
Markov Model Checking of Probabilistic Boolean
Networks Representations of Genes

Marie Lluberes1, Jaime Seguel2 and Jaime Ramírez-Vick3

1, 2 Electrical and Computer Engineering Department, University of Puerto Rico, Mayagüez, Puerto Rico
3 General Engineering Department, University of Puerto Rico, Mayagüez, Puerto Rico

Abstract - Our goal is to develop an algorithm for the
automated study of the dynamics of Probabilistic Boolean
Network (PBN) representation of genes. Model checking is
an automated method for the verification of properties on
systems. Continuous Stochastic Logic (CSL), an extension of
Computation Tree Logic (CTL), is a model-checking tool
that can be used to specify measures for Continuous-time
Markov Chains (CTMC). Thus, as PBNs can be analyzed in
the context of Markov theory, the use of CSL as a method for
model checking PBNs could be a powerful tool for the
simulation of gene network dynamics. Particularly, we are
interested in the subject of intervention. This refers to the
deliberate perturbation of the network with the purpose of
achieving a specific behavior. This is attained by selectively
changing the parameters in a node or set of nodes so that
the network behavior can be controlled.

Keywords: Gene Regulatory Network, Probabilistic
Boolean Networks, Markov-chain, intervention, model-
checking algorithms.

1 Introduction
 The genome encodes thousands of genes whose
products enable cell survival and numerous cellular
functions. The amounts and the temporal pattern in which
these products appear in the cell are crucial to the processes
of life. A gene regulatory network is the collection of
molecular species and their interactions, which together
modulate the levels of these gene products. The dynamics
due to both internal and external interactions constitute the
state of a system. With the aid of Computer Science and
Statistics, the study of gene regulatory network dynamics
has become more feasible, and several models have been
developed to simulate such dynamics. The knowledge of
the intrinsic mechanisms that govern the network could
provide the means to control its behavior. It is because of
this that the development of an automated system capable
of effectively simulating the behavior of a gene regulatory
network may also provide the knowledge to alter such
behavior in order to achieve a particular state of the system

or, on contrary, to prevent or to stop an undesirable
behavior. This “guiding” of the network dynamics is
referred to as intervention. The power to intervene with the
network dynamics has a significant impact in diagnostics
and drug design.
 Biological phenomena manifest in the continuous-time
domain. But, in describing such phenomena we usually
employ a binary language, for instance, expressed or not
expressed; on or off; up or down regulated. Studies
conducted restricting genes expression to only two levels (0
or 1) suggested that information retained by these when
binarized is meaningful to the extent that it is remains in a
continuous domain [2]. This allows gene regulatory
networks to be modeled using a Boolean paradigm. The
drawback of using this formalism is that the interactions
among genes are hard-wired rules. This unrealistic
assumption precludes the self-organizing nature of
biological systems and, therefore, mischaracterizes their
dynamics. Self-organization gives the system robustness in
presence of perturbations, showing spontaneous ordered
collective behavior. PBNs and Boolean networks share this
quality through the existence of attractors and absorbing
states, which act as a form of memory for the system.
 PBNs, like Boolean networks, are rule-based. But,
unlike the latter, they are not inherently deterministic using
multiple rules, or “predictors”. This makes PBNs robust in
the face of the environmental and biological uncertainty.
Markov theory allows us to study the dynamic behavior of
PBNs in the context of Markov Chains. They explicitly
represent probabilistic relationships between genes,
allowing quantification of influence between genes.
Because of this, PBNs are better suited than Boolean
networks for modeling such systems. Nevertheless, given
the exponentially growth in the number of states a gene can
be in(2n states for n genes), answering questions on the best
way to reach or avoid particular state(s) may be
cumbersome if performed through exhaustion. Model-
checking algorithms have the ability of automatically check
if a certain condition is met under given specifications.
Thus, it could answer questions as the one previously stated
efficiently. This would greatly facilitate the intervention or
deliberate perturbation of a network to achieve a desired
response. This research studies the union between PBNs in

the context of Markov theory and model checking
techniques for Continuous-time Markov chains.

