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Abstract - Our goal is to develop an algorithm for the 
automated study of the dynamics of Probabilistic Boolean 
Network (PBN) representation of genes. Model checking is 
an automated method for the verification of properties on 
systems. Continuous Stochastic Logic (CSL), an extension of 
Computation Tree Logic (CTL), is a model-checking tool 
that can be used to specify measures for Continuous-time 
Markov Chains (CTMC). Thus, as PBNs can be analyzed in 
the context of Markov theory, the use of CSL as a method for 
model checking PBNs could be a powerful tool for the 
simulation of gene network dynamics. Particularly, we are 
interested in the subject of intervention. This refers to the 
deliberate perturbation of the network with the purpose of 
achieving a specific behavior. This is attained by selectively 
changing the parameters in a node or set of nodes so that 
the network behavior can be controlled. 

Keywords: Gene Regulatory Network, Probabilistic 
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checking algorithms. 
 

 

1 Introduction 
  The genome encodes thousands of genes whose 
products enable cell survival and numerous cellular 
functions. The amounts and the temporal pattern in which 
these products appear in the cell are crucial to the processes 
of life. A gene regulatory network is the collection of 
molecular species and their interactions, which together 
modulate the levels of these gene products. The dynamics 
due to both internal and external interactions constitute the 
state of a system. With the aid of Computer Science and 
Statistics, the study of gene regulatory network dynamics 
has become more feasible, and several models have been 
developed to simulate such dynamics. The knowledge of 
the intrinsic mechanisms that govern the network could 
provide the means to control its behavior. It is because of 
this that the development of an automated system capable 
of effectively simulating the behavior of a gene regulatory 
network may also provide the knowledge to alter such 
behavior in order to achieve a particular state of the system 

or, on contrary, to prevent or to stop an undesirable 
behavior. This “guiding” of the network dynamics is 
referred to as intervention. The power to intervene with the 
network dynamics has a significant impact in diagnostics 
and drug design.  
 Biological phenomena manifest in the continuous-time 
domain. But, in describing such phenomena we usually 
employ a binary language, for instance, expressed or not 
expressed; on or off; up or down regulated. Studies 
conducted restricting genes expression to only two levels (0 
or 1) suggested that information retained by these when 
binarized is meaningful to the extent that it is remains in a 
continuous domain [2]. This allows gene regulatory 
networks to be modeled using a Boolean paradigm. The 
drawback of using this formalism is that the interactions 
among genes are hard-wired rules. This unrealistic 
assumption precludes the self-organizing nature of 
biological systems and, therefore, mischaracterizes their 
dynamics. Self-organization gives the system robustness in 
presence of perturbations, showing spontaneous ordered 
collective behavior. PBNs and Boolean networks share this 
quality through the existence of attractors and absorbing 
states, which act as a form of memory for the system. 
 PBNs, like Boolean networks, are rule-based. But, 
unlike the latter, they are not inherently deterministic using 
multiple rules, or “predictors”. This makes PBNs robust in 
the face of the environmental and biological uncertainty. 
Markov theory allows us to study the dynamic behavior of 
PBNs in the context of Markov Chains. They explicitly 
represent probabilistic relationships between genes, 
allowing quantification of influence between genes. 
Because of this, PBNs are better suited than Boolean 
networks for modeling such systems. Nevertheless, given 
the exponentially growth in the number of states a gene can 
be in(2n states for n genes), answering questions on the best 
way to reach or avoid particular state(s) may be 
cumbersome if performed through exhaustion. Model-
checking algorithms have the ability of automatically check 
if a certain condition is met under given specifications. 
Thus, it could answer questions as the one previously stated 
efficiently. This would greatly facilitate the intervention or 
deliberate perturbation of a network to achieve a desired 
response. This research studies the union between PBNs in 



the context of Markov theory and model checking 
techniques for Continuous-time Markov chains. 

