

A PARALLEL APPROACH TO MULTIPLE SEQUENCES ALIGNMENT AND
PHYLOGENETIC TREE LABELING

by

Jingjing Wang

Electrical Engineering
B.E., Southeast University, 2008

A Thesis
Submitted in Partial Fulfillment of the Requirements for the

Master of Science Degree

Department of Computer Science
in the Graduate School

Southern Illinois University Carbondale
December 2010

UMI Number: 1488964

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI 1488964

Copyright 2011 by ProQuest LLC.
All rights reserved. This edition of the work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106-1346

THESIS APPROVAL

A PARALLEL APPROACH TO MULTIPLE SEQUENCES ALIGNMENT AND
PHYLOGENETIC TREE LABELING

by

Jingjing Wang

A Thesis Submitted in Partial

Fulfillment of the Requirements

for the Degree of

Master of Science

in the field of Computer Science

Approved by:

Dr. Mengxia Zhu, Chair

Dr. Wen-Chi Hou

Dr. Dunren Che

Graduate School
Southern Illinois University Carbondale

November 12, 2010

i

AN ABSTRACT OF THE THESIS OF

Jingjing Wang, for the Master of Science degree in Computer Science, presented
on 7 September 2010,at Southern Illinois University Carbondale.

TITLE: A PARALLEL APPROACH TO MULTIPLE SEQUENCES ALIGNMENT
AND PHYLOGENETIC TREE LABELING

MAJOR PROFESSOR: Dr. Mengxia Zhu

 An evolutionary tree represents the relationship among a group of species,

DNA or protein sequences, and play fundamental roles in biological lineage

research. A high quality tree construction relies heavily on optimal multiple

sequence alignment (MSA), which aligns three or more sequence simultaneously

to derive the similarity. On the other hand, a good tree can also be used to guide

the MSA process. Due to the high computational cost to conduct both the MSA

and tree construction, parallel approaches are exploited to utilize the enormous

amount of computing power and memory housed in a supercomputer or Linux

cluster. In this paper, first of all, a divide and conquer based parallel algorithm is

designed and implemented to perform optimal three sequence alignment using

reduced memory cost. Secondly, all internal nodes of a phylogenetic tree resulting

from a parallel Maximum-likelihood inference software are labeled using the

parallel MSA. Such tree node labeling process is carried out from top down and is

also parallelized to fully utilize the numerous cores and nodes in a high

performance computing facility.

ii

ACKNOWLEDGMENTS

I would like to thank Dr. Zhu for her constant help, guidance and
suggestions throughout this thesis.

I would also like to thank Dr. Hou and Dr. Che for consenting to be a part of

my thesis committee and for their guidance.

iii

TABLE OF CONTENTS

CHAPTER PAGE

ABSTRACT .. i

ACKNOWLEDGMENTS ... ii

LIST OF TABLES .. v

LIST OF FIGURES .. vi

CHAPTERS

CHAPTER 1 – Introduction .. 1

CHAPTER 2 – Related Work ... 3

CHAPTER 3 – Phylogenetic Tree Construction and MSA...................... 6

3.1 Maximum Likelihood-based Inference .. 6

 3.1.1 Tree Likelihood Calculation .. 6

 3.1.2 RAxML software ... 8

3.2 Multiple Sequence Alignment along Phylogenetic Tree 10

 3.2.1 Internal Nodes Initialization .. 10

 3.2.2 Serial Tree Optimization ... 11

 3.2.3 Parallel Tree Optimization .. 14

3.3 Pseudo code of the algorithm ... 17

3.4 The time complexity .. 20

CHAPTER 4 – Experimental Results ... 22

4.1 Sequence Alignment Performance Comparison 23

iv

4.2 Tree Score .. 26

4.3 Serial and Parallel Comparison .. 28

CHAPTER 5 – Conclusion ... 32

REFERENCES ... 33

VITA ... 36

v

LIST OF TABLES

TABLE PAGE

Table 1 SP scores from five programs .. 25

Table 2 Absolute score from three programs .. 27

Table 3 BB12030 dataset comparison .. 29

Table 4 BB12004 dataset comparison .. 30

vi

LIST OF FIGURES

FIGURE PAGE

Figure 1 An example tree .. 7

Figure 2 How to split 3D cube ... 12

Figure 3 The simultaneous subdivisions by 8 Computer nodes 15

Figure 4 The program Flowchart ... 17

Figure 5 The algorithm of the program .. 18

Figure 6 BFS_label_tree function.. 19

1

CHAPTER 1

INTRODUCTION

Phylogenetics refers to the evolutionary lineage among different

organisms. Some evidence shows that some organisms share similar features,

while evolving from the same ancestor and other features are distinct to help

organisms to adapt to their specific environment conditions. Therefore, by

studying the phylogeny among different organisms, it is conducive to find the

similarities and differences among different species [1, 2].

A phylogenetic tree, also called evolutionary tree represents an

evolutionary relationships or phylogeny among species, and play fundamental

roles in biological research. The leaf nodes are represented as species and

internal nodes are shown as the common ancestor of its descendant nodes. The

length of a branch connecting one node to another indicates evolution time.

In the phylogenetic tree study, there are two main computational

challenges. The first major challenge is to identify the optimal tree topology at the

minimum tree cost. The enumeration of all of the possible tree topologies will not

be feasible for big input sequences. With a given input sequence size of n, the

total number of unrooted tree is (2n-5)!! .It has been proved that this problem

belongs to the category of NP-hard [3].Consequently, researchers have looked

for alternatives such as approximation or heuristic approaches with polynomial

time complexity, which have yielded suboptimal solutions. Phylogeny

construction methods can be roughly categorized as either distance-based or

character-based. Distance-based method computes the distance for every

2

aligned pair of sequences to guide the tree construction. The character-based

method uses multiple sequence alignment directly and is based on criteria of

maximum parsimony or maximum likelihood inferences [12]. The second major

computation challenge is to perform efficient sequence alignment within identified

tree topology for internal node labeling at minimum tree cost.