2 Model Selection
2.1 Boolean Network Model
 A Boolean network is a set of Boolean variables
whose state is determined by other variables in the network.
Formally:
 A Boolean network G(V,F) is defined by a set of nodes
V ={x1,...,xn}, and a list of Boolean functions F = (f1, ..., fn).
Each xi ∈ V, i=1,..., n, is a binary variable representing a
gene which takes value from {0, 1} . There are ki genes
assigned to gene xi, whose value at time t determine the
value at time t +1 of xi by means of a Boolean function fi ∈
F. That is, the mapping jk: {1,…,n} → {1,...,n}, k = 1, ..., ki
determines the “wiring” of gene xi and we can write [2]:

 (1)

 A network with n genes has 2n states. Each of these
states represents the pattern of expression of the individual
genes. Pattern expressions are sometimes called gene
activity profiles (GAPs). Some of these GAPs are attractors
in the sense that the network flow eventually gets trapped in
them. They represent the memory of the system. Attractors
may be composed by cycles of states. Figure 1 gives an
example of a Boolean network.

 The relationships between genes are determined from
experimental data. A coefficient of determination (COD) is
used in this endeavor to discover such associations. The
COD measures the quality of a predictor in using an
observed gene set to infer a target gene set, in the absence of
observations. In order to further illustrate this, let xi be a
target gene, which we wish to predict by observing the set
of genes xi1, xi2,..., xik. Suppose that f (xi1, xi2,..., xik) is an
optimal predictor of xi relative to some error measure ε. Let

εopt be the optimal error achieved by f. Then, the COD for xi
relative to the set xi1, xi2, ..., xik is defined as:

(2)

where εi is the error of the best (constant) estimate of xi in
the absence of any conditional variables [2].

2.2 PBN Model
 The open nature of biological systems brings about a
significant uncertainty into the model. One way of coping
with this difficulty is to pass the uncertainty to the
predictor, by synthesizing a number of good performance
predictors. Each one of them contributes its own prediction
proportionally to its determinative potential, which is given
by the COD. More formally, given genes V = {x1, ..., xn},
we assign to each xi a set Fi = {f1

(i), ..., fl(i)
(i)} of Boolean

functions representing the “top” predictors for the target
gene xi. Thus, the PBN acquires the form of a graph G(V, F)
where F = (F1, ..., Fn) [4], and each Fi in F is as previously
described. At each point in time or step of the network, a
function fj

(i) is chosen with probability cj
(i) to predict gene xi.

Using a normalized COD [2]:

(3)

where θj

i is the COD for gene xi relative to the genes used as
inputs to predictor fj

(i). Figure 2 provides an example of a
PBN.

 At a given instant in time, the predictors selected for
each gene determine the state of the PBN. These predictors
are contained on a vector of Boolean functions, where the ith
element of that vector contains the predictor selected at that
time instant for gene xi. This is known as a realization of
the PBN. If there are N possible realizations, then there are
N possible vector functions, f1, f2, ..., fN, each of the form
fk = (fk1

(1), fk2
(2)..., fkn

(n)), for k = 1, 2, ..., N, 1 ≤ ki ≤ l(i) and
where fki

(i) ∈ Fi (i= 1, ..., n). In other words, the vector
function fk:{0, 1}n → {0, 1}n acts as a transition function

a b

x1(t+1) = x1(t) ∧ x2(t)
x2(t+1) = ¬x1(t) ∧ x2(t)
x3(t+1) = x1(t) ∧ x2(t) ∧ x3(t)

Figure 1. Example of Boolean network
a) Boolean network with three nodes

b) State transition diagram
Figure 2. PBN of three nodes and its predictors

(mapping) representing a possible realization of the entire
PBN. (See Figure 3). Thus, we have the matrix K of
realizations:

(4)

Assuming independence of the predictors, .

Each realization k can be selected with .

