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 An evolutionary tree represents the relationship among a group of species, 

DNA or protein sequences, and play fundamental roles in biological lineage 

research. A high quality tree construction relies heavily on optimal multiple 

sequence alignment (MSA), which aligns three or more sequence simultaneously 

to derive the similarity. On the other hand, a good tree can also be used to guide 

the MSA process. Due to the high computational cost to conduct both the MSA 

and tree construction, parallel approaches are exploited to utilize the enormous 

amount of computing power and memory housed in a supercomputer or Linux 

cluster. In this paper, first of all, a divide and conquer based parallel algorithm is 

designed and implemented to perform optimal three sequence alignment using 

reduced memory cost. Secondly, all internal nodes of a phylogenetic tree resulting 

from a parallel Maximum-likelihood inference software are labeled using the 

parallel MSA. Such tree node labeling process is carried out from top down and is 

also parallelized to fully utilize the numerous cores and nodes in a high 

performance computing facility.  
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CHAPTER 1 

INTRODUCTION 

Phylogenetics refers to the evolutionary lineage among different 

organisms. Some evidence shows that some organisms share similar features, 

while evolving from the same ancestor and other features are distinct to help 

organisms to adapt to their specific environment conditions. Therefore, by 

studying the phylogeny among different organisms, it is conducive to find the 

similarities and differences among different species [1, 2].  

A phylogenetic tree, also called evolutionary tree represents an 

evolutionary relationships or phylogeny among species, and play fundamental 

roles in biological research. The leaf nodes are represented as species and 

internal nodes are shown as the common ancestor of its descendant nodes. The 

length of a branch connecting one node to another indicates evolution time. 

In the phylogenetic tree study, there are two main computational 

challenges. The first major challenge is to identify the optimal tree topology at the 

minimum tree cost. The enumeration of all of the possible tree topologies will not 

be feasible for big input sequences. With a given input sequence size of n, the 

total number of unrooted tree is (2n-5)!! .It has been proved that this problem 

belongs to the category of NP-hard [3].Consequently, researchers have looked 

for alternatives such as approximation or heuristic approaches with polynomial 

time complexity, which have yielded suboptimal solutions. Phylogeny 

construction methods can be roughly categorized as either distance-based or 

character-based. Distance-based method computes the distance for every 
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aligned pair of sequences to guide the tree construction. The character-based 

method uses multiple sequence alignment directly and is based on criteria of 

maximum parsimony or maximum likelihood inferences [12]. The second major 

computation challenge is to perform efficient sequence alignment within identified 

tree topology for internal node labeling at minimum tree cost. 

In my thesis, both of these computational challenges are considered and 

addressed in our parallel program called Parallel Multiple Sequence Alignment 

and Phylogenetic Tree reconstruction (PMSAPT). The program exploits the 

parallel programming technique to shorten the execution time of tree construction 

as well as the multiple sequence alignment. In this proposed algorithm, a tree will 

be constructed with all leaf nodes from the given sequences and internal nodes 

labeled. The criterion is to minimize the summation of all tree branch lengths in 

the minimum time span. This parallel algorithm is designed to minimize the 

communication overhead between nodes and at the same time maximize the 

concurrency of independent tasks. 

The thesis is organized as follows: Chapter 2 discusses the related works. 

Chapter 3 presents our algorithms on tree topology construction and sequence 

alignment. Chapter 4 shows the benchmark experiment results compared with 

those of existing software to illustrate the novelty and efficiency of our 

approaches. Conclusion is given in Chapter 5. 



3 

CHAPTER 2 

RELATED WORK 

Two main approaches belong to distance-based class as Neighbor Joining 

[7] and UPGMA (Unweighted Pair Group Method with Arithmetic Mean) [8]. 

UPGMA is a hierarchical clustering method to find the closest related pair of 

clusters from a distance matrix and combine this pair as one cluster used for next 

iteration. Different with UPGMA, Neighbor Joining algorithm creates an internal 

node rather than a cluster in each iteration. Both UPGMA and Neighbor-Joining 

methods are greedy and fast, however, such growing tree topology does not ever 

change its structure once a new node is added. Therefore, it is difficult to achieve 

a good tree topology. By recognizing such inflexibilities in the issue, some tree 

search algorithms are applied as tree refinement mechanism. The branch 

swapping methods such as nearest-neighbor interchanges (NNI), subtree 

prunning and regrafting (SPR), and tree bisection and reconnection (TBR) are 

widely used[9, 10]. All of these algorithms work by swapping the branches from 

the original position to a different position to create a new tree topology. Although 

these tree refinement strategies indeed can achieve better results, it is known 

that these programs can be stuck in local optima in the search for global optima 

[11]. 

