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Abstract. Fourier transform algorithms are described using tensor (Kronecker) 
products and an associated class of permutations. Algebraic properties of tensor 
products and the related permutations are used to derive variants of the Cooley- 
Tukey fast Fourier transform algorithm. These algorithms can be implemented by 
translating tensor products and permutations to programming constructs. An imple- 
mentation can be matched to a specific computer architecture by selecting the 
appropriate variant. This methodology is carried out for the Cray X-MP and the 
AT&T DSP32. 

1. Introduction 

Shortly after Cooley and Tukey (C-T) introduced their algorithm for 
computing the Fourier transform (FT) [6], a large number of variations were 
created and this work was summarized by Cochran et al. in [5]. In this paper 
a method of obtaining variations of the C-T  algorithm was presented, and it 
was conjectured this produced all of the "C-T- type"  algorithms. Within a 
year Pease [13] introduced an algorithm not based on this method. In the 
introduction to Pease's paper he suggested strongly that the tensor product 
formulation was a valuable tool in the study of C-T-type algorithms. This 
was not taken up at this time due to the great success of the "butterfly" as a 
teaching and programming device. 
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With the advent of parallel and vector processors, there began another 
flurry of C-T algorithmic and programming effort. In much of this effort no 
use of the tensor product was made. However, in their comparison of several 
vector algorithms 1-11], Korn and Lambiotte make a slight use of tensor 
products as a tool. The most successful programming of the FT on vector 
computers like the Cray X-MP and Cyber 205 is due to Temperton [18], 
[20], [21]. In his expository paper {19] he places the tensor product at center 
stage. This paper was written for numerical physicists and is not familiar to 
the electrical engineering and computer science communities. In our paper we 
again place the tensor product at center stage, but we extend Temperton's 
work by presenting a detailed study of the permutations associated with 
tensor products--stride permutations--and their relation to the addressing 
requirements in C-T-type algorithms. We also make explicit the relationship 
of tensor products and stride permutations to the programming of these 
algorithms on various architectures. 

Tensor products offer a natural language for expressing C-T-type algor- 
ithms. In the first section we introduce tensor products from a point of view 
best suited to our algorithmic and programming needs. We emphasize a 
decomposition which leads to an efficient evaluation of a tensor product on a 
vector. We also give several isomorphisms which make explicit the connec- 
tions between various viewpoints of the C-T algorithms. These isomorphisms 
are later used to construct the indexing needed to program these algorithms. 

Closely associated with tensor products are a class of permutations, 
containing stride permutations and tensor products of stride permutations, 
which govern the addressing between the stages of a tensor product decom- 
position. These permutations arise as a permutation of a tensor product 
basis. From a programming point of view these permutations interchange the 
order of the nested loops used to program a tensor product factorization. 
Some previous discussion of these permutations from a different point of view 
was given by Swartztrauber in his expository papers [16] and 1-17]. It is these 
permutations that are the basis of all variations of the C-T algorithm. 

After introducing tensor products and the associated permutations, we 
give a direct method for programming tensor product factorizations. Once 
the programming of tensor products is made explicit, we can systematically 
study various ways of optimizing an implementation and modifying it to a 
specific architecture. The basic idea is to obtain a natural loop implementa- 
tion based on tensor product identities and then to unroll some of the loops 
to match specific instruction sets. Furthermore, various factorizations of the 
permutations that arise can be used to adapt the algorithm to the specific 
addressing capabilities of a given architecture. In particular, in Section 4.4 we 
give a detailed study of the implementation of tensor products on the 
Cray X-MP [2]. Using tensor product and permutation identities, we obtain 
a vectorized segmented algorithm that uses addressing that can be efficiently 
implemented on this machine. Finally, using the programming techniques 
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discussed earlier we obtain a program that implements this algorithm. In [7] 
Granata and Rofheart use some of these ideas to obtain an efficient 
implementation ofa  1K FT on the AT&T DSP32 [3]. By performing various 
compile time optimizations that we discuss in Section 4.2 they were able to 
save the cost of run time permutations. This savings helped them to achieve a 
program that was twice as fast as the distributed fast Fourier transform 
(FFT). 

In the remaining sections we show how tensor products can be used in the 
design and implementation of FT algorithms. The derivation of the standard 
variations of the C-T  algorithm using the tensor product and permutation 
language discussed in this paper was presented by Rodriguez in his thesis 
[14]. 

At the end of the paper we give some ideas on automating the techniques 
presented. Essentially, the algebraic properties of tensor products and stride 
permutations need to be incorporated into a special purpose compiler which 
can automatically generate codes to implement various C-T  algorithms. 
Ideally, heuristics could be added to derive an algorithm suited to a given 
architecture. With such a compiler, an environment would be created for 
easily implementing and modifying FT algorithms on various architectures. 

2. Tensor products 

In this section we introduce some of the basic properties of tensor products 
which will play a major role in the design and implementation of FT 
algorithms. The formalism of tensor product notation can be used to keep 
track of the complex index calculation needed in FT algorithms. This 
property of the formalism can be used to aid in program design and 
verification. If the mapping between tensor product notation and machine 
instructions is automated, mathematical properties of tensor products can be 
used to guarantee the correctness of the implementation. Furthermore, tensor 
product identities can be used directly to transform the corresponding 
programs. 

We begin with some definitions and some identifications which allow us to 
look at tensor products from several perspectives. Let C" denote the 
n-dimensional vector space of n-tuples of complex numbers. The collection of 
vectors with a one in the ith position and zeros elsewhere form the standard 
basis for this vector space. We use e 7 to denote such a vector. The superscript 
n indicates the size of the vector. Furthermore, we let i range from 0 to n - 1. 
We also use x" to denote an arbitrary n-dimensional vector. 

We can form the the tensor product C m | C" of the vector spaces C m and 
C" to get an mn-dimensional vector space with basis {e~" | ~10 < i < m - 1, 
0 __j < n - 1}. We can associate this vector space with C m" by ordering the 
basis lexicographically. This gives the following map: 

t l  4... .).  m n  e ~ |  ei,+j, (1) 
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which relates tensor products to mixed-radix indices. Let 

and 

(xo) 
X m 

O < _ i < m  

X m -  1 

x,e 'r  

y " =  " = y j e T .  
O < _ j < n  

Yn 1 

Then using the bilinearity of the tensor product and this map  we have 

xm | Y" 2 x~yj(e m | e~) = 2 m n  _ _  �9 = xiYje in  +j - -  

O < _ i < m O < _ j < n  \ Xm_ l yn/ 

This mn-dimensional vector can be mapped to an m x n matrix by placing 
the segments x i y  n of n elements in consecutive rows. For  example, 

x m | y" ~ . .  

\ x , , -  l yo " "  x, , ,-  l y , -  l ] 

This operation identifies the vector space C m | C" with the vector space C"'" 
o fm x n matrices. The standard basis for C m'n is (Em'-"lfl < i < m, 0 < j  < n}, I l , J  I v - -  

where Em'." is the m • n matrix with a one in the (i, j) th position and zeros l,J 
elsewhere. Using these basis elements, the preceding operation can be written 
a s  

em| . ~  m,. ej Ei. j .  (2) 

We can extend this map to act on an arbitrary ran-dimensional vector by 
placing consecutive segments of n elements in m consecutive rows. This 
identifies the vector space C m" with C m'" by associating the basis vectors with 
the map 

. . . . .  ( 3 )  ein +j ~ E~, j . 

The inverse map  which takes an m x n matrix to an mn-dimensional vector 
by placing consecutive rows after each other is the same map that is used to 
store a two-dimensional array in linear memory.  Clearly, this entire discus- 
sion could have been carried out based on antilexicographic ordering, which 
would have given the column method of storing arrays that is used in 
FORTRAN,  instead of the row major  ordering used in languages like Pascal. 
In the next section we study an important  permutat ion which allows us to go 
back and forth between these two representations. 
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We can extend the definition of the tensor product of vectors to a tensor 
product of linear transformations by the following definition. 

Definition 1. (A @ B)(x | y ) =  Ax @ By, where A and B are linear trans- 
formations on the appropriate dimensional vector spaces. 

If A and B are represented by matrices with respect to the standard basis and 
are of dimensions m and n, respectively, we have the following matrix picture: 

a~176 "'" a~ t 
A |  = " ".. " 

\am_l,o B ... a , ._l , , ,_lB [ 

This block structured matrix, which replaces each element of the first matrix 
A by that element times the second matrix B is called the tensor product of 
two matrices (sometimes it is called the Kronecker product). 

The action of the matrix A | B on an arbitrary mn-dimensional vector can 
be performed efficiently with the aid of the following decomposition: 

A | B = (A | In)(I m | B) = (I,~ | B)(A | In), (4) 

where I. and I m are n- and m-dimensional identity matrices. This decomposi- 
tion is a corollary of the multiplication rule for tensor products. 

Theorem 1 (Multiplication Rule for Tensor Products). (A | B)(C | D)=  
AC @ BD, where A and C are m • m matrices and B and D are n • n matrices. 

This follows immediately from the definition since 

(A | B)(C | O)(e'~ | ey) = (A | B)(Ce? | Oey) = (AC)e7 | (BD)e 7. 

Applying this identity to A | B = Aim | I ,B = ImA | BI,  gives the de- 
compositions in equation (4). This multiplication rule and its implications are 
the most important tools in the design of efficient algorithms for computing 
with tensor products. 

In order to better understand the computation of (A | B)x we need to 
examine the factors I m @ B and A | In that arise in decomposition (4). 
Im| B is the direct sum of m copies of B: 

and its action on x is performed by computing the action of B on the m 
consecutive segments of size n. Clearly, this direct sum can be computed in 



454 JOHNSON, JOHNSON, RODRIGUEZ, AND TOLIMIERI 

parallel on separate segments of the vector x, hence we call it a parallel tensor 
product term. 

An alternative view of this computation can be obtained if we map x to the 
matrix X using equation (3). In this case B acts on the rows of the matrix: 

l XO " " " Xn- 1 \ 
\ 

) X = Xn " " " X2n- 1 
! �9 �9 ~176 

X(m 1)n "'" Xmn- 1 

Since matrices usually act on column vectors, we must first transpose X, let B 
act on the columns and then transpose the result to return to row representa- 
tion. Thus the computation is given by the following matrix multiplication 
( B X t )  t = X B  t, which can be mapped back to a vector using the inverse of the 
previous map. 

The factor A | I .  can be interpreted as a vector operat ion on vectors of 
length n: 

A |  = 

�9 " a m - l , ~ - l I . !  

The action of A | I .  can be interpreted as a vector operation if we segment 
the input vector x into m consecutive segments of length n. If we let X i denote 
the ith such segment, then (A | I , )x  is the following vector operation: 

am- l ,oXo  + + a m - l , ~ - t X ~ - l /  

where ai , jX j denotes a scalar-vector multiply and + denotes a vector addi- 
tion. This computation is just the evaluation of A on vector segments of 
length n. 

An alternative interpretation of this computation results from the matrix 
point of view. In this case, A naturally acts on the columns of the matrix X 
giving the computation A X .  The two factors Im| B and A | I ,  are related 
by changing from a row representation of X to a column representation of X. 

Thus the computation of y = (A | B)x  can be thought of as a parallel 
operation followed by a vector operation, or more conventionally as the 
matrix operation Y = A(XBt), where the result is obtained from the rows of 
the matrix Y. Clearly, the order of these two operations could be inter- 
changed, as indicated by the two forms of the decomposition in equation (4), 
or by the associativity of matrix multiplication. Furthermore, the computa- 
tion of the two types of factors A | I .  and Im| B are identical up to a change 
of representation given by the transpose of the matrix X. 
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In terms of the vector x, this change of representation is obtained by a 
permutation, called a stride permutation, that skips over the segments 
representing the rows or columns. This permutation governs the addressing 
needed in the implementation of the factors A | I and I | B. Further 
discussion of these permutations and their implementation is given in the 
next section. 

Before discussing stride permutations, we need to show how to extend 
tensor products to arbitrarily many factors, and thus give a natural setting for 
multidimensional problems. The way to proceed is by induction from the 
two-dimensional case. For  example, 

(A1 | A 2 (~ A3)(x @ y | z) = (A 1 | A2)(x | y) | A3z 

= A l x  |  

where A 1, A 2, and A 3 are m x m, n x n, and p x p matrices and x, y, and z are 
m-, n-, and p-dimensional vectors, respectively. In order for this to make 
sense, it is essential that the tensor product be associative. From our point of 
view this reduces to an index computation that is related to the induction 
used to store multidimensional arrays. Namely, to show that A 1 | ,4 2 | A a 
is associative we use the associativity of x | y | z, and to show that 
x @ y @ z is associative we compute 

(e~ | e~) | e~ = e~"~+j | ef = .m~p re(in + j }p+k 

e m |  7 |  e~ ~p =oI~p = "~- | e j p + k  ~inp+jp+k"  

Using associativity we can uniquely define the tensor product of n terms by 
induction. This recursive definition makes it inductively easy to derive and 
program factorizations of tensor products, which can be used to compute 
multiple tensor products. In Section 4.1 we examine several important 
factorizations and their programming implications. 

