classifier with the strong assumption of conditional independences among all

the attributes given the value of the class variable, is surprisingly competitive with state-of-the-art

classifiers, such as C4.5 in many cases [120–123]. Friedman [123] explained that both the bias and

variance components of the estimation error impact classification performance, and under certain

conditions, the low variance associated with the naïve Bayesian classifier can dramatically reduce

the effect of the high bias that results from the strong independence assumptions. A naïve Bayesian

classifier also performs better than unrestricted Bayesian classifiers in some situations. Friedman

et al. [120] argued that Bayesian scoring functions were designed for structure learning, not par-

ticularly for classification tasks. The scoring functions measure the errors of the learned Bayesian

network over all the variables in the domain, hence, minimizing this error does not necessarily

67



minimize the local error in predicting the class variable given the attributes, especially when there

are many attributes. The naïve Bayesian classifier considers the contributions from all other at-

tributes to the class variable because all of the other attributes as the class variable’s children are

in its Markov blanket.

In order to further improve the performance of the naïve Bayesian classifier without sacri-

ficing its characteristics of simplicity and robustness, Friedman et al [120] first proposed a tree-

augmented naïve Bayesian (TAN) classifier, which is based on the structure of naïve Bayes, requir-

ing that the class variable be a parent of every attribute, and also allows additional edges between

attributes that capture correlations among them, where the augmenting edges are in a reasonable

restricted tree-like form for the seek of computational cost.

In this paper, we extend our previous work [124] on a Bayesian network-based integrative

method for PPI prediction. We introduce a classification - oriented Bayesian network, namely, tree

augmented naïve Bayes (TAN) into PPI prediction. In our experiments, the features used for pre-

dicting PPI in a target organism (e.g. human), are extracted from model organisms (e.g., Saccha-

romyces cerevisiae, C. elegans, and Drosophila melanogaster). The advantage of a cross-organism

predictive model is that model organisms are well studied and have a nearly unfathomable amount

of experimental data, while there may be little information about the target organism, especially

about newly sequenced proteins. Our TAN based model integrates multiple microarray gene ex-

pression datasets and gene ontology (GO) (The Gene Ontology Consortium, 2000) information

from three model organisms, and explicitly incorporates in the confidence scores of ortholog map-

pings between the target organism and the model organisms.

The rest of the paper is organized as follows. First, we describe TAN algorithm, feature ex-

traction and a Manually constructed Bayesian network classifier in Methods. Then, we present

experiments on human PPI prediction in Results. Finally, we state some concerns and make con-

cluding remarks in Discussions.
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6.2 Methods

6.2.1 TAN

In a tree-augmented naïve Bayes (TAN) , the class variable as the root of the tree has no parents

and each attribute has the class variable and at most one other attribute as its parents, therefore,

each attribute can have one augmenting edge (edge connecting two attributes) pointing to it. To

learn the TAN model, we follow the algorithm proposed by Friedman et al. [120] and based on a

well-known method reported by Chow and Liu [125] for learning tree-like Bayesian networks (also

refer to Pearl’s book [83]). By taking advantage of the restriction in a TAN model, the algorithm

reduces the problem of constructing a maximum likelihood tree to finding a maximal weighted

spanning tree in a graph. A maximal weighted spanning tree can be constructed by selecting a

subset of arcs from a graph such that the selected arcs constitute a tree and the sum of weights

attached to the selected arcs is maximized, which can be solved in the standard procedures with

the time complexity of O(n2 logn) , where n is the number of vertices in the graph [126]. The TAN

model construction algorithm shown in Table 6.1 has time complexity of O(n2N) , where N is the

number of instances in data D.

6.2.2 Feature Selection

6.2.2.1 Orthologous mapping score: S

For each protein-protein pair (P1, P2) in the target organism, we first identify its orthologous pairs

(R(i)
1 , R(i

2 )) in three model organisms (i = 1,2,3), using Inparanoid algorithm introduced by Remm

et al. [127] [32]. Ortholog clusters are seeded with a two-way best pairwise match, and then grown

by gathering inparalogs independently around the seed. Each member of the constructed protein

cluster receives an inparalog score between 0 and 1.0, which reflects the confidence about the

orthologous relationship, also called orthologous mapping score ( S(i), i = 1,2,3 ) in this paper. We

discretize S(i) into three states: low, medium and high.
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Table 6.1 – TAN Classifier Construction Algorithm

1. Compute the conditional mutual information between each pair of variables,

given the class variable. We set A1 to An as n attributes, C as the class variable

Ip(Ai,A j|C) = ∑
i	= j,c

P(ai,a j,c)× log
P(ai,a j|c)

P(ai|c)P(a j|c)

2. Build a complete undirected graph in which the vertices are the attributes

A1,.., An. Annotate the weight of an edge connecting Ai to Aj by Ip(Ai,A j|C).

3. Build a maximum weighted spanning tree.

4. Transform the resulting undirected tree to a directed one by choosing a root

variable and setting the direction of all edges to be outward from it.

