A formal framework for analysis and design of synthetic gene networ ks
Y ordanov, Boyan Y ordanov

ProQuest Dissertations and Theses; 2011; ProQuest Dissertations & Theses (PQDT)
pg. na

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

A FORMAL FRAMEWORK FOR ANALYSIS AND

DESIGN OF SYNTHETIC GENE NETWORKS

BOYAN YORDANOV YORDANOV

B.A., Clark University, 2005
M.S., Boston University, 2009

Submitted in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

2011

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UM! Number: 3445758

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI

Dissertation Publishing

UMI 3445758
Copyright 2011 by ProQuest LLC.
All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Approved by

First Reader W

Calin Belta, PhD
Assistant Professor of Mechanical Engineering, Systems Engi-
neering, and Bioinformatics

Second Reader /% WCJ\/

James J} Qollins, PhD
Professgr jof Biomedical Engineering

Third Reader \ ‘_'—Etﬂ _ud‘

F¥n Baillicul, PhD
Professor of Mechanical Engineering, Electrical and Computer
Engineering, and Manufacturing Engineering

Fourth Reader Q\/K ‘8’—‘7
/7

Daniel Segre, PhD
Assistant Professor of Bioinformatics, Biology, and
Biomedical Engineering

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

There are quite a few people who have contributed directly towards the completion
of this project. All work described in this dissertation is the result of a collaboration
with my research advisor Professor Calin Belta. His patience and insightful advice
helped me overcome a number of hurdles during my time under his supervision and
attempting to describe how much I have learned from him should be the goal of a
separate project. Some results from Chapters 3 and 4 are based on work with Gre-
gory Batt, who was willing to listen and provide feedback during my first steps on
this project. The results presented in Section 4.2, as well the results on the control
of nondeterministic systems from Chapter 6, are based on work with Jana Ttmova,
Ivana Cernd, and Jif{ Barnat. The implementation of the methods described in
this dissertation uses model checking code developed by Marius Kloetzer. The ex-
perimental data used for the case studies presented in Chapter 7 was provided by
Professor Ron Weiss. I thank Professor James Collins and the members of his group
for sharing their lab space and resources and for their help. I also thank the members
of my dissertation committee for their patience, guidance, and time.

Besides those who have directly helped this project, there are many people whose
contribution has been in the form of moral support, time for discussions, and ad-
vice. Throughout this work I have heavily depended on my family to help get me
through tough times and I am deeply grateful that they have always made themselves
available. I thank my friends who have been around to answer a random question,
provide the occasional distraction or engage in equally enjoyable though provoking
and mind-numbing conversations. The countless discussions I have had with former
and current members of the HyNeSs group have contributed immensely towards this

project and have made both my work and lunch breaks more enjoyable.

1l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A FORMAL FRAMEWORK FOR ANALYSIS AND
DESIGN OF SYNTHETIC GENE NETWORKS
(Order No.)

BOYAN YORDANOV YORDANOV

Boston University, College of Engineering, 2011

Major Professor: Calin Belta, Ph.D.,
Assistant Professor of Mechanical Engineering,
Systems Engineering, and Bioinformatics

ABSTRACT

Synthetic biology has recently emerged as an attempt to study biological systems by
construction rather than through observation. Work in the field has demonstrated
that synthetic gene networks with a specific function can be designed and constructed
experimentally and is expected to lead to important application in bioremediation,
biosensing, clean fuel and drug bioproduction, and therapeutics. However, designing
biological systems that work as expected remains a challenge.

Mathematical modeling is often used to guide the design efforts in synthetic bi-
ology but the types of models are often complex and cannot be easily analyzed. In
addition, only simple specifications such as the existence of equilibria, limit cycles, or
invariance sets are usually considered. In contrast, methods for proving (or disprov-
ing) the correctness of software programs and digital circuits have been developed in
the field of formal verification. Such systems can be modeled as simple finite tran-
sition graphs and algorithms for automatically deciding whether a model satisfies a

specification, expressed in temporal logic, are available.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Temporal logics are rich enough to capture properties of biological systems rel-
evant to synthetic biology. However, only simple, unrealistic models are directly
amenable to formal verification. In this work, we bridge the gap and develop a the-
oretical framework and a set of computational tools allowing the analysis of realistic
models from rich temporal logic specifications. We consider discrete time, piece-
wise affine (PWA) systems, which evolve along different affine dynamics in different
regions of the continuous state space. This structure results in models that are glob-
ally complex and can approximate nonlinear systems with arbitrary accuracy, but
are also locally simple, which allows us to construct finite abstractions. Based on
this, we develop formal methods for the analysis, parameter synthesis and control of
PWA systems from temporal logic specifications.

We apply our methods to analyze the synthetic gene networks that can be con-
structed from a set of available parts. We demonstrate how our tools can identify
device designs that fail to meet the required specifications. Such an approach can
be used to filter flawed designs before they are implemented experimentally, thereby

decreasing the time and cost involved in synthetic biology projects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

Abstract

Table of Contents

List of Tables

List of Figures

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Mathematical modeling of genetic regulatory networks
Identification of PWA models
Specification Formalisms
Finite Abstractions of Infinite Systems
Analysis, Parameter Synthesis, and Control of PWA Systems
Tools for Synthetic Biology
Contribution of the dissertation

Organization of the dissertation

2 Mathematical Preliminaries

2.1
2.2
2.3
2.4
2.5
2.6

Operations on Polytopes
Affine functions on Polytopes
Transition Systems e
Simulation and Bisimulation Quotients

Linear Temporal Logic

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v

vi

1x

11
15
17
20
22
26

2.7 Bichi and Rabin Automata
2.8 Model Checking

Finite Abstractions of PWA systems

3.1 PWA Systems with Uncertain Parameters
3.2 Finite Quotients of PWA Systems

Formal Analysis of PWA systems

4.1 Formal Analysis of Infinite Transition Systems
4.1.1 Iterative model checking
4.1.2 Quotient Refinement
4.1.3 Conservatism

4.2 Formula Guided Refinement
4.2.1 ¢-equivalence
4.2.2 Constructing ¢-equivalent quotients

4.3 Formal Analysis of PWA Systems

4.4 Complexity,

4.5 Implementation and Case Study

Parameter Synthesis for PWA systems

5.1 Counterexample-guided Parameter Synthesis
5.1.1 Construction of satisfying quotients
5.1.2 Parameter synthesis

5.2 Construction of Bisimulation quotients

5.3 Implementation and Case Study

Formal Synthesis of Control Strategies for PWA systems

6.1 Preliminaries

Vil

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39
40
42

47
49
90
92
95
57
o7
39
63
65
66

6.3

6.4
6.5
6.6
6.7
6.8

Control Transition System
6.3.1 Construction
6.3.2 Computation,
LTL Control for Finite Transition Systems as a Rabin Game
LTL Control of PWA Systems
Conservatism and Stuttering Behavior
Complexity

Implementation and Case Study

7 Applications to Synthetic Biology

7.1
7.2
7.3
7.4

7.5

PWA Models of GRNs
Analysis of a toggle switch and a repressilator
Constructing Devices from Parts.
Formal Analysis of Device Models
74.1 Cascaderesults,
7.4.2 Repressilator results L L.
7.4.3 Toggle switchresults

DiSCuSsiono,

8 Conclusions and Future Work

References

Curriculum Vitae

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

111
114
117
122
126
126
127
129
132

135

139

156

List of Tables

4.1 Parameters of the PWA system used as a case study. 67

7.1 Relative volumes and computation times of satisfying and violating re-
gions for the toggle switch model with different amounts of parameter
uncertainty. oL 119
7.2 Relative volumes and computation times of satisfying and violating
regions for the cascade model. 127
7.3 Relative volumes and computation times of satisfying and violating
regions for the tetR/lacl/cl repressilator model. 129
7.4 Relative volumes and computation times of satisfying and violating
regions for the tetR/cl/lacl repressilator model. 129
7.5 Relative volumes and computation times of satisfying and violating

regions for the three toggle switch models. 132

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

4.1
4-2
4-3

4-4

o-1

52

6-1

6-2

6-3

An example of the application of REFINE(T/, X) to the quotient 7/.. 52
Formula equivalent quotient (B) of transition system (A). 59
Simulated trajectories of the PWA system used as a case study. Initial
conditions are denoted by red squares. 69
Analysis results. Regions satisfying the formula are shown in green
(lighter gray), while regions satisfying the negation are shown in red

(darker gray). 70

State partition for the PWA system used as a case study for parameter
synthesis. 81
Parameter Synthesis Results. Transitions are represented by black
arrows. Transitions remdved during the execution of the algorithm

are showninred. &3

Ilustration of our approach to formal synthesis of control strategies
for PWA systems (Problem 4). 89
A trajectory remaining forever in state I, exists in the finite abstrac-
tion (B), although such a behavior is not necessarily possible in the
concrete system (A) 102

Results from the formal synthesis of a control strategy for a PWA system110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7-1

72

7-3

74

7-5
7-6

77

7-8

7-9

Gene regulatory function and approximations. In Figures 7.1(b) and
7.1(c) the dashed lines represent the Hill function and the solid lines
its piecewise affine approximations.
Gene regulatory network topologies used in our case studies (square
arrowheads indicate repression).
Numerical simulations of the deterministic and 10% parameter uncer-
tainty toggle switch models. Trajectories in both state space and time
areshown.
Results from the analysis of fixed parameter (deterministic), and un-
certain parameter toggle switch model for specifications ¢, (eventually,
the concentrations of Ry and R, stabilize in a high and a low state,
respectively) and ¢, (eventually the concentrations of R; and R, sta-
bilize in a low and a high state, respectively). Satisfying regions are
shown in green (lighter gray) and violating regions are shown in red
(darker gray).
Numerical simulation of the deterministic repressilator model.

Results from the analysis of fixed parameter (deterministic), and un-
certain parameter (1% noise) repressilator model for specification ¢ =
O(Om A $ma). The satisfaction of the specification can be guaran-
teed for trajectories of the system originating anywhere but the region
showninblack.
The original transcriptional cascade used in this case study and the
set of parts it is composed of. 0L
A set of devices with a repressilator or a toggle switch topology, con-
structed from the parts from 7.7(b).

Numerical simulations of the transcriptional cascade model.

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7-10 Numerical simulations of the two repressilator models.

7-11 Numerical simulations of the three toggle switch models.

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Abbreviations

Al the cardinality of a finite set A
AY the set of all infinite strings over set A
24 the power set of A (the set of all its subsets)
N the set of all Natural numbers
R the set of all Real numbers
RN the n-dimensional space with real coordinates
BDA ... Biodesign automation
CEGAR Counterexample guided abstraction refinement
CTL ... Computation tree logic
DES ... Discrete-event system
EDA ... Electronic design automation
GRF ... Gene regulation function
GRN .. Gene (genetic) regulatory network
LTL ... Linear temporal logic
ODE Ordinary differential equation
PLDE Piecewise linear differential equation
PWA ...l Piecewise affine
SCC Strongly connected component
xill

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

The “Central Dogma of Molecular Biology” describes the flow of information from
DNA sequence to proteins and, ultimately, to biological function. Research in the
field of genetic engineering has demonstrated that the phenotype of an organism can
be modified by modifying its genetic code. Such biological “reprogramming” has
become a valuable experimental tool, allowing organisms to be investigated through
genetic perturbations. Pushing the methods of genetic engineering to the extreme,
the field of synthetic biology has recently emerged as an attempt to engineer novel
biological systems rather than merely study existing ones. Seminal work demon-
strated that synthetic gene networks operating as a toggle switch [Gardner et al.,
2000] and an oscillator [Elowitz and Leibler, 2000] can be experimentally constructed.
Since then, biological systems implementing cascades, pulse generators, logic formu-
las, spatial patterning, and counters, have been built (see [Purnick and Weiss, 2009]
for a review). More recently, a living organism containing a fully synthetic genome
has been produced [Gibson et al., 2010], making the engineering of synthetic life a
reasonable goal for the near future.

Synthetic biology offers the technology to test our understanding of natural Sys-
tems through construction rather than observation. Mastering the design principles
of nature can lead to the development of novel, drastically different devices, based
on the use of “wet” biological components, and improved traditional devices inspired

from biological systems. In addition, synthetic biology has the potential to affect

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the human quality of life through applications including bioremediation [Cases and
Lorenzo, 2005], biosensors [Antunes et al., 2006], clean fuel [Savage et al., 2008] and
drug [Ro et al., 2006] bioproduction, and therapeutics [Anderson et al., 2006].