3. Commuting tensor products and stride permutations 

In this section the permutations that arise from commuting tensor products 
are studied. The ability to commute tensor products is essential to modifying 
tensor-product factorization and hence modifying algorithms for computing 
with tensor products. As pointed out previously, stride permutations can be 
used to convert the parallel operation I | A to the vector operation A | I. 
Alternatively, these permutations can b e  thought of as converting a row 
representation of a matrix to a column representation, or in other words 
transposing a matrix. 

A stride permutation P(mn, n) is defined by 

Definition 2 (Stride Permutation). 

e(mn, n)e.r[ ' | e 7 = e 7 | e? ,  
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To get an mn x mm matrix representation of this permutation, observe that 
.,n ~ m. For  example, P(mn, n): ei.+j ejm+ i. 

P(6,2)(xoe o + x l e  1 + x2e 2 + x3e 3 + x4e 4 + xses) 

: Xoe  0 + x l e  3 q- x 2 e  I + x 3 e  4 + x 4 e  2 q- x s e  5. 

As a matrix computation, this can be written as: 

ooooo o 1 (ii  0 0 1 0 0 0 x 1 x2 

0 0 0 0 1 0  X2 = �9 

P ( 6 , 2 ) x =  0 1 0 0 0 0 x3 

0 0 0 1 0 0  ? /  
0 0 0 0 0 1 x5 Xs 

Thus we see that the elements of x are collected at stride 2 into two 
consecutive segments containing three elements each. The first segment 
begins with Xo, and the second segment begins with xl .  In general, P(mn, n) 
reorders the coordinates at stride n into n consecutive segments of m 
elements; the ith segment beginning with x~_l. This reordering of the 
coordinates corresponds to the inverse of the permutation of the basis 
elements. A physical interpretation of such a reordering can be observed 
when a deck of mn cards are dealt into n piles. 

On some machines the action of a stride permutation might be imple- 
mented, as elements of the input vector are loaded from main memory into 
registers. For  example, each segment might be loaded at the appropriate 
stride into a separate register beginning at the appropriate offset. For  
architectures where this is the case, considerable savings can be obtained by 
performing these permutations when loading the input vector into the 
registers. If it is necessary to load the input vector to perform some arithmetic 
operation, and the permutation is performed during this load, then a separate 
computation of the permutation can be avoided. In Section 4.4 we will see an 
architecture where these savings can be obtained. There is also a discussion of 
the implementation of stride permutations on that machine. 

Because of this interpretation, we use L,"" to denote the stride permutation 
P(mn, n). This notation indicates that a vector of size mn is reordered by 
loading into n segments at stride n. Shortly, we will see that the inverse of the 
stride permutation P(mm, n) is the stride permutation P(mn, m). Along the 
lines of the load interpretation of P(mn, n), there is an interpretation of 
P(mn, n)-  x as a store operation. In this case, n consecutive segments, residing 
in n registers, are stored back to memory at stride n with the ith segment 
beginning i positions from the first segment. It is clear that a load operation 
followed by the inverse store operation leaves the input vector fixed. Similarly 
to the L notation used for the toad operation, we use S~" to denote the inverse 
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store operation. Even though m n - 1  . . . .  ( L  n ) -----L m = S n all denote the same 
permutation, the notational distinction will be important when we are 
concerned with implementation. Even when we are not concerned with the 
implementation of these permutations, we use the L and S notation to help 
keep track of the indices. For example, the definition of P(mn, n) can be 
conveniently remembered with 

L ~ n ( x  m | X n) = X n | X m. (5) 

An alternative view of these permutations as a change of representation 
n mn m, n arises from the matrix representation of e m | ej. In this case, L, Ei, j = 

= (El, j ). Thus we see that a stride permutation effects a transposition. E ~ : ~  ra, n t 

In other words, it collects terms by striding over the segments storing the 
rows of a matrix. For example, it we map a vector x containing six elements 
to the matrix. 

then 

t X~ Xl t X -:- x 2 x 3 , 

x4 xs I 

X t =  (Xo x2 x4) 

X 1 X 3 X 5 

gets mapped to the vector L6x. 
The most important property of stride permutations is that they commute 

the factors in the tensor product of matrices. Using this property we will be 
able to show, as indicated in the last section, that 

A | B = L~"(I,, | A)L'~"(I m | B), (6) 

so that both factors in the decomposition can be performed as a loop, which 
is indicated by the direct sum interpretation of I | A. In order to do this it is 
necessary to perform a change of basis by a stride permutation, which 
corresponds to changing from row representation to column representation. 
This change of basis is given in the following commutation theorem. 

Theorem 2 (Commutation Theorem). Lmn(A | B) = (B | A)L~ "~ where A is 
an m • m matrix and B is an n x n matrix. In other words B | A =  
L,~(A | B ) ( L ~ ) -  1. 

The proof is nothing more than a simple computation based on the 
definition: 

Lmn~(A | B)(e .m, | e~) = L~n(Ae m | Be~) = Be~ | Ae'~. 
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Similarly, 

(B | A)L~"(e.7' | e'~) = (B | A)(e'~ @ eT') = Be'] | Ae.7'. 

As an application of the commutation theorem observe that A @ I. = 
(L~"')- 1(I. | A)L~"' = S~."(I, | A)L~". The readdressing denoted by L. "~ on 
input and S. "~ on output turns the vector expression A | I.  into the parallel 
expression I, | A. In the same way, I,. @ B = (L~")- I(B | I,.)L~ "n. which 
turns the parallel expression I,. | B into the vector expression B | I,,. As 
promised, we can now write A | B as 

o r  

( A | I.)( L~")- ~ ( B | I")L'~" (7) 

(L'~")- t(I .  | A)L~"(I., @ B). (8) 

Using the fact that (L~")-1 = L~", we can write these factorizations as 

(A | I . )L~'(B | ]m)Lrn nn (9) 

and 

Lm"(I. | A)L~"(Im | B). (10) 

These factorizations decompose A | B into a sequence of vector operations 
and parallel operations, respectively. The intervening stride permutations 
provide a mathematical language for describing the readdressing between the 
stages of the computation. In the next two sections we show how knowledge 
of these permutations can be used to implement the addressing of a tensor 
product factorization on a variety of architectures. Furthermore, the direct 
interpretations of A | I as a vector operation and I | B as a parallel 
operation along with the commutation theorem automatically allows us to 
derive parallel and vector algorithms. 

Before examining the implementation of stride permutations and the use 
of the commutation theorem in deriving various tensor product factoriza- 
tions, we need to obtain a better understanding of these permutations. The 
algebra of stride permutations is especially rich and serves as an important 
tool in algorithm design. We begin with a multiplication rule, which can be 
expressed formally with our notation as: 

N N Theorem 3. I f  N = rst, then L~ = L~ L t . 

Proof. First observe that L~(x" | x ~ | x t) = x s @ x' @ x r. Since also 
N N �9 X s L s L t ( x  | | x t) = LNs(X t | X r | x s) = x s | x t | x r, the theorem is 

proved. [] 
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N N In particular, since L~v = IN, we have L.  LN/. = I~, so that (L~)- x = L~/,. 
Since in general the inverse of a permutation matrix is the transpose we have 
that Lg/n = (L~) t. For example, 

(L26)-1 = (L26), = L~ -= 

rl 0 0 0 0 0 ' 

0 0 0 1 0 0 

0 1 0 0 0 0 

0 0 0 0 1 0 

0 0 1 0 0 0 

0 0 0 0 0 1 

As a simple application of Theorem 3 we get 

Corollary 1. I f  N = pk, the set of stride permutations corresponding to the 
divisors of  N, 

{L~: 0 < j < k}, 

form a cyclic group of order k generated by LSp. 

The second type of theorem of importance in the algebra of stride 
permutations is a tensor-product decomposition of stride permutations. In 
general, the permutations that arise from commuting terms in a multidimen- 
sional tensor product are built up from products of terms of the form 
I | L | I. A permutation of the form I | L | I will commute a tensor 
product and fix the remaining terms to the left and right. For  example, 

(a . ,  |  | A,, | a,,  +, |  | A,,) = (I,,...,,_, | Lnl "'+' | I,, + ~...,t) 

(A.I |  | An,+, | A., |  | A.,) 
I l i n i  + 1 (I , , . . .n ,_, |  |  

where A., is an ni • ni matrix. To see this, use the multiplicative rule for 
tensor products and the commutation theorem. An alternative interpretation 
of this permutation is obtained by its action on a basis vector of the form 
x "1 |  | x"'. The collection of basis elements of this form is called a tensor 
product basis and the general permutations associated with tensor products 
result from permutations of the component positions of these basis elements. 
In terms of the tensor basis, this permutation exchanges the ith component 
with the (i + 1)st, and can be represented as a permutation of t objects by the 
transposition (i, i + 1) written in cycle notation. Thus we have the following 
map which reduces stride permutations and tensor products of stride 
permutations to permutations of an appropriate tensor basis: 

"'"'+' (i, i + 1). (11) 1.1....,_ , | L.,+I | 1.,§ 
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All permutations arising from repeated applications of the commutation 
theorem can thus be thought of as a permutation of the terms in the 
tensor basis, and can be written as a product of permutations of the form 
I | L | I. As such we have a convenient notation for dealing with such 
permutations. 

Two special cases of these types of permutations are especially important 
for some architectures. These are the permutations lr | Li t and Li t @ I,. The 
first permutes the elements within the segments of the input vector and the 
second permutes the segments themselves. The permutation I, @ L, ~ per- 
mutes the elements in each of the r segments of size st by Lf t, and Lf t | I, 
permutes the st segments of size r by L~ t. I,  @ Li t can be implemented as a 
loop of r stride permutations L~ t, where the same permutation is performed, 
but the initial offset is incremented by st each iteration. L~t| I~ can be 
implemented by loading blocks of r consecutive elements, beginning at offsets 
given by the permutation Li t. A combination of these two types of permuta- 
tions can by implemented efficiently on an architecture that can load at a 
given stride and can stride the offsets. 

With these types of permutations in mind we shall derive a tensor product 
decomposition of stride permutations. This decomposition will be of impor- 
tance on certain architectures, where the size of the registers must be taken 
into account. A detailed example using the Cray X-MP architecture is given 
in Section 4.4. The stride permutation L~, where N = rst can be thought of 
as a rotation of the tensor basis x ~ @ x s @ x t. As such it can be decomposed 
into two transpositions. Formally, the permutation (r, s, t) can be written 
as (r, s)(s, t), where the permutations are composed from right to left. This 
observation leads to the following decomposition theorem. 

Theorem 4. I f  N = rst, then L~ = (L't t | I~)(I r | Li'). 

Proof. Since L~(x" | x ~ | x t) = x t | x" | x ~, and 

(L~' | I , ) ( I ,  | L~')(x" | x ~ | x *) = (L[' | l , )(x" | x t | x 9  = (x  t | x ~ | x~), 

the theorem is proved. [] 

Other decompositions of the permutations that arise in tensor-product 
factorizations can be obtained in the same way. The important point is that 
these permutations are really only permutations of the tensor-product basis 
rather than arbitrary permutations of the full vector. In many cases special 
features of the architecture can be used to implement these permutations 
without resorting to a general purpose implementation of an arbitrary 
permutation. For many algorithms dealing with tensor products, including 
the FT, this observation can lead to a substantial efficiency gain. 
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4. Implementing tensor products 

We can now use the commutation theorem and other tensor-product 
identities to obtain some important factorization theorems for multidimen- 
sional tensor products. These factorization theorems have important implica- 
tions for FT algorithms on various parallel and vector architectures. Using 
these factorizations and the addressing information given by the permuta- 
tions, we show how to obtain a direct implementation of the factorization on 
a serial machine. 

Tensor-product identities can be used to modify a factorization so that the 
addressing permutations are more suitable to a given architecture. First we 
show how to obtain a general vector or parallel algorithm. These algorithms 
contain features such as maximum vector length and constant data flow. 
However, when designing an algorithm for a specific machine, these idealized 
algorithms may not be appropriate. For  example, a vector machine might 
have a maximum vector length, or a parallel machine might have a fixed 
number of processors or a specific communication network. In these cases, we 
need to fine tune an algorithm to conform to or take advantage of the features 
of the machine. We end this section with an example of how to use properties 
of tensor products in this tuning process. 

4.1. Factorization of tensor products and implications 
for various architectures 

Before deriving the factorizations, we need to introduce some notation. This 
notation is used throughout this section. Let n~ be a positive integer and 
N(i) = n, ... n~. We use the convention that N(0) = 1. Finally, we represent 
an nl • n~ matrix by An,. When we have an arbitrary number of matrices in a 
tensor product, we use t to denote the number of factors. In this special case, 
we let N = N(t). With this notation, we begin with the fundamental tensor- 
product factorization. 

Theorem 5 (Fundamental Tensor-Product  Factorization). 