5. Construct a TAN model by adding a vertex labeled by C and adding an arc

from C to each Ai.

6.2.2.2 Microarray feature: M

Microarray gene expression data disclose functional associations among proteins [118, 119, 128].

The correlation between expression profiles of two proteins is measured with Pearson correlation

coefficient (PPC) [129], which is defined as:

r =
1

n−1

n

∑
i=1

(
Xi− X̄

sX
) · (Yi− Ȳ

sY
) (6.1)

where
Xi− X̄

sX
, X̄ and sX are the standard score, sample mean and sample standard deviation.

For each orthologous pair (R(i)
1 , R(i

2 )), three PPCs are calculated from three microarray datasets

of the ith organism. The absolute values of the raw PPCs are then discretized according to a 4-

level (LL,L,H,HH) uniform quantization scheme. The three resulted discrete PPCs of the pair are

combined into one value (M(i)), which has 20 possible states, because we consider the contributions

from the three individual microarray datasets are somehow related since their origins are the same
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organism.

6.2.2.3 GO features: F, P and C

First, three orthologous GO features are developed from each of the three domains: ’molecular

function’, ’biological process’, and ’cellular component’. Those features indicate the association

between a pair of proteins in different aspects. The first feature is the total number of shared terms

between the two proteins. The second feature is the correlation ratio, which is defined based on the

number of gene products in common. The third feature is based on minimum GO distance between

two proteins in GO structures. Apparently, the three features are related to each other, which leads

us to join the three features into one variable with 32 states. Consequently, the orthologous pair

(R(i)
1 , R(i

2 )) in the ith organism of a target protein pair (P1, P2) has been generated three GO features,

namely, F(i) , P(i) and C(i) derived from ’molecular function’, ’biological process’, and ’cellular

component’ respectively (refer to [124] for details).

6.2.3 A manually constructed Bayesian network (MC)

In our previous work [124], we empirically demonstrate that a manually constructed Bayesian net-

work classifier (MC) provides better classification accuracy than a naïve Bayes classifier (NB). To

evaluate the TAN classifier, we compare it with the MC model and the naïve classifier. Here, we

give a brief review of the MC model; and the details can be found in [124]. The MC model shown

in Figure 6.1 integrates microarray features M(i), GO features (F(i) , P(i), C(i)) and orthologous

mapping confidence (S(i) ) into a Bayesian network, where protein-protein interaction is modeled

as the two- state class variable, denoted as I. In order to distinguish the three model organisms,

instead using superscripts in the feature names, we prefix feature name with organism initial, i.e.,

F for fruit fly (D. melanogaster), W for worm (C. elegans) and Y for yeast (S. cerevisiae), for in-

stance, FS stands for mapping score for fruit fly. As we can see, orthologous mapping confidences

are explicitly modeled into the classifier; when given mapping confidence and PPI (or I), mi-

croarray and GO features within the same organism are conditional independent; when given PPI,
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Figure 6.1 – A manually constructed Bayesian network classifier

features from different organisms are conditional independent. This cross-organism conditional

independence allows us to derive a simple solution for PPI prediction, as we detail next.

The Bayesian approach to classify a test sample is to assign the most probable class, or the class

with a larger posterior probability for a two-class problem. For the model shown in Figure 6.1, we

have the ratio of the posterior probability for two classes:

L =
P(I = 1) ·∑3

i=1 P(Si) ·P(Mi,Fi,Pi,Ci|Si, I = 1)

P(I = 0) ·∑3
i=1 P(Si) ·P(Mi,Fi,Pi,Ci|Si, I = 0)

(6.2)

where, (based on conditional independence shown in Figure 6.1)

P(Si) ·P(Mi,Fi,Pi,Ci|Si, I) = P(Mi|Si) ·P(Pi|Si, I) ·P(Ci|Si, I) ·P(Fi|Si, I) (6.3)

For a pair of proteins, we compute its probability ratio L and predict the two proteins as an

interacting pair if L > 1 and non-interacting pair otherwise. The prior P(I = 1) and P(I = 0) can

be computed empirically.

6.2.4 ROC Analysis

Although accuracy estimation is very widely used in the Machine Learning community for com-

parison of classifiers, Provost et al. [130] have argued that accuracy estimation is not the most
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appropriate metric when cost and class distributions are not specified precisely. As an alternative,

they propose the technique of Receiver Operating Characteristic (ROC) analysis, which is taken

from signal detection theory. In the Machine Learning context, a ROC graph is a plot of false

positive rate against true positive rate. A deterministic classifier produces a single point in ROC

space, but a probabilistic classifier such as those considered in this work produces a curve. As

stated by Provost and Fawcett [131], the benefit of ROC curves is that they illustrate the behavior

of a classifier without regard to class distribution or error cost.