In my thesis, both of these computational challenges are considered and

addressed in our parallel program called Parallel Multiple Sequence Alignment

and Phylogenetic Tree reconstruction (PMSAPT). The program exploits the

parallel programming technique to shorten the execution time of tree construction

as well as the multiple sequence alignment. In this proposed algorithm, a tree will

be constructed with all leaf nodes from the given sequences and internal nodes

labeled. The criterion is to minimize the summation of all tree branch lengths in

the minimum time span. This parallel algorithm is designed to minimize the

communication overhead between nodes and at the same time maximize the

concurrency of independent tasks.

The thesis is organized as follows: Chapter 2 discusses the related works.

Chapter 3 presents our algorithms on tree topology construction and sequence

alignment. Chapter 4 shows the benchmark experiment results compared with

those of existing software to illustrate the novelty and efficiency of our

approaches. Conclusion is given in Chapter 5.

3

CHAPTER 2

RELATED WORK

Two main approaches belong to distance-based class as Neighbor Joining

[7] and UPGMA (Unweighted Pair Group Method with Arithmetic Mean) [8].

UPGMA is a hierarchical clustering method to find the closest related pair of

clusters from a distance matrix and combine this pair as one cluster used for next

iteration. Different with UPGMA, Neighbor Joining algorithm creates an internal

node rather than a cluster in each iteration. Both UPGMA and Neighbor-Joining

methods are greedy and fast, however, such growing tree topology does not ever

change its structure once a new node is added. Therefore, it is difficult to achieve

a good tree topology. By recognizing such inflexibilities in the issue, some tree

search algorithms are applied as tree refinement mechanism. The branch

swapping methods such as nearest-neighbor interchanges (NNI), subtree

prunning and regrafting (SPR), and tree bisection and reconnection (TBR) are

widely used[9, 10]. All of these algorithms work by swapping the branches from

the original position to a different position to create a new tree topology. Although

these tree refinement strategies indeed can achieve better results, it is known

that these programs can be stuck in local optima in the search for global optima

[11].

The character-based method considers each column of the sequences

independently. Maximum parsimony method produces the tree with the minimum

number of changes to evolve into the current sequences. Maximum Likelihood

method aims to identify the tree topology with the maximum likelihood. Such a

4

tree is most likely to obtain the current sequences. The advantage of maximum

likelihood based methods is that a large number of tree space is searched while

all sequence information is utilized [12]. Therefore, the final tree topology is more

reliable and accurate than that acquired from both distance-based and maximum

parsimony based methods. However, some proof shows that it is a NP-hard

problem to find a tree with maximum likelihood value due to a large tree space

[13, 14]. In recent years, some heuristic maximum likelihood based methods

integrated with other optimization strategies have been developed. IQPNNI [15]

method (a method in terms of the Important Quartet Conception with the nearest

neighbor interchange) has been employed to search a tree through large tree

space under maximum likelihood criterion. For each iteration, some leaf nodes

are deleted and re-inserted by following IQP (The Important Quartet Concept). A

new reconstructed tree is further optimized using nearest-neighbor interchanges

(NNI) and compared to the previous one. The tree which was computed to have

a higher log-likelihood is kept. PHYML [16] (Heuristic Maximum Likelihood

phylogenetic tree from multiple alignment) uses BIONJ [17] method (an improved

version of the NJ algorithm) to construct an initial tree and NNI method for tree

search. RAxML [12, 18] is another program for the inference of phylogeny under

maximum likelihood criterion. It has some advantages over other software .First,

in contrast with IQPNNI and PHYLIP which both make use of NNI method for tree

search, RAxML uses a different tree search scheme named Lazy Subtree

Rearrangement (LSR) which exploits a larger portion of candidate trees and thus

is more likely to find a global optima. In addition, RAxML software requires less

5

memory space and computation time than some other programs [19, 20, 21, 22].

However, RAxML only produces a tree topology and the log likelihood value

without labeling each internal node and alignment.

Some tree construction and sequence alignment software has been

developed such as TAAR (Tree Alignment and Reconstruction Application

software) [4] and GESTALT (Genomic Steiner Alignment) [5], which generates

sequence alignment via a tree. Yue and Tang developed a tree alignment

software called MSAM to iteratively label each internal node derived from its

closest three neighbors and by using TBR to optimize the current tree cost [6]. All

above-mentioned software obtains an improved final tree structure starting from

an initial guiding tree created from either the minimum spanning [5] or neighbor-

joining methods [7].

To label each internal node of this tree for minimum total tree cost, we

parallelize an optimal three sequence alignment program based on dynamic

programming with the source code extracted from MSAM package[6]. In addition,

a divide and conquer strategy was used to reduce the memory cost from O(n^3)

to O(n^2) [23]. The limitation of original MSAM program is that it is easy to get

stuck in the local optima in that N-J tree with TBR method applied for tree

inference. To address this issue, the tree topology from RAxML is used to label

each node from that tree. The labeling process continues iteratively until

convergence point is hit. Also, a parallel algorithm for optimization is developed

to speed up the program.

6

CHAPTER 3

PHYLOGENETIC TREE CONSTRUCTION AND MSA

We use parallel RAxML which is a better Maximum Likelihood-based

Inference program to obtain a phylogenetic tree topology. Then we parallelize an

optimal multiple sequence alignment (MSA) method to label each internal node

from its nearest three neighbors. Such labeling process can be carried out

simultaneously for internal nodes at the same level. So the labeling process is

mainly determined by the height of the tree.