The probability of transitioning from state (x1,...,xn) to

(x’1,...,x’n) is given by [3]:

(5)

3 Perturbation And Intervention
 As an open system, the genome receives inputs from
the outside. Such stimuli can either activate or inhibit gene
expression; therefore it is necessary for the model of such a
system to reproduce this behavior. This is achieved by the
inclusion of a realization in the form of a random
perturbation vector γ ∈ {0, 1}n. Lets assume that a gene can
get independently perturbed with probability p. Then if γi =1
the ith gene is flipped, otherwise it is not. For simplicity, we
will assume that Pr{γi = 1} = E[γi] = p for all i = 1, ..., n
(i.e., independent and identically distributed). Let x(t) ∈{0,
1}n be the state of the network at time t. Then, the next state
x’ is given by:

(6)

where ⊕ is component-wise addition modulo 2, and fk is the
transition function representing a possible realization of the

entire PBN, k = 1, 2, ..., N [2]. In presence of perturbation
with probability p, the entrances in the state transition
matrix are computed by [4]:

(7)

 Most relevant to our research is the fact that, when
performed in a deliberately way, a perturbation constitutes
an intervention. We may introduce a perturbation vector for
a set of selected genes for the purpose of achieving a desired
state, or moving from an undesirable one, on the network.
This can be done by perturbing those genes with greater
impact on the global behavior, by perturbing a fewer
number of genes, or by reaching the desired state as early as
possible. In gene interactions, some genes used in the
prediction of a target gene have more impact than others,
making them more important, or of higher influence, thus,
identifying these genes is highly relevant. Similarly, we can
determine the sensitivity of a particular gene, defining it as
the sum of all influences acting upon it. The sensitivity, in
turn, defines the particular gene stability and independence.
In [2, 4] a method to compute influences and sensitivities is
given. One of the main benefits of determining influences
and sensitivities of genes is that these allow the
identification of vulnerable points in the network, or the
ones most likely to affect its entire network if perturbed.
Highly influential genes can control the dynamics of the
network, making it possible to move to a different basin of
attraction when perturbed. This kind of information may
provide potential targets when an intervention is needed to
obtain a desired state of the system.

4 Model-Checking Algorithms
 Given a PBN model of a gene regulatory network, we
are interested in knowing (in an automated way) if certain
state(s) are reachable under particular conditions, or
specifications. This is the verification problem, to which
model checking is an instance of. Because these are
mathematical problems, we formulate our specifications

Figure 3. PBN state transition diagram

using mathematical logic. Temporal logics have been
crucial in the development of model checking, because of its
compact way of expressing correctness properties, and the
fact that the Small Finite Model Theorem makes it decidable
[5]. Its branching time logic, Computation Tree Logic
(CTL) allows us to build compound formulas from the
nesting of subformulas. The semantics of temporal logic
formulas are defined over a finite transition system (Kripke
structure).
 The specification of measures of interest over systems
is usually done using state-based properties (steady and
transient state), due to the difficulty of specifying path-
based measures. Continuous Stochastic Logic (CSL) is a
probabilistic timed extension of CTL that provides means
for specifying measures both state and path-based for
Continuous-time Markov chains (CTMC). Numerical
methods to model-check CSL over finite-state CTMC are
explored in [1].

4.1 Continuous-time Markov chains
 The Kripke structure to consider for CSL model
checking is a CTMC, where the edges are equipped with
probabilistic timing information. Let AP be a fixed, finite
set of atomic propositions [1]:
 A CTMC M is a tuple (S, R, L) with S as a finite set of
states, R: S x S → ¡≥0 as the transition matrix, and L : S →
2AP as the labeling function.
 Each state s ∈ S corresponds to a GAP of the PBN. R
is the transition probability matrix of the state-transition
network. Function L assigns to each state s ∈ S the set L(s)
of atomic propositions a ∈ AP that are valid in s. We allow
self-loops by having R(s,s) > 0. The probability that the
transition s → s’ can be triggered within t time units is 1 - e -
R(s,s’)· t. The probability to move from a state s to state s’
within t time units is given by [1]:

(8)