6.3 Results

6.3.1 Data

The 10,163 known human interacting pairs also with mapped orthologs in any model organism are

collected from the HPRD [132,133] database. Since non-interacting protein data are not available,

the negative samples are randomly generated. A protein pair is considered to be a negative sample

if the pair does not exist in the interaction set. Total of 209,761 human protein pairs are obtained

as negative samples. The ratio of negatives and positives is about 20 : 1. About 2/3 of positive and

negative data are separated into training data and the remaining samples are used as testing data.

The final training set has 6,766 positives and 139,864 negatives and testing set contains 3,397

positives and 69,897 negatives.

Genome-wide orthologous mappings between human and the three model organisms (S. cere-

visiae, C. elegans, and D. melanogaster) are downloaded from the Inparanoid database [127]. For

each protein pair in human, we form a list of ortholog pairs in the model organisms along with

mapping scores.

Microarray gene expression datasets are collected from NCBI Gene Expression Omnibus (GEO)

[134]. As shown in Table 6.2, three microarray data sets for each model organism are obtained

[135–141].
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Table 6.2 – Microarray datasets used in the experiments, N represents the number of samples in each

dataset

Organism Dataset(N) Dataset(N) Dataset(N)

Yeast GDS1115(131) GDS465(90) GDS92(40)

Worm GDS1319(123) GDS770(20) GDS6(29)

Fruit fly GDS2272(36) GDS516(26) GDS2673(27)

6.3.2 Human PPI prediction

We use ROC (receiver operating characteristic or plot of 1-specificity ∼ sensitivity) curves to eval-

uate the performance of a classifier. A ROC is obtained by varying a decision threshold, which

is equivalent to adjusting the priors in a Bayesian network based classifier. We define specificity

as the percentage of matched non-interactions between the predicted set and the observed set over

the total number of observed non-interactions, and sensitivity as the percentage of matched inter-

actions over the total number of observed interactions.

6.3.2.1 Classifier comparison

The TAN model, the manually constructed Bayesian network (MC) and the naïve Bayesian (NB)

classifier are employed to predict human PPI. We implement MC and NB in Java, and use WEKA

(http://www.cs.waikato.ac.nz/ml/weka/) package for TAN. The models are learned on the training

set containing instances with at least one orthologous mapping information, described in Sec-

tion 6.3.1. Then the obtained models are evaluated on the testing dataset also with one or more

orthologous mappings and at the same ratio of positives and negatives. In case of missing values,

the contribution from the attributes is ignored.

The results are presented in ROC curves in Figure 6.2. As we observe, TAN outperforms both

the naïve Bayesian method and the manually constructed BN. With specificities fixed at approxi-

mately 70%, TAN, manual constructed and the naïve Bayesian method can achieve sensitivities at

around 76%, 73% and 66% respectively.
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Figure 6.2 – A manually constructed Bayesian network classifier
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Table 6.3 – Data Statistics

Mapping Training Testing
# Pos. Neg. Total Ratio Pos. Neg. Total Ratio
≥ 1 7,164 142,973 150,137 1 3,581 71,486 75,067 1
1 3,473 104,302 107,775 .72 1,714 52,085 53,799 .72
2 2,943 32,557 35,500 .24 1,469 16,426 17,895 .24

3 748 6,114 6,862 .05 398 2,975 3,373 .05

6.3.2.2 Impact from missing data

Examining the data closely, we find a high proportion of missing values. As shown in Table 6.3,

72% of instances have only one ortholog organism information, 24% have two orthologous map-

ping, and only 5% have all ortholog mappings. The ratios are the same in training and testing

datasets.

In this experiment, we train TAN models by instances with one orthologous mapping, two

mappings and three mappings separately, and obtain Model1, Model2 and Model3 respectively.

We then evaluate the models on the testing instances with same number of mappings as the models’

training instances, e.g., Model3 is learned with 3-mapping instances, we evaluate it on 3-mapping

testing instances. The results are displayed as ROC curves in Figure 6.3. As expected, the system’s

performance is getting better as more orthologous evidences are available. When the information

is available from all three organisms, with the specificity of 70%, it can achieve 88% sensitivity;

when two or one orthologous organisms is available, with the same specificity, its sensitivity can

only be 72% or 66% respectively.

6.3.2.3 Study on the TAN structure

The results in Section 6.3.2.1 demonstrate that the TAN classifier achieves better classification

performance than the manually constructed Bayesian network classifier, which is crafted based

on our knowledge of the domain. In this experiment, we explore the connections, which the MC

network has missed but the TAN model may reveal from data.
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Figure 6.4 shows the TAN structure learned from the origin imbalanced training data with at

least one orthologous organisms. As TAN algorithm defined, every attribute has the class variable

I and at most one other attribute as its parents, i.e., correlations among attributes are allowed. In

Figure 6.4, we observe most of the augmented edges (12 out 14) are within the same organisms.

Interestingly, the two cross-organism links (red edges) are within the same categories: WS→ Y S

and WF → FF . We wonder if the characteristics of imbalance (positive: negative = 1 : 20) and

high missing rate (70% with one orthologous organism) in training data cover any interesting

correlations.