2 Model Selection 
2.1 Boolean Network Model 
 A Boolean network is a set of Boolean variables 
whose state is determined by other variables in the network. 
Formally: 
 A Boolean network G(V,F) is defined by a set of nodes 
V ={x1,...,xn}, and a list of Boolean functions F = (f1, ..., fn). 
Each xi ∈ V, i=1,..., n, is a binary variable representing a 
gene which takes value from {0, 1} . There are ki genes 
assigned to gene xi, whose value at time t determine the 
value at time t +1 of xi by means of a Boolean function fi ∈ 
F. That is, the mapping jk: {1,…,n} → {1,...,n}, k = 1, ..., ki 
determines the “wiring” of gene xi and we can write [2]: 
 

 (1) 

 A network with n genes has 2n states. Each of these 
states represents the pattern of expression of the individual 
genes. Pattern expressions are sometimes called gene 
activity profiles (GAPs). Some of these GAPs are attractors 
in the sense that the network flow eventually gets trapped in 
them. They represent the memory of the system. Attractors 
may be composed by cycles of states. Figure 1 gives an 
example of a Boolean network. 

 

 

 

 

 

 

 

 

 The relationships between genes are determined from 
experimental data. A coefficient of determination (COD) is 
used in this endeavor to discover such associations. The 
COD measures the quality of a predictor in using an 
observed gene set to infer a target gene set, in the absence of 
observations. In order to further illustrate this, let xi be a 
target gene, which we wish to predict by observing the set 
of genes xi1, xi2,..., xik. Suppose that f (xi1, xi2,..., xik) is an 
optimal predictor of xi relative to some error measure ε. Let 

εopt be the optimal error achieved by f. Then, the COD for xi 
relative to the set xi1, xi2, ..., xik is defined as: 
 

(2) 
 

where εi is the error of the best (constant) estimate of xi in 
the absence of any conditional variables [2]. 

2.2 PBN Model 
 The open nature of biological systems brings about a 
significant uncertainty into the model. One way of coping 
with this difficulty is to pass the uncertainty to the 
predictor, by synthesizing a number of good performance 
predictors. Each one of them contributes its own prediction 
proportionally to its determinative potential, which is given 
by the COD. More formally, given genes V = {x1, ..., xn}, 
we assign to each xi a set Fi = {f1

(i), ..., fl(i)
(i)} of Boolean 

functions representing the “top” predictors for the target 
gene xi. Thus, the PBN acquires the form of a graph G(V, F) 
where F = (F1, ..., Fn) [4], and each Fi in F is as previously 
described. At each point in time or step of the network, a 
function fj

(i) is chosen with probability cj
(i) to predict gene xi. 

Using a normalized COD [2]:  
 
 

(3) 
 
 
where θj

i is the COD for gene xi relative to the genes used as 
inputs to predictor fj

(i). Figure 2 provides an example of a 
PBN. 

 
 At a given instant in time, the predictors selected for 
each gene determine the state of the PBN. These predictors 
are contained on a vector of Boolean functions, where the ith 
element of that vector contains the predictor selected at that 
time instant for gene xi. This is known as a realization of 
the PBN. If there are N possible realizations, then there are 
N possible vector functions, f1, f2, ..., fN, each of the form                            
fk = (fk1

(1), fk2
(2)..., fkn

(n)), for k = 1, 2, ..., N, 1 ≤  ki ≤ l(i) and 
where fki

(i) ∈ Fi (i= 1, ..., n). In other words, the vector 
function fk:{0, 1}n  → {0, 1}n acts as a transition function 

a            b 

x1(t+1) = x1(t) ∧ x2(t) 
x2(t+1) = ¬x1(t) ∧ x2(t) 
x3(t+1) = x1(t) ∧ x2(t) ∧ x3(t) 

Figure 1. Example of Boolean network 
a) Boolean network with three nodes 

b) State transition diagram 
Figure 2. PBN of three nodes and its predictors 



(mapping) representing a possible realization of the entire 
PBN. (See Figure 3). Thus, we have the matrix K of 
realizations: 

 

 

(4) 

  

Assuming independence of the predictors,                    . 

Each realization k can be selected with                     .        