 The probability of moving from a nonabsorbing (with
at least one transition out of it) state s to s’ by a single
transition is P(s,s’) = R(s,s’). For an absorbing state s,
P(s,s’) = 0 for any state s’ [1].
 For our PBN example (Fig. 2 and 3) the Markov
model would have the set of states
S = {(000), (001), (010), (011), (100), (101), (110), (111)}.
R is an 8 x 8 matrix containing the transition probabilities
between states. AP ={xi ∈ {0,1}, i = 1,…, n}. L(x1… xn) = {
x1…xn: x1…xn ∈ {0,1}n}, for instance, L(011) =(x1x2x3=011).
An initial distribution α, which can be a state or set of states,
is imposed over the PBN. For this particular case, we
assume an initial uniform joint distribution. This means
each state has the same chance of being the initial state.
Taking s0=(111), a possible sequence of transitions, or
computation, is {(111), (001), (100), (101), (100)}.

 There are two major types of state probabilities for
CTMC:
1. Transient-state probabilities, where the system is

observed at a given time instant t:
 πM (α,s’,t) = Prα{ σ ∈ PathM | σ@t = s’}
2. Steady-state probabilities, where the system is observed

when equilibrium has been reached:
 πM (α,s’) = limt → ∞ πM (α,s’,t)
 The two types of measures shown above are state-
based. However, we are also interested in the probability on
paths through the CTMC obeying particular properties. To
the best of our knowledge, suitable mechanisms to measure
such properties have not been considered in the literature.
 It is worth noting that Binary Decision Diagrams
(BDDs), a powerful tool for model checking, are not all that
useful in the contexts of PBNs models. What precludes its
use is the fact that each state of the PBN, or GAP, contains a
string of variables representing genes. As BDDs represents
possible transitions for one variable, we would need a BDD
for each variable contained in the string. The output would
be ramifications of several BDD. As BDDs represents
Boolean functions, their values can be directly obtained
from the truth table of the predictors.

4.2 Continuous Stochastic Logic
 Continuous Stochastic Logic (CSL) provides means
to specify state as well as path-based performance and
dependability measures for CTMCs in a compact and
unambiguous way. This logic is basically a probabilistic
timed extension of CTL [1].
 Besides the standard steady-state and transient
measures, the logic allows for the specification of
constraints over probabilistic measures over paths through
CTMCs. For instance, we may check the probability of
going from state s to state s’ within t time units, avoiding or
visiting some particular intermediate states. Four types of
measures can be identified:
1. Steady-state measures: The formula S⊴p(Φ) imposes a

constraint on the probability to be in some Φ state on the
long run. For the PBN in the example above, S≥0.4

(x1∧¬x2) states that there is at least a 40% probability
that gene x1 is expressed and gene x2 is not expressed
when the network reach equilibrium.

2. Transient measures: The combination of the probabilistic
operator with the temporal operator ◊[t,t] can be used to
reason about transient probabilities. More specifically,
P⊴p (◊[t,t]ats’) is valid in state s if the transient probability
at time t to be in state s’ satisfies the bound ⊴p.

3. Path-based measures: By the fact that P-operator allows
an arbitrary path formula as the argument; much more
general measures can be described. An example is the
probability of reaching a certain set of states provided
that all paths to these states obey certain properties.

4. Nested measures By nesting the P and S operators, more
complex properties can be specified. These are useful to
obtain a more detailed insight into the system’s behavior
and allow it to express probabilistic reachability that is
conditioned on the system being in equilibrium.

 The main benefits in using CSL for specifying
constraints on measures of interest over CTMCs are[1]:
1. Since the specification is entirely formal, the

interpretation is unambiguous. An important aspect of
CSL is the possibility of stating performance and
dependability requirements over a selective set of paths
through a model, which was not possible before.

2. The possibility of nesting steady-state and transient
measures provides a means to specify complex, though
important measures in a compact and flexible way.