We only keep the samples with all three orthologous organisms in the training data, and obtain

748 positives and 6,114 negatives. To balance the number of positives, we partition the negatives

into 8 groups, and combine each group with the positives to form 8 training datasets. Each train-

ing dataset are used separately to learn TAN model. We observe all learned models outperform

the model learned using all negatives, which is superior over the model trained with at least one

mapping (refer to Section 6.3.2.2). We observe two trends in the eight learned TAN structures: (1)

mapping scores are always on top of other attributes, i.e., the directions of the augmented edges

are from the mapping scores to the others; (2) near half of the augmented edges are with the same

categories, e.g., Y F → FF , WC→ FC. Figure 6.5 shows one of the structures. As we see, if there

is a link between score and other attributes, its direction is always from score to the other; 6 out of

14 augmented edges are within the same categories (red links).

6.3.2.4 Study on the importance of attributes

The results from the last section suggest that orthologous mapping scores play special roles in the

TAN model. In this experiment, we remove the entire mapping score attributes, and build the TAN

model by using the rest of the 16 attributes from the balanced training dataset without missing

orthologous info (described in Section 6.3.2.3). The resulting TAN structure is actually a naïve

Bayesian network as shown in Figure 6.6. This suggests that the association among other attributes

should go through the mapping scores, which agrees with the MC model (refer to Figure 6.1 ).
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Figure 6.4 – The TAN structure learned from at least one ortholog organism and unbalanced training

data

Figure 6.5 – The TAN structure learned from three ortholog organisms and balanced training data
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Figure 6.6 – The TAN structure learned from three ortholog organisms and balanced training data

without the mapping score attributes

6.4 Discussions

6.4.1 TAN and unrestricted Bayesian network classifier

TAN relaxes the strong assumption of a naïve Bayesian classifier, but still has a restricted tree-like

structure for the sake of computational efficiency. An easy question to ask is if we want to trade

the computational cost for a better classification accuracy, can we achieve the aim by learning an

unrestricted Bayesian network classifier?

Our empirical results reveal that an unrestricted Bayesian network classifier learned by hill-

crimbing is even worse than a naïve Bayesian classifier. The ROC areas of unrestricted Bayesian,

naïve Bayesian and TAN are 0.759, 0.780 and 0.808 respectively.

The scoring functions for structure learning cause the observed results [120], since they eval-

uate how closely each candidate network represents the probability distribution embedded in the

training data, by measuring the error of the learned Bayesian network over all the variables in the

domain, instead of the relevant features (the Markov Blanket) of the class variable. Thus, minimiz-

ing this error does not necessarily minimize the local error in predicting the class variable given

the attributes.

6.4.2 TAN and imbalanced data

In many cases, imbalanced class distribution causes poor performances from standard classifica-

tion algorithms [142, 143] which induce classifiers that maximize the overall classification accu-
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racy. Well-known strategies to deal with the imbalance-class problem include resizing training

data sets, adjusting misclassification costs, and recognition-based learning (learning from the mi-

nority class). By contrast, some evidences [143] support that rebalancing the classes artificially

does not have a great effect on the predictive performance. Our data have heavy skewed class

distribution (positives: negatives = 1 : 20). We studied how much rebalanced training data improve

the performance of the induced TAN classifier.

We split the negative training sample into 20 equal-sized groups, and then combine positives

in training with each of the negative groups to form 20 training datasets (7164 positives and 7149

negatives in each set). We then apply TAN on each of the training sets. The results show that

training on balanced data can obtain slightly better classifiers (ROC area: 0.818±0.002) than the

TAN classifier (ROC area: 0.808) learned from imbalanced data. We didn’t observe apparently

improving nor worsening in the naïve Bayesian classifiers learned from rebalancing data. The

result suggests that the TAN classifier is slightly more sensitive to rebalancing than the naïve

Bayesian classifier.

6.4.3 TAN and missing values

Table 6.3 tells us half of the positives in the training data have only one orthologous mapping.

Missing values can strongly impair the learned classifier. In WEKA implementation for TAN,

attributes with missing values are ignored when computes the likelihood of each class value. To

better handle missing values problem, Friedman [123] proposed a variant of EM for selecting

the graph structure that can efficiently search over many candidates for the case of TAN models.

Studying the feasibility of this and other methods to better handle missing values is one of my

interests for future work.

6.4.4 Small sample size

To learning the parameters of a network we estimate conditional probabilities in the form of

P̂D(X |ΠX), which can be realized by partitioning the training data according to the possible values
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of ΠX and then computing the frequency of X in each partition. When some of these partitions

contain very few instances, however, the estimate of the conditional probability is unreliable. This

problem is not as acute in the case of a naïve Bayesian classifier, since it partitions the data accord-

ing to the class variable, and usually all values of the class variables are adequately represented in

the training data. In TAN networks, however, for each attribute we assess the conditional proba-

bility given the class variable and another attribute. This means that the number of partitions is at

least twice as large. Thus, it is not surprising to encounter unreliable estimates, especially in small

data sets.