Two of the key enabling technologies for synthetic biology have been high through-
put DNA sequencing and synthesis. The increasing speed and decreasing cost of DNA
sequencing have resulted in the construction of databases containing an abundance
of genetic information. This has provided a catalog of genetic “parts” that can be
recombined to construct novel biological devices. Furthermore, it has led to a deeper
understanding of how genetic sequence gives rise to biological function, what regula-
tion mechanisms are involved in this process, and how regulation rather than genome
size can be responsible for biological complexity [Levine and Tjian, 2003]. Although
the cost of synthesis is still prohibitive for large DNA fragments, the methods are
improving fast and hold the promise of making the implementation of a synthetic
design into DNA sequence as easy as the compilation of a computer program from
source code.

As technology allowing fast and cheap reading (sequencing) and writing (syn-
thesis) of genetic code becomes increasingly available, the complexity of synthetic
constructs that can be made surpasses our ability to design them manually at the
level of sequence. Drawing inspiration from other engineering fields where similar
challenges have been faced, standardization, decoupling, and abstraction of biological
parts has been proposed as a solution [Endy, 2005]. One major effort in that direction
has come from the development of the BioBricks standard [Knight, 2003] and the
registry of standard biological parts [Peccoud et al., 2008]. The focus there, however,
has been on defining parts in terms of their basic functionality as promoters, ribo-
some binding sites, and coding sequences with specifications to allow their standard

assembly into more complicated devices. While this has simplified the design pro-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cess by allowing researchers to work with parts rather than sequence, constructing a
biological device with a specific function remains a challenge and often involves trial
and error effort. Therefore, it is not surprising that the number of newly constructed
synthetic devices has steadily increased over the past years but their complexity has
reached a peak [Purnick and Weiss, 2009].

In the past, a similar complexity peak has been reached and successfully overcome
in the field of electronic circuit design. This has been achieved largely through the use
of software tools for Electronic Design Automation (EDA), which have enabled the
design of systems far more complicated than what has been possible through manual
efforts. With the hope of bringing the same power to synthetic biology, frameworks
for Bio-Design Automation (BDA) were recently proposed [Riedel, 2010, Densmore
et al., 2009]. While current BDA platforms can make the physical assembly (i.e.
putting parts together) of complicated biological devices easier, much of the design
effort (i.e. which parts to use) is left to the user. Due to the time and cost involved
in the process, designing devices that work as expected with minimal experimental
work remains a major challenge.

Mathematical modeling is often used in order to select and tune potential device
designs before they are implemented and tested experimentally. Both rational [Tuttle
et al., 2005] and evolutionary [Francois and Hakim, 2004] model driven design has
been successfully applied in synthetic biology. Various modeling formalisms, ranging
from simple graphical representations to biologically accurate, stochastic models,
have been proposed and are discussed in further detail in Section 1.1. A model that
is realistic and has predictive power can guide the design efforts and lead to the
construction of a device that works correctly, while saving expensive trial and error
experiments. However, it is often the case that realistic models are also “complex”,

making their analysis hard.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Besides selecting a model that is both realistic and analytically tractable, speci-
fying the required behavior for devices is a separate challenge to the design efforts in
synthetic biology. In principle, simple specifications such as bistability or oscillations
can be captured formally using dynamical systems theory as the existence of stable
equilibria or limit cycles, respectively. Although checking if such conditions are sat-
isfied can be a non-trivial problem for dynamical models, it provides an approach
for evaluating potential device designs. The problem becomes much harder if richer
specifications, such as “While the concentration of Lacl remains below 50 copies per
cell, there is at least 20% more of TetR than CI”, are required.

The analysis of “complex” and realistic mathematical models from rich specifica-
tions is a challenging problem. Therefore, models are often analyzed manually using
a variety of different tools and techniques in order to gain some confidence that the
system under investigation behaves as expected. Providing formal guarantees of cor-
rectness is often beyond the power of currently available methods. In addition, such
approaches are applicable only for simple specifications such as stability of equilibria
or set invariance.

In contrast, methods for proving (or disproving) the correctness of software pro-
grams and digital circuits have been developed in the field of formal verification.
The behavior of such systems is captured by finite transition graphs and automata
models, specifications are expressed as rich temporal logic formulas, and off-the-shelf
algorithms for deciding whether a model satisfies a specification are available [Clarke
et al., 1999]. Temporal logic formulas are rich enough to capture properties of bio-
logical systems relevant to synthetic biology [Monteiro et al., 2008]. However, due to
the simplicity of the models amenable to formal verification, such methods can be
applied directly only to simple, qualitative models.

In this work, we focus on the design of (synthetic) genetic regulatory networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(GRNs), which remains a major research direction in the field of synthetic biology.
We bridge the gap between techniques from dynamical system theory, traditionally
used to manually analyze “complex” models of GRNs for “simple” specifications, and
formal verification methods that can automatically check the correctness of “simple”
models against “complex” specifications. We develop a theoretical framework and
a set of computational tools, based on the use of hybrid systems, which provide a
realistic modeling formalisms for GRNs. Hybrid systems capture both the continuous
dynamics of the various species (mRNAs, proteins, etc), as they are produced and
degraded at certain rates, and the discrete transitions of the system between different
regulation modes (e.g. basal versus full expression from a promoter). For a particular
class of hybrid systems, we show that finite abstractions can be computed, which
allows us to develop methods similar to the ones used in formal verification.

In our framework, the analysis of realistic hybrid system models of synthetic
GRNs can be performed automatically, even when rich specifications are considered,
while the correctness of the results is guaranteed for the model. This can simplify
and speed up the construction of synthetic GRNs that work correctly, by allowing
researchers to filter flawed designs through model analysis, rather than experiments.
While our motivation comes from synthetic biology, the methods we develop are quite
general and have the potential to impact other fields of engineering, where similar
models are used.

In the following sections, we review related literature and motivate our choice of
piecewise affine (PWA) systems as models of genetic regulatory networks and linear
temporal logic (LTL) as a specification language. We outline the main contributions
of this work in Sectibn 1.7 and discuss both the theoretical implications of the de-
veloped methods and the practical significance of their implementation as tools for

synthetic biology.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1 Mathematical modeling of genetic regulatory networks

In recent years, several formalisms for modeling genetic regulatory networks (GRNs)
have been proposed (see [de Jong, 2002] for a review). They can be divided into de-
terministic and stochastic, continuous and discrete time, or finite and infinite (con-
tinuous) state. The most abstract models simply represent a regulatory network
schematically, with symbols signifying genetic elements (promoters, RBSs, coding
sequences), mRNAs, proteins, and the interactions between then. Although such
models can provide an intuitive description of simple networks, they carry very lim-
ited information about the system and in this work are used only as visual aid. On
the other extreme, stochastic models serve as an accurate description of biological
systems, even when only a small number of molecules are involved. Such models are
usually related to the Master Equation [Gillespie, 1977, Gillespie and Mangel, 1981]
and are often analyzed through numerical simulation, which can be slow. In this
work, we focus instead on deterministic models, where formal analysis methods can
be developed.

Under the assumption of a large number of molecules present in the system, a
deterministic model can be derived as an average of a stochastic one. If spatial
dynamics are considered, such formalisms can lead to systems of partial differential
equations. If a well-mixed environment is modeled, ordinary differential or difference
equations are commonly used to describe the evolution of species’ concentrations in
continuous or discrete time, respectively. Following from chemical Michaelis-Menten
kinetics, under the assumption that transcription factor binding and unbinding pro-
ceeds much faster than transcription and translation [McAdams and Shapiro, 1995],
transcription regulation is modeled by Hill functions [Hill, 1913], which usually re-
sults in highly nonlinear systems. Then, as for the stochastic models, analysis is often

limited to numerical simulations, which can sometimes lead to erroneous results and,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in general, does not provide any guarantees for correct behavior of the system.

The use of approximate models provides one way around the complexity of
stochastic and nonlinear differential equation models and leads to formalisms al-
lowing a more formal analysis. Approximating the nonlinear Hill regulation func-
tion by a discontinuous step function leads to decoupled piecewise linear differential
equation (PLDE) models, which have been investigated in [Glass, 1975, Mestl et al.,
1995, de Jong et al., 2003b, Ghosh and Tomlin, 2004]. Intuitively, in the PLDE
framework the regulation function relating the transcription rate of a promoter to
the concentration of transcription factors is quantized. This approximation is moti-
vated by the switching behavior of many regulatory networks and the overall system
transitions between finitely many regulation modes, where different dynamics (tran-
scription rates) describe the evolution of the concentrations of the species. Other
hybrid models with simplified continuous dynamics and discrete events are consid-
ered in [Alur et al., 2001, Belta et al., 2004, Belta et al., 2001, Belta et al., 2005).

As a more drastic idealization of GRNs, each gene can be described as being
active or inactive by a single Boolean variable [Kauffmann, 1969]. Boolean regulation
functions provide a deterministic update rule and the system evolves in discrete
time. Such models have a finite number of states and can be conveniently analyzed
even for very large networks but do not capture enough quantitative information
of the system. Boolean networks have been further extended as generalized logical
networks [Thomas, 1991] by allowing variables to have multiple states and transitions
to occur asynchronously. Qualitative differential equations [Kuipers, 1981] provide
an additional formalism for combining logical and continuous aspects. Rule-based
formalisms [Brutlag et al., 1991, Blinov et al., 2004] use an even higher level of
abstraction, such as graphs and graph rewrite rules, in order to model biological

systems where a combinatorial number of states makes other methods intractable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The methods outlined above are amenable to analysis but they are often based on
oversimplifications and, in general, do not capture enough information to allow the
design of synthetic GRNs. Some are purely discrete [Fages et al., 2004, Eker et al.,
2002], or capture protein dynamics but cannot accommodate other chemical reactions
[Kauffmann, 1969, Ghosh and Tomlin, 2004,de Jong et al., 2003b]. The more formal
and expressive ones are based on previously defined specification formalisms such as
CTL [Fages et al., 2004, Batt et al., 2005] and LTL [Eker et al., 2002] and inherit
pre-existing methods and tools but can lead to complicated translations.

In this work, we use an approach based on hybrid systems [Alur et al., 1996, Hen-
zinger and Sastry, 1998, Vaandrager and van Schuppen, 1999, Lynch and Krogh,
2000], where continuous dynamics are combined with discrete events. Specifically, to
model genetic regulatory networks we use discrete time, piecewise affine (PWA) sys-
tems [Sontag, 1981]. Intuitively, PWA systems evolve in discrete time along different
affine dynamics in different regions of the continuous state space. The dynamics can
accommodate both chemical reactions and production and degradation of species
such as mRNAs and proteins, while regulation is captured through the partition of
the state space and arises naturally by considering piecewise affine regulation func-
tions. The different regions in state correspond to different levels of activation of
genes. As an extreme approximation, the gene regulation function can be captured
by a step function, leading to a state partition with only two regions. The gene is
expressed at a maximal rate in one of the regions and at a basal rate in the other.
A more accurate approximation can be achieved by using a ramp function, which
induces an intermediate regulation region, where expression is graded. By making
the state partition finer, better approximations of the regulation functions can be
achieved. Therefore, PWA systems can approximate nonlinear dynamics with arbi-

trary accuracy [Lin and Unbehauen, 1992]. Even though the local dynamics in each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mode are simple, the global behavior of the system can be complex, so the richness of
the model (in terms of the class of allowed nonlinearities) is not sacrificed. However,
the locally affine structure allows us to develop methods for the computation of finite
abstractions of PWA systems (see subsection 1.4), which enables the formal analysis
of such systems from temporal logic specification (see subsection 1.3).

Under mild additional assumptions, PWA systems are equivalent to several other
classes of hybrid systems, including mixed logical dynamical (MLD), linear comple-
mentarity (LC), extended linear complementarity (ELC), and maxmin-plus-scaling
(MMPS) systems [Heemels et al., 2001]. In particular, MLD systems are frequently
used in practice and the conversion from MLD to PWA can be efficiently performed
using a mode enumeration algorithm [Geyer et al., 2003].

The compromise between richness and analyzability motivates our choice of PWA
systems with uncertain parameters as a realistic modeling formalism for synthetic

gene networks.