 Once we have obtained the model (CTMC M) of the
system under consideration, and specified the constraint on
the measure of interest in CSL by a formula Φ, the next step
is to model check the formula. The model-checking
algorithm for CTL that supports the automated validation of
Φ over a given state s in M, is adapted to these purposes.
The basic procedure is as for model checking CTL: in order
to check whether state s satisfies the formula Φ, we
recursively compute the set Sat(Φ) of states that satisfy Φ
and, finally, check whether s is a member of that set. For the
non-probabilistic state operators, this procedure is the same
as for CTL [1].
 For the purpose of intervention, it would be necessary
to know how likely are certain states to reach a steady-state
on the network of genes. This information, and with the use
of the influences and sensitivities previously explained,
would aid in determining the genes that represent the best
candidates for reaching a desired condition. For instance, if
we want to verify if a particular state reach a steady-state
condition with a certain probability, a very high-level
algorithm would look as follows:

 Input: PBN, state s, measure m, constraint c
 Do:

1. Determine Bottom Strongly Connected Components
BSCC of PBN.

2. If s isn’t in some BSCC
Output “State specified doesn’t reach steady state”.

 Stop.
3. Else continue.
4. Compute transition probabilities to state s.
5. Use constraint c to compare computed probabilities

with m.
6. If constraint is met with some probability p

 Output “The condition is met with probability p”.
 Stop.

7. Else
 Output “The system doesn’t meet the desired
condition”.

 Stop.

 Given the state-explosion problem that characterizes
this kind of model, abstraction is crucial. Bisimulation, the
technique that guarantees exact abstraction, has a slight
variation called lumping. It has been observed that lumping
preserves all CSL formulas [1].

5 Future Work
 At the moment, we are using CSL for describing some
measurements on PBNs constructed with fictitious data. So
far, steady-state measurements have been checked. Next, we
have to develop algorithms for the particular cases of steady
and transient states, as well as for path-based measurements.
Then, we will test them with PBNs built from real data.
This, of course, belongs to a feedback loop where results
will be used to improve the algorithms. Once we are able to
verify with certainty particular conditions against real data,
we will work on the process of intervention. For this, we
need to check the changes on the dynamics due to particular
alterations of the parameters using a vector of perturbation.

6 Conclusions
 PBNs make an ideal model representation for genetic
networks because the robustness that multiple predictors
give them. As Kripke structures representing state
transitions of a system, CSL can be used as a model-
checking algorithm for CTMC, expanding the traditional
state-based measures with the use of path-based
probabilistic measures. PBNs can be studied in the context
of Markov theory, and Markov chains have been widely
used to specify system performance and dependability.
Because of this, it is our belief that a model-checking
algorithm for CSL can be used to study the dynamics of
CTMC representations of PBN used to model genetic
regulatory networks in an effective way. Avoiding the
matrix-based model, such algorithm would mitigate the
impact of the analysis of an exponential size network.
Intervention on the network would be attainable, due the
information gathered thanks to the algorithm’s ability of
answering questions about the transition system of the PBN.
 The breadth of logic topics that this research evolves
through is worth remarking. In its most primitive
formulation, relationships between genes can be described
with the use of logic connectives from propositional logic.
Predicate logic is then used for formulating questions on the
state and dynamics of the system. Finally, temporal logic is
the basis of the model checking algorithms that answers
these questions.

7 Acknowledgements
This research is conducted in part thanks to the support of a
RISE-NIH scholarship (1R25GM088023-01A1) granted to
the first author.

8 References
[1] Baier, C., Haverkort, B., Hermanns, H. and Katoen, J-
P. Model-Checking Algorithms for Continuous-Time
Markov Chains. IEEE Transactions on Software
Engineering. 2003; 29(6):1-18.

[2] Shmulevich, I., Dougherty, E.R. and Zhang, W. From
Boolean to Probabilistic Boolean Networks as Models of
Genetic Regulatory Networks. IEEE. 2002; 90(10).

[3] Shmulevich, I., Dougherty, E.R., Kim, S. and Zhang,
W. Probabilistic Boolean Networks: a rule-based
uncertainty model for gene regulatory networks.
Bioinformatics (Oxford, England). 2002; 18(2):261-74

[4] Shmulevich, I., Dougherty, E.R. and Zhang, W. Gene
perturbation and intervention in probabilistic Boolean
networks. Bioinformatics (Oxford, England). 2002;
18(10):1319-31.

[5] Emerson, E. Allen. The beginning of Model
Checking: A personal perspective. Springer. 2008.Volume
5000; 27-45.