The standard practice in Bayesian statistics in this situation is a smoothing operation on the

parameters learned. In Bayesian learning of a multinomial distribution, with the assumptions of

Dirichlet priors and using marginal to estimate conditional probabilities, we obtain the following

formula to calculate the conditional probability given the class variable and another attribute:

θ s(x|Πx) =
N · P̂D(Πx)

N · P̂D(Πx)+N0
x|Πx

· P̂D(Πx)+
N0

x|Πx

N · P̂D(Πx)+N0
x|Πx

·θ 0(x|Πx) (6.4)

where, θ 0(x|Πx) is the prior estimate of P(x|Πx) and N0
x|Πx

is the confidence associated with

that prior. Note that this application of Dirichlet priors biases the estimation of the parameters

depending on the number of instances in the data with particular values of X’s parents. Thus,

it mainly affects the estimation in those parts of the conditional probability table that are rarely

seen in the training data. Investigation of smoothing operation in small sample applications using

Bayesian network is one of my future interests.

6.4.5 Concluding remarks

Knowledge of protein-protein interactions is crucial to understand biological processes. Enormous

biological data generated by advanced technologies are available. It is desirable to develop effec-

tive and efficient computational approaches to integrate heterogeneous data sources and predicting

large-scale PPIs. In this paper, we extended our previous work of using a Bayesian classifier to
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predict human PPI from data containing microarray expression measurements and GO features of

orthologous protein-protein pairs in model organisms.

To further improve prediction accuracy, we introduce tree-augmented naïve Bayes (TAN) clas-

sifier. A TAN classifier relaxed the strong assumption of conditional independence among all

variables given the state of the class variable, however it maintains the simplicity and robustness

of the naïve classifier.

The empirical evaluations show that the TAN performs much better in term of classification

accuracy, even better than our previous manual created Bayesian classifier. The more orthologous

information from testing samples available, the more accurate the prediction is. When testing

instances have orthologous values from all three organisms, with the reasonable specificity of

70%, sensitivity can achieve 88%. The TAN structure conforms some important links as shown in

the manual construction, e.g., microarray and GO features are descendants of the mapping scores,

it also reveals some correlations among attributes, which are embedded in data.
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7. Conclusion

Recently, Bayesian network formalism as a graphic representation of the dependence relationships

among a group of variables in an uncertainty domain, has seen growing applications in Bioinfor-

matics. The sound theoretical foundation and fruitful researches in practice have made Bayesian

networks a valuable tool to handle biological data analysis. A Bayesian network provide a innate

way to present biological networks with the characteristics of uncertainty and dynamic; it natu-

rally integrates different types of resources and existing knowledge in aim to discover new causal

relationships or inferencing desired unknowns. However, with the development of new technolo-

gies, massive high-throughput data challenge the researchers to design new effective and efficient

algorithms for Bayesian network induction and inference.

7.1 Summary and Contribution

In this thesis, I develop new methods for BN structure learning with applications to biological

network reconstruction and assessment. The first application is to reconstruct the genetic regula-

tory network (GRN), where each gene is modeled as a node and an edge indicates a regulatory

relationship between two genes. In this task, we are given time-series microarray gene expres-

sion measurements for tens of thousands of genes, which can be modeled as true gene expressions

mixed with noise in data generation, variability of the underlying biological systems etc. We de-

velop a novel BN structure learning algorithm for reconstructing GRNs.

The second application is to develop a BN method for protein-protein interaction (PPI) as-

sessment. PPIs are the foundation of most biological mechanisms, which provides one of the

most valuable resources from which annotations of genes and proteins can be discovered. Experi-

mentally, recently-developed high-throughput technologies have been carried out to reveal protein

interactions in many organisms. However, high-throughput interaction data often contain a large

84



number of spurious interactions. In this thesis, I develop a novel in silico model for PPI assessment.

Our model is based on a BN that integrates heterogeneous data sources from different organisms.

The results show that it outperforms naïve Bayes and a manual constructed Bayesian Network.

My work in this thesis can be summarized in the following aspects:

Dynamic Bayesian network learning

In this thesis, first I propose a fast method to learn dynamic Bayesian network structure prefer-

able to model complex biological networks with feedback loops. The current DBN methods may

limit their applications in large-scale network analysis due to relatively low accuracy of regulatory

network prediction and excessive computation time. Our method uses differential mutual infor-

mation to select a set of potential regulators for each gene first, which alleviate the two problems

associated with standard DBNs. In this case, we employ mutual information to measure the depen-

dence between two nodes at different time points, thus we name it differential mutual information.