A.I |  | Ant = f l  (IN(i- 1) | An, | INto(i)). 
i 1 

Furthermore, the factorization is true for any permutation of the factors 
( IN( i -  1) | A,, | [-N/N(i))" 

Proof. The proof is by induction on t. For  t = 2 the theorem is just the 
factorization An1 | An2 = (An1 | 1,2)(1,, | An2) given in equation (4). For  
the general case we have 

Anl | An~ |  | An~ = (An~ | IN/n~)(I~ | An2 |  | A,), 
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which by induction is equal to 

(A"'QIN/"I)( I"~| 1)/"~|176 

Using the tensor-product identities 

(1 @ Bc) = (i | B)(l | c), (12) 

IraQI. = Ira. (13) 

obtained from the multiplicative rule, in Theorem 1, and the definition, we get 

t 

(A.1 | Iu/.,) H (IN,i-a)| A., | Iu/mo ) 
i=2 

which gives the desired result. Since any two terms commute, the theorem is 
true, independent of the order of the factors. [] 

Each term in this factorization (Is | A | I.) involves m copies of the 
vector operation A | I.. In order to understand the implementation and 
modification of this factorization, we must study a general tensor-product 
term of this form. We begin by showing two ways to convert this term into the 
parallel form I.,. | A. Besides the benefit for a parallel machine, this form has 
a natural interpretation as a loop, hence it can be directly implemented on a 
serial machine using a loop construct. In order to program I. | A | In as the 
loop Is.  | A, we must keep track of the indexing given by the necessary 
stride permutations. Two possible indexing schemes are given by the follow- 
ing equations: 

Is | An, | I. = In | L'~"(I. | A.,)L~,"' 
= (Ira | L~,i")(Im. | A.,)(Im | L~"'), (14) 

mnfn mnin I,,,|174174174 . (15) 

The first equation can be implemented with a pair of nested loops with the 
innermost loop indexing given by the stride permutations L""' and L~" or as a 
single loop with the input indexing given by Im| L]"' and the output 
indexing given by its inverse. The second equation can be implemented with a 
single loop with its indexing given by L","'" and its inverse. A detailed 
translation between these equations and their implementations is given in 
Section 4.2. 

These two modifications can be applied to the fundamental tensor- 
product factorization to obtain alternative factorizations which give direct 
implementations using loops. 

The first indexing scheme gives the following two alternative factoriza- 
tions: 
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Theorem 6. 

A . ~ Q . . . |  
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I-~ IN(i-  1) | [ tN/N( i -  1)[1 ~ A ~[N/N(i- 1)'~ ~-- \.t..,ni ~,atN/N(i) ~ ZZnilat-aN/N(i ) ) 
i = 1  

r I" N/N(i 1)M"/" i"N/N(i 
= (IN(i- 1) '.~ "-'m - .l~.'N/n, | a n ) ( l N ( i -  1) | X-"N/N(i)- 1)). 

i = 1  

The last factorization can be simplified if we combine adjacent permutations, 
and thereby eliminate some permutations. We carry out this simplification to 
familiarize the reader with the permutation manipulations that arise in 
modifying tensor-product factorizations. The form of the factorization that 
would be used on a particular machine depends on the types of permutations 
that can be efficiently implemented. This simplification can easily be obtained 
from the permutation identity (i - 1, i . . . . .  t)-1(i . . . .  , t) = (i - 1, t). As a 
permutation of the tensor basis, 

N/N(i - 2) LN/N(i - 1)] 
(IN(i-2) | LN/N(i- 1))(IN(i - 1) | --nl  / = P ( i -  1 , 0 ,  

where P(~_ t,0 exchanges the basis elements in the (i - 1)st and tth positions. 
This leads to the following factorization 

t 

A.~ |  | Ant = H e( i - l , t ) ( IN/n ,  | Ani)" ( 1 6 )  
i = 1  

The second indexing scheme gives rise to 

Theorem 7 (Parallel Tensor-Product Factorization). 

An, |  | A,, H N N N = | A,,)LN/N(i) | Lu(i)(Iu/,, , A,,). = L,,(IN/,,, 
i = 1  i = 1  

The second equation is obtained by using the multiplication rule for stride 
permutations, given in Theorem 3, to simplify adjacent stride permutations. 

All of the modified factorizations that we have presented so far are 
completely parallelized in the sense that all tensor-product terms are of the 
form I | A. We can easily use the commutation theorem to convert the 
parallel terms to vector terms to get factorizations that are completely 
vectorized. By complete vectorization, we mean that each tensor product 
A @ I acts on vectors of the maximum length. For example, we commute the 
last factorization to get 

Theorem 8 (Vectorized Tensor-Product Factorization). 

t 

1-I (A., | 
i = 1  
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In many practical cases, complete vectorization is not desired because of 
machine limitations such as the size of the vector registers. In these eases we 
would like a factorization that is only partially vectorized. For  example, if the 
maximum size of vector operations was 64, then we would like tensor- 
product terms of the form I,, | A | I64. This would correspond to a loop of 
m vector operations on vectors of the maximum size possible on the machine 
in question. We can interpret this as segmenting a large vector operation into 
vector operations that fit on a given machine. Using the mathematical tools 
presented so far, it is easy to obtain a variety of factorizations that meet the 
addressing and architectural features of a given machine. In Section 4.4 we 
give an example of how to modify tensor-product operations to the CRAY 
X-MP. 

4.2. Programming tensor-product factorizations 

In this section we show how to program tensor-product factorizations. In 
general, we start with a set of base macros and combine them by performing 
operations corresponding to tensor products, stride permutations, and 
compositions. Thus macros are algebraically combined to form new macros. 
Furthermore, a macro can be optimized by applying algebraic transforma- 
tions to it. Several examples of these operations are presented in this section. 

We begin by showing how 1,, | A corresponds to a loop. For  this example 
and the rest of the examples throughout this section, we let 

To produce the code for y = (I,~ | F2)x, we must start with the code for F2. 

F 2 =- F2(y, x) 

- y(O) = x(O) + x(1) 

y ( 0  = x (0 )  - x 0 )  

F2 is a macro with two parameters corresponding to the base addresses of the 
input x and the output y. The tensor product of this code, (Ira | F2), is 
constructed by looping over F 2. 

I,, @ F 2 = ITF2(m, y, x) 

- f o r i = O , . . . , m - - 1  

F2(y(2i), x(2i)) 

- - f o r i = O  . . . . .  m - - 1  

y(2i) = x(2i) + x(2i + 1) 

y(2i + 1) = x(2/) -- x(2i + 1) 
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Using this construction, any tensor-product term of the form I | A naturally 
gets mapped  to a code that computes its action on a vector. 

Two such code sequences can be concatenated to create a program that 
computes the product  of matrices of that form. This is done by creating a 
temporary  vector which serves as the output  of the first code sequence and 
the input to the next. For  example, y = (I  m | Fz)(I  m | F2)x is computed 
with 

ITF2(m,  t, x), 

ITF2(rn, y, t), 

where t is a temporary  vector. 
In general tensor-product factorizations, not all tensor-product terms are 

of the form we desire to construct loop implementations. For  example, in the 
fundamental factorization, the generic tensor-product term is of the form 
I s  | F2 | I , .  This has a natural interpretation as a loop of m vector 
operations on vectors of length n. 

f o r i =  0 . . . .  , m - 1  

Y2n(i + 1) /  - I n /  \ X 2 n ( i  + 1)/  

On a machine that does not offer vector instructions, F 2 | I ,  must be 
computed as a loop. In order to obtain a direct loop interpretation, we must 
apply the commutat ion theorem. If  we do this, we introduce stride permuta-  

L 2 (I n Q Fz)L  n , that must either be performed as actual tions, F 2 | I .  = z, 2n 
permutations or incorporated into the code for computing I .  | F2 as 
readdressing. 

First we show how to use the mathematical  definition of a stride 
permutat ion to write a code to implement it. Recall that the stride permuta-  

,,. m, m. If we write an arbitrary tion L.  permutes the basis elements ei,+j ~ eim+j- 
vector in terms of this basis, we have 

/ / I l l  ? t in  trn nn Xin+jein+j -~- Xin+jejm+i.  
i j=O j=O i=O 

Thus i fy  = L~"x, we have that y( jm + i) = x(in + j), where the index into the 
arrays is given by the basis elements. To get a program that computes this 
permutation, we need to loop over all possible values of i and j. 

L~ "n =- L(m, n, y, x) 

for i = 0 , . . . , m -  1 

f o r j  = 0 , . . . ,  n - 1 

y( jm + i) = x(in + j)  
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The order of these loops does not matter;  however, it is essential that the 
dimensions are associated with the proper indices. 

Using these stride macros, we can program w = (F2 | I . )x  as w = 
LZ"(I. | Fz)LZ,"x with the following code sequences. 

L(2, n, y, x) 

ITF2(n, z, y) 

L(n, 2, w, z) 

We can optimize this code sequence by incorporating the permutations L. 2" 
and Lz 2" into the code for I .  | F2 as readdressing. 

To see how this readdressing is carried out, we expand these code 
sequences. 

fo r j  = 0 , . . . ,  1 

f o r i = O  . . . . .  n - 1  

y(i2 + j) = x(jn + i) 

for i = O , . . . , n -  1 

z(2i) = y(2i) + y(2i + 1) 

z(2i + 1) = y(2i) - y(2i + 1) 

for i = 0 . . . . .  n -  1 

fo r j  = 0 . . . . .  1 

w(jn + i) = z(i2 + j) 

In this expansion we have taken the liberty consistently to associate i with n 
and j with 2. This makes it easier to see the substitutions that are needed to 
combine the code sequences to obtain the correct readdressing. The first 
stride permutat ion L, 2" combines with the code for I ,  | F2 by substituting the 
input expression of ITF2(n, z, y) with the output expression of L(2, n, y, x). 
To get a direct match, we must further expand L(2, n, y, x) by setting j = 0 
and j 1:(eZz7 ~ e~" and 2, 2n = e2i+1 ~ el+n). 

for i = 0 , . . . , m -  1 

y(20 = x(i) 

y(2i + 1) --- x(i + n) 

After this expansion, we can combine the two code sequences. 

for i = 0 , . . . ,  n -  1 

z(2i) = x(i) + x(i + n) 

z(2i + 1) = x(i) - x(i + n) 

The composition with the output permutat ion L~" = S, 2" is carried out in 
the same way. However, in this case the substitution is carried out with the 
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output variable. We use the notation S 2n instead of L 2n to make this 
distinction. 

After both of these compositions are carried out, we arrive at the 
transformed (conjugated) code sequence which computes w = (F2 | ln)x. 

for i = 0 . . . . .  n -  1 

w(i) = x(i) + x(i + n) 

w(i  + n) = x(i)  - x(i  + n) 

This code transformation eliminates the runtime permutations L(2, n, y, x) 
and L(n, 2, w, z) by changing the indexing of ITF2(n,  z, y) at compile time, 
thereby saving runtime memory  accesses. 

An alternative approach to this problem of transforming code sequences 
would be to augment the parameters  of I T F 2  to include stride information. 
For  example, we could redefine I T F 2  with the stride parameters a, s, b, and t. 
In the definition of I T F 2  we have included the macro for F2 with the 
additional stride parameters s and t. 

ITF2(m,  y, b, t, x, a, s) - for i = 0 . . . . .  m - 1 

F2(y(bi), t, x(ai), s) 

- f o r i = 0  . . . . .  m -  1 

y(bi) = x(ai) + x(ai + s) 

y(bi + t) = x(ai) - x(ai + s) 

This being the case, we have S2mlTF2(m, z, 2, 1, y, 2, 1)L TM = 
ITF2(m,  z, 1, m, y, 1, m). 

We can now use these techniques to program Im | F2 | In. If we rewrite 
this as Ir, | Sin(In | 2n F2)Ln ,  it can be programmed by looping over 
ITF2(n,  y, x). 

fo r i  = 0 . . . . .  m - 1 

ITF2(n,  y(2ni), x(2ni)) 

We then expand this code sequence. 

fo r i  = 0 . . . .  , m - 1  

f o r k = 0  . . . . .  n - 1  

y(2ni + k) = x(2ni + k) + x(2ni + k + n) 

y(2ni + k + n) = x(2ni + k) - x(2ni + k + n) 

This code sequence could also have been constructed from the tensor- 
product expression (Ira | S2n)(Ir, | In | F2)(Im | L~n). The simplest way to 
implement this would be to construct Im | S 2n, I m |  (In | F2), and I~ | L 2n 
separately using the looping techniques discussed previously, and then 
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compose the code sequences together with the appropriate introduction of 
temporaries. If we then optimize by combining the permutations with 
I,~ @ I ,  | F 2, we arrive at the same code sequence produced from I m |  
($2"(I. | F2)L2n). To see this observe that (I,. | L.2n)e~m @ e ] | e k"= e.'? | 

m2a ~ r, m2n Before applying this substi- 2 which implies that et2~+j).+k ~i,+k)2+j" eT, | ej 
tution, we list the code for I m | I .  | F 2. 

I~ | I .  | F 2 =- 11TF2(m, n, x, y) 

= for i = 0 , . . . , m -  1 

for k = 0 , . . . , n -  1 

y(2in + 2k) = x(2in + 2k) + x(2in + 2k + 1) 

y(2in + 2k + 1) = x(2in + 2k) - x(2in + 2k + 1) 

If we make the substitution corresponding to the permutat ion I.. | L~ ~ 
and I.. | S 2~, we obtain the same code for I~ @ F 2 | I .  that we derived 
previously. 