1.2 Identification of PWA models

PWA models of GRNs can be obtained using several approaches. There exist compu-
tationally attractive techniques for the identification of such systems, which include
Bayesian methods [Juloski et al., 2005], bounded-error procedures [Bemporad et al.,
2003], clustering-based methods [Ferrari-Trecate et al., 2003], Mixed-Integer Pro-
gramming [Roll et al., 2004], and algebraic geometric methods [Vidal et al., 2003].
Once a synthetic GRN has been constructed, input-output experimental data can be
collected by varying the levels of external inducers (input) and measuring the con-
centrations of proteins or mRNA (output). Protein concentrations can be obtained
using quantitative Western blot techniques, or more commonly by fluorometer, cy-

tometer, or fluorescence microscopy measurements of the fluorescence of certain re-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

porter proteins, in which case statistical and spatial information is also acquired.
Concentrations of mRNA are often measured using quantitative Northern blot, Real
time PCR, or microarray techniques.

A second approach to the construction of GRN models involves using quantita-
tive information of the different parts (promoters, ribosome binding sites, proteins,
mRNA) involved in the system in order to construct a composite PWA model that
can be further analyzed. Predicting the behavior of genetic circuits from charac-
terization information of regulatory elements has been successfully demonstrated in
experiments [Rosenfeld et al., 2007, although issues of modularity and retroactiv-
ity [Del Vecchio et al., 2008] present a challenge to such compositional modeling. Kits
for the characterization of promoters and ribosome binding sites have been recently
proposed [Kelly et al., 2009], where all measurements are made against a reference
standard in order to decrease variability. Prototypes of data sheet for biological parts,
similar to the ones used for electronic components, have also been discussed [Can-
ton et al., 2008] and databases of characterized parts are being developed [Biofab,
2009]. Even when parts are not well characterized, predictions of the degradation
rates of proteins [Gasteiger et al., 2005], or the rates of translation initiation [Salis
et al., 2009] and elongation [Zhang and Ignatova, 2009] can be made from sequence
information.

Measurements of the gene regulation function (GRF), which relates the concen-
trations of a transcription factor to the transcription rate from a regulated promoter,
are perhaps the most challenging to obtain. Indirect measurements can be acquired
by varying the concentrations of external inducers and measuring downstream ef-
fects [Hooshangi et al., 2005]. A technique based on fluorescence reporter genes and
the construction of fusion proteins allows gene regulation functions to be measured

with single-cell resolution [Rosenfeld et al., 2005]. Experimental data collected using

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

this technique has suggested that the GRF fluctuates dynamically and limits the
accuracy of information transfer that can be achieved in synthetic gene circuits. In
order to capture such limitations and make analysis efforts relevant, the uncertainty
inherent in biological systems must be represented in the models.

We consider PWA systems where parameters are not precisely known but allowed
to vary in certain polyhedral ranges. By using this approach, very general GRFs can
be captured, while methods for automatic and formal analysis can still be developed.
In addition, our control methods can tolerate uncertainty in both state measurements
and applied inputs. This accounts for the fact that even when the concentrations of
an external inducer are controlled, they cannot be set precisely. We assume that no
statistics of the uncertainty in a system are available and develop a nondeterministic
rather than a probabilistic framework. While this makes the methods conservative,

1t is more general than assuming particular (normal) distributions.

1.3 Specification Formalisms

As in our choice of a modeling formalism, we have to compromise between expres-
sivity and analyzability when choosing a specification language. Specifications con-
sidered as part of dynamical systems theory are qualitative and usually limited to
expressing the existence of equilibria or oscillations. Specifications considered in
optimization and classical control theory, on the other hand, are too quantitative
and require precise mathematical conditions to be satisfied. Besides expressivity, the
difficulty of formulating specification is another drawback of such methods.

In this work, we focus on temporal logics [Emerson, 1990, Clarke et al., 1999] as
a specification formalism. Temporal logics were originally developed for specifying
the correctness of digital circuits and computer programs. Due to their expressivity,

resemblance to natural language, and the availability of algorithms for deciding if

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

a formula is satisfied [Clarke et al., 1999, Holzmann, 2004], temporal logics have
gained popularity in many other areas. Analysis of systems with continuous dynamics
based on qualitative simulations and tempofal logic was proposed in [Shults and
Kuipers, 1997, Brajnik and Clancy, 1998, Davoren et al., 2004]. Control of linear
systems from temporal logic specifications has been considered in both discrete time
[Tabuada and Pappas, 2003] and continuous time [Kloetzer and Belta, 2006a]. The
use of temporal logic for task specification and controller synthesis in mobile robotics
has been advocated as far back as [Antoniotti and Mishra, 1995], and more recent
results include [Loizou and Kyriakopoulos, 2004, Quottrup et al., 2004, Fainekos et al.,
2005, Kloetzer and Belta, 2006b]. In the area of systems biology, the qualitative
behavior of genetic circuits can be expressed in temporal logic, and model checking
can be used for analysis, as suggested in [Antoniotti et al., 2003, Batt et al., 2005, Batt
et al., 2008]. Temporal logics are also used to specify properties of biomolecular
networks in [Bernot et al., 2004, Chabrier-Rivier et al., 2004, Eker et al., 2002], where
the aim is to check whether the system satisfies properties for given initial conditions.

Linear Temporal Logic (LTL), Computation Tree Logic (CTL) and their unifying
CTL* framework [Emerson, 1990, Clarke et al., 1999] are the most commonly used
temporal logics. For this project, the computational expense involved in model
checking CTL* outweighs the gains in expressivity and therefore this logic is not
considered. Both LTL and CTL have been used to describe properties of biological
systems. The two logics are incomparable, in the sense that there exist LTL formulas
that cannot be expressed in CTL and vice versa. CTL is a branching time logic and
allows the quantification of specifications over the executions of the system. For
example, in CTL a property can be satisfied by the system if it is satisfied over
all paths or if there exists a path that satisfies it, and the distinction between the

two is specified through additional path quantifiers. When expressing properties of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

biological systems, CTL allows testing whether it is possible for the system to have
some behavior, which can be useful when studying natural systems. The focus of
this dissertation is on the design of synthetic gene networks, where requiring that
the system always behaves a certain way seems more appropriate. In addition, in
CTL each temporal operator must always be preceded by a path quantifier. This
can make the translation of a specification from natural language to a formula prone
to errors [Schlipf et al., 1997, Memon, 2003], as one must think about all possible
executions of the system at the same time. Expressing specifications in LTL is
more natural because executions are considered one at a time and we use this logic
for the project. It might seem that CTL has the advantage of computationally
cheaper, polynomial time model checking procedures over LTL, where algorithms are
exponential time. However, based on empirical results, it has been suggested that for
formulas expressible in both CTL and LTL model checkers perform similarly [Vardi,
2001], due to the fact that formulas in CTL can be larger than their equivalent LTL
representation.

Other temporal logic formalisms have been developed to deal with continuous
time systems (as in the timed automata model [Alur et al., 1990]) or probabilistic
systems [Vardi, 1999], where the goal is to guarantee that the specification holds with
certain probability. Since we consider discrete time, nondeterministic PWA systems
with uncertain parameters, such extension are not required. A different extension
of temporal logics allows a continuous degree of satisfaction to be established for
formulas [Rizk et al., 2008], and applications of such methods to systems biology
have been considered. While this can lead to interesting combination of heuristic
search strategies and model checking, the methods are not directly related to the
topics discussed here.

A rich spectrum of properties of gene networks are naturally expressed as LTL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

formulas over linear predicates in the state variables, which represent the concentra-
tions of different species in the system. In the most basic case, a linear predicate can
specify a threshold in the concentrations of a protein or mRNA (e.g. the concentra-
tion of Lacl is above 30 copies per cell). Multiple predicates can be used to specify
ranges (e.g. the concentration of Lacl is between 30 and 50 copies per cell). A linear
predicate can also be used to relate concentrations of different species (e.g. there is
more of Lacl than CI). Once such predicates are formulated, they can be used to
construct temporal logic formulas, allowing very rich specifications to be captured.
Some examples of formulas useful for expressing biological properties include reach-
ability (e.g. the concentration of Lacl eventually reaches values above 30 copies per
cell), safety (the concentration of Lacl never reaches values above 30 copies per cell)
and invariance (the concentration of Lacl always remains between 80 and 50 copies
per cell). Additional formula classes that capture interesting properties can express
consequence (if the concentration of Lacl goes above 30 copies per cell then (eventu-
ally) the concentration of CI drops below 50 copies per cell) and sequence properties
(eventually, the concentration of CI drops below 50 copies per cell, which is preceded
by an increase in the concentration of Lacl to levels above 30 copies per cell). Fur-
thermore, using the discrete nature of the systems we consider and the temporal LTL
operators, specifications regarding absolute time can be formulated (concentration of
Lacl goes above 30 copies per cell within 20 time steps after the concentration of CI
drops below 50 copies per cell). To make the formulation of specifications easier, the
language can be restricted to sets of commonly used patterns expressible in temporal

logic, as suggested in [Monteiro et al., 2008].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15
1.4 Finite Abstractions of Infinite Systems

In this work, we develop a theoretical framework for the specification and automatic
verification of properties of PWA system from rich specifications. Our approach is
based on the idea of abstraction, which allows an infinite state system, such as a
PWA system, to be mapped to a finite state system, such as a transition system
(see [Alur et al., 2000] for an earlier review of literature focused on the construc-
tion of finite abstractions of infinite systems). Intuitively, the states of the abstract
model represent infinite sets of equivalent states in the concrete model. Analysis
of the infinite PWA system can then be performed instead on its abstract model,
which can either be equivalent with respect to the satisfaction of a specification, or
provide an approximation with the guarantee that satisfaction in the abstract model
implies satisfaction in the original system. Sufficient abstractions are constructed
using simulation relations [Clarke et al., 1999] and equivalent abstractions are tradi-
tionally based on the notion of bisimulation [Milner, 1989]. The idea of constructing
specification dependent equivalences, coarser than bisimulation, for finite system has
been suggested in [Aziz et al., 2002]. In this work, we explore the construction of ab-
stractions, which are equivalent only with respect to a given specification, for infinite
systems.

It has been previously established that equivalent finite models do not exist even
for some very simple hybrid systems [Henzinger et al., 1998]. However, classes of
systems for which equivalent finite models exist can be identified by restricting the
continuous behavior of the hybrid system, as in the case of timed automata [Alur and
Dill, 1994], multirate automata [Alur et al., 1993], [Nicollin et al., 1993], and rectan-
gular automata [Henzinger et al., 1998, Puri and Varaiya, 1994], or by restricting the
discrete behavior, as in order-minimal hybrid systems [Lafferriere et al., 2000, Laf-

ferriere et al., 1999a, Lafferriere et al., 1999b]. In more recent work, the existence of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

equivalent abstractions for discrete-time, continuous-space linear systems has been
shown [Tabuada and Pappas, 2006]. For more general systems, the relaxed notion
of approximate bisimulation [Tabuada, 2006, Girard, 2007] can provide a measure of
how accurate a finite abstraction is with respect to the original model. All system
classes, for which the existence of equivalent abstractions has been established, are
too weak to accurately represent the nonlinearities involved in gene regulation

We follow an approach similar to [Pappas, 2003, Tabuada and Pappas, 2003] and
embed discrete-time systems into transition systems but we consider the more general
class of PWA rather than linear systems. Since we cannot guarantee the existence
of equivalent finite abstractions (bisimulation quotients) for this class of systems, we
focus on the computation of sufficient abstractions (simulation quotients). In gen-
eral, this leads to methods that are provably correct but conservative (i.e. we cannot
guarantee finding a solution even when one exists, but if a solution is found, it is
guaranteed to be correct). Other works related to the construction of simulation quo-
tients has focused on partitioning using linear functions of the continuous variables,
as in the method of predicate abstractions [Alur et al., 2002, Tiwari and Khanna,
2002], or using polynomial functions as in [Tiwari and Khanna, 2002, Ghosh et al.,
2003]. However, the construction of simulation or bisimulation quotients (when they
exist) using such methods is computationally expensive and involves the integration
of the vector fields of the original system [Alur et al., 2002] or quantifier elimination
for real closed fields and theorem proving [Tiwari and Khanna, 2002]. For contin-
uous time piecewise affine systems with simplical partitions and continuous time
multi-affine systems with rectangular partitions, checking the existence of bisimula-
tion quotients and constructing simulation quotients can be reduced to polyhedral

operations only [Belta and Habets, 2004].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

1.5 Analysis, Parameter Synthesis, and Control of PWA

Systems

Due to their ability to capture complex nonlinear dynamics and the existence of
finite abstraction that can be constructed through polyhedral operations, we use
PWA systems to model genetic networks. Because of their expressivity, resemblance
to natural language, and the existence of model-checking algorithms we formalize
specifications as LTL formulas. In the rest of this dissertation, we develop methods
for the analysis, parameter synthesis and control of PWA systems from specifications
expressed as LTL formulas, and apply our methods to the analysis of synthetic gene
networks.