The probability of transitioning from state (x1,...,xn) to 

(x’1,...,x’n) is given by [3]:  

 

 

 

(5) 

 

3 Perturbation And Intervention 
 As an open system, the genome receives inputs from 
the outside. Such stimuli can either activate or inhibit gene 
expression; therefore it is necessary for the model of such a 
system to reproduce this behavior. This is achieved by the 
inclusion of a realization in the form of a random 
perturbation vector γ ∈ {0, 1}n. Lets assume that a gene can 
get independently perturbed with probability p. Then if γi =1 
the ith gene is flipped, otherwise it is not. For simplicity, we 
will assume that Pr{γi = 1} = E[γi] = p for all i = 1, ..., n 
(i.e., independent and identically distributed). Let x(t) ∈{0, 
1}n be the state of the network at time t. Then, the next state 
x’ is given by:  
 

(6) 
 
 
where ⊕ is component-wise addition modulo 2, and fk is the 
transition function representing a possible realization of the 

entire PBN, k = 1, 2, ..., N [2]. In presence of perturbation 
with probability p, the entrances in the state transition 
matrix are computed by [4]: 

 
 

(7) 
 
 
 
 

 Most relevant to our research is the fact that, when 
performed in a deliberately way, a perturbation constitutes 
an intervention. We may introduce a perturbation vector for 
a set of selected genes for the purpose of achieving a desired 
state, or moving from an undesirable one, on the network. 
This can be done by perturbing those genes with greater 
impact on the global behavior, by perturbing a fewer 
number of genes, or by reaching the desired state as early as 
possible. In gene interactions, some genes used in the 
prediction of a target gene have more impact than others, 
making them more important, or of higher influence, thus, 
identifying these genes is highly relevant. Similarly, we can 
determine the sensitivity of a particular gene, defining it as 
the sum of all influences acting upon it. The sensitivity, in 
turn, defines the particular gene stability and independence. 
In [2, 4] a method to compute influences and sensitivities is 
given. One of the main benefits of determining influences 
and sensitivities of genes is that these allow the 
identification of vulnerable points in the network, or the 
ones most likely to affect its entire network if perturbed. 
Highly influential genes can control the dynamics of the 
network, making it possible to move to a different basin of 
attraction when perturbed. This kind of information may 
provide potential targets when an intervention is needed to 
obtain a desired state of the system. 

4 Model-Checking Algorithms 
 Given a PBN model of a gene regulatory network, we 
are interested in knowing (in an automated way) if certain 
state(s) are reachable under particular conditions, or 
specifications. This is the verification problem, to which 
model checking is an instance of. Because these are 
mathematical problems, we formulate our specifications 

Figure 3. PBN state transition diagram 



using mathematical logic. Temporal logics have been 
crucial in the development of model checking, because of its 
compact way of expressing correctness properties, and the 
fact that the Small Finite Model Theorem makes it decidable 
[5]. Its branching time logic, Computation Tree Logic 
(CTL) allows us to build compound formulas from the 
nesting of subformulas. The semantics of temporal logic 
formulas are defined over a finite transition system (Kripke 
structure).  
 The specification of measures of interest over systems 
is usually done using state-based properties (steady and 
transient state), due to the difficulty of specifying path-
based measures. Continuous Stochastic Logic (CSL) is a 
probabilistic timed extension of CTL that provides means 
for specifying measures both state and path-based for 
Continuous-time Markov chains (CTMC). Numerical 
methods to model-check CSL over finite-state CTMC are 
explored in [1].  
 