So far we have only been able to program Ira | F2 | I .  using two nested 
loops. Yet we would like to be able to rewrite this as I " ,  | F 2 and only use 
one loop of mn iterations. The reason that we have not been able to do 
this is that the addressing given by the permutations I.. @ L 2" and I.. @ S 2" 
requires two indices. Instead of using the transformation that led to these 
permutations, we might try the second transformation I.. | F 2 | 1. = 
s m 2 n ( l . . n  m2n | F2)L. . However, a careful inspection shows that if the permuta- 
tions are composed with Ira. | F2, the same problem occurs. There is no way 

m2n m2n with the loop for Ira n | F 2 listed to combine the permutat ion ei,+j ~ e~,,+~ 
below. 

for i = 0 , . . . ,  mn - 1 

y(2i) = x(2i) + x(2i + 1) 

y(2i + 1) = x(2i) - x(2i + 1) 

The only way to combine the permutat ion with the code would be to rewrite 
1". | F2 as I "  | I ,  | F 2 as before and look at L~ 2" as a permutat ion on 

" L .  (ei | e; | ek) = ek | eT' @ e 2 and e 7' | e 2 | e k. In this way we see that mEn . .  2 n n 

..z. ~ ..2, and this substitution leads to the same code as before. e ( 2 i + j ) n + k  e ( k . . + i ) 2 + j ,  

The only way to get a single loop is to look at the complete tensor-product 
factorization. Using Theorem 7, we have 

t 
L 2 (I2 t - I  | F2). F 2 | 1 7 4  H 2t 

k=l  

In this factorization we have terms of the form L2rant'I |  = 2 k mn 
2mn S m (Iron @ F2 )  , which can be programmed with a single loop. 
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ITF2(mn, y, 1, mn, x, 2, 1) - 

for i = 0 , . . . ,  mn - 1 

V2(y(/), ran, x(2/), 1) 

-= for i--- 0 . . . .  , m n - 1  
Y(0 = x(2i) + x(2i + 1) 
y(i + ran) = x(2i) - x(2i + 1) 

In this factorization, adjacent stride permutations combine to produce a 
stride permutation with appropriate stride so that it can be combined with F2 
in a single loop. However, the input and output permutations are no longer 
the same. This makes programming the algorithm in place impossible. 
Nonetheless, with the introduction of temporaries, t copies of this code can be 
used to compute F2 |  | Fz. 

4.3. Modifying the implementation to parallel architectures 

In this section we show how tensor-product factorizations lead to parallel 
and vector implementations. Tensor-product factors of the form Im| A can 
be implemented as m copies of A, which can be done in parallel. Instead of 
implementing y = (I m | F2)x a s  a loop, each F 2 c a n  be computed in parallel 
on m separate processors. If each processor has access to a shared memory 
containing the input vector x and the output vector y, then the code sequence 
F2(y(2i), x(2i)) can be computed by the ith processor. In the same fashion, 
F 2 | I m can be computed as S~"(I,, | 2ra F2)L, , ,  where each processor com- 
putes F2(y(i), m, x(i), m), an F2 at stride m. Here we are using the F2 macro 
which includes stride parameters. 

In general, I,. @ F 2 @ I ,  can be computed by mn processors labeled by the 
pair of integers (i,j), 0 < i < m, 0 < j < n, each computing F2(y(2ni + j), n, 
x(2ni + j), n). Alternatively, I,, @ (I. | F2) can be thought of as m parallel 
computations of I .  | F2. In this case, each processor would compute the 
following code sequence. 

for j  = 0 . . . .  , n -  1 

y(2ni + 2j) = x(2ni + 2j) + x(2ni + 2j + 1) 

y(2ni + 2j + 1) = x(2ni + 2j) - x(2ni + 2j + 1) 

Using I,, | (I, | Fz) instead of I,,. | F2, is a natural way of controlling the 
granularity of the parallel computation. This is especially useful if there is a 
fixed number of processors. Returning to the general term, I,. | F 2 | I .  = 
I,,, | ($2"(I,, | F2)L TM) can be computed with m processors each computing 
the following loop. 

for j  = 0 , . . . , n -  1 

y(2ni + j) = x(2ni + j) + x(2ni + j + n) 

y(2ni + j + n) = x(2ni + j) - x(2ni + j + n) 
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We can now use the fundamental factorization and these ideas to compute 
F2 |  | F2 in parallel. However, there is some added difficulty. First, 
between each stage I2,-~ | F2 @ Iv- , ,  a barrier synchronization is needed to 
guarantee that the input to the next stage is correct. Furthermore, the natural 
interpretation of each stage leads to a different degree of parallelism at each 
stage. Different addressing and hence different programming at each stage is 
required to get a consistent degree of parallelism. This problem can be fixed if 
we use the parallel factorization instead. In this case, the addressing is the 
same at each stage and the natural interpretation has the maximum possible 
degree of parallelism at each stage. The only problem with this factorization 
is that we may desire a larger granularity and not the maximum degree of 
parallelism. 

If we wish to adapt to a parallel processor with a fixed number of 
processors, we can modify this factorization accordingly. For example, if we 
have eight processors and wish to compute F 2 |  | F 2 = F2, io, the tensor 
product of ten factors of F2 ,  we could rewrite the factorization as 

i0 10 

I-I r  | F 2 ) =  I-I r '-'5i2 ~'S | I64 | F2)" '~" 512 \J- 512 
i=1 i=1 

In this case each processor would compute the following code sequence. 

for j  = 0 , . . . , 63  
F2(y(27i +j), 29, x(27i + 2j), 1) 

for j  = 0 , . . . , 63  

y(27i + j )  = x(27i +j) + x(27i + 2j + 1) 

y(27i + j + 29) = x(27i + j) - x(27i + 2j + 1) 

There are two potential problems with this parallel implementation. These 
difficulties stem from locality and granularity considerations. After each 
computation of F2, the results are stored back to main (shared) memory. It 
might be advantageous to do more local computation before doing the 
memory operation. Even for serial computers this might be the case. In fact 
any implementation on a machine with an hierarchical memory structure 
should be concerned with doing the proper amount of local computation. 
Furthermore, depending on the memory organization, it might be beneficial 
to load and store more than one operand or result at a time. These objectives 
can be satisfied by further modifying the factorization. 

More local computation can be obtained if the decomposition is based on 
a larger unit of computation than F 2. For example, we may have enough 
local memory to compute F 2 @ F 2 instead of just F 2. In this case we can use 
the modified parallel factorization 

5 
~ [  1024 ($2~6 (I8 | 132 | (F2 | F2))). 
i=1 
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In this factorization there are only five factors instead of ten. Therefore, the 
number of required synchronizations has been decreased and the granularity 
has been increased. 

In this example, we have chosen the number of F2's in each stage (two) to 
divide the total number of factors (ten). If we had chosen a decomposition 
that was not compatible in this sense, the only difficulty that would arise 
would be an odd-sized factor somewhere in the computation. Such a decision 
might be necessitated by the limitations of the given architecture. Returning 
to our example, suppose we could compute F 2 | F 2 | F 2 = F2, 3 instead of 
just F 2 | F2. If we chose to have the odd-sized factor in front, there are two 
natural factorizations that we could use: 

3 
F2 | F2,9 F2 | N 512 = (S64 (164. | F2, 3)) 

i=1 

= (F2 | 1512) l ]  ((12 | 512 $64 )(12 | 16,1- | F2, 3)) 

~1024//. b" ~t102# ~512//. (17) 
= ~512 '̀ ~t 512 | N ((I2 | | 164 ~" 2/J"~512 ~64 I,~2 | f2 ,  3)), 

3 
~1024// r~ F2,10 = o512 ~,-512 ,~2 F2)l~ r "128 ','128 | F2,3))- (18) 

i=1 

The first factorization is obtained by a tensor-product construction of the 
decomposition of F2, 9 which is compatible with F2, 3- The difficulty with this 
construction is that the addressing given by the permutations is not compat- 
ible with I12s | F2, 3, but instead is compatible with 12 | 164 | F2.3- This 
combined with the extra permutation given by the commutation of F2 | 1512 
leads to a complicated program that cannot easily be programmed on our 
eight processor machine. However, the second factorization, which follows 
immediately from the mixed radix parallel factorization (Theorem 7) starting 
from F 2 | F2, 3 | F2,a | F2,3 ,  c a n  easily be programmed in the same 
manner as the compatible example based on F2, 2. 

The second possible problem with the computation given by the parallel 
factorization is that each memory operation must be done separately. We 
would like to be able to do permutations within local memories of the 
separate processors, and then store large blocks of results back to shared 
memory. This type of data flow can be obtained by decomposing the 
intervening permutations into a collection of local permutations followed by 
a global block permutation. This is given by the tensor-product decomposi- 
tion of stride permutations (Theorem 4). For our example, where we need to 
compute K,1024/'/. "512 '`'8 | 164 | F2) this allows us to write 

SLO24 (Sl6 | 164)(18 128 512 = | S64 ). 

~128 is carried out by permuting elements in local memory for each of Is | '-64 
the eight processors by "64 ~12s. After that local permutation, the results are sent 
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back to main memory in segments of length 64. These segments are permuted 
by S~ 6. 

The regularity of the factorization I ]  N Sm2(I~v/2 | F2) implies that the 
computation could be carried out on an array processor or in VLSI. For each 
stage of the computation, the same instructions (Fz) are computed on each 
segment of the input vector. Furthermore, the same permutation of the 
output is performed after each stage, so that the same routing instructions 
could be used to transmit the data after each stage. Thus it is quite 
conceivable to program tensor-product factorizations on an array processor, 
a single instruction multiple data architecture, with various interconnection 
networks for data transmission. Factorizations of stride permutations can be 
used to adapt algorithms to a given interconnection network. 

As a simple example, we look at an array of four processors with a perfect 
shuffle interconnection network called the omega network [12]. This net- 
work has been designed for problems involving stride permutations [15]. The 

2 n permutation Lz,-1 has been called the perfect shuffle since its action on a 
deck of cards is obtained by shuffling two equal piles of cards so that the 
cards are interleaved one from each pile. Since the permutation L~ is 
hardwired into this processor, a single pass through the network performs 
this permutation. If each processor can add and subtract, a single pass 
through this network can be used to compute (I 4 | F2)L~ (see Figure 1). In 
the factorizations we have considered so far, terms of this form have not 
arisen. We have only seen S~(I4 @ F2). However, if we rederive the parallel 

X I 

X2 

X3 

X4 

X5 

X6 

X 0 �9 

x 7 

x o + x 4 

X 0 -- X 4 

x I 4 -  x 5 

X 1 - -  X 5 

X 2 + X6 

X 2 -- X 6 

l X3 + X 7 
X 3 -- X 7 

Figure 1. Omega network computing (14 | F2)L a. 
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factorization for F2, 3 in the opposite order, the appropriate terms are 
obtained: 

F2, 3 = (14 | F2)(I2 | F2 | I2)(F2 | 14) 

= (I,  | F2)L8(I4 | F2)LS4(I, @ F2)L ~. (19) 

Using this factorization, F2, 3 can be computed in three passes through the 
network. 

In general, if we had an N/2 (N -- 2") processor omega network, we could 
compute F2,, in n = log N passes. However, if we have a fixed number of 
processors, we can use the omega network as a module to help in larger 
computations. Such programs are constructed from tensor products: 

F2,, = I-I (S~/s(IN/a | I,, | F2, 3)), (20) 

F2,, = FI (s~/2(IN/8 | I,t | F2)) 

= I-[ ((SSsl 4 | I4)(Is/s | S~)(Im8 | 14 | F2)). (21) 

In this section we have presented a variety of techniques for implementing 
tensor products on a variety of parallel architectures. We have shown bow to 
use tensor-product identities to modify algorithms to situations with a fixed 
number of processors, fixed granularity, shared memory, and special inter- 
connection networks. While this should give a general overview of using 
tensor-product formulations to modify algorithms and obtain parallel imple- 
mentations, none of the techniques can be fully appreciated without a specific 
example. In the next section we deal with questions of vectorization using the 
Cray X-MP as a specific example. While we have not specifically discussed 
vectorization in this section, the techniques needed are similar to the ones 
presented for the parallel architectures discussed. 

4.4. The Cray X-MP: a design example 

In this section we use the mathematical techniques developed in the previous 
sections to design algorithms for a specific architecture. In particular, we 
study how to implement tensor-product operations and the corresponding 
stride permutations efficiently on the Cray X-MP. The X-MP is a sample 
architecture from a class of machines called vector processors. In order to 
obtain an efficient implementation on this machine, it is essential that the 
algorithm be programmed to take advantage of its architectural features. For 
a vector processor like the X-MP, the two key programming concerns are 
vectorization and segmentation. These issues will become dearer as we 
present some examples. 

The reason we have singled out a particular machine is not due to the 
limitations of our techniques, but rather that our techniques can be used 
to tune an algorithm to a specific architecture, and the X-MP serves as a 
nice example. Before studying the implementation of tensor products on 
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the X-MP, we briefly review the X-MP's architecture and highlight some of 
the key parameters, which are needed for tuning our algorithms to the 
machine. More information on the X-MP can be found in the hardware 
reference and CAL assembly manuals [1], [2]. A discussion of algorithm 
design and modification for the X-MP can be found in [8] and [9]. 