3.1 Maximum Likelihood-based Inference

 A tree topology with highest likelihood value is selected under Maximum

likelihood. However, it is a NP hard problem to find such a tree topology because

of the large tree space we have to search [3]. Some heuristic tree topology

inference methods were developed to generate some potentially good tree

structures and find the one with the highest likelihood value.

3.1.1 Tree Likelihood Calculation

The maximum likelihood-based method in phylogenetics tree construction

employs an evolutionary model which provides the probability that one sequence

evolve into another along a branch. Each site of the sequences is assumed to

evolve independently. The likelihood of each site is computed following the path

from root node to each leaf node. If the internal node sequence is unknown, all

possible nucleotides need to be considered by summing the probability of all

7

possible states. The final tree likelihood is scored by multiplying the likelihood of

each site.

An example tree structure is given in Fig. 1, and how to compute its

likelihood value under a simple DNA evolution model is explained:

Figure 1. An example tree

In the above example, b1, b2, b3, b4, b5, b6 represents the branch length

of the tree. For any position (site) x, the likelihood of this site could be computed

by the formula in Eq.1,for example, P(sq1|n2,b3) gives the probability that a base

in n2 evolves into seq1 along with a branch b3 [12]:

8

L(x)

=

∑∑∑
= = =

T

An

T

An

T

An
bnsqPbnsqPbnsqPbnsqPbnnPbnnPnP

1 2 3
)6,3|4()5,3|3()4,2|2()3,2|1()2,1|3()1,1|2()1(

Equation 1. Likelihood calculation of a specific site x [12]

After the likelihood of each site is computed, then likelihood of this tree

could be computed as the product of the likelihood of each site:

∏=
i

tree iLL)(

Equation 2. Tree likelihood formula [12]

Each potential tree topology is generated, with its likelihood computed.

The tree with the highest likelihood value will be chosen.

3.1.2 RAxML software

RAxML [12] (Randomized Axelerated Maximum Likelihood), developed by

A.Stamatakis, is a maximum likelihood-based tree construction software. In

sequential RAxML, an initial parsimony tree which has a better likelihood than N-

J tree is built as a starting tree. After that, a computing intensive tree optimization

process starts by performing a standard subtree rearrangement. In detail, all

possible subtrees within the current best tree are subsequently moved from their

9

original positions to new ones by the lower up to the upper rearrangement

distance setting. Instead of optimizing the branch length of the entire tree to

calculate its likelihood for each insertion, which definitely increases the

computation cost, only the three branches neighboring to insertion point is

optimized before the likelihood is calculated during each rearrangement step. 20

best tree candidates are stored after each rearrangement step, and only these 20

trees rather than all possible ones are performed global branch length

optimization based on a pulley principle to improve likelihood value. The tree with

the highest likelihood will be selected for the next rearrangement step. Also

during each rearrangement step, the current best tree is updated if the tree

likelihood is improved after a movement of a specific subtree, and the remaining

subtree rearrangements are performed on this topology. The program ends until

the upper rearrangement distance setting reaches the given maximum one. To

pursue a better performance, a parallel RAxML was also developed. In phase

one, the master sends the input sequence file to each slave. Each worker

generates random permutation and builds trees with parsimony values. The tree

with the highest likelihood value stands out and is sent back to the master. In

phase two (a), the master distributes a specific subtree ID and current best tree

topology to each slave. Each slave rearranges and integrates the specified

subtree and returns a tree with a better likelihood value. The master compares

this tree with the current best tree and updates the tree with higher likelihood as

the best one, followed by sending a new subtree ID with current best tree

topology to the slave. After all subtrees are rearranged, the program goes to

10

phase two (b). The master requests a tree list from each worker, which stores 20

best trees computed by each worker during this rearrangement step .After that,

the master merges lists and distributes 20 best trees to workers for global branch

length optimization. The tree with the highest likelihood value is selected and

compared with the old one. The master node starts the next rearrangement step

if the likelihood is improved. Otherwise, the rearrangement setting increases by

one if the maximum rearrangement setting is not reached and phase two as

mentioned above is performed again. The termination condition in parallel

program is the same with that in sequential one [12].

3.2 Multiple Sequence Alignment along Phylogenetic Tree

RAxML software produces a good phylogenetic tree topology. The next

step is to label internal nodes in this tree topology. At first, an initial sequence

should be assigned to each internal node. This procedure is called tree

initialization .The tree refinement follows up by computing a new sequence for

each internal node by conducting MSA with its three nearest neighbors. This

original idea comes from F.Yue and J.Tang in their previous work [6]. The novelty

of their algorithm is memory usage reduction from O (n^3) to O (n^2), however,

the cost time is still high. Therefore, we proposed parallel approaches to address

both the MSA and tree node labeling. The details are given as below.

3.2.1 Internal Nodes Initialization

There are various methods to initialize each internal node. One method is

to randomly assign a sequence to each internal node. Another method proposed

by F.Yue and J.Tang is to generate a median sequence for each internal node

11

with its three nearest leaf nodes [6]. Although a better result is produced, the

computation is slow for long sequences .Since it is not very necessary to spend

so much time on the initialization of internal nodes, we use a fast pairwise

alignment method to initialize each node with its two child nodes. At first, we align

sequences to determine the gap position if the lengths of two sequences are

different. To generate the median sequence for the internal node, a consensus

vote is operated based on a mutation matrix at every site of the alignment.