This method is tested on two simulated networks and a real biological pathway. Our experimen-

tal results show that the proposed method produces better overall performance than the commonly-

used BDe, ML, and BIC methods. Furthermore, our method is much faster than BIC and ML

methods, especially for networks of moderate size. This is attributed to the fact that we only eval-

uate a limited number of potential parents (selected by our DMI) for each node. Thus, our method

can be applied to very large networks learning where standard DBN is infeasible. Experimental

results carried out on the cell cycle pathway of Saccharomyces cerevisiae further demonstrate the

effectiveness of the proposed method. We predicted some new interactions that were not included

in the original KEGG pathways, but verified by biological experiments elsewhere.

Bayesian network learning using Markov blanket

Markov blanket (MB) of a node in a Bayesian network consist its parents, children and chil-

dren’s parents. MB contains all the informations about the node, in other words, given its MB,

the node is independent to all the other nodes outside the MB. By definition, Markov blanket of a

variable is equivalent to its strongly relevant feature set. Thus, applying existing feature selection

techniques, we can identify Markov blanket of a target. The knowledge of MB of a node in a
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Bayesian network can greatly simplify the recovery of its local structure.

In this thesis, I propose a MB based structure learning method by first applying feature selection

to identify MB of each nodes, then examining the constrains represented in correlations among

close nodes to further recover local structures, then the whole network. The method is tested on

a golden network, i.e., RAF pathway. The result shows that our method out-perform Hillclimbing

and MCMC, and also reveal new causal relationships confirmed in literature.

Using Markov blanket for feature selection in classification

I theoretically prove an asymptotic property of K2 learning algorithm, that is, when sample

size is very large, K2 in random ordering can always detect a edge if and only if it is between two

adjacent nodes in the real structure. This theorem can be used to find all undirected edges in the

graph. This precess can be fast due to the efficiency of K2. Then limited correlation tests among

local nodes can quickly uncover the Markov blanket of the class variable in the classification

scenario.

This method is evaluated on a golden structure- the Alarm network. The results show that our

method obtains more accurate Markov blankets than the representative MB learning algorithm (KS

algorithm) proposed by Koller and Thrun. Furthermore, when the learned MB used as feature set

for classification, our method also out-perform KS algorithm on the benchmark Molecular dataset.

Classification orientated Bayesian network: a tree- augmented naïve Bayesian (TAN)

Standard Bayesian scoring functions are designed for structure learning, not particularly for

classification tasks. The scoring functions measure the errors of the learned Bayesian network

over all the variables in the domain, hence, minimizing this error does not necessarily minimize

the local error in predicting the class variable given the attributes, especially when there are many

attributes. We introduce a classification aimed Bayesian network-TAN (Tree Augmented Naive

Bayes), which has the computational simplicity and functional robustness.

In this thesis, TAN is used for protein-protein interaction (PPI) assessment. PPIs are the foun-

dation of most biological mechanisms, which provides one of the most valuable resources from

which annotations of genes and proteins can be discovered. Experimentally, recently-developed
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high-throughput technologies have been carried out to reveal protein interactions in many organ-

isms. However, high-throughput interaction data often contain a large number of spurious interac-

tions. We introduce the learning of a TAN (Tree Augmented Naive Bayes) based network, which

integrates heterogeneous data sources from model organisms to assess PPI in a target organism.

The empirical results demonstrate that the TAN model outperforms naïve Bayes and a manual con-

structed Bayesian Network; furthermore, the model convinces that sufficient model organisms can

provide accurate PPI prediction.

7.2 Future works: Learning a Bayesian network with incomplete data

In this thesis, I assume data are complete, i.e., no missing values exist. However, the issue of

incomplete data is not rare in biological data analysis. For example, in my study of PPI prediction,

nearly one fourth of instances have missing values. For the seek of simplicity, the contribution

from missing attributes is ignore in this thesis.

Missing data happen in two ways: at random or not at random. Data missing at random means

the missing is not related to the states of the other variables, such as the recording problems or some

similar error. This type of missing is relative easy to handle, and the standard practice is to apply

Expectation and Maximization (EM) algorithm proposed by Dempster et. al [144] and McLachlan

and Krishnam [145]. If data missing does not occur at random, other variables contribute to the

situation. For example, in a drug study a patient may become too sick to complete the study, due to

a side effect of the drug. So the fact that the result variable is missing depends directly on the value

of the side effect variable. To this more complicate situation, Cooper [146] and Spirtes et.al [147]

suggested some solutions.

Bayesian networks have the advantage when facing missing values, due to the probability pre-

sentation of the dependence relationship among variables. I am interested in studying Bayesian

network learning in the presence of missing data in the future.
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A. Proof of an asymptotic property of K2 algorithm

Lemma: Assume the number of cases in the database D generated from a Bayesian belief network

G with positive conditional probabilities, approaches infinity. If a pair of nodes a and b are adjacent

in G , then adding the front node in any node ordering to the parent set of the other node can always

increase the likelihood in K2 metrics.