The X-MP is a pipelined vector processor. Built into the X-MP's 
instruction set are instructions for performing vector operations. For exam- 
ple, the X-MP has an instruction for adding all of the components of two 
vectors of floating-point numbers. Vector instructions are implemented, in 
hardware, by pipelining the elements of the vectors through a functional unit 
that performs the corresponding operation. In our example of floating-point 
addition, the functional unit that performs the addition is a six-stage pipeline. 
Therefore, the result obtained from adding the first two elements is produced 
in 6 CPs (clock periods) and the remaining results are produced one every 
clock period after that. So two vectors containing 64 elements each can be 
added in 6 + 63 -- 69 CPs. If the vector addition were performed with a loop 
of scalar additions, it would take 64.6 = 384 CPs. It is this speed-up that 
gives vector processing its power. 

Thus the first concern in obtaining an efficient algorithm for the X-MP, is 
maximizing the use of vector instructions. Some important vector instruc- 
tions for our purposes are vector addition and subtraction and scalar-vector 
multiplication. 

It is important to realize that the vector instructions available on the X- 
MP are carried out on vectors located in vector registers. For example, the 
instruction 

�9 VO V1 + F V 2  Floating point vector add 

adds the vectors contained in registers V1 and V2 and produces the result in 
register V0. Since the vector registers can contain a maximum of only 64 
elements, this limits the size of vectors that can be used in vector instructions. 
However, several vector instructions can be combined to perform operations 
on larger vectors, which we call supervectors. Splitting a supervector into 
appropriate segments on which vector instructions can be used, is the second 
major concern in designing an algorithm for the X-MP. In this case, the size 
of the vector registers is a key design parameter. 

Before giving an example of a supervector instruction, we need to examine 
how vectors are loaded into and stored from the vector registers. Also, 
studying these memory operations is essential to implement the loadstride 
permutations that arise from tensor-product operations efficiently. A vector 
of elements in memory begining at X and separated at stride s can be loaded 
into a vector register with the following instruction: 

�9 Vi X ,  s Load a vector beginning at X into Vi at stride s. 

The number of elements that are loaded is determined by the contents of a 
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Y=(F2| 1 0 0 - 1  0 0 

0 1 0 0 - 1  0 

0 0 1 0 0 - 1  

If we let V0 contain the vector (Xo, Xl, X2) and V1 
tensor-product operation can be performed with the 
tions. 

�9 V2 VO + FV1 
�9 V3 V O -  FV1 

special register called the vector length register VL. Similarly, a vector 
register can be stored to memory at any given stride: 

�9 , Y , s  Vk S t o r e V k t o  Y a t s t r i d e s .  

Both of these instructions are performed in the same pipelined fashion that 
other vector instructions are. Ignoring potential memory conflicts, a vector of 
64 elements can be loaded in 17 + 63 = 80 CPs, the time to load the first 
element plus one CP each for the remaining elements. If memory operations 
were not done with vector instructions, then performance degradation would 
be disasterous. By properly segmenting an algorithm its performance can be 
improved dramatically. 

Now that we know how to load segments of vectors into the vector 
registers, we can see how to perform a supervector instruction like super- 
vector addition. To do this we need a loop that loads a segment of each 
vector, adds them, and stores the resulting segment. Since the functional units 
on the X-MP are independent and there are three independent memory ports, 
these operations can be performed concurrently. The overlap obtained from 
this concurrency can be thought of as another level of pipelining. In the 
example of supervector addition, we have a three-stage pipeline so that while 
two segments are being loaded, another two can be added, and the previous 
result can be stored. Here we see another important benefit of proper 
segmentation, namely the overlap of the operations on the segments. 

We now begin our study of the implementation of tensor-product opera- 
tions on the X-MP. Tensor-product terms of the form A | I , ,  for n < 64, can 
be implemented directly with vector instructions. For  example. 

~176 00xlxo I o 0 1 0 0 1 0 x 1 xl + x4 

0 0 1 0 0 1 x 2 = x2 + xs 

X3 XO - -  X 3 

X 4 X 1 - -  X4. 

5 X2 - -  X5 

contain (xa, x4, xs), the 
following vector instruc- 

The result is obtained by storing V2 followed by V3 back to memory. If Yis 
the location of the output vector, this is done with the following instructions: 

�9 , Y, 1 V2 Store first segment at stride 1. 
�9 , Y+ 3, 1 V3 Store second segment at stride 1. 
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In this case the stride is 1 for the individual stores, but  the offset must  be 
incremented by the size of the vector segments. 

Next  we see how to implement  stride permutat ions  using load and store 
operations. As in the previous example, we let x be a vector with six elements. 
First we would like to perform the load opera t ion y = L6x, which corre- 
sponds to the permutat ion 

/1 0 0 0 0 O' / x  o x o 

0 0 1 0 0 0 Ix1 x2 
0 0 0 0 1 0 x2 = x, 
0 1 0 0 0 0 x 3 xl 

0 0 0 1 0 0 x4 x3 

0 0 0 0 0 1 xs x5 

The following load instructions can be used to perform this operat ion:  

�9 V0 , X, 2 Load  first segment at stride 2. 
�9 V1 , X + 1, 2 L o a d  second segment at stride 2. 

After these loads are performed, 

V0 = x 2 , V1 = x 3 . 

\ x 4 /  x5 

To obtain the permuted vector Y, we must  store these registers back to 
memory :  

�9 , Y, 1 V0 Store first segment at stride 1. 
�9 , Y +  3, 1 V1 Store second segment at stride 1. 

The same permuta t ion  could be carried out  with the storestride opera t ion 
S 6. In  this case we load the registers V0, V1, and V2 with consecutive 
elements, and store the registers back at stride 3: 

�9 V 0 , X, 1 L o a d  first segment at stride 1. 
�9 V1 , X + 2, 1 L o a d  second segment at stride 1. 
�9 V2 , X + 4, 1 L o a d  third segment at stride 1. 

After these loads, we have 

V0=(X~ ] V1 =(x2~,\x3, / V2=(x4).x5 

These registers are then stored back to main  memory.  

�9 , Y, 3 V0 Store first segment at stride 3. 
�9 , Y +  1, 3 V1 Store second segment at stride 3. 
�9 , Y +  2, 3 V2 Store third segment at stride 3. 
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After the first store operation y = (x o, , , x 1, , ), after the second store 
y = (Xo, x2, , x 1, x3,), and after the third store y contains the appropriately 
permuted vector. 

To see how loadstride and storestride permutations can be implemented 
in conjunction with tensor product operations, we show how terms 
like (A | I )L  and S(A | I)  are implemented. We begin by looking at 
(F 2 |  As in the previous example, we load x into two vector 
registers at stride 2. However, before storing the vectors back to memory, 
we perform the vector operation F2 | 13 as in the first example, obtaining 

V2 x2 + x3 , V3 = x2 x3 �9 

x4 + x s /  x4 x5 

Finally, these registers are stored back giving the desired output vector. It is 
imperative that the loadstride operation be compatible with the tensor- 
product operation. In this case, we must have two registers with three 
elements each in order to be able to perform F 2 | 13. 

The operation $6(F2 @ 13) can be implemented in a similar fashion. In this 
case, after performing the vector operation F2 @ 13, we have two registers 
each containing three elements, which can be stored at stride 2. An important 
feature of both of these examples, is that in order to perform F 2 | 13 we must 
load the input vectors and store the result even if there were no permutation. 
By performing the permutation during the loading or storing phases we are 
essentially obtaining the permutation for free. In effect we are saving the extra 
memory operations that would be needed if the permutation was carried out 
separately. 

To see how tensor-product factors with preceding loadstride permutations 
can arise, let A be a 2 x 2 matrix and let B be a 3 x 3 matrix and consider the 
factorization given by the commutation theorem. In this case we need to 
implement the factorization 

z = (A @ B)x  = (A | I3)(I2 | B)x  (22) 

= (A | I3)L6(B | I2)L6x. (23) 

We would perform y = ( B Q I 2 ) L 6 x  followed by z = (A |  This 
factorization allows A | B to be performed using only vector instructions. 
Also the factorization forces the tensor-product operations to be compatible 
with the loadstride operations. 

Up until now, by assuming vectors fit inside the vector registers, we have 
ignored the problem of segmentation. Since the size of the vector registers is 
64, we would like to perform vector instructions on vectors with 64 elements. 
In terms of tensor-product oPerations, we would like factors of the form 
I,, @ A @ 164. Such a factor corresponds to performing a loop of m tensor- 
product operations on vectors of length 64. Factors of this form are not 
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always present in tensor-product factorizations; however, it is possible to use 
tensor-product identities to manipulate the factorization so that appropriate 
factors can be obtained�9 

For example, suppose we need to evaluate F2 | 1128. Here the size of the 
vector operation is 128, so that the vector appears not to fit in the vector 
registers. We would like to rewrite this as 12 | F 2 |  in order to get the 
correct vector length. It is clear that the commutation theorem can be used to 
do this; however, if we do this in the obvious way, we run into some difficulty. 
To see this observe 

F 2 | 1128 = ( F  2 | 164 ) | 12 (24) 

L256rl  128\Jr 2 | ( f  2 256 = | I64))L 2 . (25) 

In order to perform the vector operation F z | 164 , we need vectors of length 
64, but L2256 gives two vectors of length 128: 

X 0 

X 2 

X4 

X254 

X 1 

X3 

and x 5 

X255 

In order to solve this difficulty, we need to use the loadstride factorization 

L2 z56 = (L~ @ 164)(12 @ L~28~2 , 

given by Theorem 4. This factorization can easily be remembered if the terms 
in F2 @ 164 | 12 are commuted in stages�9 The first factor 12 @ L~ 28 corre- 
sponds to a permutation within segments, and the second factor L24 | 164 can 
be thought of as a permutation of segments. 12 @ L~ 28 creates four segments 
of size 64: 

V0 = x2 V1 = 3 V2 = 130 V3 = xxaa 

2 " x 26 \ x 1 2 7 /  \ x2 ,4  / \ ~ 2 5 5 /  
4 L 2 | 164 permutes these segments giving (V0, V2, V1, V3). Now we can 

apply 12 | F2 @ 164 to these segments. First apply Fz | 164 to (V0, V2) and 
then to (V1, V3). It is clear that the addressing given by (L24 @ 164)(12 @ L~ 28) 
can be carried out by doing loadstrides as before on the segments and by 
changing the initial offsets of the loadstrides to perform the permutation of 
the segments�9 In this example, we start with an offset to Xo and another offset 
to x12 s. We then go through a loop which loads segments of 64 elements with 
L~ 28. 
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To complete the operations, we need to store the elements produced by 
I2 | Fz  | 164. Furthermore, this must be done in the same order as they are 
computed. This can be done in the same way that L~ 56 was performed. Since 
L256 = 8256 = (L256)-1, 

128 

$2156 , = ((L2 | 164)(12 | L2128))- 1 

= (12 | L~2S)- ~(Lz a | 164) -1 

rI | rLlZ8~-l)((L42)-I | 16,1.) = k  2 k 2 )' 

= (12 | S~zs)(S~ | 164). 

Thus the storestride operations can be carried out in a manner analogous 
to the loadstride operations. In our example, after performing F2 | 164 on 
(V0, V2), namely 

�9 V4 V0 + F V 2  

�9 V5 V O -  F V 2  

we store V4 at stride 2 starting at Y0 and V5 at stride 2 starting at Y,zs- After 
the next F2 | 164- V6 = V1 + FV3  is stored at stride 2 beginning at Ya and 
V7 = V1 - FV3  is stored at stride 2 beginning at Y129- Thus the complete 
operation F2 | 1,2s is performed as a vector loop (or supervector instruc- 
tion) corresponding to the factorization 

$2 )($2 | 164)(12 | F2 | I64)(L24 | 164)(12 | L12s). (12 | ,28 4 

In this supervector instruction, segments of 64 elements are loaded into 
vector registers, a vector F2 is performed, and the resulting segments are 
stored. By keeping the appropriate offsets, given by the loadstride and 
storestride factorizations, this can be programmed as a simple loop. 

Several key points should be noted about the segmentation obtained for 
this loop. First, when the segments of 64 elements are loaded, both the 
addition and subtraction from F2 are performed before getting rid of the 
input segments. This is important since it eliminates the unnecessary memory 
operations that would be performed if the vector had to be reloaded to do the 
subtraction. This is an example of the key design goal of minimizing memory 
operations and keeping vectors in the vector registers as long as possible. It 
should be pointed out that the X-MP has only eight vector registers, so that 
the care that we have gone through in segmenting the computation (i.e., 
matching input and output segments) is essential. 

A second benefit of the segmentation is the overlap it implies. In this 
example, while we are doing the additions or subtractions, we can simultane- 
ously be doing the loads and stores on other segments. The way to think of 
this overlap, as pointed out before, is as a vector instruction pipeline. The 
overlap in this example is depicted in the timing diagram in Figure 2. The 
operations indicated on the left correspond to functional units and memory 
operations that can he performed concurrently on the X-MP. The numbers 
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Figure 2. Timing diagram. 

Load 1 1 2 

Load 2 1 2 

Add/Sub 1 1 2 2 

Store 1 1 2 

time --* 

indicate the segment the operation is being performed on, and more than one 
number in a single column indicates overlap. Furthermore, the add unit is 
fully utilized and a vector is produced every time slot. 