3.2.2 Serial Tree Optimization

After the initialization step, each internal node is assigned a sequence as

the starting point for later adjustment. However, this assignment still has much

space to be improved, and thus the multiple sequence alignment of input

sequences will be still far away from the optimal one. The tree optimization

mechanism implemented in MSAM software is adapted and enhanced here [6,

23].The optimization steps are the following: Starting from the root node to next-

to-the last level of the tree generated from RAxML , a new sequence , called

median, is computed with alignment from its three neighbors to label node

sequences. This new sequence is allowed to replace the old one if the sum of

branch distances to three neighbors is smaller than previous labeling. Once there

is a replacement during an iteration, the next iteration is about to execute. This

optimization procedure terminates if there is no improvement during the previous

iteration. To generate each median sequence, a divide-and-conquer strategy

from MSAM [6, 23] is adopted to find a midpoint to split a 3-D sequence cube into

two smaller cubes recursively, as showed in Fig. 2. The central part of this

12

approach determines a midpoint where the optimal alignment passes through to

split 3D cube. Similar with a divide and conquer approach for two sequences

[24],

Figure 2. How to split 3D cube [6]

one input sequence with the length X is selected at first, and i=X/2 is defined as

the first coordinate of midpoint, so the problem is to find another two coordinates

of such midpoint. To find these two optimal coordinates (j and k), a score function

is implemented to record both the forward and backward scores of three

sequences by respectively using the parameter (C, B, A, Z, Y, i) and (rev(C),

rev(B),rev(A)[i…X],Z,Y,X-i), where rev() stands for a reverse string. These two

coordinates are determined when the sum of forward and backward scores is

minimized [23, 25].This score function calculates the best score of alignment

ending in each state format. Since each coordinate has three possible states:

I(insert), D(delete), and M(match/mismatch), there are 27 possible state

combinations that are required to calculate the score . The minimum cost among

these is picked, which is represented as a formula showed in Eq.3. To make the

13

correctness of the global alignment, the final state information obtained from

forward scoring needs to be sent to the next recursive call in upper cube as the

end. The state information generated from backward scoring will be passed

through to the next recursive call in bottom cube as the start. This divide and

conquer method is recursively executed until the 3-D cube can’t be divided any

more (i=1). Then a conquer procedure starts from the smallest cube by aligning

three sequences kept in this cube and generating a median one in terms of the

selected state combination, which yields the smallest cost from Eq.3.

1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

δ δ δ 1 2 3

(', ', ') ([], [], [],δδ δ) × (δδ δ ,)

(', ', ') ([], [], [],δδ δ) × (δδ δ ,)

(, ,) min (', ', ') ([], [], [],δδ δ) ×

MMM

MMD

MDM

T i j k Cost Ai B j C k g Transition MMM

T i j k Cost Ai B j C k g Transition MMD

T i j k = T i j k Cost Ai B j C k g Tra

+ −

+ −

+ −
1 2 3

1 2 3 1 2 3

(δδ δ ,)

.............

(', ', ') ([], [], [],δδ δ) × (δδ δ ,)
DDM

nsition MDM

T i j k Cost Ai B j C k g Transition DDM+ −

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

Equation 3. The minimum cost [23]

When searching the midpoint, only the cells at level i-1 determine ones at

level i. Instead of keeping all of the state information at each level, which requires

memory space O (n^3), the algorithm developed by F.Yue and J.Tang can

reduce memory usage from O(n^3) to O(n^2) in that only the score is delivered to

find a midpoint . Started from level i=0 to level i= X, two arrays U[Y,Z] and D[Y,Z]

are enough to deliver as well as store the score for each different pair of y and z.

After the forward and backward calculation ends, the minimum of the combing

score can be found and the related coordinates will be known to represent the

midpoint.

14

3.2.3 Parallel Tree Optimization

MSAM software, which uses the above mentioned algorithm to compute

each internal node sequentially, is unrealistic to handle large number of

sequences due to its high computational cost. Our parallel approaches can be

used to minimize the execution time by utilizing a message-passing interface to

run the program with multiple computer nodes.

First, the critical part of MSAM algorithm is a three sequence alignment

method that finds the midpoint to divide a big 3-D cube into two smaller ones

recursively. The subdivision of each smaller 3-D cubes split from a common

bigger cube is independent from the other. Therefore, a parallel strategy can be

developed by subdividing each smaller cube simultaneously by two independent

computer nodes. For example, in the first level, given three sequences with

length X, Y, and Z, computer node 0 uses forward and backward scoring to find a

midpoint on the plane x=x/2, followed by keeping the upper left sub-matrix and

sending the lower right part to computer node 1. Then, in the second level,

computer node 0 and node 1 simultaneously divides its sub-matrix into two

15

Figure 3. The simultaneous subdivisions by 8 Computer nodes

smaller ones on the plane x= X/2, where this X stands for the subsequence

length rather than the entire one and sends a sub-sub-matrix to node 2 and node

3 respectively. Such data partition continues until a minimum size of the sub-

matrix is reached or all available computer nodes are assigned tasks.

Consequently, for each node assigned a sub-matrix larger than unit

(x>1||y>1||z>1), the serial three sequence alignment method is invoked. During

this division, each parent node must send both midpoint and ending point

coordinates to its child nodes, which provides information of the matrix. Each

child node sends the alignment and median sequence back to its upstream

parent node from which its sub-matrix comes for results concatenation. Fig. 3

16

exhibits how this approach works with 8 computer nodes. In general, the

relationship of destination and source computer node id’s can be represented as

the formula in Eq. 4, where n stands for the times that matrix has been divided.

)1(2 −+= n
sd PP

Equation 4.