The character-based method considers each column of the sequences 

independently. Maximum parsimony method produces the tree with the minimum 

number of changes to evolve into the current sequences. Maximum Likelihood 

method aims to identify the tree topology with the maximum likelihood. Such a 
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tree is most likely to obtain the current sequences. The advantage of maximum 

likelihood based methods is that a large number of tree space is searched while 

all sequence information is utilized [12]. Therefore, the final tree topology is more 

reliable and accurate than that acquired from both distance-based and maximum 

parsimony based methods. However, some proof shows that it is a NP-hard 

problem to find a tree with maximum likelihood value due to a large tree space 

[13, 14]. In recent years, some heuristic maximum likelihood based methods 

integrated with other optimization strategies have been developed. IQPNNI [15] 

method (a method in terms of the Important Quartet Conception with the nearest 

neighbor interchange) has been employed to search a tree through large tree 

space under maximum likelihood criterion. For each iteration, some leaf nodes 

are deleted and re-inserted by following IQP (The Important Quartet Concept). A 

new reconstructed tree is further optimized using nearest-neighbor interchanges 

(NNI) and compared to the previous one. The tree which was computed to have 

a higher log-likelihood is kept. PHYML [16] (Heuristic Maximum Likelihood 

phylogenetic tree from multiple alignment) uses BIONJ [17] method (an improved 

version of the NJ algorithm) to construct an initial tree and NNI method for tree 

search. RAxML [12, 18] is another program for the inference of phylogeny under 

maximum likelihood criterion. It has some advantages over other software .First, 

in contrast with IQPNNI and PHYLIP which both make use of NNI method for tree 

search, RAxML uses a different tree search scheme named Lazy Subtree 

Rearrangement (LSR) which exploits a larger portion of candidate trees and thus 

is more likely to find a global optima. In addition, RAxML software requires less 
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memory space and computation time than some other programs [19, 20, 21, 22]. 

However, RAxML only produces a tree topology and the log likelihood value 

without labeling each internal node and alignment.  

Some tree construction and sequence alignment software has been 

developed such as TAAR (Tree Alignment and Reconstruction Application 

software) [4] and GESTALT (Genomic Steiner Alignment) [5], which generates 

sequence alignment via a tree. Yue and Tang developed a tree alignment 

software called MSAM to iteratively label each internal node derived from its 

closest three neighbors and by using TBR to optimize the current tree cost [6]. All 

above-mentioned software obtains an improved final tree structure starting from 

an initial guiding tree created from either the minimum spanning [5] or neighbor-

joining methods [7].  

To label each internal node of this tree for minimum total tree cost, we 

parallelize an optimal three sequence alignment program based on dynamic 

programming with the source code extracted from MSAM package[6]. In addition, 

a divide and conquer strategy was used to reduce the memory cost from O(n^3) 

to O(n^2) [23]. The limitation of original MSAM program is that it is easy to get 

stuck in the local optima in that N-J tree with TBR method applied for tree 

inference. To address this issue, the tree topology from RAxML is used to label 

each node from that tree. The labeling process continues iteratively until 

convergence point is hit. Also, a parallel algorithm for optimization is developed 

to speed up the program. 
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CHAPTER 3  

PHYLOGENETIC TREE CONSTRUCTION AND MSA  

We use parallel RAxML which is a better Maximum Likelihood-based 

Inference program to obtain a phylogenetic tree topology. Then we parallelize an 

optimal multiple sequence alignment (MSA) method to label each internal node 

from its nearest three neighbors. Such labeling process can be carried out 

simultaneously for internal nodes at the same level. So the labeling process is 

mainly determined by the height of the tree.  

3.1 Maximum Likelihood-based Inference 

 A tree topology with highest likelihood value is selected under Maximum 

likelihood. However, it is a NP hard problem to find such a tree topology because 

of the large tree space we have to search [3]. Some heuristic tree topology 

inference methods were developed to generate some potentially good tree 

structures and find the one with the highest likelihood value.  

3.1.1 Tree Likelihood Calculation 

The maximum likelihood-based method in phylogenetics tree construction 

employs an evolutionary model which provides the probability that one sequence 

evolve into another along a branch. Each site of the sequences is assumed to 

evolve independently. The likelihood of each site is computed following the path 

from root node to each leaf node. If the internal node sequence is unknown, all 

possible nucleotides need to be considered by summing the probability of all 
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possible states. The final tree likelihood is scored by multiplying the likelihood of 

each site.  