Analysis has been previously considered in literature focused on controlling PWA
systems [Bemporad et al., 2000, Grieder, 2004], but only for very simple properties
such as invariance and reachability. By considering arbitrary LTL specifications,
we significantly expand this class of properties (invariance and reachability are par-
ticular examples of LTL properties). We use the concept of embedding an infinite
PWA system into a transition system in order to reason about the satisfaction of
temporal logic formulas by its trajectories. Our analysis method is an extension of
model checking [Clarke et al., 1999] and bisimulation based refinement [Bouajjani
et al., 1991], where both procedures are computed together as part of an iterative
loop. In that respect, our work is related to [Chutinan and Krogh, 2001], where
the verification of infinite state systems using approximation quotients is proposed.
Since systems with continuous dynamics are considered, transitions in the quotient
are computed using flow-pipe approximations [Chutinan and Krogh, 1998]. In this
work, we consider discrete time dynamics and compute exact quotients, even when
the PWA system is subjected to additive noise. In addition, in [Chutinan and Krogh,

2001] the goal is to verify the system and computation is terminated as soon as vio-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

lating behavior is observed. Instead, we attempt to find the largest satisfying region
(a region of initial conditions from which all trajectories satisfy the specification)
and search for a similar violating region, which provides more quantitative results
for analysis and leads to computational advantages. In addition, we characterize quo-
tients coarser than bisimulation but equivalent to the original system with respect
to a specification and develop algorithms for the construction of such quotients. In
that respect, our approach is related to [Aziz et al., 2002], where similar quotients
for finite systems are discussed.

Our strategy for parameter synthesis for PWA systems involves identifying violat-
ing behavior by model checking simulation quotients, and removing it by restricting
system parameters. In that respect, our method resembles “debugging” and is re-
lated to literature focused on counterexample guided refinement (CEGAR) [Clarke
et al., 2003]. Unlike classical CEGAR. approaches, where violating trajectories of a
quotient are checked against a concrete model and, if spurious, removed by refine-
ment, we use counterexamples to find and remove sets of (possibly spurious) violating
transitions from the quotient and restrict the parameters of the systems based on
the transitions that were removed. Our approach is similar to the method proposed
in [Frehse et al., 2008], where parameters for linear hybrid automata are synthesized
through the use of counterexamples. The methods developed in both [Frehse et al.,
2008] and this work are conservative and, in general, under-approximations of the
satistying parameters are obtained.

Designing (optimal) control strategies for PWA systems has been previously con-
sidered [Bemporad et al., 2000, Grieder, 2004] and efficient software tools are avail-
able [Kvasnica et al., 2004]. However, for such approaches specifications are expressed
as polytopic and logical constraints, which makes them restrictive and less intuitive

to use. Our method is also related to literature focused on controlling Mixed Logical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

Dynamical (MLD) systems from LTL specifications, due to the equivalence between
MLD and PWA systems [Heemels et al., 2001] (see Section 1.1). This problem has
been been considered in [Karaman et al., 2008], where a solution involving the trans-
lation of LTL specifications into mixed-integer linear constraints is proposed but a
finite horizon assumption is imposed. Instead, we consider infinite executions of the
system and our approach is orthogonal, since it relies on the construction of finite
quotients. Decreasing the conservatism of our methods by identifying stuttering be-
havior in the abstraction (i.e. trajectories, which can only remain in a state for
a finite number of steps) is related to [Batt et al., 2007a], where time-convergent
trajectories were identified.

By constructing control abstractions of PWA systems, we reduce the problem
of controlling an infinite transition system to generating a control strategy for a fi-
nite transition system from a temporal logic specification. Similar problems have
been considered in literature focused on controlling discrete-event systems (DES)
from specifications given as CTL* [Jiang and Kumar, 2006] or y-calculus [Basu and
Kumar, 2006] formulas. The problem of controlling a deterministic DES from spec-
ifications given as an LTL formula is considered as a particular case in [Jiang and
Kumar, 2006] (LTL is a subset of CTL*). Although similar, our approach to control-
ling nondeterministic transition systems can handle information about the stuttering
behavior that arises during the construction of finite quotients. The problem of con-
trolling a finite systems from LTL specifications has also been considered in [Kloetzer
and Belta, 2008b] for deterministic systems and the proposed solution has been ex-
tended to nondeterministic systems in [Kloetzer and Belta, 2008a], but completeness

is guaranteed only for the LTL fragment generated by deterministic Biichi automata.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

1.6 Tools for Synthetic Biology

The framework developed in this dissertation leads to the construction of computa-
tional tools for the analysis of models of synthetic gene networks from temporal logic
specifications. Therefore, it can be seen in the context of the many other software
tools developed for the field of synthetic biology (http://sbml.org/ currently lists
188 tools). One class of tools is based on the analysis and manipulation of sequence
information, including DNA [Cai et al., 2007, Villalobos et al., 2006], RNA [Zuker,
2003], and protein [Fiser et al., 2000]. While not directly related to the methods
developed as part of this work, where the focus is on the analysis and design of
mathematical models, such tools can be used to predict model parameters. Some
examples include tools for predicting protein degradation rates [Gasteiger et al.,
2005] and rates of translation initiation [Salis et al., 2009] and elongation [Zhang
and Ignatova, 2009] from sequence information.

A number of design tools with various functionality have also recently been de-
veloped to facilitate the effort of designing synthetic gene networks, by allowing the
user to work with a set of standardized parts (promoters, ribosome binding sites,
coding sequences, terminators). In general, such tools provide a graphical interface,
where separate parts can be obtained from a database, linked together into de-
vices, and translated into DNA sequence. Examples include BioJade [Goler, 2004],
TinkerCell [Chandran et al., 2009], BioTapestry [Longabaugh et al., 2005], CellDe-
signer [Funahashi et al., 2003], and BioNetCAD |[Rialle et al., 2010]. In some cases,
such tools allow mathematical models (generally, in the form of ODEs) to be ob-
tained once a device has been constructed in silico. Then, trajectories of this model
can be simulated using built-in or external, deterministic or stochastic algorithms.
While this provides a way to analyze and validate a design, simulation alone does

not lead to correctness guarantees and exhaustively simulating larger dimensional

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

systems is infeasible. In addition, model parameters are usually not available and
must be supplied by the user.

The BioBricks standard [Knight, 2003] and the registry of standard biological
parts [Peccoud et al., 2008] were developed in an effort to introduce a modular
design approach to synthetic biology. In a similar effort, the computational com-
munity has developed standards for specifying biological models [Le Novere et al.,
2005] and model description languages including the SBML [Hucka et al., 2003] and
CellML [Hedley et al., 2001] formats. This standardization has in turn led to the
development of online repositories, collecting models of biological parts and systems.
Currently, the BioModels Database [Le Novere et al., 2006] lists 249 curated and 224
non-curated models in both SMBL and CellML formats and provides tools for the
conversion between the two formats. The models can be simulated online through the
JWS Online tool [Olivier and Snoep, 2004]. The CellML Model Repository [Lloyd
et al., 2008, Cooling et al., 2010] lists about 480 models and model parts and provides
a set of visualization, annotation, simulation, and validation® tools. Such databases
are related to this project because PWA systems can be used as an approximation
of other models, including the most commonly used ODE formalism, and therefore,
available models can be recast into our framework and analyzed using the richer,
temporal logic specification language it provides. In our case study, we use the idea
of constructing device models from available information about the parts they are
composed of. While this is related to an approach taken in [Rodrigo et al., 2007],
here we specifically construct PWA models that can be analyzed formally in our
framework.

Tools implementing more formal approaches to the verification and tuning of bio-

logical devices are also available. The Biochemical Abstract Machine (BioCham)

lhere, models are validated in terms of well-posedness and not based on the satisfaction of a
functional specification as in our approach.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

[Fages et al., 2004] uses a rule-based modeling formalism compatible with SBML
and includes several simulators for such system. It allows properties to be specified
as temporal logic formulas and can validate the models or search for parameters
based on the specifications. Simpathica/XSSYS [Antoniotti et al., 2003] can con-
struct models that can be analyzed formally from observed traces. It can gener-
ate ODE representations and includes a temporal logic analysis tool with a “Natu-
ral Language Interrogation” interface, for specification formulation. The Genetic
Network Analyzer (GNA) [de Jong et al., 2003a] constructs qualitative models of ge-
netic regulatory networks as piecewise-linear differential equations (PLDEs), which
can be specified using inequality constraints, rather than exact numerical values.
A finite transition system can be generated from such information and simulated
or analyzed using temporal logic specifications. RoVerGeNe [Batt et al., 2007b] uses
piecewise-multiaffine differential equation models of synthetic gene networks and can
test whether a temporal logic specification is satisfied over entire ranges of parame-

ters. In addition, it can search for parameter sets for which a given property holds.

1.7 Contribution of the dissertation

The biggest theoretical contribution of this dissertation is to show that for discrete
time piecewise affine (PWA) systems, a class of infinite hybrid systems, finite abstrac-
tions can be constructed and refined using computationally efficient procedures. This
expands the known classes of hybrid systems for which such results exist (see Sec-
tion 1.4). The computability of finite quotients leads to the development of methods
for analysis, parameter synthesis and control of PWA systems from temporal logic
specifications. In terms of applications, this allows us to develop a framework where
properties of synthetic gene networks are captured formally, using rich specifications

resembling natural language, and system models can be automatically analyzed or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

tuned.

Our computability results allow us to extend efficient formal verification methods,
developed for finite transition systems to the class of discrete time PWA systems.
Those results are quite general for two main reasons. First, PWA systems can ap-
proximate nonlinear dynamics with arbitrary accuracy [Lin and Unbehauen, 1992
and our approach can be used for deciding whether an arbitrarily fine approximation
of a general nonlinear system satisfies a temporal logic formula. Second, as discussed
in Section 1.1, PWA systems are equivalent with several other classes of hybrid sys-
tems [Heemels et al., 2001] and the results we establish can be extended to those
equivalent classes.

We show that for discrete time PWA systems, simulation quotients can be con-
structed efficiently using polyhedral operations only [Yordanov et al., 2007]. In addi-
tion, we show that quotients can be constructed efficiently, even when the parameters
of the system are uncertain [Yordanov and Belta, 2008a]. For cases when only addi-
tive noise is considered, this results in the computation of exact quotients and, when
all system parameters are uncertain, (conservative) over-approximation quotients are
constructed. Our results on the construction of finite quotients of PWA systems are
presented in Chapter 3.

We show that for PWA systems, all steps of the classical “bisimulation algorithm”
[Bouajjani et al., 1991], a procedure for the construction of the coarsest bisimulation
relation, are computable using polyhedral operations [Yordanov et al., 2007], even
when there is additive noise in the system [Yordanov and Belta, 2008a]. We develop
methods for the construction of abstractions, coarser than bisimulation, that can be
used equivalently instead of the original (infinite) system to decide the satisfaction of
a specification [Yordanov et al., 2010]. By combining iterative refinement and model

checking, we are able to develop efficient computational procedures for the analysis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

of PWA systems from temporal logic specifications [Yordanov and Belta, 2010]. Our
results on the analysis of PWA systems are presented in Chapter 4.

We use a counterexample guided procedure to synthesize parameters for PWA
systems. Due to the use of abstractions, our approach is conservative. Unlike other
approaches reviewed in Section 1.5, we construct a search tree which guarantees the
completeness of the finite problem (finding a subset of transitions for a finite system,
such that a temporal logic formula is satisfied) [Yordanov and Belta, 2008b]. In
addition, we show that by restricting parameters of the system to appropriate subsets,
bisimulation quotients can be constructed directly. Our results on the synthesis of
parameters of PWA syétems are presented in Chapter 5.

By constructing finite abstractions, we develop symbolic control strategies for
PWA systems and use LTL formulas as specifications. Compared to other methods
for control of PWA systems reviewed in Section 1.5, this significantly extends the
expressivity and, due to the resemblance of LTL to natural language, allows more
intuitive specifications to be used. In addition, by generating the control strategy
on the abstract (symbolic) model instead of the concrete one, we can guarantee its
robustness in the sense that bounded state measurement errors or noise in the applied
input do not affect its correctness (i.e. the satisfaction of the specification is still
guaranteed).