4.1 Continuous-time Markov chains 
 The Kripke structure to consider for CSL model 
checking is a CTMC, where the edges are equipped with 
probabilistic timing information. Let AP be a fixed, finite 
set of atomic propositions [1]: 
 A CTMC M is a tuple (S, R, L) with S as a finite set of 
states, R: S x S → ¡≥0 as the transition matrix, and L : S → 
2AP as the labeling function. 
 Each state s ∈ S corresponds to a GAP of the PBN. R 
is the transition probability matrix of the state-transition 
network. Function L assigns to each state s ∈ S the set L(s) 
of atomic propositions a ∈ AP that are valid in s. We allow 
self-loops by having R(s,s) > 0. The probability that the 
transition s → s’ can be triggered within t time units is 1 - e -
R(s,s’)· t. The probability to move from a state s to state s’ 
within t time units is given by [1]: 
 

(8) 
 
 The probability of moving from a nonabsorbing (with 
at least one transition out of it) state s to s’ by a single 
transition is P(s,s’) = R(s,s’). For an absorbing state s, 
P(s,s’) = 0 for any state s’ [1]. 
 For our PBN example (Fig. 2 and 3) the Markov 
model would have the set of states 
S = {(000), (001), (010), (011), (100), (101), (110), (111)}. 
R is an 8 x 8 matrix containing the transition probabilities 
between states. AP ={xi ∈ {0,1}, i = 1,…, n}. L(x1… xn) = { 
x1…xn: x1…xn  ∈ {0,1}n}, for instance, L(011) =(x1x2x3=011). 
An initial distribution α, which can be a state or set of states, 
is imposed over the PBN. For this particular case, we 
assume an initial uniform joint distribution. This means 
each state has the same chance of being the initial state. 
Taking s0=(111), a possible sequence of transitions, or 
computation, is {(111), (001), (100), (101), (100)}. 

 There are two major types of state probabilities for 
CTMC:  
1. Transient-state probabilities, where the system is 

observed at a given time instant t: 
 πM (α,s’,t) = Prα{ σ ∈ PathM | σ@t = s’} 
2.  Steady-state probabilities, where the system is observed 

when equilibrium has been reached: 
 πM (α,s’) = limt → ∞ πM (α,s’,t) 
 The two types of measures shown above are state-
based. However, we are also interested in the probability on 
paths through the CTMC obeying particular properties. To 
the best of our knowledge, suitable mechanisms to measure 
such properties have not been considered in the literature. 
 It is worth noting that Binary Decision Diagrams 
(BDDs), a powerful tool for model checking, are not all that 
useful in the contexts of PBNs models. What precludes its 
use is the fact that each state of the PBN, or GAP, contains a 
string of variables representing genes. As BDDs represents 
possible transitions for one variable, we would need a BDD 
for each variable contained in the string. The output would 
be ramifications of several BDD. As BDDs represents 
Boolean functions, their values can be directly obtained 
from the truth table of the predictors. 
 
4.2 Continuous Stochastic Logic 
 Continuous Stochastic Logic (CSL) provides means 
to specify state as well as path-based performance and 
dependability measures for CTMCs in a compact and 
unambiguous way. This logic is basically a probabilistic 
timed extension of CTL [1]. 
 Besides the standard steady-state and transient 
measures, the logic allows for the specification of 
constraints over probabilistic measures over paths through 
CTMCs. For instance, we may check the probability of 
going from state s to state s’ within t time units, avoiding or 
visiting some particular intermediate states. Four types of 
measures can be identified:  
1. Steady-state measures: The formula S⊴p(Φ) imposes a 

constraint on the probability to be in some Φ state on the 
long run. For the PBN in the example above, S≥0.4 

(x1∧¬x2) states that there is at least a 40% probability 
that gene x1 is expressed and gene x2 is not expressed 
when the network reach equilibrium.   

2. Transient measures: The combination of the probabilistic 
operator with the temporal operator ◊[t,t] can be used to 
reason about transient probabilities. More specifically, 
P⊴p (◊[t,t]ats’) is valid in state s if the transient probability 
at time t to be in state s’ satisfies the bound ⊴p.  

3. Path-based measures: By the fact that P-operator allows 
an arbitrary path formula as the argument; much more 
general measures can be described. An example is the 
probability of reaching a certain set of states provided 
that all paths to these states obey certain properties. 



4. Nested measures By nesting the P and S operators, more 
complex properties can be specified. These are useful to 
obtain a more detailed insight into the system’s behavior 
and allow it to express probabilistic reachability that is 
conditioned on the system being in equilibrium. 