It is observed that the internal nodes in the same tree level can be

computed simultaneously using the parallel MSA without interfering with each

other before the next level starts. We dynamically create MPI workgroups and

assign nodes from each workgroup to perform the parallel MSA for a single

internal node. The number of workgroups is determined by the number of internal

nodes at each level .The master node of a supercomputer distributes tasks to

each workgroup by sending the sequence information to the leading node in each

workgroup. Upon receiving the task, each leading node in a workgroup multicasts

the information to all workgroup members. After that, each workgroup can start to

carry out the parallel MSA. The master node waits for the results returned from

the leading node in each workgroup and compares the new sequence with the

old one to decide whether to update or not before traversing to the next tree

level. Only the sequence that generates lower total branch length of its three

edges will be kept and updated. The flowchart is shown in Fig.4.

17

Figure 4. The program Flowchart

3.3 Pseudo code of the algorithm

Fig. 5 describes the pseudo code of our algorithm, in which we give the

pseudo code for each phase. In the optimization phase, the master node

dynamically creates workgroups when traversing a new level. There are two key

parameters: WorkgroupSize and WorkgroupNumber. WorkgroupSize is an input

18

parameter which defines the node number in a workgroup. WorkgroupNumber

parameter, calculated by the master node in BFS_label_tree () function (Fig. 6),

provides the information on how many workgroups need to be created. In each

level of the tree, this parameter is computed as the total number of internal nodes

in this level.

Figure 5. The algorithm of the program

In the BFS_label_tree () function, the master node calculates the internal

nodes number, which determines the workgroup number, and sends this

19

parameter to each slave node to dynamically create the workgroup. Also the

nodes at the next level of the tree are stored into a queue in order to keep track

of them when traversing to the next level. After creating the workgroups, the

master node distributes internal nodes with three neighbor’s information to

workgroups. The master node waits for new computed sequences and compares

them with old ones before traversing to the next tree level.

Figure 6. BFS_label_tree function

20

3.4 The time complexity

In this section, we will compare the time complexity of both sequential and

parallel three sequence alignment methods and then give a complexity of the

whole parallel program.

 The critical part of the three sequence alignment method is to recursively

call the score function to find a midpoint. In the sequential version, this score

function will be called twice for each matrix, since both the forward and backward

scoring are necessary to search the coordinates of the midpoint. So the time

complexity of a serial version tsequential is 3()O n [6] with n representing the length of

each sequence. In the parallel version, a binary tree structure is constructed with

root starting the division with the original sequence data. The communication

costs in the dividing and combining phases need to be considered, the

communication time tdivide in the dividing phase is

2 2(log × ×(3×log))startup commO p t t p+ with p denoting number of processors, tstartup

as the message delay and tcomm as the transfer time on a single unit of data.

tstartup is usually much larger than tcomm. In each message, three coordinates of

the midpoint are sent. And there are 2log p messages in total. The size of the

sequence gets reduced by half every time a mid-point of the matrix is found until

all p processors are occupied. In the combing phase the time cost tcombine is

similar to tdivide in a reverse message sending order, and the median sequence

needs to be concatenated and sent back from the lower level to the upper one.

The time cost tcombine is 2(log × ×(...))
2 4startup comm
n n nO p t t

p
+ + + + .The computing

21

time tcomp for each processor at the leaf level is 3(())nO
p

. The total time tparallel is

the summation of tcomp, tdivide and tcombine, which is

approximately
3

2 3(5×log)nO p n
p

+ + .

For the whole program, each internal node will be computed sequentially

in the serial version so that the time complexity Tsequential is (×)sequentialO k t , where k

is the total amount of internal nodes. Our parallel program will achieve a much

better performance since internal nodes in the same tree level can be calculated

simultaneously that the time complexity Tparallel is ((1)×)parallelO m t− , where m is the

height of the phylogenetic tree and tparallel is the execution time of the parallel

three sequence alignment method.

22

CHAPTER 4

EXPERIMENTAL RESULTS

R. Gharegozlou [26] wrote a report to compare different MSA software in

terms of three aspects: alignment accuracy, computational time, as well as,

memory usage .The reports shows that some programs such as TCoffee and

ProbCons can provide a highly correct sequence alignment, but cannot handle

large sequence datasets because of high computational time and memory cost,

especially with the ever-increasing size of sequence datasets scientists are

facing[26].Our PMSAPT program parallelizes a dynamic programming-based

MSA program with effective memory usage to produce the optimal alignment,

and can label every internal node’s sequence of the tree generated from a

parallel maximum likelihood inference method to reduce the tree cost. Most tree

generating programs, such as MUSCLE [31, 32], do not label the internal nodes

to enhance the tree information.

 Our program combines the advantages of two popular software in

phylogenetic field: RAxML and MSAM. However, it is also integrated with some

algorithms and strategies to overcome their defects. Our program can handle

both protein and DNA sequences with different lengths and output a sequence

alignment, which is a major advantage over RAxML that only provides

phylogenetic tree structure. To give a sequence alignment, our program utilizes

an optimal dynamic programming algorithm implemented in MSAM program to

reduce memory usage. However, compared with MSAM program, we use

maximum likelihood based method implemented in RAxML software rather than

23

distance-based method to build up a phylogenetics tree structure. Also, we speed

up our program using some parallel algorithms, which is much faster than original

MSAM software.

In this Chapter, we present three different types of experimental results.

First of all, the sequence alignment results in terms of the sum of pairs from

different software are compared. Secondly, a tree score table is provided to

compare the performance of different tree construction programs. Finally, we

compare the execution time of both our parallel program and the serial one. Our

parallel program has been executed on Kraken Cray XT5 supercomputer, which

is the fastest supercomputer in academia, located at National Institute for

Computational Science (NICS), featuring Cray Linux Environment (CLE) 2.2 with

129 TB memory and 8,256 compute nodes. Each compute node has 12 cores

with 16 GB of memory. To run the program on Kraken, we need to create a job

script, which should specify the resources we want to use and a statement to run

the executable. This script should be saved under a directory:

/luster/scratch/mzhu. We submit our job via the “qsub” command (See the

Kraken instruction : http://www.nics.tennessee.edu/computing-resources/kraken).