We reduce the problem of controlling an infinite PWA system to the control of
finite transition system through the construction of finite abstractions. Our initial
solution [Yordanov aﬁd Belta, 2009] was based on previous results from [Kloetzer
and Belta, 2008a], where completeness was guaranteed only for the LTL fragment
generated by deterministic Biichi automata. As part of this dissertation, we develop
a general and fully automatic framework for controlling finite nondeterministic tran-

sition systems from specifications given as arbitrary LTL formulas, where the com-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

pleteness of the solution is guaranteed [Tamov4 et al., 2010]. This extends the results
from [Kloetzer and Belta, 2008a] and increases the expressivity of the specification
language significantly. By dealing with the stuttering behavior inherent in the finite
abstraction, we also reduce the conservativeness of the approach from [Yordanov and
Belta, 2009]. By seamlessly combining the abstraction and control procedures into
a computational framework, we allow for fully automatic generation of robust PWA
feedback control strategies from rich, high-level LTL specifications. Our results on
the control of PWA systems are presented in Chapter 6.

The tools developed as part of this dissertation (CONPAS, FAPAS, and PARSY-
PAS, available at http://hyness.bu.edu/Software) offer several advantages over
the previously available ones reviewed in Section 1.6. Our framework allows high level
specifications to be expressed as rich temporal logic formulas. We use PWA systems
as a modeling formalism which, as already discussed, is more general than PLDEs
and rule-based models. Although piecewise multi-affine systems are more general
than PWA systems, formal analysis is restricted only to cases when the state space
partitioning is hyper-rectangular [Belta and Habets, 2004]. While initial state par-
titions for genetic networks generally satisfy this requirement (the partition is given
by thresholds in the concentrations of the species), specifications given over linear
predicates involving ratios of species or partition refinement destroy that structure.

By combining refinement, analysis, parameter synthesis, and control procedures
we are able to develop an unified framework for studying complex PWA models from
rich temporal logic specifications. This leads to the development of tools that can
automatically analyze realistic models of synthetic gene networks from high level
specifications. In Chapter 7, we suggest one possible application of our analysis
methods and study a number of synthetic gene networks constructed from a set of

available parts. Such approaches can be used to automatically explore large design

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

spaces and select only a few candidate devices to be implemented and tested fur-
ther. Perhaps, our tools can find their place in a unified software framework such
as SBW [Bergmann and Sauro, 2006] or CLOTHO [Densmore et al., 2009], where het-
erogeneous applications and online repositories exchange information, and analysis
results can be propagated all the way down to lab management systems for automatic

device construction through liquid handling robots.

1.8 Organization of the dissertation

The remainder of the dissertation is organized as follows. In Chapter 2, we review
some mathematical preliminaries used throughout this dissertation. In Chapter 3,
we embed PWA systems as infinite transition systems and discuss the construction
of finite quotients. In Chapter 4, we develop a procedure for the analysis of infinite
transition systems, such as the embeddings of PWA systems. In Chapter 5, we dis-
cuss a procedure for the synthesis of parameters for PWA systems, resulting in the
satisfaction of a specification or the construction of bisimulation quotients. In Chap-
ter 6, we extend our methods to a control framework and discuss the construction
of control abstractions and the computation of control strategies for finite, nonde-
terministic transition systems. In Chapter 7, we present results from the application
of our analysis procedure to a synthetic biology. problem, where bistable and oscil-
lating systems are designed. Concluding remarks and directions of future work are

presented in Chapter 8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Mathematical Preliminaries

In this chapter we outline some mathematical preliminaries that are used throughout

the rest of this dissertation.

2.1 Polytopes

Given a set C, we use |C| to denote the cardinality (i.e. number of elements) of C.
We use 2¢ to denote the powerset (i.e. set of all subsets) of C. Let N € N and

consider the N - dimensional Euclidean space R .

Definition 1 (Convex Set). A set C C RY is convex if the line segment between
any two points in C lies in C. In other words, for all z1,2, € C and 0 < X\ < 1 we
have Az + (1 — Mg € C.

Definition 2 (Convex Combination). A point x = Y1 | \iz;, where 3.7 A = 1

and A; 2 0 for alli=1,...,n is a convex combination of points z, . .., z,.
Similarly, a point x = Y7, Az;, where Y A\, = 1 is an affine combina-
tion of points z1,...,z,. Points zi,...,z, are called affinely independent if there

does not exist an 1 < ¢ < n such that point z; is an affine combination of points
L1y s Ti—1,Ti41y -+ - Ty

Definition 3 (Convex Hull). The convex hull of a set C, denoted as hull(C), is the

set of all convex combinations from points in C:

hull(C)={z e RY |z = Xz, i >0, 5;€C,i=1,...,n, > a=1}

1=1 =1

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

The convex hull of a set C is the smallest convex set containing C. A hyperplane
is a set of the form {hTz = k}, where h € RV, h # 0 and k € R. A hyperplane

divides R¥ into two half-spaces.

Definition 4 (Half-space). A closed half-space is a set of the form {hTx < k}, where
heRY h#0and k € R.

A supporting hyperplane of a set C is a hyperplane {hTz = k}, such that C is
entirely contained in one of the two closed half-spaces defined by the hyperplane and

C has at least one point on the hyperplane.

Definition 5 (Polytope). A closed full dimensional polytope X C RY is defined as
the convex hull of at least N + 1 affinely independent points in RV .

The set of points vy, ..., v, € RY whose convex hull gives X and with the property
that for all 4 = 1,...,n, point v; is not contained in the convex hull of
U1, .3 Vi1, Vitl, - - -, Up 18 called the set of vertices of X' and is denoted by V(X). A

polytope is completely described by its set of vertices:
& = hull(vy, ..., v,), (2.1)

where V(X') = {v1,...,v,}. Alternatively, a polytope X can be described as the
intersection of at least N + 1 closed half spaces. In other words, there exists a
n>N+1and h; e RV k; €R,i=1,...,n such that
n
X =z eR"|hfz < k;}. (2.2)
i=1
Forms (2.1) and (2.2) are referred to as the V- and H- representations of a poly-
tope, respectively. Given a polytope, there exist algorithms for translation between

its V- and H-representations [Motzkin et al., 1953, Kvasnica et al., 2004]. A facet

of a polytope X is the intersection of & with one of its supporting hyperplanes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

{hlz = k;} from equation (2.2). A polytope without its facets is called an open
polytope. Given an open polytope X', we use cl(X') to denote the closure of X (i.e.

the union of X and its facets).

2.2 Operations on Polytopes

Given polytopes X7, Xy C RY, we define the following operations:

Definition 6 (Set Difference). The set difference of X; and X, is defined as:
XI\X2={33€]RN[$€X1,$¢X2}.
Definition 7 (Minkowski Sum). The Minkowski sum of X, and X, is defined as:
Xy @ X ={z1+z2 €RY |1, € X}, 25 € Xy}

Definition 8 (Minkowski Difference). The Minkowski difference of X; and X, is
defined as:
X 80X, = {1’1 — I9 € RN I T € Xl,xg S XQ}

The Minkowski difference A} © X, can also be computed as the Minkowski sum
Xy ® (—Ay), where (—&;) = {z € RY | —z € A,} is the mirror image of A,
around the origin. Note that our definition of Minkowski difference follows [LaValle,
2006] and is different from the Pontryagin (Minkowski) difference from [Kvasnica,
2008, Grieder, 2004].

Definition 9 (Chebyshev Ball). The Chebyshev ball of a polytope X C RY is the
largest radius ball B,(z.) = {z € RN | ||z — z.||s < 7} such that B, (z.) C X. We
use c(X) to denote the center and r(X) to denote the radius of the Chebyshev ball of
X.

2.3 Affine functions on Polytopes

Definition 10 (Affine function). A function f : RYN — RM is called affine if it can
be written as f(z) = Az +b, A€ RM*N b c RM for all z € RV,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

If X is a full dimensional polytope in RY with set of vertices V(X) = {v1,...,v,}

and f:RY — RM is an affine function, then

f(X) = hull{ f(v1), ..., f(vn)}, (2.3)

i.e., the image of a polytope through an affine function is the convex hull of the
vertex images through the affine function.

In the particular case N = M, if matrix A is nonsingular, then the vertices,
facets, and interior of the polytope map through the affine transformation to the

vertices, facets, and interior of the image of the polytope, respectively. Therefore

f(el(X)) = cl(f(X)) (2.4)

2.4 Transition Systems

Definition 11 (Transition System). A transition system is a tuple T = (Q, —, O, 0),

where
o () is a (possibly infinite) set of states,
e —C () x Q is a transition relation,
e O s a finite set of observations, and

e 0: Q) — O is an observation map.

A transition (z, 1) €— is also denoted by z — z’. Transition system 7 is finite
if its set of states @ is finite and infinite otherwise, deterministic if, for all z € Q,
there exists at most one 2’ € @ such that (z,2') €—, and non-blocking if, for every
state z € @, there exists 2’ € @ such that (z,2") €—. In this work only non-blocking
transition systems are considered.

A trajectory of T starting from state zy € @ is an infinite sequence t = oz, . . .

with the property that z, € @, and (zk,zx+1) €—, for all K > 0. A trajectory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

t = zor1T2... defines a word w = wouwyws. .., where wy, = o(xzx). The set of all
words generated by the set of all trajectories starting at = € @ is called the language
of T originating at = and is denoted by L7(z). A subset X C @ is called a region of
T and the language of 7 originating at X is L7(X) = J,cx £7(2). The language
of T is defined as L£7(Q)), which for simplicity is denoted as £7. For an arbitrary

region X, we define the set of states Pres(X) that reach X in one step as
Prer(X)={z € Q|3 € X, z — 2} (2.5)

Similarly, we define the set of states Post7(X) that can be reached from X in one

step as

Postr(X)={d'€eQ|Iz e X, z — 2} (2.6)

Note that transition system 7 from Definition 11 is autonomous (i.e. it does
not have a set of inputs). In Chapter 6 we will extend this definition further and
consider transition systems with inputs but for the subsequent chapters this definition
is sufficient and leads to simpler notation. In addition, note that in a more general
definition of a transition system, o maps a state z € @ to a set of observations
o(z) € 2° but for the purposes of this work a state can only have a single observation.
As it become clear later this is always the case for the systems we consider and does

not restrict the generality of the developed methods.

2.5 Simulation and Bisimulation Quotients

The observation map o of a transition system 7 = (@, —, O, 0) induces an equiva-
lence relation ~C @ x @) over the set of states Q of 7.

Definition 12 (Observational Equivalence). States z1,z2 € Q are observationally

equivalent (written as x1 ~ x3) if and only if o(z1) = o(x2).

The equivalence relation naturally induces a quotient transition system T /. =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

(Q/~,—~,0,0.). Q/~ is the quotient space (the set of all equivalence classes).
Given an equivalence class X € Q/~, we denote the set of all equivalent states in
that class by con(X) C @, where con stands for concretization map. If X € 29/~ is a
region of 7/, then con(X) = (Jycx con(X) is a region of 7. Since all states z € Q
In an equivalence class X € (/. have the same observation, o~(X) is well defined
and given by o.(X) = o(z),z € con(X). The transition relation — . is defined as
follows: for X,,X; € Q/~, X; —~ X, if and only if there exist z; € con(X,) and

Ty € con(X,) such that £, — x5 It is easy to see that for all X € Q/~,
Lr(con(X)) C L7, (X). (2.7)

The quotient transition system 7 /.. is said to simulate the original system 7.

Definition 13 (Bisimulation). The equivalence relation ~ induced by the observation
map o is a bisimulation of a transition system T = (Q,—,0,0) if, for all states
T1, T2 € Q, if x1 ~ z2 and x1 —), then there exist Ty € Q such that x9 — x5, and
Ty~ Th.

If ~ is a bisimulation, then the quotient transition system 7° /~ 1s called a bisimu-

lation quotient of T, and the transition systems 7" and T/~ are called bisimilar. An

immediate consequence of bisimulation is language equivalence, i.e., for all X € Q/~,
Lr(con(X)) = L1, _(X). (2.8)

Using the Prer() operator defined in Equation (2.5), a characterization of bisim-
ulation can be given as follows: the equivalence relation ~ is a bisimulation if and
only if for all equivalence classes X’ € @/, Prer(con(X')) is either empty or a finite
union of equivalence classes. Equivalently, the bisimulation property (Definition 13)

is violated at X € @/~ if there exists a state X’ € Q/., such that

0 C con(X) N Prer(con(X')) C con(X). (2.9)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

This leads to an iterative procedure for the construction of the coarsest bisimulation
~, known as the “bisimulation algorithm” [Bouajjani et al., 1991, Kanellakis and
Smolka, 1990], which is summarized in Algorithm 1. In order to execute an itera-
tion of the algorithm, one must be able to represent (possibly infinite) state sets,
perform Boolean operations, check emptiness, and compute the predecessor opera-
tion Prer on the representation of the state sets. If the bisimulation Algorithm 1
terminates then 7 /. is a finite bisimulation quotient but, in general, termination
cannot be guaranteed, since an infinite transition system does not always have a

finite bisimulation quotient.