 The main benefits in using CSL for specifying 
constraints on measures of interest over CTMCs are[1]: 
1. Since the specification is entirely formal, the 

interpretation is unambiguous. An important aspect of 
CSL is the possibility of stating performance and 
dependability requirements over a selective set of paths 
through a model, which was not possible before. 

2. The possibility of nesting steady-state and transient 
measures provides a means to specify complex, though 
important measures in a compact and flexible way. 

 Once we have obtained the model (CTMC M) of the 
system under consideration, and specified the constraint on 
the measure of interest in CSL by a formula Φ, the next step 
is to model check the formula. The model-checking 
algorithm for CTL that supports the automated validation of 
Φ over a given state s in M, is adapted to these purposes. 
The basic procedure is as for model checking CTL: in order 
to check whether state s satisfies the formula Φ, we 
recursively compute the set Sat(Φ) of states that satisfy Φ 
and, finally, check whether s is a member of that set. For the 
non-probabilistic state operators, this procedure is the same 
as for CTL [1]. 
 For the purpose of intervention, it would be necessary 
to know how likely are certain states to reach a steady-state 
on the network of genes. This information, and with the use 
of the influences and sensitivities previously explained, 
would aid in determining the genes that represent the best 
candidates for reaching a desired condition. For instance, if 
we want to verify if a particular state reach a steady-state 
condition with a certain probability, a very high-level 
algorithm would look as follows: 
 
 Input: PBN, state s, measure m, constraint c 
 Do: 

1. Determine Bottom Strongly Connected Components 
BSCC of PBN. 

2. If s isn’t in some BSCC 
Output “State specified doesn’t reach steady state”.  

  Stop. 
3. Else continue. 
4. Compute transition probabilities to state s. 
5. Use constraint c to compare computed probabilities 

with m. 
6. If constraint is met with some probability p 

 Output “The condition is met with probability p”.  
 Stop. 

7. Else 
 Output “The system doesn’t meet the desired 
condition”.  

 Stop. 

 Given the state-explosion problem that characterizes 
this kind of model, abstraction is crucial. Bisimulation, the 
technique that guarantees exact abstraction, has a slight 
variation called lumping. It has been observed that lumping 
preserves all CSL formulas [1]. 
 
5 Future Work 
 At the moment, we are using CSL for describing some 
measurements on PBNs constructed with fictitious data. So 
far, steady-state measurements have been checked. Next, we 
have to develop algorithms for the particular cases of steady 
and transient states, as well as for path-based measurements. 
Then, we will test them with PBNs built from real data. 
This, of course, belongs to a feedback loop where results 
will be used to improve the algorithms. Once we are able to 
verify with certainty particular conditions against real data, 
we will work on the process of intervention. For this, we 
need to check the changes on the dynamics due to particular 
alterations of the parameters using a vector of perturbation. 
 
6 Conclusions 
 PBNs make an ideal model representation for genetic 
networks because the robustness that multiple predictors 
give them. As Kripke structures representing state 
transitions of a system, CSL can be used as a model-
checking algorithm for CTMC, expanding the traditional 
state-based measures with the use of path-based 
probabilistic measures. PBNs can be studied in the context 
of Markov theory, and Markov chains have been widely 
used to specify system performance and dependability. 
Because of this, it is our belief that a model-checking 
algorithm for CSL can be used to study the dynamics of 
CTMC representations of PBN used to model genetic 
regulatory networks in an effective way. Avoiding the 
matrix-based model, such algorithm would mitigate the 
impact of the analysis of an exponential size network. 
Intervention on the network would be attainable, due the 
information gathered thanks to the algorithm’s ability of 
answering questions about the transition system of the PBN.  
 The breadth of logic topics that this research evolves 
through is worth remarking. In its most primitive 
formulation, relationships between genes can be described 
with the use of logic connectives from propositional logic. 
Predicate logic is then used for formulating questions on the 
state and dynamics of the system.  Finally, temporal logic is 
the basis of the model checking algorithms that answers 
these questions.  
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