An example tree structure is given in Fig. 1, and how to compute its 

likelihood value under a simple DNA evolution model is explained:  

 

Figure 1. An example tree  

 

In the above example, b1, b2, b3, b4, b5, b6 represents the branch length 

of the tree. For any position (site) x, the likelihood of this site could be computed 

by the formula in Eq.1,for example, P(sq1|n2,b3) gives the probability that a base 

in n2 evolves into seq1 along with a branch b3 [12]: 
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Equation 1. Likelihood calculation of a specific site x [12] 

 

After the likelihood of each site is computed, then likelihood of this tree 

could be computed as the product of the likelihood of each site: 

 

∏=
i

tree iLL )(  

Equation 2. Tree likelihood formula [12] 

 

Each potential tree topology is generated, with its likelihood computed. 

The tree with the highest likelihood value will be chosen. 

3.1.2  RAxML software 

RAxML [12] (Randomized Axelerated Maximum Likelihood), developed by 

A.Stamatakis, is a maximum likelihood-based tree construction software. In 

sequential RAxML, an initial parsimony tree which has a better likelihood than N-

J tree is built as a starting tree. After that, a computing intensive tree optimization 

process starts by performing a standard subtree rearrangement. In detail, all 

possible subtrees within the current best tree are subsequently moved from their 
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original positions to new ones by the lower up to the upper rearrangement 

distance setting. Instead of optimizing the branch length of the entire tree to 

calculate its likelihood for each insertion, which definitely increases the 

computation cost, only the three branches neighboring to insertion point is 

optimized before the likelihood is calculated during each rearrangement step. 20 

best tree candidates are stored after each rearrangement step, and only these 20 

trees rather than all possible ones are performed global branch length 

optimization based on a pulley principle to improve likelihood value. The tree with 

the highest likelihood will be selected for the next rearrangement step. Also 

during each rearrangement step, the current best tree is updated if the tree 

likelihood is improved after a movement of a specific subtree, and the remaining 

subtree rearrangements are performed on this topology. The program ends until 

the upper rearrangement distance setting reaches the given maximum one. To 

pursue a better performance, a parallel RAxML was also developed. In phase 

one, the master sends the input sequence file to each slave. Each worker 

generates random permutation and builds trees with parsimony values. The tree 

with the highest likelihood value stands out and is sent back to the master. In 

phase two (a), the master distributes a specific subtree ID and current best tree 

topology to each slave. Each slave rearranges and integrates the specified 

subtree and returns a tree with a better likelihood value. The master compares 

this tree with the current best tree and updates the tree with higher likelihood as 

the best one, followed by sending a new subtree ID with current best tree 

topology to the slave. After all subtrees are rearranged, the program goes to 
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phase two (b). The master requests a tree list from each worker, which stores 20 

best trees computed by each worker during this rearrangement step .After that, 

the master merges lists and distributes 20 best trees to workers for global branch 

length optimization. The tree with the highest likelihood value is selected and 

compared with the old one. The master node starts the next rearrangement step 

if the likelihood is improved. Otherwise, the rearrangement setting increases by 

one if the maximum rearrangement setting is not reached and phase two as 

mentioned above is performed again. The termination condition in parallel 

program is the same with that in sequential one [12]. 

3.2 Multiple Sequence Alignment along Phylogenetic Tree 

RAxML software produces a good phylogenetic tree topology. The next 

step is to label internal nodes in this tree topology. At first, an initial sequence 

should be assigned to each internal node. This procedure is called tree 

initialization .The tree refinement follows up by computing a new sequence for 

each internal node by conducting MSA with its three nearest neighbors. This 

original idea comes from F.Yue and J.Tang in their previous work [6]. The novelty 

of their algorithm is memory usage reduction from O (n^3) to O (n^2), however, 

the cost time is still high. Therefore, we proposed parallel approaches to address 

both the MSA and tree node labeling. The details are given as below. 

3.2.1 Internal Nodes Initialization 

There are various methods to initialize each internal node. One method is 

to randomly assign a sequence to each internal node. Another method proposed 

by F.Yue and J.Tang is to generate a median sequence for each internal node 
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with its three nearest leaf nodes [6]. Although a better result is produced, the 

computation is slow for long sequences .Since it is not very necessary to spend 

so much time on the initialization of internal nodes, we use a fast pairwise 

alignment method to initialize each node with its two child nodes. At first, we align 

sequences to determine the gap position if the lengths of two sequences are 

different. To generate the median sequence for the internal node, a consensus 

vote is operated based on a mutation matrix at every site of the alignment.  