Algorithm 1 ~=BISIMULATION(7): Construct the coarsest bisimulation ~ of 7
1: Initialize ~ with observational equivalence
2: while there exist X, X' € @/ such that § C con(X)N Prer(con(X’)) C con(X)
do
Construct state X such that con(X;) := con(X)) Prer(con(X’));
Construct state X such that con(Xs) := con(X) \ Prer(con(X"));
Q/~ = Q[NAXT X1, Xo}
6: end while
7: return ~;

2.6 Linear Temporal Logic

We use Linear Temporal Logic (LTL) formulas [Clarke et al., 1999, Baier and Katoen,
2008] in order to specify properties for system trajectories. Temporal logic formulas
are constructed using atomic proposition (which, as it will become clear later, will be
the observations of a transition system) and basic temporal and Boolean operators.
We use the standard notation for the Boolean operators (i.e., T (true), — (negation),
A (conjunction)) and the graphical notation for the temporal operators (e.g., O
(“next”), U (“until”)). The O operator is a unary prefix operator and is followed

by a single LTL formula, while U is a binary infix operator. Formally, we define the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

syntax of LTL formulas as follows:

Definition 14 (LTL Syntax). A (propositional) linear temporal logic (LTL) formula

@ over a giwven set of atomic propositions O is recursively defined as

p=T|o||prAd2|=¢| O¢| U, (2.10)

where o € O is an atomic proposition.

Unary operators have a higher precedence than binary ones and — and () bind
equally strong. The temporal operator U takes precedence over — and A and is
right-associative (e.g. ¢1UpoUdgs stands for ¢;U(¢dUgs)).

To obtain the full expressivity of propositional logic, additional operators are

defined as

OV = (g1 A o)
Gr— P2 = PV
$1 = P2 = (1 — h2) A {ppa — &)

In addition, the temporal operators ¢ (“eventually”) and O (“always”) are defined:

Q¢ =TUg
¢ = =09

By combining the various temporal operators, more complicated expressions can be
obtained. For example, we will frequently use the combinations ¢ (“eventually
always”) and ¢ (“always eventually”).

LTL formulas are interpreted over infinite words in a set of observation O, as
those generated by the transition system 7 from Definition 11 (i.e words in the

language L£7). Note that more generally the semantics of LTL formulas can be given

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

over infinite words in the power set of a set of observations 2 [Clarke et al., 1999]
but as we discussed previously, the states of the transition systems we consider can
only have one observation (i.e. Vz € Q,0(z) € O).

Definition 15 (Semantics of LT'L formulas). The satisfaction of formula ¢ over a
set of observations O at position k € N of word w, denoted by wy, = ¢, is defined

recursively as follows:
o WL F T,
e wy F o for some o € O if w, = o,
e wp F ¢ if wp F ¢,
o wy F ¢1V o tf we E 1 or wy F o,
o wi E Q¢ if wpy1 F &,

o wi F 1y if there exist a j > k such that wj E ¢o and for allk < i < j we
have w; F ¢

A word w satisfies an LTL formula ¢, written as w F ¢, if wy E ¢. We denote the
language of infinite words that satisfy formula ¢ by Lys. The transition system T
satisfies formula ¢ from region X C Q, written as T(X) E ¢, if and only if w F ¢
for allw € L7 (X). In other words, T(X) E ¢ if and only if L7(X) C Ly.

In the following, we give an informal interpretation of the satisfaction of some

frequently used LTL formulas.

e (¢ is satisfied at the current step if ¢ is satisfied at the next step.

o U, is satisfied if ¢, is satisfied “until” ¢5 becomes satisfied,

o ¢ is satisfied if ¢ is satisfied at each step (i.e. ¢ is “always” satisfied).
o ¢ is satisfied if —¢ is satisfied at each step (i.e. ¢ is “never” satisfied).

o {o is satisfied if ¢ is satisfied at some future step (i.e. ¢ is “eventually”

satisfied).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

o Q¢ is satisfied if ¢ becomes satisfied at some future step and remains satisfied

for all following steps (i.e. ¢ is satisfied “eventually forever”).

e Formula L1346 is satisfied if ¢ always becomes satisfied at some future step (i.e.

¢ is satisfied “infinitely often”).

2.7 Bichi and Rabin Automata
Definition 16 (Biichi automaton). A (nondeterministic) Biichi automaton is a tuple
B = (Sg, S0, 0, 5, F), where

e Sp is a finite set of states,

e S0p C Sp is the set of initial states,

e O is the input alphabet,

e 05 : S x O — 2% s a nondeterministic transition function, and

e ' C S is the set of accepting (final) states.

A Biichi automaton is deterministic if both SO0g and d5(s,0) are singletons for
all s € Sg and o0 € O. The semantics of a Biichi automaton are defined over infinite
input words in O“. A run of B over a word w = wowiw,... € O¥ is a sequence
p = S08182..., where sg € SOg and spy; € O(sg, wk,) for all £ > 1. Let inf(p)
denote the set of states that appear in the run p infinitely often.

Definition 17 (Biichi acceptance). A run p of B is accepting iof and only if inf(p) N
Fg # 0. In other words, an input word w is accepted by B if and only if there exists
at least one run over w that visits Fg infinitely often.

We denote by Lz the language accepted by B, i.e. the set of all words accepted by
B. An LTL formula ¢ over a set O can always be translated into a Biichi automaton
B, that accepts all and only words satisfying ¢ [Wolper et al., 1983] (i.e. Lg, = Ly).

This translation can be performed using efficient, off-the-shelf software tools such as

LTL2BA [Gastin and Oddoux, 2001].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

Definition 18 (Rabin automaton). 4 (nondeterministic) Rabin automaton is a tuple
R = (Sg, S0%,0, 6z, FR), where

e Sr is a finite set of states,

e SO0 C Sy is the set of initial states,

e O is the input alphabet,

o 0 : S X O — 25% is g transition map, and

e Fr ={(G1,By),...,(Gn, B,)} is the acceptance condition.

A Rabin automaton R is deterministic if both SOz and 6z (s,0) are singletons
for all s € Sk and 0 € O. The semantics of a Rabin automaton are defined over
infinite input words in O¥. A run of R over a word wow ws ... € O¥ is a sequence
p = S08182. .., where sqg € SO0 and sgi1 € dg(sg,0x) for all k > 1. Let inf(p) denote
the set of states that appear in the run p infinitely often.

Definition 19 (Rabin acceptance). A run p is accepting if inf(p)NG; # O Ainf(p)N

B; =0 for somei € {1,...,n}. An input word is accepted by an automaton if some

run over it is accepting.

We denote by Lz the language accepted by R, i.e., the set of all words accepted
by R. Given an LTL formula ¢, one can build a deterministic Rabin automaton
R with 2270 states and 204D pairs in its acceptance condition, such that
Lr = L4 [Vardi and Wolper, 1986, Safra, 1988]. The translation can be done using

off-the-shelf software tools such as LTL2DSTAR [Klein and Baier, 2006].

2.8 Model Checking

Given a finite transition system 7 = (Q, —,0,0) and an LTL formula ¢ over O,
checking whether the words of T satisfy ¢ is called LTL model checking, or simply

model checking. An off-the-shelf model checker, such as SPIN [Holzmann, 1997],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

NusSMV [Cimatti et al., 2002] or DiVinE [Barnat et al., 2009], takes as input a finite
transition system 7 and a formula ¢, and returns the set of states Q4 of 7 at which
the formula is satisfied (i.e., the set for which £7(Qy) C L4). For the non-satisfying
states, a model checker returns a non-satisfying trajectory as a certifying counter-
example.

We use an in-house implementation of LTL model checking [Kloetzer and Belta,
2008b] (denoted by MODEL-CHECK()) in order to separate the translation of a formula
¢ to the accepting Biichi automaton [Gastin and Oddoux, 2001] from the rest of the
computation involved in model checking. This gives us more control over the model
checking process and leads to more efficient implementation of the proposed methods.

Given a region X C @, MODEL-CHECK(7 , X, ¢) = {z € X | T(z) F ¢} is the

subset of X satisfying the formula. Let
X2 ={zeQ|T(z)E ¢} (2.11)

Note that Xgi =MODEL-CHECK(7, @, ¢) and if z & X2 then there exists a word in
L7 (z) that violates ¢. Therefore, X2 is the largest region of 7 satisfying ¢.
If T/ is a quotient of 7', then for any equivalence class S € Q/.. and formula ¢,

we have:

T/ (S)E ¢ = T(con(S)) F ¢ (2.12)

In addition, if ~ is a bisimulation, then
T/ (S)E ¢ T(con(S))E ¢ (2.13)

Properties (2.12) and (2.13) (which follow immediately from (2.7) and (2.8)) allow
one to model check finite quotients and extend the results to the (possibly infinite)

original transition systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Finite Abstractions of PWA systems

In Chapters 4,5, and 6 we develop methods for the analysis, parameter synthesis
and control of piecewise affine (PWA) systems from specifications given as temporal
logic formulas. In this chapter, we establish the foundation for these methods by
developing a framework under which formal specifications of trajectories of PWA
systems can be expressed and studied.

First, in Section 3.1 we provide a formal definition of PWA systems with uncertain
parameters and discuss their semantics. We use the concepts defined in Chapter 2
to formalize the satisfaction of temporal logic formulas by trajectories of a PWA
system by embedding it into a transition system. In Section 3.2, we describe the
computation of a finite quotient of an embedding transition system. We show that for
PWA systems, either exact or over-approximation finite quotients can be computed
through polyhedral operations.

The results presented in this chapter are sufficient to allow the model check-
ing of PWA systems. However, standard model checking techniques can only lead
to positive verification guarantees when all trajectories of the system satisfy the
specification, which is restrictive, especially when uncertain parameter systems are
considered. Therefore, based on the results presented in this chapter, in Chapter
4 we will develop methods for the analysis of PWA systems that can provide more

informative results.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

3.1 PWA Systems with Uncertain Parameters

Let A}, I € L be a set of open polytopes in RY, where L is a finite index set, such
that X, N X, = 0 for all l;,l, € L, |; # ly and X = Uler cl(&1) is a closed full-
dimensional polytope in RY (cl(&;) denotes the closure of set X;). A discrete-time

piecewise affine (PWA) system with polytopic parameter uncertainty is defined as:
Eoapp=Aze+b, 2, € X, le L, k=0,1,2,..., (3.1)

where parameters A and b are uncertain, but known to belong to polytopic uncer-
tainty sets P;/* € RV and PP C RY, respectively. We call = a fized parameter
or a deterministic PWA system if, for all [€ L, both P* and PP are singletons.
The particular case when only the matrix component of the parameters is fixed is of
special interest (z.e. for all [€ L, P/ are singletons). This corresponds to a system
subjected to additive noise only and in Section 3.2 we will show that such additional
constraints can be exploited.

System = evolves along different affine dynamics in different regions of the contin-
uous state space X'. When = is in state z; € A] for some | € L, the next visited state
Zy1 is computed according to the affine map of Equation 3.1, where all parameters
A € P{ and b € P! are possible. It is important to note that we treat the choice of
available parameters as nondeterministic rather than probabilistic.

As it will become clear later, we are interested in studying properties of trajecto-
ries of system (3.1) specified in terms of the polytope index set L from its definition.
Informally, the semantics of system (3.1) can be understood in the following sense:
a trajectory ZoriTs... starting at zo € A&, for some ly € L can be obtained by
arbitrarily selecting parameters A; € ’Pl‘;‘ and b; € Pl’z), applying the affine map of

Equation (3.1) to compute z;, finding {; € L such that z; € A}, and repeating this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

procedure for each subsequent step. A trajectory produces a word lolils . .., where
l; € L is the index of the polytope visited at step 4 (t.e. z; € A,).