We would like to point out that there is another way to segment the 
operation F2 @ 1128. In general, there are many different ways of performing 
tensor-product operations, and these different methods of computation 
correspond to different tensor-product factorizations. The different factoriza- 
tions can conveniently be obtained by applying different tensor-product 
identities in various orders. An alternative method of segmenting F2 | 1128 
can be obtained as follows: 

F 2 | I128 ----- (F 2 | I2) | 164 (26) 

= S'~(I 2 | FE)L'~ | 164 (27) 
4 = (S 2 @ I64)(I2 | F 2 | I64)(L ~ | 164 ). (28) 

In this case we let 

VO= 1 

\ X 6 3 /  

and compute 

�9 V4 V O + F V 2 ,  
�9 V5 V O - F V 3 ,  
�9 V6 V I + F V 3 ,  
�9 V7 V 1 - F V 3 ,  

/X64\ /X,28\ 
), }, 

\ X 1 2 7 /  \ X 1 9 i I  

X192 k 
X1.93), 

X255/  

storing the results in the order (V4, V6, V5, V7). This computation can be 
implemented by setting offsets to Xo and x128. As the computation proceeds, 
the offsets are incremented by 64 and the corresponding F 2 | 164 is 
performed. 

Both of the methods of computing F 2 | 112 s easily generalize as indicated 
by the two factorizations 

|  )(St |174174 |174 ) (29) F2 | 164r ~-~ (12 64r 2r 2r 64r 

= (S 2r | I64)(I, | F 2 | I64)(Lr 2r | 164 ). (30) 
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Moreover, both factorizations can easily be implemented with a supervector 
loop that performs F2 | 164. In both cases the addressing is given by tensor 
products of loadstrides and storestrides, which are implemented by striding 
the individual elements I | L or striding the offsets L |  I. Programs 
computing these factorizations can be obtained in the same way that we 
derived programs for scalar machines using loops. The only difference is that 
some loops are unrolled and replaced by vector instructions. 

In order to implement the second factorization we start with the loop 
implementation of L, 2" | 164. Since (LZ," | I64)e 2 | e~ | e 64 = e)' | e? | ek64, 
the index permutation is (it +j )64  + k ~ (2j + i)64 + k and we get the 
following loop. 

for i = 0 , . . . ,  1 

fo r j  = 0 , . . . , r -  1 

for k = 0 , . . . , 6 3  

y(2j64 + i64 + k) = x(ir64 + j64 + k) 

In order to compose this code sequence with a supervector loop implement- 
ing I, | F2 | 164, the outer loop must be unrolled and the inner loop must 
be replaced with a vector instruction. The resulting supervector loop is 

fo r j  = 0 . . . .  , r -  1 
Y(2j64) = X(j64) 
Y(2j64 + 64) = X(r64 + j64) 

where X and Y are vectors of length 64 beginning with the indicated offset. 
This can be composed with the supervector loop computing I,  | F :  | 164. 

f o r j = O , . . . , r -  1 
Y(2j64) = X(2j64) + X((2j  + 1)64) 

Y((2j + 1)64) = X(2j64) - X((2j  + 1)64) 

The resulting code can be composed with the output permutation 2, Sr | 164 
to obtain 

fo r j  -- 0 . . . . .  r -  1 
Y(j64) = X(j64) + X((r + j)64) 

Y((r + j)64) = X(j64) - X((r + j)64) 

which can be implemented on the X-MP with a supervector loop. 

fo r j  = 0 . . . . .  r -  1 
VO , X j64, 1 
V1 , X~i+,~64, 1 
V2 VO + FV1 
V3 VO-- FV1 
, Yi64, 1 V2 

, Y(,+j)64, 1 V3 
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The other factorization can be implemented in the same way. The 
only new phenomenon is the composition of the two permutations 
(LZr| 164)(12 @ L 64') and their implementation on the X-MP. The perm- 
utation I2 | L 64" can be programmed with the following loop. 

fo r j  = 0 . . . . .  r - 1 

for k = 0 . . . .  ,63 

y(j64 + k) = x(kr + j)  

y((r + j)64 + k) = x((k  + 64)r + j) 

If the inner loop is unrolled it can be implemented with vector loads at 
stride r. 

fo r j  = 0 , . . . , r -  1 

Y 6 4 j  r X j, r 

Y(r+j)64 or- Xj+o4r, r 

Combining this with the other code sequences gives the following Cray 
implementation. 

fo r j  = 0 . . . . .  r -  1 

V0 , X j, r 

V1 , Xj+64r, r 

V2 VO + FV1  

V3 VO - FV1  

,Yj, r V2 

, Yj+64r, r V3 

We end this section by producing a vectorized segmented factorization 
of F2,.+6 which can be programmed on the X-MP using some of the tech- 
niques that we have discussed. We begin with the vector factorization from 
Theorem 8: 

n+6 
F2,n+6 = H ((F2 | IN/z)L~)" 

i=1 

This factorization can be conjugated to obtain 

n+6 
F2,n+6 = 1-I ($2N"(I2 '~ | F2 | I6*)L~L~") (31) 

i=1 

(n+6 t = S~.~ 1-I ((12- | F2 | I64)L2 N) L~n. 
Li=I 

(32) 
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The permutation L2 s in each stage of the product can be factored as in 
our example; therefore, up to relabeling of the input and output, we 
get a segmented vectorized algorithm for the X-MP. Alternatively L2 s and 
L2s. can be combined to get L2s.+~ which produces appropriately sized 
vectors. However, in this case, SzN, must be factored to operate on vectors of 
length 64. 

5. What is the finite FT? 

Let f be a complex function. If we sample f at n points and assume that f is 
periodic outside the sample, we get a function f :  Z/(n) --. C. We can represent 
f as an n-tuple of complex numbers 

f(0) ) 

f(:l) , 

f ( n  - 1) 

corresponding to the values of f The collection of functions on Z/(n) form a 
vector space denoted by L(n) which, under the above representation, 
is isomorphic to C". If we define (f ,  g) = )-" f(i)g(i), where ~ is the com- 
plex conjugate of g(i), L(n) becomes an inner product space denoted by 
LZ(n). 

The finite FT is the linear operator F.: L2(n) ~ L2(n) defined by 

n n n - 1  Definition 3 (FT). Fne ~ = f i ,  where f~' = ~j=o coite~, " and co = e 2'a/n. 

The matrix representation is given by F, = (col j), 0 _< j, k < n. For example, 

F 2  = - ' F4 = - 1 1 - 

- i  - 1  

(D . . .  ( D n -  1 

F / j  = . . . 
. . .  

(_On -- 1 . . .  (./)(n -- 1 ) 2 /  

The FT of a function f ~ L2(n) is given by the matrix vector multiplication 

F , f  Note that 1/x/~F . is a unitary operator, i.e., {1/x/~f7 } form an 
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orthonormal basis. To see this, 
n - 1  

< f T , f T }  = ~ ~ ik~okj = ~, (l)(i-j)k 
k=O 

if i - ~ j .  

Therefore, we have the following properties: 

1. F . F *  = nI ,  and F~-~ 1 , = ~F._ where * denote the conjugate transpose, 
n--1 n n n 2. 1/nF e7 = 1In Y j=o f j)e  = e._ , ,  

3. F~ = n2I, .  

These properties can be used as tools for debugging FT algorithms. The main 
idea is to try the program on various bases. 

5.1. A n  algorithm for  computin9 the F T  

The Fourier matrix has many redundancies. If we take advantage of this 
redundancy we naturally arrive at a matrix factorization of F. that allows us 
to compute its action on a vector efficiently. For example, the computation 
y = F 4 x  can be performed more efficiently if we notice that t o = Xo + x2, 
t 1 ----X 0 - - X 2 ,  t 2 = X 1 q - X 3 ,  a n d  t 3 = x I - x  3 only need to be computed 
once. In terms of the temporary values, Yo = to + t2, Yl = tl + it3, Yz = 
to - t2, and Y3 = tl - it3. This observation implies the matrix factorization 

I l l  1 1 111 I 0 1 =  1 { i l l  0 1 i l  
- i  0 1 0 i 1 0 1 i - 1  

F4= 
- 1  1 - 1  1 0 - 1  0 0 1 0 

o 

- 1  - 1  0 1 0 - 1 0 - 

If we collect the multiplication by i we introduce a diagonal matrix in the 
factorization: (, 0 

1 0 1 0 1 0 
F4=  0 - 1  0 0 0 1 

1 0 --1 0 0 

- 1  0 0 0 0 1 
x 0 1 1 0 1 0 " 

0 1 - 1  0 0 0 
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We can rewrite this factorization using tensor-product notation as F 4 = 
(F2 | I2)T~(12 | F2)L~, where T~ is the diagonal matrix diag(1, 1, 1, i). 

We now carry out this factorization for another example. Namely 

F 8 = 

1 1 1 1 1 

1 09 ~2 093 094 

1 co2 co4 co6 1 

1 093 096 co 094 

1 094 1 ~4 1 

1 ~5 ~2 ~7 094 

1 ~6 ~4 ~2 1 

1 097 096 095 ~4 

1 1 1 
CO5 096 CO7 

092 094 co6 

097 092 co5 

094 1 (/)4 ' 

09 co6 093 

co6 co4 ~2 

093 092 09 

where co is a primitive eighth root of unity. 

1 0 0 0 1 0 0 0 

0 1 0 0 0 09 0 0 

0 0 1 0 0 0 o9 2 0 

0 0 0 1 0 0 0 093 

1 0 0 0 co 4 0 0 0 

0 1 0 0 0 cos 0 0 

0 0 1 0 0 0 O) 6 0 

0 0 0 1 0 0 0 097 

Thiscan  be ~c tored  as 

/1 1 1 1 0 0 0 0 \ 

1 092 094 096 0 0 0 

1 094 1 094 0 0 0 

1 096 094 092 0 0 0 0 L8 

0 0 0 0 1 1 1 1 / 2. 

/ 0 0 0 0 1 092 ~4 ~6 

0 0 0 0 1 094 1 094 

0 0 0 0 1 096 094 co2 

If we look at the eighth roots of unity, we see that (1, co 2, 09 4, co 6) are the 
fourth roots of unity. In particular we have co 4 = - 1. Using this information 
we get the factorization 

F 8 = (F 2 | I4)T8(I2 | Fa)L 8. 

where T4 s is the diagonal matrix diag(1, 1, 1, 1, 1, co, o9 2, co3). 

Definition 4 (Twiddle Factors). T~e~ | e~ = 09%~ | ~ ,  where co is a primitive 
nth root of unity, where n = rs. 

r-1 The definition implies that T~ ~ = ( ~ =  0 rs i (D~), the direct sum of powers of the 
diagonal matrix D]s = diag(1, 09 . . . . .  09~- 1). Also, immediately from the defin- 
ition, we get the following change of basis theorem. 

LrS T r S ( L r S "  ~ -  1 rs r~ sr  Theorem 9. T~f = - s  -~ ,-~ , = L~ T~ L , .  

The following theorem is the basis of all Cooley-Tukey (C-T)-type 
FT algorithms. The basic divide-and-conquer idea behind this theorem and 
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the means of computation it implies was first presented in the fundamental 
paper [6]. 

Theorem 10 (Cooley-Tukey). 

F,,  = (F, | Is)T~r(I, | F~)L~'. 

Proof. The proof involves the defining properties of tensor products and the 
associated matrices that have been presented. To see this, compute both sides 

r .  on the basis elements el | e;. 

(F, @ IpT7(I, | Fs)LT(e7 @ e 9 = (F, | L)TT(L | F~)(e; @ el) 
_ | r$ t" - (Fr Is)T, (e~ | f l )  

= (F, | Is)r~ ~ ,ik , o~ (ej | eD 
k 

S--1 

= ( F , | I ,) ~ ~ik + jk o~ (Q | e~k) 
k=0 

S - - 1  
E r ik+jk  r = 09 ( f j  | e~) 

k=O 

s - 1  r - 1  

= ~ ~.~ o)rik+'jt+Jk(er I | e~). 
k=O /=0 

since co is an rsth root of unity, 0 r i k + s j l + j k  ~ (2) r i k+s j l+ j k+r i l s  ~ O) (ri+j)(sl+k). 

Using this observation along with the map e~ | e~ ~ ertSs+k, shows that the last 
sum in the derivation is f~+j  and the theorem is proved. [] 

The factorization in the preceding theorem decomposes the n-point FT 
into four stages, the stride permutation LT, the parallel operation I r | F~, the 
diagonal matrix multiplication TT, and the vector operation Fr | Is. The 
only new part in this computation is the diagonal matrix of twiddle factors. 
From our previous discussions on tensor products and stride permutations, 
we know how to implement the other components. Implementation of the 
twiddle factors can be handled in much the same way. We carry out an 
example that gives the main ideas involved. 

In the factorization of Fs the two factors ( F  2 | I4) and T~ can be com- 
bined and performed as a vector butterfly. If W is a vector containing the first 
four roots of unity (1, co, 02 2, co3), Xo = (Xo, xl, x2, x3), XI = (x,, Xs, x6, xT), 
and similarly for Yo and ?1, then the computation Y= (F2 | I 4 ) T 8 X  can 
be performed with the vector operations Yo = Xo  + W X 1  and Y1 = X 0 - 
W X ~ .  The important observation is that the diagonal multiplication can be 
combined with the vector operation F2 | However, W X t  should be 
stored in a temporary vector, so that the multiplication is only performed 
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once. If vector instructions are not available to perform this operation, then it 
can be converted to a loop with the commutation theorem. After applying the 
commutation theorem, we need to perform Y= S~(I4 | F2)L]T]X .  As in 
the construction of programs for computing with tensor products, the code 
can be optimized by composing the four operations. 