3.2.2 Serial Tree Optimization 

After the initialization step, each internal node is assigned a sequence as 

the starting point for later adjustment. However, this assignment still has much 

space to be improved, and thus the multiple sequence alignment of input 

sequences will be still far away from the optimal one. The tree optimization 

mechanism implemented in MSAM software is adapted and enhanced here [6, 

23].The optimization steps are the following: Starting from the root node to next-

to-the last level of the tree generated from RAxML , a new sequence , called 

median, is computed with alignment from its three neighbors to label node 

sequences. This new sequence is allowed to replace the old one if the sum of 

branch distances to three neighbors is smaller than previous labeling. Once there 

is a replacement during an iteration, the next iteration is about to execute. This 

optimization procedure terminates if there is no improvement during the previous 

iteration. To generate each median sequence, a divide-and-conquer strategy 

from MSAM [6, 23] is adopted to find a midpoint to split a 3-D sequence cube into 

two smaller cubes recursively, as showed in Fig. 2. The central part of this 
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approach determines a midpoint where the optimal alignment passes through to 

split 3D cube. Similar with a divide and conquer approach for two sequences 

[24],  

 

Figure 2. How to split 3D cube [6] 

one input sequence with the length X is selected at first, and i=X/2 is defined as 

the first coordinate of midpoint, so the problem is to find another two coordinates 

of such midpoint. To find these two optimal coordinates (j and k), a score function 

is implemented to record both the forward and backward scores of three 

sequences by respectively using the parameter (C, B, A, Z, Y, i) and (rev(C), 

rev(B),rev(A)[i…X],Z,Y,X-i ), where rev() stands for a reverse string. These two 

coordinates are determined when the sum of forward and backward scores is 

minimized [23, 25].This score function calculates the best score of alignment 

ending in each state format. Since each coordinate has three possible states: 

I(insert), D(delete), and M(match/mismatch), there are 27 possible state 

combinations that are required to calculate the score . The minimum cost among 

these is picked, which is represented as a formula showed in Eq.3. To make the 
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correctness of the global alignment, the final state information obtained from 

forward scoring needs to be sent to the next recursive call in upper cube as the 

end. The state information generated from backward scoring will be passed 

through to the next recursive call in bottom cube as the start. This divide and 

conquer method is recursively executed until the 3-D cube can’t be divided any 

more (i=1). Then a conquer procedure starts from the smallest cube by aligning 

three sequences kept in this cube and generating a median one in terms of the 

selected state combination, which yields the smallest cost from Eq.3. 

1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

δ δ δ 1 2 3

( ', ', ') ( [ ], [ ], [ ],δδ δ ) × (δδ δ , )
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⎧
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⎪⎪
⎨
⎪
⎪
⎪⎩

 

Equation 3. The minimum cost [23] 

When searching the midpoint, only the cells at level i-1 determine ones at 

level i. Instead of keeping all of the state information at each level, which requires 

memory space O (n^3), the algorithm developed by F.Yue and J.Tang can 

reduce memory usage from O(n^3) to O(n^2) in that only the score is delivered to 

find a midpoint . Started from level i=0 to level i= X, two arrays U[Y,Z] and D[Y,Z] 

are enough to deliver as well as store the score for each different pair of y and z. 

After the forward and backward calculation ends, the minimum of the combing 

score can be found and the related coordinates will be known to represent the 

midpoint. 
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3.2.3 Parallel Tree Optimization 

MSAM software, which uses the above mentioned algorithm to compute 

each internal node sequentially, is unrealistic to handle large number of 

sequences due to its high computational cost. Our parallel approaches can be 

used to minimize the execution time by utilizing a message-passing interface to 

run the program with multiple computer nodes. 

First, the critical part of MSAM algorithm is a three sequence alignment 

method that finds the midpoint to divide a big 3-D cube into two smaller ones 

recursively. The subdivision of each smaller 3-D cubes split from a common 

bigger cube is independent from the other. Therefore, a parallel strategy can be 

developed by subdividing each smaller cube simultaneously by two independent 

computer nodes. For example, in the first level, given three sequences with 

length X, Y, and Z, computer node 0 uses forward and backward scoring to find a 

midpoint on the plane x=x/2, followed by keeping the upper left sub-matrix and 

sending the lower right part to computer node 1. Then, in the second level, 

computer node 0 and node 1 simultaneously divides its sub-matrix into two   
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Figure 3. The simultaneous subdivisions by 8 Computer nodes 

 

smaller ones on the plane x= X/2, where this X stands for the subsequence 

length rather than the entire one and sends a sub-sub-matrix to node 2 and node 

3 respectively. Such data partition continues until a minimum size of the sub-

matrix is reached or all available computer nodes are assigned tasks. 