In general, it is possible that trajectories of (3.1) leave polytope X'. While we
are not interested in such trajectories, we capture them by defining an additional
observation OQut, and trivial dynamics zxy1 = zx when z, € X (e.g., a trajectory
ToT1L2%3 - . . satisfying zo, 1 € A}y, 2o € &), for some ly,l; € L and 23 & X produces
a word lolpl1Out . . ., where Qut is repeated infinitely). In subsequent sections, we
will provide a formal way to specify and forbid such behavior.

System (3.1) is always nonblocking and therefore all its trajectories are infinite
and produce infinite words. An LTL formula over LU {Out} can then be interpreted
over trajectories of the system (see Section 2.6). We formalize the satisfaction of LTL

formulas by trajectories of (3.1) through an embedding into a transition system.

Definition 20 (Embedding Transition System). The embedding transition system
Tz = (Q=, —=, Oz, 0z) for piecewise affine system = from (8.1) is defined as:

4 QE :RN;

o (z,2') €>z if and only if x € X and x = 2, or there exist | € L such that
T € X, and there exist A; € P, b € PP such that 2’ = Ajz + by,

e Oz = LU{Out},

o oz(z) =l if and only if there exist | € L such that x € X, and o.(z) = Out

otherwise

Note that the embedding transition system 7z has an infinite number of states
and is always non-blocking. Furthermore, if the parameters of the PWA system are

fixed then 7z is deterministic.

Definition 21. Given a subset X C Q=, we say that all trajectories of system =
(Eqnation (3.1)) originating in X satisfy formula ¢ if and only if T=(X) satisfies ¢.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

In subsequent chapters we study the satisfaction of a specification ¢, given as an
LTL formula over LU{Out}, by the embedding transition system 7z. From Definition
21, this is equivalent to the satisfaction of ¢ by trajectories of the piecewise affine
system =. However, it is important to discuss the assumptions, which are implicit
in Definitions 20 and 21 and might seem restrictive. First, we capture only the
reachability of open full dimensional polytopes in the semantics of the embedding.
This is enough for practical purposes, since only sets of measure zero are disregarded,
and it is unreasonable to assume that equality constraints can be detected in real-
world applications. There are two situations in which the boundaries can affect the
semantics of the trajectories non-trivially: (1) when trajectories originate and remain
in such sets for all times, and (2) when trajectories start in open polytopes and then
"vanish” in the boundaries. For both these situations, the system dynamics and the
polytopes need to satisfy special conditions. Second, the specification is given over
the indexes [€ L of the polytopes A} from the system definition. However, arbitrary
linear inequalities can be accommodated simply by refining the polytopic partition.
The resulting PWA system will have some polytopes with identical dynamics. A
region satisfying an inequality can then be represented as the disjunction of the

indexes [€ L of all polytopes satisfying the inequality.

3.2 Finite Quotients of PWA Systems

In Section 2.5 we defined the quotient 7/ = (Q/~,—~,0,0.) of a transition sys-
tem 7. In this section we show that the quotient 7z/. = (Qz/~, —= ~, O=,0=) of
the embedding 7= of PWA system Z, defined in Section 3.1, is finite and computable
through polyhedral operations. We show that if the matrix component of the pa-
rameters of = is fixed, then the quotient can be computed exactly, while otherwise

an over-approximation quotient can be computed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

From the definitions of the observational equivalence relation ~ (Section 2.5),
induced by observation map oz and 7z (Definition 20), the set of states Q=/~, of the
finite quotient 7z/., is simply the set of observations Q=z/~ = O= = L|J{Out} and
the observation map is identity. Given a state | € Q=/~,l # Out,con(l) = X, is a
polytope from the system definition (Eqnuation (3.1)). Although the set con(Out) =
U, A is infinite and cannot be easily represented, its explicit computation is not
required for our methods.

In order to finish the construction of the quotient, we need to compute the set
of transitions —= .. By the definition of quotient transitions —. (Section 2.5) and
the set of reachable states given in Equation (2.6), the transition relation —= . can

be constructed if Postr() is computable. Explicitly, for any two equivalence classes

LU e (Q=z/-\ {Out}), we have:
(I,I') €—>z . if and only if Postz(con(l)) N'con(l') # 0
or equivalently,
(I,I') €—z. if and only if Postr (X)) N Xy # 0 (3.2)

Similarly, given a state | € Q=/~,l # Out, transitions to state Out can be

assigned as:

(I, Out) €— ~. if and only if Postr (X)) € X, (3.3)

and state Out only has a transition to itself (i.e. (Out, Out) €—=).
Given a polytope X for some [€ L, the set Postr. (X)) is convex and can be com-
puted exactly in the particular case when the matrix component of the parameters

of the PWA system (3.1) is fixed, (i.e., A =P/, is a singleton). Explicitly,

Postr (X)) = AX, © P}, (3.4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

where AX] is the image of the polytope &) through matrix A (see Section 2.3) and
“®” stands for Minkowski (set) sum (Definition 7). Therefore, the set of transitions
—z,~ can be computed using polyhedral operations and the finite quotient 7z /.. can
be constructed. The computation for the case when the matrix component of the

parameters of = is fixed is summarized in Algorithm 3.2.

Algorithm 2 7z/. =QUOTIENT(Z) : Compute the finite quotient 7=/ of PWA

system =
1: QE/~ = LU{OUt}
2: Oz = QE/N
3: og .~ Is identity
4: for each | € Q=/. do
5. if A} € X then
6: add transition (I, Out) €—z
7. end if
8: foreach! € Q=/. do
9: if Postr_(X;) N Xy # 0 then
10: add transition (/,') €—z
11: end if
12: end for
13: end for
14: return 7z/. = (Q=/~, —z~, O=,0=)

When the matrix component of the parameters is allowed to vary, given a poly-
tope A}, the set Postr.(&)) is not necessarily convex and, in general, there are no

algorithms capable of its exact computation.

Proposition 1. Given a polytope X;, a convexr over-approrimation of Postr. (X))

can be computed as:
Postr (X)) = hull{Az | A € V(P/),z € V(&))@ P?, (3.5)

where hull() and V() denote the convex hull and set of vertices, respectively (see
Section 2.1).

Proof. Let V(X)) = {v1,...,vgr} and V(P!) = {wi,...,wy}. Let z € X, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

A€ P Thenz = Zle AUy, A = Z%:l Wy, and

M R
Z ﬂmwm Z A Ur = Z Z Mm)\rwmvr
r=1 m=1 r=1

Since fm, A, > 0 and Zn]\f:l/im = Zle A = 1 then pmA, > 0 for any m,r and
Z%Zl Zle tmAr = 1. Therefore

Az € hull{wv,w € V(P),v € V(X)}
and the rest of the proof follows from Definition 7. O

A related treatment of 1 can be found in in [Barmish and Sankaran, 1979,
where it is shown that this over-approximation is the smallest convex set containing
Postr. (X):

Postz () € Postz(X) (3.6)

Although a precise distance between the real set and its over-approximation is hard
to quantify, it has been established through extensive simulation that in general, the
volume of Postz.() is not significantly increased by the approximation.

Using the over-approximation Postr,(X;), instead of the exact Postz (X)) an
over-approximation quotient Tz/.. = (Qz/~,==<, 0,0.) can be constructed. From

Equation (3.6), it follows that for all | € Qz/., we have —, .C =, <, which leads to

Therefore, the over-approximation quotient E simulates the exact quotient 7=/
and the embedding transition system 7=z and can be used instead of 7z/. for the
methods we develop in subsequent chapters but the results become more conservative.
The over-approximation quotient @: can be computed through Algorithm 3.2 by

substituting the Postz_ () operation with its over-approximation Postz() when the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

matrix component of the parameters of = is uncertain.

The results presented in this chapter are sufficient to allow PWA systems to be
model checked using standard tools such as SPIN [Holzmann, 1997], NuSMV [Cimatti
et al., 2002] or DiVinE [Barnat et al., 2009]. Given a PWA system =, the exact finite
quotient 7z /. or the over-approximation finite quotient ?/N can be constructed as
described in Section 3.2. Then, 7=/ or 7=/ can be checked against an LTL formula
¢ over the index set L of =. In addition, the special observation Qut can be used as
an atomic proposition in ¢.

As a simple example, we consider the problem of guaranteeing that region X is
an invariant for all trajectories of a PWA system =. We formulate the specification
¢ = U-0Owut requiring that trajectories of the system never visit the region labeled by
Out. In other words, satisfying trajectories of = will never leave X'. We can model
check the quotient 7z /.. against ¢ using standard tools and if 7=/ .. satisfies ¢ we can
guarantee that all trajectories of = satisfy the specification (the same is true for the
over-approximation quotient ?/N) In subsequent chapters we will use this strategy
to guarantee that trajectories of = do not leave the defined state space of the system.

In is important to note that simply model checking the quotient 7=/ (and es-
pecially the over-approximation ?/:) is restrictive. While the satisfaction of the
formula can be guaranteed for all trajectories of Z when the quotient satisfies the
formula, nothing can be guaranteed if the formula is violated. Since, in general, 7=/
is coarse (it contains few states), positive verification results can be rarely obtained.
In Chapter 4 we extend the standard model checking methods in order to obtain
more informative results and develop an analysis method for PWA systems based on

the construction of finite quotients described in this chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Formal Analysis of PWA systems

In Chapter 3 we defined the satisfaction of LTL formulas by trajectories of PWA
system = through an embedding into an infinite transition system 7z. We showed
that the quotient 7z/. (Section 2.5) is finite and can be computed thorough a pro-
cedure based on polyhedral operations, when the matrix component of the system
parameters was fixed. For an uncertain parameter system, we showed that a finite,
over-approximation quotient ?/N can be computed through polyhedral operations.
The results presented in Chapter 3 were sufficient to allow the model checking of
PWA systems. In this chapter, we use those results to formulate a procedure for
the analysis of PWA systems from specifications given as temporal logic formulas.

Specifically, we consider the following problem:

Problem 1. Given a discrete-time piecewise affine system (3.1) and an LTL formula
¢, find the largest region of initial states, from which all trajectories of the system

satisfy ¢, while always remaining within X .

Unlike approaches that attempt to synthesize parameters for the system from a
temporal logic specification, which will be discussed in Chapter 5, here we assume
that uncertainty is inherent and therefore the parameter ranges cannot be restricted
further. Instead, we attempt to guarantee the satisfaction of a property by selecting
appropriate initial states for the system. Our approach is based on the iterative
model checking [Clarke et al., 1999] and construction of discrete abstractions in the

form of finite transition systems as described in Chapter 3.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

The solution to Problem 1 amounts to the computation of X% (see Equation
(2.11)), where ¢/ = ¢ A O-Out. This guarantees that all trajectories originating
there satisty ¢ and always remain within X'. In addition, X% is the largest satisfying
region, since there exist trajectories originating in all states z & X% that either
violate ¢ or leave X.

Since 7z has an infinite number of states, it cannot be analyzed directly but us-
ing results from Chapter 3, we can compute the finite quotient 7z/.. =QUOTIENT(Z)
(Algorithm 3.2) or its over-approximation. In Section 4.1 we discuss the general
problem of finding the largest region X? satisfying LTL formula ¢ for a (possibly
infinite) transition systend 7 under the assumption that the quotient 7/. is com-
putable. We propose algorithms for iterative refinement and model checking, where
the results are valid in general for any transition system. As it will become clear
later, our approach is conservative, in the sense that, we can only “try” to find the
satisfying region Xg but, in general, we can only guarantee to obtain subsets of it.
In Section 4.2 we discuss conditions guaranteeing that an exact solution is obtained
and propose additional optimizations based on the construction of formula-equivalent
finite quotients. The implementation of the model checking and refinement proce-
dures developed in this chapter for 7z are discussed in Sec. 4.3, which provides the
solution to Problem 1.

As mentioned in Chapter 3, when all parameters of PWA system = are fixed
(i.e. P* and PP in Equation (3.1) are singletons for all [€ L) the embedding 7z is
deterministic. Motivated by this, we highlight additional efficiency improvements to

our methods when the transition system being analyzed is infinite but deterministic.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49
4.1 Formal Analysis of Infinite Transition Systems

The solution to Problem 1 amounts to the computation of the largest region of
T= satisfying an LTL formula ¢. However, the embedding transition system T,
(Definition 20) is infinite and therefore the computation cannot be performed directly.

In this section, we consider the following problem:

Problem 2. Given an infinite transition system T (Definition 11) and an LTL
formula ¢ over its set of observations O, find X2 (Equation (2.11)).