The diagonal multiplication of the input by T4 a can be carried out with the 
following loop obtained from the definition. 

for i = 0, . . . .  1 

fo r j  = 0 . . . . .  3 

y(4i + j) = W(ij)x(4i + j) 

In order to combine this with the following permutation, we need to unroll 
the loop. 

for j - -  0 , . . . ,  3 

y(j) = x(j)  

y(4 + j) = W(j)x(4 + j) 

This can be combined with the code for L].  

fo r j  = 0 . . . .  ,3  

z(2j) = x(j)  

z(2j  + 1) = W(j)x(4 + j) 

The resulting code can then be combined with the loop implementing 
14 | F2, 

fo r j  = 0 . . . .  ,3 

w(2j) = x(j)  + W(j)x(4 + j) 

w(2j + 1) = x(j)  -- W(j)x(4 + j) 

which, when combined with the output permutation $4 a, give the final code 
segment. 

fo r j  = 0 , . . . ,  3 

u(j) = x(j)  + W(j)x(4 + j) 

u(j + 4) = x(j)  - W(j)x(4 + j) 

This sequence can be further optimized if the common data W(j)x(4 + j) is 
collected together in a temporary variable. This optimization is suggested by 
the separate diagonal factor, which makes explicit the temporary allocation. 

As in the case of tensor-product factofizations, variations can be obtained 
by applying the commutation theorem. Two such factorizations are 

Fr~ = L~S(Is | Fr)L~ST~(Ir | F~)L~ ~, (33) 

Fr~ = (F, | Is)T~L~S(F~ | I~). (34) 
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The first factorization is a parallel factorization and the second factorization 
is a vector factorization. Furthermore, the order of the data permutation and 
the twiddle factor can be interchanged by applying Theorem 9. Finally, since 
F n is symmetric, taking the transpose of any factorization leads to a new 
factorization. For example, taking the transpose of the initial factorization in 
the C-T theorem gives 

Fr~ = L~S(Ir | F~)T~(Fr | Is). (35) 

Since this factorization has the permutation on output it is commonly called 
a decimation-in-frequency algorithm, while the factorization with the permu- 
tation on input is called a decimation-in-time algorithm. All of these 
variations offer programming options that may be used to advantage on 
some architectures. 

When n has more than two factors, Theorem 10 can be repeatedly used to 
obtain an algorithm for computing Fn. For example, 

F8 = (F2 | I4)T8(I2 | F4)L82 

= (F2 | I4)T~(I2 | ((F2 | I2)T4(I2 | F2)L~))L 8 

= (F 2 | I,~)T8(I2 | F2 | 12)(12 | T~)(I4 | F2)(I2 | L2)L2.4 8 

The permutation R s = (12 | L~)L~ is uniquely defined by Rs(e 2 | e 2 @ e 2) = 
2 ek 2 | ej | e 2. R 8 is called a bit reversal permutation, since it permutes the 

indexing set by mapping an index to a number whose binary representation is 
the reverse of the binary representation of the index. To see this, the defining 

8 ~ 8 In general, the bit reversal condition of R 8 implies that e4i+2~+k e4k+2j+~. 
permutation is defined as 

Definition 5 (Bit Reversal). R2,(e21 | e22 |  | e2) = e2 @. . .  @ e22 @ e21. (It 
reverses the order of the factors in the tensor-product basis.) 

The bit reversal permutation satisfies the following recursion. 

Theorem 11. 

R2, = (1 2 | R2,- ,)L 2". 

Proof. Compute the action of both sides on a basis element in the tensor 
basis. [] 

If we repeatedly apply C-T factorization to F N where N = 2", and use the 
recursion property of the bit reversal permutation, we get the following 
factorization known as the fast Fourier transform (FFT). 
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Theorem 12 (FFT). 

--2n-i+ 1- ) 
F2"--- i=IFI ( I 2 i - 1 | 1 7 4 1 7 4  "l'2n-i )fg2~" 

This factorization can be implemented using the techniques for implementing 
tensor products and twiddle factors. The recursive property of the bit reversal 
permutation can be used to obtain code implementing it. Moreover, tensor- 
product identities can be used to modify this factorization, in the same way 
that tensor-product factorization were modified, to obtain programs more 
suitable to various architectures. In the next section we briefly list some of 
these variations. 

5.2. Variations on C-T:  parallelized and vectorized F T  
algorithms 

In this section variants of the C-T FFT are derived. In particular, we obtain 
algorithms that display complete vectorization and parallelism. Finally, we 
give one example of a segmented algorithm that is similar to the segmented 
tensor-product algorithm developed for the Cray. Despite the added com- 
plexity of some diagonal matrices and the bit reversal permutation, the same 
techniques that we used for modifying tensor-product factorizations carry 
through here. 

We begin by re-examining F+ and F 8. Applying the commutation theorem 
to the C-T factorization of F+ we get 

F4 = ( f  2 | I2)T~(I 2 | F2)L~. 

We use this form of F+ as the starting point for recursively deriving a vector 
FT algorithm. We see how this is done by looking at Fs: 

F 8 -- ( f  2 | I4)T~(I2 | F4)L 8 

-- (F 2 | I4)T8LS2(F+ | 12). 

Substituting the previous form of F+ into this equation and using the 
multiplicative rule for tensor products gives the vector algorithm 

F8 = (F2 | I+)TS+L8(F2 | I4)(T~ | I2)(L~ | I2)(F2 @ I+). 

Generalizing this computation we get the following theorem due to T. G. 
Stockham which is described in [5]. 

Theorem 13 (Stockham). l f  N = 2" and N(i) = 2 i, then 

FN f i  (F 2 (~ �9 h[qr~N/N(i- 1) -~- " N/2]k't N/EN(i - 1) | INt l -  I)X LN/Nti- 1) ~ IN(i - I))" 
i=1 
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This factorization obtains full vectorization. Also the initial bit reversal 
permutation has been spread through the computation. In fact this algorithm 
can be derived by starting with the FFT and bringing the bit reversal 
permutation into the computation. It is this property that makes this 
algorithm preferable on some vector machines where the bit reversal permu- 
tation is hard to implement. Temperton discusses some of the implementa- 
tion issues of this algorithm and mixed radix generalization in 1-19]. The 
effectiveness of this algorithm depends on the ability to implement the 
permutations L~/N(~- 1) | IN(i- 1). The price of the removal of the bit reversal 
permutation is the irregular data flow between each of the stages. 

A second variation can be obtained that has full vectorization and regular 
data flow, but keeps the bit reversal permutation. This algorithm is analagous 
to the vectorized tensor-product factorization in Theorem 8. 

To obtain this algorithm, we start with the FFT and apply the commuta- 
tion theorem to obtain factors of the form F 2 | IN/2 a s  was done in the 
tensor-product case. The only difference is the twiddle factors, which get 
commuted by the stride permutations. Before stating this theorem, we look at 
an example: 

F8 = (f2 | I4)T8(I2 | F2 | I2)(I2 | T~)(I4 | F2)R8 

= ( t  2 | I4)T8La(F2 | I~)L8(I2 | T4)La(F2 | I4)La2R8 

= (F 2 | I4)TSL8(F2 | I4)(T 4 | I2)L82(F2 | I4)L~R8. 

We now state the vectorized FFT, which was first described by Korn- 
Lambiotte in [11], where they discuss implementation of vector FFTs on the 
STAR 100 computer. 

Theorem 14 (Korn-Lambiotte). I fN  = 2", then 

Fs fFI(F2'~t ~tTN/N(i-1)~IN(i-1))L2} = ",~ "tN/2I~.lN/2N(i-1) ~ 
i=l 

Important points about this factorization are the constant data flow at each 
stage given by the simple permutation L2 n. This algorithm should be well 
suited to vector processors. The only possible difficulties are the permuted 
diagonal and the initial bit reversal. Both issues warrant further study. The 
algorithm can be segmented in the same way that the tensor-product 
factorization was segmented; however, the notation for the twiddle factors 
must be refined if we are to write it down. 

The vector algorithm just presented was a modification of a parallel 
algorithm originally developed by Pease in [13]. To get a similar algorithm 
to that of Pease, we can apply the commutation theorem. 



DESIGNING, MODIFYING, AND IMPLEMENTING FT ALGORITHMS 491 

Theorem 15 (Pease). I f  N = 2 n, then 

n 

V N = R N N  LN2(IN/2 | F2)T '  i. 
i = 1  

I N  [,T,N/N(i- 1) where T i = ~N/2~ --N/2N(i- 1) | I N , -  1))L~. 

The algorithms that wc have presented so far are the major types of vector 
and parallel algorithms for computing the FT. As in the case of tensor- 
product algorithms many minor variations can be derived. These variations 
allow the algorithm to bc fine tuned to a specific architecture. Along these 
lines, we have only indicated how to derive a segmented vectorized algorithm 
for the Cray X-MP. However, the tools presented earlier in this paper can 
bc used to obtain any desired variation based on the C-T theorem. An 
important class of variations can be derived from the mixed radix generaliza- 
tions of the algorithms presented in this section. These generalizations are 
discussed in [4] and [19]. The importance of the mixed radix cases come 
from deriving algorithms that increase local computation. As was pointed out 
in Section 4.3, in the discussion on modifying tensor-product implementa- 
tions, the mixed radix cases are useful when the size of the local computation 
does not divide the number of points in the FT. 

The major point of this section is the case with which variations of the 
FFT algorithm can be derived using the tensor-product formulation. The 
tools developed in the sections on tensor products give a mechanism for 
carrying out these modifications and implementing them. It is clear that we 
would like to have these tools automated so that different variations could be 
derived, implemented, and tested on various architectures. 

6. Some notes on code generation and special purpose 
compiler 

We believe that tensor-product formulation of FT algorithms allows easy 
manipulation of algorithms to get variations that might be better suited to 
different architectures. We also indicated that the formulation contains 
information that is relevant to architectural features of various machines. 
Furthermore, we showed that mathematical formulation can aid in the 
implementation of the algorithms. However, if the user is going to be able to 
use these techniques for selecting, modifying, and implementing algorithms 
easily, then the process needs to be automated. This is especially true for the 
code generation phase. The user might be able to guide the mathematical 
formulation and the heuristics for selecting a specific variation. Nonetheless, 
there are thousands of choices and the user should be able to try variations 
quickly without specifying the details. 

The first step would be to create a parser, which determines if an algorithm 
described in tensor-product notation actually computes the desired FT. The 
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parser should also be interfaced with a code generator. The code generator 
should produce intermediate code, which can then be sent to a machine 
specific code generator, which produces the actual code. In this way the same 
basic code generator could be used for a variety of architectures. Finally, we 
would like to put heuristics into this special purpose compiler, so that the 
compiler could automatically select an appropriate algorithm for a given 
architecture. The architecture should be described in terms of some key 
parameters such as the size of vector registers, the available special purpose 
instructions, and the types of permutations that can be efficiently imple- 
mented. 

In this section we sketch a methodology [10] for automatic algorithm 
derivation and code generation. The basic idea is to incorporate a set of 
production rules based on algebraic decompositions and tensor-product 
algebra into an attribute grammar used to generate the code. The attribute 
grammar produces a parse tree corresponding to an algorithm for computing 
the FT F,. The leaf nodes of the tree correspond to macros that produce 
common code sequences such as F 2 and the internal nodes correspond to 
various algebraic operations, such as direct sums, matrix multiplications, and 
tensor products, used in the derivation of the algorithm. The code for F, is 
produced by performing the algebraic operations on the code sequences 
given by the macros. The code is synthesized up the tree until the root node is 
reached and the code for F, is produced. 

It should be pointed out that various algebraic operations (commuting 
tensor products) introduce permutations that need to be incorporated into 
the addressing of the data. This information is stored as an attribute which is 
passed down the tree. Permutations get pushed down the tree by applying the 
algebraic operations at the internal nodes to the permutations themselves. 
For example, we can take the tensor product of two permutations or we can 
multiply the permutations together. If the permutations are of a special form, 
such as stride permutations, we have special rules for applying these 
operations. 

In order to make these ideas a little dearer, we give some examples. First 
we give some typical production rules. Some rules corresponding to tensor 
algebra are 

A m ~ B. -~ Lm"(B. | A,.)L m". (36) 

I s"~" I L~" 
| , | 

/ \  / \  
Am B. Bn A,. 

Figure 3. Commutation theorem. 
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I 
| 

/ \  
A,~ B n 

/ 
A,~ 

Figure 4. Tensor-product decomposition. 

I 
/ \  

| | 
\ / \  

I. Im B~ 

This production rule can be depicted by its action on the parse tree shown in 
Figure 3. A second important example is given by the tensor-product 
decomposition 

Am | Bn --* (Ar, | In)(lm | Bn). (37) 

This is depicted in the parse tree in Figure 4. 
An example production based on algebraic theorems concerning the FT is 

the following rule corresponding to the C-T theorem, 

F,s ~ (F r | Is)T'~(I, @ F,)L r~ (38) 

which is diagrammed in Figure 5. 
Some possible macros for productions of these types would be F2 | In, 

In | F2, and multiplication by roots of unity. It is clear that different macros 
would have to be given for different machines. Of special interest are vector 
macros, based on ideas given earlier in the section on the Cray. 