Consequently, for each node assigned a sub-matrix larger than unit 

(x>1||y>1||z>1), the serial three sequence alignment method is invoked. During 

this division, each parent node must send both midpoint and ending point 

coordinates to its child nodes, which provides information of the matrix. Each 

child node sends the alignment and median sequence back to its upstream 

parent node from which its sub-matrix comes for results concatenation. Fig. 3 
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exhibits how this approach works with 8 computer nodes. In general, the 

relationship of destination and source computer node id’s can be represented as 

the formula in Eq. 4, where n stands for the times that matrix has been divided. 

 

)1(2 −+= n
sd PP  

Equation 4. 

It is observed that the internal nodes in the same tree level can be 

computed simultaneously using the parallel MSA without interfering with each 

other before the next level starts. We dynamically create MPI workgroups and 

assign nodes from each workgroup to perform the parallel MSA for a single 

internal node. The number of workgroups is determined by the number of internal 

nodes at each level .The master node of a supercomputer distributes tasks to 

each workgroup by sending the sequence information to the leading node in each 

workgroup. Upon receiving the task, each leading node in a workgroup multicasts 

the information to all workgroup members. After that, each workgroup can start to 

carry out the parallel MSA. The master node waits for the results returned from 

the leading node in each workgroup and compares the new sequence with the 

old one to decide whether to update or not before traversing to the next tree 

level. Only the sequence that generates lower total branch length of its three 

edges will be kept and updated. The flowchart is shown in Fig.4.    
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Figure 4. The program Flowchart 

3.3 Pseudo code of the algorithm 

Fig. 5 describes the pseudo code of our algorithm, in which we give the 

pseudo code for each phase. In the optimization phase, the master node 

dynamically creates workgroups when traversing a new level. There are two key 

parameters: WorkgroupSize and WorkgroupNumber. WorkgroupSize is an input 
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parameter which defines the node number in a workgroup. WorkgroupNumber 

parameter, calculated by the master node in BFS_label_tree () function (Fig. 6), 

provides the information on how many workgroups need to be created. In each 

level of the tree, this parameter is computed as the total number of internal nodes 

in this level.  

 

Figure 5. The algorithm of the program 

In the BFS_label_tree () function, the master node calculates the internal 

nodes number, which determines the workgroup number, and sends this 
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parameter to each slave node to dynamically create the workgroup. Also the 

nodes at the next level of the tree are stored into a queue in order to keep track 

of them when traversing to the next level. After creating the workgroups, the 

master node distributes internal nodes with three neighbor’s information to 

workgroups. The master node waits for new computed sequences and compares 

them with old ones before traversing to the next tree level. 

 

Figure 6. BFS_label_tree function 
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3.4 The time complexity 

In this section, we will compare the time complexity of both sequential and 

parallel three sequence alignment methods and then give a complexity of the 

whole parallel program.  

      The critical part of the three sequence alignment method is to recursively 

call the score function to find a midpoint. In the sequential version, this score 

function will be called twice for each matrix, since both the forward and backward 

scoring are necessary to search the coordinates of the midpoint. So the time 

complexity of a serial version tsequential is 3( )O n [6] with n representing the length of 

each sequence. In the parallel version, a binary tree structure is constructed with 

root starting the division with the original sequence data. The communication 

costs in the dividing and combining phases need to be considered, the 

communication time tdivide in the dividing phase is 

2 2(log × ×(3×log ))startup commO p t t p+  with p denoting number of processors, tstartup 

as the message delay and tcomm as the transfer time on a single unit of data. 

tstartup is usually much larger than tcomm. In each message, three coordinates of 

the midpoint are sent. And there are 2log p  messages in total. The size of the 

sequence gets reduced by half every time a mid-point of the matrix is found until 

all p processors are occupied. In the combing phase the time cost tcombine is 

similar to tdivide in a reverse message sending order, and the median sequence 

needs to be concatenated and sent back from the lower level to the upper one. 