The Blosum62 [27] substitution matrix is used and the gap open penalty is set to

be 16, and the gap extension penalty with value of 3.

4.1 Sequence Alignment Performance Comparison

The BALIBASE benchmark database is used in our experiments. The

sequences kept in this database come from FSSP and HOMSTRAD structural

database or from some literatures [28, 29, 30]. Since there are a large number of

24

sequence datasets in this database, it is not practical to use each one to test the

programs. We focus on two families of sequence datasets, namely RV12 and

RV913. RV12 has 44 datasets which contains 20--40% sequences identity, while

RV913 contains 27 datasets with 40--80% sequence residue identity. Three

sequence datasets in each group are chosen with different sequence length,

namely short with length less than 200; medium with length between 200 and

600, and long with length over 600.Furthermore, BALIBASE benchmark provides

a reference alignment with MSF format for each sequence dataset and contains

a software to calculate the SP (Sum of Pair) scores for test alignment compared

with respective reference one. SP scores is calculated in terms of the correctly

aligned residue pairs. Higher SP score indicates a better performance of

sequence alignment [28, 29, 30].

We compare our program with other popular sequence alignment

packages. For example, MUSCLE (multiple sequence comparison by log-

expectation) [31, 32] is a progressive /iterative alignment software that is often

utilized as a replacement for Clustal. POA [33], developed by Christopher Lee is

a partial order alignment software using partial order/hidden Markov model. Both

can generate quite high SP scores on BALIBASE benchmark database. We also

compare our program with MSAM and MSAM-H programs. MSAM-H utilizes a

faster but less accurate MSA method than MSAM software. When aligning three

sequences, MSAM-H aligns two closest ones and then aligns with the third

one[6]. For every sequence dataset, we run our program three times and

25

calculate the mean SP scores since the RAxML software may construct different

tree topologies, but with the same likelihood value.

Table 1 gives the SP scores of six sequence datasets from five programs.

For the short group, PMSAPT can achieve the highest SP score in BOX017

dataset, while MSAM can get the best result in BB12003 dataset. For the

Table 1. SP scores from five programs

 Sequence

 No.

program

RV12 RV913

BB12003

(Short)

BB12005

(Medium)

BB12030

(Long)

BOX017

(Short)

BOX142

(Medium)

BOX082

(Long)

POA 0.911 0.846 0.854 0.695 0.971 0.974

MUSCLE 0.903 0.893 0.888 0.716 0.979 0.97

MSAM-H 0.852 0.88 0.372 0.684 0.953 0.696

MSAM 0.931 0.88 0.61 0.714 0.979 0.695

PMSAPT 0.905 0.786 0.681 0.722 0.972 0.691

medium and long groups, MUSCLE program seems to achieve better results

than others.

We also observe that our program and MSAM both can achieve better

results than MSAM-H in average. This is, to some extent, because of the

optimization mechanism selected. MSAM-H uses a simplified algorithm to

compute median sequence, which is faster but less accurate. Nevertheless, as

we parallelize the optimization phase on three sequence alignment, the optimal

26

approach is used to produce the best median sequence out of the three using

dynamic programming approach.

4.2 Tree Score

 We also compare the tree score generated by PMSAPT with that of

MSAM and MSAM-H. All of these three programs make use of the same tree

score calculation strategy as used in MSAM package. In other words, the tree

score is defined as the sum of all edge lengths of the tree. Each edge length is

calculated by the pairwise distance between two sequences in the edge .The

objective of the optimization phase in each program is to minimize the tree score

[6].So the tree score is able to be considered as an important factor to measure a

program’s performance.

Table 2 illustrates the absolute tree scores of six sequence datasets from

three programs: MSAM-H, MSAM and PMSAPT. The absolute values are used

for consistence. The smaller the tree score is, the better the quality of the tree is.

There are some influential factors on tree score. The first factor is node labeling

algorithm. Both MSAM and MSAM-H programs make use of Neighbor Joining

Method to build up the tree topology. However, MSAM uses a dynamic

programming technique to compute the more accurate median sequence. Table

2 shows that MSAM can generate a smaller tree score in average than MSAM-H.

Another important factor is the layout of the tree topology. With the same input

sequence file and substitution matrix, different tree topologies can produce

different tree scores. Our program exploits parallel RAxML software to construct

the tree topology that excels over the progressive and greedy N-J method. Table

27

2 shows the tree scores generated by our program are smaller than those from

MSAM in most cases.

Table 2. Absolute score from three programs

 Sequence

 No.

Program

RV12 RV913

BB12003

(Short)

BB12005

(Medium)

BB12030

(Long)

BOX017

(Short)

BOX142

(Medium)

BOX082

(Long)

MSAM-H 3474 11352 18078 4316 13759 30493

MSAM 3365 10841 18902 4264 13754 29970

PMSAPT 3038 10402 14993 4271 13510 29613

From Table 1 and Table 2, we can find that a better tree score value does

not mean a better SP score. This may be because of different measurement

methods applied or because of the reference alignment itself provided by

BALIBASE benchmark software.

4.3 Serial and Parallel Comparison

In MSAM program, the execution time of optimization phase is a

bottleneck so that MSAM is not practical or time-efficient to deal with large

sequences datasets .In Chapter 3, we introduced some parallel strategies in our

program to parallelize the optimization phase. In this section, with the same tree

topology and initialization phase, we make some experiments to compare the

execution time of the serial optimization version with parallel one. The serial

optimization version is the same with that implemented in MSAM program. To

28

measure the performance, one parameter is introduced here: speedup factor.