Proof

Without loss of generality, assume a is in front of b in a given node ordering O , modify a

structure Bs, in which a is not in the parent set of b (a 	∈ π(b) = Z), by adding a as a parent of b to

form a new structure B′s with the new parent set π ′(b) = Z∪{a}, we need to prove the likelihood

increases, i.e.,

P(D |Bs)< P(D |B′s) (A.1)

In K2 metrics, likelihood can be computed as follows,

P(D |Bs) =
n

∏
i=1

qi

∏
j=1

(ri−1)!

(Ni j + ri−1)!

ri

∏
k=1

Ni jk! (A.2)

Where,

n: number of nodes in Bs

qi: number of unique instantiations of πi (set of parents of variable Xi

ri: number of possible value assignments of Xi

Ni jk: number of cases when Xi has the kth value and πi has the jth value

Ni j = ∑ri
k=1 Ni jk

Comparing Bs and B′s , the only change is at node b. Applying (A.2) to (A.1) and only consid-
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ering b, we need to prove,

rZ

∏
q=1

(rb−1)!

(NZq + rb−1)!

rb

∏
k=1

NZqbk! <
ra

∏
m=1

rZ

∏
q=1

(rb−1)!

(NZqam + rb−1)!

rb

∏
k=1

NZqambk! (A.3)

Where,

ra, rb and rZ: the numbers of possible assignments for variable a, b and Z respectively;

NZq : number of cases when Z has the qth value

NZqbk : number of cases when Z and b have their qth and kth values respectively

NZqam: number of cases when Z and a have their qth and mth values respectively

NZqambk : number of cases when Z, a and b have their qth, mth and kth values respectively

N: total number of cases in (D)

NZq =
ra

∑
m=1

NZqam =
rb

∑
k=1

NZqbk

N =
rZ

∑
q=1

NZq =
rZ

∑
q=1

ra

∑
m=1

NZqam =
rZ

∑
q=1

rb

∑
k=1

NZqbk =
rZ

∑
q=1

ra

∑
m=1

rb

∑
k=1

NZqambk

Since the conditional probabilities of G are positive, all states of the variables are possible to

be instantiated. When N is approaching infinity, all terms describing numbers of cases in (A.3) are

large. Thus Stirling Approximation can be used on those terms. Stirling Approximation states,

n!≈
√

2πn(n/e)n,when n is large (A.4)

Denote the left side of (A.3) as S1, and apply Stirling Approximation to S1:

s1 ≈
rZ

∏
q=1

(rb−1)!√
2π(NZq + rb−1)((NZq + rb−1)/e)(NZq+rb−1)

rb

∏
k=1

√
2πNZqbk(NZqbk/e)NZqbk (A.5)
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Take the logarithm on both sides,

logS1 ≈ rZ log[(rb−1)!(
√

2πe)rb−1]+
rZ

∑
q=1

[−1

2
(rb−1) log(NZq + rb−1)+

rb

∑
k=1

(NZqbk +1/2) log
NZqbk

NZq + rq−1
] (A.6)

On the right of (A.6), the first term is a constant, and inside the summation over q, the first term

is in order of logN and the other term over k in order of N is dominant.

Thus, only keep the dominant terms,

logS1 ≈
rZ

∑
q=1

rb

∑
k=1

(NZqbk +
1

2
) log

NZqbk

NZq + rb−1

≈
rZ

∑
q=1

rb

∑
k=1

NZqbk log
NZqbk

NZq

= N
rZ

∑
q=1

rb

∑
k=1

NZqbk

N
log

NZqbk

NZq

= N
rZ

∑
q=1

rb

∑
k=1

P(Z = Zq,b = bk) logP(b = bk|Z = Zq)

= −N ·H(b|Z) (A.7)

Where,

P(Z = Zq,b = bk) =
NZqbk

N : joint probability of Z = Zq, and b = bk

P(b = bk|Z = Zq) =
NZqbk
NZq

: conditional probability of b = bk, giving Z = Zq

H(b|Z): entropy of b, conditioning on Z.

Let the right side of (A.3) as S2, and apply Stirling Approximation (A.4) to S2,

s2 ≈
ra

∑
m=1

rZ

∑
q=1

(rb−1)!√
2π(NZqam + rb−1)

(
NZqam+rb−1

e

)NZqam+rb−1

rb

∑
k=1

√
2πNZqambk

(
NZqambk

e

)NZqambk

(A.8)
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Take the logarithm on both sides,

logS2 ≈ rarZ log[(rb−1)!(
√

2πe)rb−1]+
ra

∑
m=1

rZ

∑
q=1

[−1

2
(rb−1) log(NZqam + rb−1)+

rb

∑
k=1

(NZqambk +
1

2
) log

NZqambk

NZqam + rb−1
] (A.9)

On the right side of (A.9), the first term is a constant, and inside the summation over m and q,

the first term is in order of logN and the second term is in the order of N, which is dominant.