The time cost tcombine is 2(log × ×( ... ))
2 4startup comm
n n nO p t t

p
+ + + + .The computing 
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time tcomp for each processor at the leaf level is 3(( ) )nO
p

. The total time tparallel is 

the summation of tcomp, tdivide and tcombine, which is 

approximately
3

2 3(5×log )nO p n
p

+ + .   

For the whole program, each internal node will be computed sequentially 

in the serial version so that the time complexity Tsequential is ( × )sequentialO k t , where k 

is the total amount of internal nodes. Our parallel program will achieve a much 

better performance since internal nodes in the same tree level can be calculated 

simultaneously that the time complexity Tparallel is (( 1)× )parallelO m t− , where m is the 

height of the phylogenetic tree and tparallel is the execution time of the parallel 

three sequence alignment method. 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

R. Gharegozlou [26] wrote a report to compare different MSA software in 

terms of three aspects: alignment accuracy, computational time, as well as, 

memory usage .The reports shows that some programs such as TCoffee and 

ProbCons can provide a highly correct sequence alignment, but cannot handle 

large sequence datasets because of high computational time and memory cost, 

especially with the ever-increasing size of sequence datasets scientists are 

facing[26].Our PMSAPT program parallelizes a dynamic programming-based 

MSA program with effective memory usage to produce the optimal alignment, 

and can label every internal node’s sequence of the tree generated from a 

parallel maximum likelihood inference method to reduce the tree cost. Most tree 

generating programs, such as MUSCLE [31, 32], do not label the internal nodes 

to enhance the tree information. 

 Our program combines the advantages of two popular software in 

phylogenetic field: RAxML and MSAM. However, it is also integrated with some 

algorithms and strategies to overcome their defects. Our program can handle 

both protein and DNA sequences with different lengths and output a sequence 

alignment, which is a major advantage over RAxML that only provides 

phylogenetic tree structure. To give a sequence alignment, our program utilizes 

an optimal dynamic programming algorithm implemented in MSAM program to 

reduce memory usage. However, compared with MSAM program, we use 

maximum likelihood based method implemented in RAxML software rather than 
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distance-based method to build up a phylogenetics tree structure. Also, we speed 

up our program using some parallel algorithms, which is much faster than original 

MSAM software. 

In this Chapter, we present three different types of experimental results. 

First of all, the sequence alignment results in terms of the sum of pairs from 

different software are compared. Secondly, a tree score table is provided to 

compare the performance of different tree construction programs. Finally, we 

compare the execution time of both our parallel program and the serial one. Our 

parallel program has been executed on Kraken Cray XT5 supercomputer, which 

is the fastest supercomputer in academia, located at National Institute for 

Computational Science (NICS), featuring Cray Linux Environment (CLE) 2.2 with 

129 TB memory and 8,256 compute nodes. Each compute node has 12 cores 

with 16 GB of memory. To run the program on Kraken, we need to create a job 

script, which should specify the resources we want to use and a statement to run 

the executable. This script should be saved under a directory:  

/luster/scratch/mzhu. We submit our job via the “qsub” command (See the 

Kraken instruction : http://www.nics.tennessee.edu/computing-resources/kraken). 

The Blosum62 [27] substitution matrix is used and the gap open penalty is set to 

be 16, and the gap extension penalty with value of 3. 

4.1 Sequence Alignment Performance Comparison 

The BALIBASE benchmark database is used in our experiments. The 

sequences kept in this database come from FSSP and HOMSTRAD structural 

database or from some literatures [28, 29, 30]. Since there are a large number of 
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sequence datasets in this database, it is not practical to use each one to test the 

programs. We focus on two families of sequence datasets, namely RV12 and 

RV913. RV12 has 44 datasets which contains 20--40% sequences identity, while 

RV913 contains 27 datasets with 40--80% sequence residue identity. Three 

sequence datasets in each group are chosen with different sequence length, 

namely short with length less than 200; medium with length between 200 and 

600, and long with length over 600.Furthermore, BALIBASE benchmark provides 

a reference alignment with MSF format for each sequence dataset and contains 

a software to calculate the SP (Sum of Pair) scores for test alignment compared 

with respective reference one. SP scores is calculated in terms of the correctly 

aligned residue pairs. Higher SP score indicates a better performance of 

sequence alignment [28, 29, 30]. 