The speedup factor defined in Eq.5 indicates how much a parallel algorithm is

faster than the serial one.

3 3

3 3 3
2

k×t × ×
(1)× (1)×(×5×log ×)

sequential sequential

parallel parallel

T k p nSpeedupFactor
T m t m p p n p n

= = =
− − + +

Equation 5. Speedup factor formula

We first select BB12030 [30] sequences dataset as our test data. In this

dataset, there are six sequences with average length over 790. Our parallel

PMSAPT is run on 8, 16, and 32 processors in each workgroup respectively.

Table 3 shows the different execution time and speed up values. It is obvious that

the parallel program is much faster than the serial version due to the parallel

update of the internal nodes at the same level.

It is conjectured that if there are significant number of tree levels that

contains multiple internal nodes, we would be able to achieve higher time saving

due to the parallel labeling of all internal nodes at the same level. We select

another sequence dataset, BB12004 [30] also from BALIBASE benchmark

database to test the effect of program performance with larger problem size. The

BB12004 dataset contains 15 sequences with average length around 249. The

tree topology built for this sequence dataset contains more tree levels with

multiple internal nodes than BB12030. We observe a higher speed up from this

dataset. Table 4 demonstrates the time difference.

29

Table 3 BB12030 dataset comparison

Version

Execution Time

Speedup Factor

Serial

14.193 hours

N/A

Parallel(8 nodes)

7.782 hours

1.8238

Parallel(16 nodes)

7.780 hours

1.8243

Parallel(32 nodes)

7.776 hours

1.8252

Table 4 BB12004 dataset comparison

Version

Execution Time

Speedup Factor

Serial

2.257 hours

N/A

Parallel(8 nodes)

0.951 hours

2.3733

Parallel(16 nodes)

0.945 hours

2.3884

Parallel(32 nodes)

0.950 hours

2.3758

30

3
3

3
2 2

()

5×log ×(5×log)
comp

comm

n
t npratio
t n p p n p

= = =
+ +

Equation 6. Computation/communication ratio

Compare with serial program, our parallel program can achieve better

performance on execution time saving. However, there are still many things we

can do to improve the efficiency of our parallel program. One thing we can

observe is that when we keep adding more processors, no more speed up can

be achieved. Such bottleneck problem is mainly caused by the high

communication cost in the parallel MSA function. To prove this, we can calculate

the computation/communication ratio using Eq.6 and tcomp, tdivide, tcombine from

Section 3.4. The computation/communication ratio defined in Eq.6 highlights

effect of communication with increasing problem size and system size. The ratio

is
3

3
2×(5×log)

n
p n p+

, with p denoting number of processors and n representing

the length of each sequence. From Eq.5 and Eq.6, we can find that with same

sequences, the more processors usage does not change much for speed up

value, but results in the lower ratio value. That means the overheads of

synchronization and communication is greater. To address this issue, it is

planned that OpenMP and multi-core technologies will be exploited to resolve

these issues. Also, we can optimize our program’s structure to reduce

communication cost. For example, instead of sending each type of data one by

31

one within parallel three sequence alignment method, we can create a new data

type to save these data at first and then send it via one message, in order to

reduce the number of communication message.

32

CHAPTER 5

CONCLUSION

 The proposed work is to develop a parallel approach to conduct multiple

sequence alignment, as well as, tree node labeling. The parallel RAxML software

is integrated to generate a phylogenetic tree under the maximum likelihood

criteria, which performs better than distance based methods in terms of the tree

score. Then, pairwise sequence alignment is used to initialize the internal node

labeling. We utilize and adapt the optimization phase implemented in MSAM to

iteratively label the tree nodes in order to minimize the total tree score and

achieve a better final sequence alignment. The most time consuming function for

the optimization phase is three sequence alignment and is parallelized in a divide

and conquer strategy. The labeling of internal nodes at the same level is

conducted at the same time by different workgroups that are dynamically created.

The two levels of parallelization on both the MSA and tree traversal enable us to

fully utilize the abundant computing resources available in a supercomputer. The

experiments results show that our PMSAPT can significantly reduce the

computing time. In addition, the tree quality of PMSAPT is comparative to or even

better than some popular software using BALIBASE benchmark experiments.

33

REFERENCES

[1] Tree of Life Project. What is Phylogeny? Tree of Life Web project, 6 May 2008
<http://tolweb.org>

[2] R. Potter. Constructing Phylogenetic Trees using Multiple Sequence
Alignment, Master Thesis, 2008

[3] J. Felsenstein. Inferring Phylogenies, Sinauer Associates, Sunderland,
MA,2004

[4] T. Jiang, and F.Liu .Tree alignment and reconstruction application software,
1996

[5] G. Lancia , and R.Ravi . GESTALT: Genomic Steiner Alignments. 10th Annual
Symposium on Combinatorial Pattern Matching, pp.101-114, 1999

[6] F.Yue, and J. Tang. A New Approach for Tree Alignment Based on Local Re-
Optimization, 2008 International Conference on BioMedical Engineering and
Informatics, vol. 1, pp.34-38, 2008

[7] N.Saitou, and M.Nei. The neighbor-joining method: A new method for
reconstructing phylogenetic trees, Mol. Biol. Evol., Vol.4, pp. 406-425 ,1987

[8] P.Sneath, and R.Sokal. Numerical Taxonomy, W.H. Freeman and Company,
pp. 230-234, June 1973.