Once we have appropriate macros, in order to produce the final code, we 
need to be able to combine code sequences based on the algebraic operations 
given in the parse tree. Some useful ideas along these lines were discussed in 
Section 4.2 on implementing tensor products using loops. In fact if our 
macros are based on the loop implementation discussed in that section, then 

[ L7 

/ \  
F,s ' * | 

/ \  / 
| T~ s I, 

/ \  

Figure 5. C-T  theorem. 

\ 
Fs 
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we already have an automated way of performing the algebraic operations of 
interest on those macros. Furthermore, by unrolling loops to match special 
instructions, as was done to implement stride permutations on the Cray with 
vector loads, we have a means of converting loop macros to machine-specific 
macros. 

We now give a general framework for how algebraic operations are 
performed on code sequences. If we let [A] be the code to evaluate y = Ax 
and [B] be the code to evaluate z -- Bw, then the code to evaluate the direct 
sum A ~ B is just the concatenation of [A] and [B] with the appropriate 
partitioning of the input and output variables. Likewise, the code to evaluate 
y = ABw is the concatenation of the codes for A and B, so that temporaries 
are introduced that pass the output of B to the input of A. Finally, the 
code for the tensor product can be created from these two constructions 
using the identity A | 1 7 4 1 7 4  and I , , |  
Therefore, A | B = L~"(1, @ A)L~""(1,, | B) which gets expanded to 
L~"((~7= 1 A~L""t(~"J, t~ji=x B). This is just n copies of [A] followed by m copies 
of [B] with appropriate permutations in the addressing. If we had procedures 
to implement A | I or I | B we could implement the tensor product more 
directly. 

Finally, we need some mechanism to guide the application of production 
rules to give a normal form or unique representation of the parse tree. These 
rules could be changed for different architectures, or for different passes on 
the same architecture. This would be useful for trying different algorithms. 
One possible idea is to use heuristics that choose certain rules over others. 
This has been examined for the code generation of certain FT algorithms on 
the VAX [10]. Another alternative would be to force the resulting tree to 
have certain properties such as tensor-product operations of the form A @ I 
with the vector size matching the vector registers. In this case the compiler 
would search for the appropriate derivation of an appropriate goal tree. 

7. Summary 

The tools that have been presented in this paper give a methodology for 
implementing FTs. The following outlines the methodology and shows how 
the techniques in this paper can be used. The procedure has been carried out 
in Section 4.4, using the Cray X-MP as an example. 

Given an architecture on which to implement an FT, proceed as follows: 

1. Consider how to implement tensor-product construction and the 
associated permutations (see Section 4 for general techniques and 
Section 4.4 for a specific example). 

2. Decide which constructions have an efficient implementation (see 
Sections 4.3 and 4.4). 
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3. Formulate an appropriate FT algorithm using tensor-product notation 
(see Sections 5.1, 5.2, and [14]). Using tensor algebra (see Sections 2 
and 3) manipulate the algorithm to achieve operations that have an 
effective implementation. 

4. Implement the expression obtained in (3) using the techniques devel- 
oped in (1). The Cray example given in Section 4.4 carries this out to a 
pseudoassembly implementation. 

The last step should be automated so that a code for an expression 
involving tensor products is produced from the implementation of the basic 
tensor-product operations given in the first step. Once this step is automated, 
programming can be carried out using a mathematical description of the FT 
based on tensor products. This paper gives the basic ideas behind the 
automation. 

The benefits of this design procedure are that a wide class of FT algorithms 
can easily be programmed on any architecture once the basic tensor-product 
operations have been implemented. Moreover, the same basic procedure can 
be followed independent of the architecture. Finally, optimizations can be 
obtained at a high level based on properties of the FT. For example, 
vectorization and segmentation were obtained for the Cray X-MP using 
tensor-product properties. With the inclusion of these optimizations, and the 
ability to design specific FTs for specific architectures, we believe that the 
methodology presented in this paper can be used to obtain programs that 
are as efficient as optimized hand-coded implementations. Moreover, the 
development time should be significantly reduced. 

Even when the procedure is not automated, the tools can help produce 
efficient programs in a systematic manner. In the Appendix we review the 
application of this methodology to AT&T's DSP32 signal processing chip. 

In steps one and two of the outline we study the special features of the 
chip's instruction set that can be used to implement tensor products. In this 
case there are no special vector or parallel operations; however, the chip has 
special features for loop instructions. Therefore we choose a basic loop 
implementation of tensor products along the lines of Section 4. Furthermore, 
the looping constructs incorporate various memory accesses at strides, which 
can be used to implement stride permutations. 

In step three we formulate a tensor-product version of the C-T algorithm. 
The only modifications to the basic algorithm are due to the number of 
registers. A radix eight FFT was chosen so that the building blocks of the 
tensor-product decomposition could fit inside the register set and be per- 
formed efficiently. Further optimizations were obtained by incorporating 
some of the stride permutations into the loops implementing the tensor 
products. This formulation could then be implemented by translating the 
tensor-product operations into loop constructs. Even though this translation 
process has not been automated yet, it is straightforward to carry it out by 
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hand. Thus the programming process is governed by the tensor-product 
notation used to describe the algorithm. In [7] Granata and Rofheart carried 
out this process and obtained an implementation that was roughly twice as 
fast as the standard library routines. 

Since this methodology was carried out by hand, only several algorithms 
were tried. If steps three and four could be done by a compiler, as suggested in 
Section 6, many other variations could have been tried, possibly obtaining an 
even faster program. Furthermore, the compiler would eliminate the poten- 
tial for translation errors that can easily occur when this is done by hand. 
Finally, given a set of heuristics, the compiler could generate a class of 
algorithms suitable for the DSP32. These algorithms could then be timed and 
the fastest chosen. 

Appendix. A loop implementation of the FT on the 
AT&T DSP32 

Using techniques similar to those described in this paper, Granata and 
Rofheart I-7] have implemented efficient FTs for 8, 16 . . . . .  1024 points on the 
AT&T DSP32 signal processing chip. Their implementation was roughly 
twice as fast as the "standard" library implementation and is now being 
distributed as the new "standard" library routines. 

The DSP32 is a single chip, programmable digital signal processor, 
developed by AT&T Bell Laboratories i-3]. It has three architectural features 
that are significant in choosing an implementation of the FT. 

1. A 32 bit floating-point multiply-accumulate instruction. 
2. A four-stage pipeline that effectively increases the number of floating- 

point registers. 
3. Two separate execution units: one for floating-point arithmetic (DAU) 

and one for address generation and control (CAU) which operate in 
parallel. 

All three features are used in the Granata-Rofheart implementation. We 
discuss in detail only the implication of the third feature. 

The general DAU instruction has the form 

(~) aN=C-}aH~,~Y*X 

o r  

aN=C-3aHC+,~(Z=Y)*X 

where X, Y, Z are general operands and aN and aft are one of the four 
accumulators in the DAU. In the instruction, the parentheses indicate that Z 
is optional in the position indicated, and the braces indicate that the enclosed 
operator is optional or a choice must be made. X, Y, Z can be operands in 
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memory whose addresses are developed in the CAU. The addresses can be 
one of the following forms where the 16 bit CAU registers rP and r I  are 
defined for P = 1 . . . . .  14; I = 15 . . . . .  19. 

1. *rP where rP contains the address of the operand. 
2. *rP++(*rP--) where rP is to be post incremented (decremented). 
3. ~rP++rI where rP is post incremented by the contents of r I .  

Now every DAU instruction is executed in four states during which three 
memory reads (fetch, X, Y) and one memory write (Z) are possible. These are 
"free" in the sense that the instruction will take the same amount  of time to 
execute regardless of the number of memory opelations used. In the same 
sense, the address calculations implied by the various addressing modes are 
also free. They are executed in the CAU in parallel with the DAU. 

These addressing features can be used to implement the following loop 
constructs at the same cost. Each loop is given in pseudo-Pascal along with 
its implementation on the DSP32: 

f o r i =  0 . . . . .  n - 1  

y( i )  = x ( i )  

CNT=n-! 
r i=X 
r2=Y 

LOOP= *r2++=a~=*ri++ 
ir (CNT-- > =~) goto LOOP 

Without the free post increment two extra increment instructions would be 
required. The next loop incorporates a constant stride different than 1. Such a 
loop can be written as 

fo r i  = 0, 1 . . . . .  (n - 1) 

y (d i )  = x ( d i )  

or alternatively 

for i = 0, d . . . .  , d(n  - l)  

y( i )  = x ( i )  

These loops would be implemented on the DSP with 

CNT=n-t 
rl=X 
r2=Y 
riS=d 
LOOP: *r2++rtS=a~=*rt++rt5 

is (CNT-- > =~) ~oto LOOP 
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at no extra cost than the preceding loop. The last loop can be further 
generalized so that the input and output strides are different. In this case we 
have 

for i = 0, 1 , . . . , ( n -  1) 

y(bi) = x(ai) 

which again gets implemented with no extra cost: 

CNT=n-I 
ri=X 
r2=Y 
riS=a 
r i6=b 
LOOP: *r2++riS=a~=*ri++ri6 

ir (CNT-- > =~) go~o LOOP 

The most general loop construct described allows us to implement 
efficiently the parametrized macro F2(X, a, Y,, b) which has different input 
and output strides. This macro can then be incorporated in a loop obtained 
from I, | F 2. In the implementation of the FT on the DSP, Granata and 
Rofheart chose F8 as the base macro instead of F2. The reason for this 
choice is that a multiplicative Winograd F 8 can be used which takes 
advantage of the multiply-accumulate instruction. 

We begin with a radix 8 factorization of Floz4: 

F1024 (F2 ~ �9 ~T1024 = x.~ a f12 /aS12  
T512~ 

(I2 | Fs | I64)(I2 (~) --64- J 

(12 | I8 | Fs | I8 ) ( Iz  | I8 | T 6.) 
(& | h | Fs)(& | 18 | | L lbL  o2.. 

This factorization can be rewritten to obtain a direct loop implementation: 

F102 * K,1024/i r~x it? ~/1024 T1024 
A"512 ka512 ~ ~2)'~512 ~512 

~,512f�9 512 'T'512~ 
(12 | ~64 \Jr64 | F8)L64 )(/2 | a64  ) 

(I16 | $64(Is | f s)L6'*(Ix6 | T6'*) 
(12 (~ I8 | 18 | Fs)(12 | 18 (~) L64)(I  2 (~) L512"~L 1~ 8 ] 2 �9 

The various stages in this factorization can be composed at compile time to 
obtain an efficient implementation. Most importantly, the initial generalized 
bit reversal permutation should be incorporated into the addressing of 
12 | Is | Is @ Fs- Since the bit reversal permutation takes eS, | eS~ @ eS~ | 

2 2 8 8 8 Q4 to e j, | ei3 | e j2 | ej~, we get the following loop implementation of the 
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permutation. 

forj4 = 0, . . . ,  1 

forjs = 0 . . . . .  7 

for j2 = 0 . . . . .  7 

for j l  = 0 . . . . .  7 

y(512j4 + 64j3 + 8j2 +J l )  = x(128jl + 16j2 + 2j3 +J4) 

This permutation can be composed with the preceding stage to obtain the 
following loop. 

for j4 = 0 . . . . .  1 

for j3 = 0, . . . ,  7 

for J2 = 0 . . . . .  7 

F8(y(512j4 + 64j3 + 8j2 ), 1, x(16j2 + 2j3 +J4), 128) 

It is only the inner loop that can take special advantage of the DSP 
instruction set. However, in this case, the most general loop is required since 
the input and output strides are different. 

Rather than doing the multiplications required in the remaining part of 
the address calculation, we can obtain the same effect by adding a constant 
stride for each of the nested loops. This implementation corresponds to 
composing each factor in the bit reversal permutation separately into the FT 
stage. For example, thej2 loop can be combined with 12 | L~ 12 with the use 
of the macro IF8(n, y, b, t, x, a, s). This macro has parameters for two input 
and output strides, one stride for the individual elments of F s and another 
stride for the base address of the input and output to Fs. Using this macro we 
have the following double loop equivalent to the preceding triple loop. The 
only difference is how the addresses are computed. 

for j4 = 0 . . . .  ,1 

for j3 = 0 . . . .  ,7 

F8(y(512j4 + 64j3), 8, 1, x(2j3 +J4), 16, 128) 

This process can be continued to eliminate the remaining multiplications in 
the address computation. 

A macro of the preceding form can be used in the implementation of the 
remaining FT stages, since each stage is of the form I, | F. The implementa- 
tion of the remaining stages has already been discussed in the section on 
programming tensor products and the section on the C-T algorithm, where 
the implementation of twiddle factors was discussed. Since the twiddle factors 
can be composed with FT stages, the original factorization, which needs 
eight run-time stages, can now be computed with four stages after apply- 
ing the compile-time optimizations. Finally, we should mention that the 
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implementa t ion  of the bit  reversal pe rmuta t ion  takes advantage  of the D S P  
architecture in one of the three nested loops needed to implement  it. This 

suggests that  an al ternative factorization might  be tried, where the bit  

reversal is b rought  into the computa t ion  and  only one pe rmuta t ion  of the 
form I | L is done at each stage. 
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