We compare our program with other popular sequence alignment 

packages. For example, MUSCLE (multiple sequence comparison by log-

expectation) [31, 32] is a progressive /iterative alignment software that is often 

utilized as a replacement for Clustal. POA [33], developed by Christopher Lee is 

a partial order alignment software using partial order/hidden Markov model. Both 

can generate quite high SP scores on BALIBASE benchmark database. We also 

compare our program with MSAM and MSAM-H programs. MSAM-H utilizes a 

faster but less accurate MSA method than MSAM software. When aligning three 

sequences, MSAM-H aligns two closest ones and then aligns with the third 

one[6]. For every sequence dataset, we run our program three times and 



25 

calculate the mean SP scores since the RAxML software may construct different 

tree topologies, but with the same likelihood value.     

Table 1 gives the SP scores of six sequence datasets from five programs. 

For the short group, PMSAPT can achieve the highest SP score in BOX017 

dataset, while MSAM can get the best result in BB12003 dataset. For the   

Table 1. SP scores from five programs 

 Sequence  

     No. 

 

program 

RV12 RV913 

BB12003 

(Short) 

BB12005 

(Medium)

BB12030

(Long) 

BOX017 

(Short) 

BOX142 

(Medium) 

BOX082 

(Long) 

POA 0.911 0.846 0.854 0.695 0.971 0.974 

MUSCLE 0.903 0.893 0.888 0.716 0.979 0.97 

MSAM-H 0.852 0.88 0.372 0.684 0.953 0.696 

MSAM 0.931 0.88 0.61 0.714 0.979 0.695 

PMSAPT 0.905 0.786 0.681 0.722 0.972 0.691 

 

medium and long groups, MUSCLE program seems to achieve better results 

than others. 

We also observe that our program and MSAM both can achieve better 

results than MSAM-H in average. This is, to some extent, because of the 

optimization mechanism selected. MSAM-H uses a simplified algorithm to 

compute median sequence, which is faster but less accurate. Nevertheless, as 

we parallelize the optimization phase on three sequence alignment, the optimal 
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approach is used to produce the best median sequence out of the three using 

dynamic programming approach.  

4.2 Tree Score 

 We also compare the tree score generated by PMSAPT with that of 

MSAM and MSAM-H. All of these three programs make use of the same tree 

score calculation strategy as used in MSAM package. In other words, the tree 

score is defined as the sum of all edge lengths of the tree. Each edge length is 

calculated by the pairwise distance between two sequences in the edge .The 

objective of the optimization phase in each program is to minimize the tree score 

[6].So the tree score is able to be considered as an important factor to measure a 

program’s performance. 

Table 2 illustrates the absolute tree scores of six sequence datasets from 

three programs: MSAM-H, MSAM and PMSAPT. The absolute values are used 

for consistence. The smaller the tree score is, the better the quality of the tree is. 

There are some influential factors on tree score. The first factor is node labeling 

algorithm. Both MSAM and MSAM-H programs make use of Neighbor Joining 

Method to build up the tree topology. However, MSAM uses a dynamic 

programming technique to compute the more accurate median sequence. Table 

2 shows that MSAM can generate a smaller tree score in average than MSAM-H. 

Another important factor is the layout of the tree topology. With the same input 

sequence file and substitution matrix, different tree topologies can produce 

different tree scores. Our program exploits parallel RAxML software to construct 

the tree topology that excels over the progressive and greedy N-J method. Table 
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2 shows the tree scores generated by our program are smaller than those from 

MSAM in most cases.        

Table 2. Absolute score from three programs          

 Sequence  

     No. 

 

Program 

RV12 RV913 

BB12003 

(Short) 

BB12005 

(Medium) 

BB12030 

(Long) 

BOX017 

(Short) 

BOX142 

(Medium) 

BOX082 

(Long) 

MSAM-H 3474 11352 18078 4316 13759 30493 

MSAM 3365 10841 18902 4264 13754 29970 

PMSAPT 3038 10402 14993 4271 13510 29613 

 

From Table 1 and Table 2, we can find that a better tree score value does 

not mean a better SP score. This may be because of different measurement 

methods applied or because of the reference alignment itself provided by 

BALIBASE benchmark software.  

4.3 Serial and Parallel Comparison 

In MSAM program, the execution time of optimization phase is a 

bottleneck so that MSAM is not practical or time-efficient to deal with large 

sequences datasets .In Chapter 3, we introduced some parallel strategies in our 

program to parallelize the optimization phase. In this section, with the same tree 

topology and initialization phase, we make some experiments to compare the 

execution time of the serial optimization version with parallel one. The serial 

optimization version is the same with that implemented in MSAM program. To 



28 

measure the performance, one parameter is introduced here: speedup factor. 

The speedup factor defined in Eq.5 indicates how much a parallel algorithm is 

faster than the serial one.  