[9] D.Swofford. and G.Olsen. Phylogeny reconstruction, Molecular systematic,
pp. 411-501,1990

[10] D.Swofford, G.Olsen, P.Waddell, and D.Hillis. Phylogenetic inference,
Molecular Systematics ,second edition, pp.407-514,1996

[11]G. Giribet. Efficient Tree Searches With Available Algorithms, Evolutionary
Bioinformatics 2007, pp. 341-356, 2007

[12] A. Stamatakis. Distributed and Parallel Algorithms and Systems for Inference
of Huge Phylogenetic Trees based on the Maximum Likelihood Method, PH.D.
thesis, 2004

[13] S. Roch. A Short Proof that Phylogenetic Tree Reconstruction by Maximum
Likelihood is Hard, IEEE/ACM Transactions on Computational Biology and
Bioinformatics(TCBB), pp.92 , Vol. 3, Issue 1, Jan. 2006

34

[14] B.Chor, and T.Tuller. Maximum likelihood of evolutionary trees: hardness
and approximation, Bioinformatics, pp. 97-106, Vol.21, No.1 2005

[15] L.Vinh ,and A.Haeseler. IQPNNI: Moving Fast Through Tree Space and
Stopping in Time, Mol.Biol.Evol , pp.1565-1571,Vol. 21,No.8 , 2004

[16] S. Guindon, and O.Gascuel. A simple ,fast and accurate algorithm to
estimate large phylogenies by maximum likelihood, Systematic Biology, pp.696-
704,Vol.52, No.5, 2003

[17] O.Gascuel . BIONJ: An improved version of the NJ algorithm based on a
simple model of sequence data, Mol.Biol.Evol , pp.685-695,Vol.14, No.7,1997.

[18] A.Stamatakis, F.Blagojevic, C.Antonopoulos, D.Nikolopoulos . Exploring
new Search Algorithms and Hardware for Phylogenetics: RAxML meets the IBM
Cell, In Journal of VLSI Signal Processing Systems, pp. 271-286, Vol.48, No.3,
2007

[19] A.Stamatakis, T.Ludwig, and H.Meier. RAxML-III: A Fast Program for
Maximum Likelihood-based Inference of Large Phylogenetic Trees,
Bioinformatics, Vol.21, No.4, pp.456-463, 2005

[20] A.Stamatakis. RAxML-VI-HPC: Maximum Likelihood-based Phylogenetic
Analyses with Thousands of Taxa and Mixed Models . In Bioinformatics,
pp.2688-2690, Vol.22, No.21, 2006

[21] M.Ott, J.Zola, S.Aluru, A.Stamatakis. Large-scale Maximum Likelihood-
based Phylogenetic Analysis on the IBM BlueGene /L, In Proceedings of
IEEE/ACM Supercomputing (SC 2007) conference, Reno, Nevada, November
2007.

[22] A.Stamatakis . Phylogenetic Models of Rate Heterogeneity: A High
Performance Computing Perspective, In Proceedings of 20th IEEE/ACM
International Parallel and Distributed Processing Symposium (IPDPS2006),High
Performance Computational Biology Workshop, Rhodos ,Greece, April 2006

[23] F. Yue and J. Tang. A Divide-and-Conquer Implementation of Three
Sequence Alignment and Ancestor Inference, BIBM 2007, 2007

[24] E.Myers and W.Miller . Optimal Alignments in Linear Space , Computer
Applications in the Biosciences, pp.11-17,Vol.4, No.1 , 1988

[25] D.Hirschberg. A linear space algorithm for computing maximal common
subsequences, Communications of the ACM, Vol.18, No.6, pp.341-343,June
1975

35

[26] R. Gharegozlou. Protein Multiple Sequence Alignment:Benchmarks and
Comparison, Biochemistry 218 Final Project,March,2009

[27] S.Henikoff and J.Henikoff. Amino acid substitution matrices from protein
blocks, Proc.Natl.Acad.Sci.USA,Vol.89,pp.10915-10919, November,1992

[28] A.Bahr,J.Thompson,J.Thierry and O.Poch. BAliBASE(Benchmark Alignment
dataBASE):enhancements for repeats,transmembrane sequences and circular
permutations,Nucleic Acids Research,Vol.29,No.1,pp.323-326,2001

[29]J.Thompson, F.Plewniak and O.Poch. A comprehensive comparison of
multiple sequence alignment programs, Nucleic Acids
Research,Vol.27,No.13,pp.2682-2690,1999

[30] J.Thompson, F.Plewniak and O.Poch. BAliBASE: A benchmark alignment
database for the evaluation of multiple alignment programs, Bioinformatics,
Vol.15,No.1,pp 87-88,1999

[31] R.Edgar. MUSCLE: multiple sequence alignment with high accuracy and
high throughput,Nucleic Acids Research,Vol.32,No.5, pp. 1792-1797,2004

[32] R.Edgar. MUSCLE: a multiple sequence alignment method with reduced
time and space complexity,BMC Bioinformatics,Vol.5,No.1,pp.113,2004

[33] C.Lee.Generating consensus sequences from partial order multiple
sequence alignment graphs,Bioinformatics,Vol.19,No.8,pp.999-1008,2003

36

VITA

Graduate School

Southern Illinois University

Jingjing Wang Date of Birth: February 2, 1986

2316 Coach Road, Long Grove, IL 60047

jeffy.wang1986@gmail.com

Southeast University
Bachelor of Engineering, Electrical Science and Technology, June 2008

Thesis Title:
 A Parallel Approach to Multiple Sequences Alignment and Phylogenetic
Tree Labeling

Major Professor: Mengxia Zhu

	Thesis_jingjing Wang_part 1.pdf
	Thesis_jingjing Wang part 2.pdf
	Thesis_jingjing Wang_part 3.pdf
	Thesis_Jingjing_Wang_part4.pdf