logS2 ≈
ra

∑
m=1

rZ

∑
q=1

rb

∑
k=1

(NZqambk +
1

2
) log

NZqambk

NZqam + rb−1

≈
ra

∑
m=1

rZ

∑
q=1

rb

∑
k=1

NZqambk log
NZqambk

NZqam

= N
ra

∑
m=1

rZ

∑
q=1

rb

∑
k=1

NZqambk

N
log

NZqambk

NZqam

= N
ra

∑
m=1

rZ

∑
q=1

rb

∑
k=1

P(Z = Zq,a = am,b = bk) logP(b = bk|Z = Zq,a = am)

= −N ·H(b|Z,a) (A.10)

Where,

P(Z = Zq,a = am,b = bk) =
NZqambk

N
: joint probability of Z = Zq,a = am, and b = bk

P(b = bk|Z = Zq,a = am) =
NZqambk

NZqam

: conditional probability of b = bk, giving Z = Zq,a = am

H(b|Z,a) : the entropy of b conditioning on a and Z.

Subtracting (A.10) from (A.7),
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logS1− logS2 ≈ −N ·H(b|Z)− (−N ·H(b|Z,a))

= −N · I(b|Z,a) (A.11)

Where,

I(b|Z,a): information gain of b conditioning on Z and a.

Since a and b b adjacent in G as given, a is either a parent or a child of b. In other words, a is

in the Markov Blanket of b, i.e., a ∈Mb(b). Therefore, a is informative for b, giving all the other

variables, which means for any Z, after adding in a, the information gain is always positive, i.e.,

I(b|Z,a)> 0 (A.12)

Substitute (A.12) into (A.11),

logS1− logS2 < 0 or S1 < S2

The Lemma (A.1 is proven.

Theorem: Assume the number of cases in the database D generated from a Bayesian belief

network G with positive conditional probabilities, approaches infinity. An edge between two nodes

can be identified by K2 algorithm in all node ordering if and only if these two nodes are adjacent

in G .

Proof

First, briefly recall the K2 algorithm. K2 algorithm starts the model selection process with a

structure with no arcs, then forward constructs parent sets of each node i by adding the node from

available parent candidates (nodes before node i in the given node ordering), which increases the

joint probability P(BS,D) most. The process terminates when no expansion of parent sets can

increase P(BS,D) further or when the limit of maximum number of parents has been reached.

Therefore, for a given node ordering and given constrain of maximum number of parents, K2

returns the model BS,max, which maximizes the joint probability, i.e.,
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BS,max = argmax
BS

P(BS,D) = argmax
BS

P(D |BS)P(BS) (A.13)

If no prior knowledge is available, often uniform distribution over BS is assumed, i.e., P(BS) is

a constant. Thus,

BS,max = argmax
BS

P(BS,D) = argmax
BS

P(D |BS) (A.14)

The best model is the one with the maximum likelihood under the given constrain.

Part I: Prove the statement that if nodes a and b are adjacent in G , then either a ∈ π(b))

or b ∈ π(a) in any given node ordering, in other words, edge between a and b can always be

identified regardless the given node ordering. Without loss of generality, assume a is in front of

b in a given ordering in the following proof. Following the preceding Lemma, since a and b are

adjacent in G , for any given node ordering, adding a into π(b) can always increases the likelihood.

If the maximum number of parents is large, the node a will be added in π(b) before K2 terminates

eventually.

Part II: Prove the statement that if a and b are not adjacent in G , then there exists a node

ordering O0 (without loss of generality, assume a is before b in O0, such that in the returned

structure from K2, BS0
, a 	∈ π0(b). Since a and b are not adjacent in G , there are two cases:

Case 1: a is not in the Markov blanket of b, i.e., a 	∈Mb(b).

Case 2: a ∈Mb(b), but a andb are spouse relationship through child node c, i.e., a and b are

related only when c is given.

Let A be the set of all the nodes before b.

Case 1: a 	∈Mb(b), Let O0 be a node ordering with Mb(b)⊆A . Based on equation (A.7), the

likelihood for the structure BS0
associated with node b, S0 can be approximated as:

logS0 ≈−N ·H(b|π0(b)) (A.15)
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Thus, having π0(b) as the smallest set which has the lowest entropy under the given ordering,

H(b|π0(b)) = H(b|A ) = H(b|Mb(b),A \Mb(b)) = H(b|Mb(b)) (A.16)

As Markov blanket of a node is unique and the smallest set which block the node from all the

other nodes, we can conclude that π0(b) and Mb(b) are identical. Hence, a 	∈ π0(b).

Case 2: a and b are related only when c is given. Let O0be a node ordering with c 	∈A . Since

π0 ⊆A ,c 	∈ π0(b). Assuming a ∈ π0(b),

H(b|π0(b)\,a) = H(b|π0(b)\a) = H(b|π0(b)) (A.17)

(A.17) is a controversy to the fact that π0(b) should be the smallest set which has the lowest

entropy under the given ordering. Therefore, the assumption a ∈ π0(b)) can’t be correct, which

proves a 	∈ π0(b) . Thus, in all cases when a and b are not adjacent in G , we can always find a

node ordering such that in the structure returned by K2, there is no edge between a and b.
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