3 3

3 3 3
2

k×t × ×
( 1)× ( 1)×( ×5×log × )

sequential sequential

parallel parallel

T k p nSpeedupFactor
T m t m p p n p n

= = =
− − + +

 

Equation 5. Speedup factor formula 

We first select BB12030 [30] sequences dataset as our test data. In this 

dataset, there are six sequences with average length over 790. Our parallel 

PMSAPT is run on 8, 16, and 32 processors in each workgroup respectively. 

Table 3 shows the different execution time and speed up values. It is obvious that 

the parallel program is much faster than the serial version due to the parallel 

update of the internal nodes at the same level.  

It is conjectured that if there are significant number of tree levels that 

contains multiple internal nodes, we would be able to achieve higher time saving 

due to the parallel labeling of all internal nodes at the same level. We select 

another sequence dataset, BB12004 [30] also from BALIBASE benchmark 

database to test the effect of program performance with larger problem size. The 

BB12004 dataset contains 15 sequences with average length around 249. The 

tree topology built for this sequence dataset contains more tree levels with 

multiple internal nodes than BB12030. We observe a higher speed up from this 

dataset. Table 4 demonstrates the time difference.  
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Table 3 BB12030 dataset comparison 

 

Version 

 

Execution Time 

 

Speedup Factor 

 

Serial  

 

14.193 hours 

 

N/A 

 

Parallel(8 nodes) 

 

7.782 hours 

 

1.8238 

 

Parallel(16 nodes) 

 

7.780 hours 

 

1.8243 

 

Parallel(32 nodes) 

 

7.776 hours 

 

1.8252 

 

Table 4 BB12004 dataset comparison 

 

Version 

 

Execution Time 

 

Speedup Factor 

 

Serial  

 

2.257 hours 

 

N/A 

 

Parallel(8 nodes) 

 

0.951 hours 

 

2.3733 

 

Parallel(16 nodes) 

 

0.945 hours 

 

2.3884 

 

Parallel(32 nodes) 

 

0.950 hours 

 

2.3758 
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3
3

3
2 2

( )

5×log ×( 5×log )
comp

comm

n
t npratio
t n p p n p

= = =
+ +  

 

Equation 6. Computation/communication ratio 

Compare with serial program, our parallel program can achieve better 

performance on execution time saving. However, there are still many things we 

can do to improve the efficiency of our parallel program. One thing we can 

observe is that when we keep adding more processors, no more speed up can 

be achieved. Such bottleneck problem is mainly caused by the high 

communication cost in the parallel MSA function. To prove this, we can calculate 

the computation/communication ratio using Eq.6 and tcomp, tdivide, tcombine from 

Section 3.4. The computation/communication ratio defined in Eq.6 highlights 

effect of communication with increasing problem size and system size. The ratio 

is
3

3
2×( 5×log )

n
p n p+

, with p denoting number of processors and n representing 

the length of each sequence. From Eq.5 and Eq.6, we can find that with same 

sequences, the more processors usage does not change much for speed up 

value, but results in the lower ratio value. That means the overheads of 

synchronization and communication is greater. To address this issue, it is 

planned that OpenMP and multi-core technologies will be exploited to resolve 

these issues. Also, we can optimize our program’s structure to reduce 

communication cost. For example, instead of sending each type of data one by 
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one within parallel three sequence alignment method, we can create a new data 

type to save these data at first and then send it via one message, in order to 

reduce the number of communication message.  
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CHAPTER 5 

CONCLUSION 

 The proposed work is to develop a parallel approach to conduct multiple 

sequence alignment, as well as, tree node labeling. The parallel RAxML software 

is integrated to generate a phylogenetic tree under the maximum likelihood 

criteria, which performs better than distance based methods in terms of the tree 

score. Then, pairwise sequence alignment is used to initialize the internal node 

labeling. We utilize and adapt the optimization phase implemented in MSAM to 

iteratively label the tree nodes in order to minimize the total tree score and 

achieve a better final sequence alignment. The most time consuming function for 

the optimization phase is three sequence alignment and is parallelized in a divide 

and conquer strategy. The labeling of internal nodes at the same level is 

conducted at the same time by different workgroups that are dynamically created. 

The two levels of parallelization on both the MSA and tree traversal enable us to 

fully utilize the abundant computing resources available in a supercomputer. The 

experiments results show that our PMSAPT can significantly reduce the 

computing time. In addition, the tree quality of PMSAPT is comparative to or even 

better than some popular software using BALIBASE benchmark experiments.      
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