We assume that, given the observational equivalence relation ~ (see Section 2.5),
the finite quotient 7/ is computable (the computation of a finite quotient for T=
was discussed in Chapter 3). Then, X? /. can be computed by model checking and
from Equation (2.12) it follows that con(Xgi /~) is a satisfying region in 7 but, in
general, it is not the largest satisfying region (i.e., con(X2) € X2). If, on the
other hand, ~ is a bisimulation of 7 then from Equation (2.13) it follows that for
any LTL formula ¢

con(Xg,) = X3. (4.1)

The most intuitive solution to Problem 2 would then be to apply the bisimula-
tion algorithm (Algorithm 1 in Section 2.5) and refine ~ to compute the coarsest
bisimulation of 7. Then, by model checking the bisimulation quotient 7 /. the
satisfying region X? /. can be computed and from Equation (2.13), it follows that
con(X? /N) = Xgi is the largest satisfying region of 7. However, such a procedure
would only work for the particular case when 7 admits a finite bisimulation quotient.

Alternatively, the equivalence relation produced at each step of the bisimulation
algorithm 1 can be used to construct finite simulation quotients, which can then be
model checked against an LTL formula. This is the approach we follow in this section

in order to obtain a solution to Problem 2. While the method is conservative, we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

discuss conditions guaranteeing that an exact solution is obtained.

4.1.1 Iterative model checking

Even though the quotient 7 /. cannot always be refined enough to be bisimilar with
T, region X? ;. can be computed at each step of a refinement procedure. Then,
con(Xgi /N) can provide a conservative solution to Problem 2, which can be improved
by additional refinement. If 7/. = (Q/~,>.,0,6.) is the quotient after some

refinement has been performed, we have

LrC Ly CLr. (42)
and
con(Xgi/N) C con(X?/) C X2 (4.3)

A related idea was used in [Chutinan and Krogh, 2001] for verification from formulas
in the universal fragment ACTL of CTL. Such approaches face computational chal-
lenges, due to the possible explosion in the number of states of ’j'/ ~ as refinement
progresses, and therefore minimizing the amount of refinement required to obtain a
solution is critical.

Our methods aim at refining and model checking the quotient only at states
where this can improve the solution (i.e. increase X? /~). Clearly, refinement of any
state of the quotient X € Q/ -, where X € X2 is unnecessary, since all trajectories

T/~

originating there satisfy the formula. Similarly, the set X,;‘}5 can be computed and

refinement of any state X € X ;¢ is also unnecessary, since only trajectories violating
the formula originate there.

In general, it is possible that only some but not all of the trajectories originating

from a particular state X satisfy the formula, in which case X ¢ X:‘f; and X &

[~

X;‘f . Refinement of such states might isolate a subregion containing only satisfying

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o1

trajectories, which can then be included in X2, . Refinement of the quotient at any

T/~

state does not change the satisfaction of the formula at state X, where X € X? y

or X € X;‘;’N. Therefore, once a state has been identified as satisfying the formula
or its negation it is no longer considered for refinement or model checking. More
specifically, for any state of the quotient X € X;i » additional refinement of any other
states can only “shrink” the language from X, which guarantees the satisfaction of
¢ (the same holds for the negation of the formula). Similarly, refining a state X can
only shrink the language produced from states outside X.

Our selective approach limits the explosion in the number of states that have
to be considered as refinement progresses and leads to a procedure that iteratively
refines the quotient ’j'/ ~ and possibly expands X? /. and X;?N at each iteration
(Algorithm 3).

Algorithm 3 con(X?,) = ANALYZE(T, ¢): Find an under-approximation of the
T/~

largest region of an infinite transition system 7 satisfying an LTL formula ¢ (i.e.
con(X%) C X2)

Construct 7/~
Initialize 7/ =T/~

Initialize X% = MODEL-CHECK(T/N, Q/N, o)
Initialize X;_‘f := MODEL-CHECK(T /., @/,)
repeat

X, := {X € Q/|X is large enough, X ¢ X?
for each X € X, do
T/.:= REFINE(T /-, X)

¢
/NaX g X/j-/N}

end for
X — () ¢ ¢
Xr D Q/N\(XT/N UXf/N) . A
Xg/ = Xg/ U MODEL-CHECK (7 /., X,, ®)
X;‘f~ = X,;‘;’~ U MODEL-CHECK (7 /., X,, =)
until X, = 0
return con(X?)

T/

The set X, C @/~, computed in Algorithm 3, contains the states of the quotient

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

where refinement should be targeted in order to improve the solution (i.e. expand
X;? /N). X, contains only states that are “large enough” to undergo refinement (see
Section 4.3 for a description of such a measure for 7;), guaranteeing that the algo-
rithm will terminate if a sufficient number of iterations is performed. Refinement of
any state X ¢ X, will not expand X ; " significantly since X is either satisfying (i.e.
X € X%N), violating (i.e. X € X;‘;l), or small.

In order to implement Algorithm 3, the finite quotient 7 /.. must be computable,
the possibly infinite con(X ? /N) must be represented and a refinement procedure for
T /. that can be applied locally at a state X € @/~ is required. Note that the refine-
ment strategy REFINE(Z /., X) is not yet specified. In the following subsections, we

will propose different refinement strategies that exploit the structure of the system

and discuss the details of their implementations.

4.1.2 Quotient Refinement

T/~ T/.

O Y

< T is deterministic | @ , | T is non-deterministic

&Y

B
Figure 4-1: An example of the application of REFINE(T'/ .., X) to the quotient 7'/..

If T/ is a finite bisimulation quotient, then an exact solution to Problem 2 can
be obtained by applying Algorithm 3. Motivated by this, we formulate a refine-
ment procedure REFINE() (Algorithm 4) inspired by the bisimulation algorithm (see
Section 2.5 and Algorithm 1). Unlike the bisimulation algorithm, which refines the

equivalence relation ~ globally, REFINE(T/ .., X) refines the quotient T'/.. locally at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

a state X € @)/~. This allows us to target refinement to specific states (as in Algo-
rithm 3), while the quotient is updated instead of recomputed every time refinement

is performed.

Algorithm 4 T/.. = REFINE(T/.., X): Refine T/ at state X € Q/~
Initialize X, := {X}
while there exist X, € X, X' € Posty,_(X) such that
0 C con(X,) N Prer(con(X")) C con(X,) do
Construct states X, X5 such that:
con(X;) := con(X,) N Prep(con(X"))
con(Xz) = con(X,) \ Prep(con(X"))
X,« = (X,« \ X’r) U {Xl,XQ}
end while
update =
update 6
return T/. = (Q/, ., 0,0.)

REFINE(T/ ., X) partitions state X in such a way that all resulting subsets of
X satisfy the bisimulation property (i.e. for all subsets of X there does not exist a
state X’ € @)/~ such that Equation (2.9) is satisfied).

From the construction of the quotient 7'/. described in Chapter 3, it follows
that for any states X, X’ € Q/~, con(X) N Prer(con(X’)) # 0 if and only if X' €
Postr; (X) (i.e., if X’ is reachable from X in T'/.). Then, all nonempty intersections
con(X) Nxrexy Prer(con(X')) \ Uxwexr Prer(con(X")), where X! € 2Postr/~(X) and
X" = Posty, (X)\ X', provide a partition of X such that all resulting states satisfy
the bisimulation property. Therefore, applying REFINE(T/, X) results in at most
2lPostr/ (X gubsets.

In the particular case when 7 is deterministic, given states X, X', X” € @/~ such
that X', X" € Postr; (X), we have con(X) N Prer(con(X')) N Prep(con(X")) = 0.
Then, con(X) N Prep(con(X')) of all X' € Posty,_(X) provide a partition of X

satisfying the bisimulation property and applying REFINE(T'/., X) on the quotient of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o4

a deterministic system 7" results in at most | Posty, (X)| subsets. For a deterministic

7T, REFINE(T/ ., X) is more efficient and is summarized in Algorithm 5.

Algorithm 5 7'/ =REFINE(T /.., X): Refine T/, at state X € Q/. for a deter-
ministic 7
initialize @/~ = Q/. \ X
for each state X' such that X —_ X’ do
construct state X, such that con(X,) = con(X) N Prer(con(X"))
add state X, to Q/.
end for
update = .
update 6.
return 7/. = (Q/~,>~,0,56.)

An example of the refinement procedure implemented in REFINE(7 /.., X) (Algo-
rithms 4 and 5) is shown in Figure 4-1. The transitions from state X in the quotient
T/~ (Figure 4-1-B) are defined by Postr, (X) = {X’, X"}. If T is deterministic,
then con(X) N Prer(con(X')) N Prer(con(X")) = 0. In that case, REFINE(T/ -, X)
partitions X into states X, and X, such that con(X;) = con(X) N Prer(con(X"))
and con(X2) = con(X) N Prer(con(X")). Transitions X;>._ X' and Xy, X"
are implicitly induced and the resulting quotient T /~ is shown in Figure 4-1-A.
If 7 is non-deterministic, REFINE(7 /., X) partitions X into states X;, X; and
X3, such that con(X;) = con(X) N Prer(con(X')) \ Prer(con(X")),con(X,) =
con(X)N Prer(con(X"))\ Prer(con(X")) and con(X;) = con(X)N Prer(con(X'))N
Prer(con(X")). Transitions X, X', Xo=>. X", X35, X' and X535, X" are im-
plicitly induced and the resulting quotient 'j'/ ~ is shown in Figure 4-1-C.

When refinement is performed using the Pres() operation, outgoing transitions of
the newly formed states are implicitly induced. Given states X, X’ € @/~ such that
X' € Postyr;.(X), the subset con(X)NPrer(con(X')) always has a transition to state
X' (in fact, this is the only transition possible in the case when T is deterministic).

Additionally, any subset of con(X) \ Prer(con(X')) can never have a transition to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

state X’. In the particular case when state X has a self transition (X —. X),
transitions from subset con(X) N Prer(con(X)) to all subsets of X resulting from
its refinement are possible and must be recomputed (the computation of transitions
between any two states is discussed in Section 4.3). Incoming transitions from all
states X” € Prep,_(X) reaching X to all newly formed states are also updated,
which completes the construction of .. All subsets of a refined state inherit the
observation of the parent and, therefore, 6. is easily updated.

So far, we have discussed a refinement strategy inspired by the bisimulation algo-
rithm and, therefore, relying on the computation of the Prer() operation (see Fig.
4-1 for an example). If Preg() is not computable, any refinement strategy can be
used for the function REFINE in Algorithm 3 with the hope that the smaller regions
produced at each step separate satisfying and violating trajectories. In this case,
when refinement is performed at state X, outgoing transitions from newly formed
states are not implicitly induced and must be recomputed but only target states in

the set Postr, (X) (instead of the entire Q/.) need to be considered.

4.1.3 Conservatism

In general, the method described in this section is conservative and the solution
to Problem 2 returned by Algorithm 3 is an under-approximation. Indeed, when
Algorithm 3 terminates, there could be states left which are “too small” for addi-
tional refinement and have not been assigned as either satisfying the specification or
its negation. In this subsection, we discuss conditions guaranteeing that an exact
solution to Problem 2 was returned by Algorithm 3.

If the refined quotient ’f/ ~, computed during the execution of Algorithm 3 is
a bisimulation quotient, then from Equation (2.8) we can guarantee that an exact

solution to Problem 2 was obtained. We can develop procedures for the efficient

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o6

characterizations of bisimulation.

Proposition 2. The equivalence relation ~ is a bisimulation if the quotient T /.. is

deterministic.

Proof. Assume by contradiction that ~ is not a bisimulation. Then, there exist
X, X"€ Q/~, 21,72 € X, and 2} € X’ such that z; — z and there does not exist
Ty € X' such that z3 — z5. However, since 7 is nonblocking, there exists 24 € @ and
X" € Q/~, X" # X' such that zy — 23, 2§ € X”. In the quotient 7., this induces
transitions X — X’ and X — X", which implies that 7 /. is non-deterministic.
This contradicts the hypothesis, which concludes the proof. .]

Proposition 2 offers a computationally attractive bisimulation test. Instead of
computing the Pre() of each region and checking the intersection with all the other
regions to test bisimulation using the characterization described in Equation 2.9,
Proposition 2 requires only counting the number of outgoing transitions from each
state in the quotient. For a deterministic transition systems, this result becomes

stronger:

Proposition 3. An equivalence relation ~ defined on a deterministic transition sys-

tem T is a bisimulation if and only if the quotient T /.. is deterministic.

Proof. From Proposition 2 it follows that if the quotient is deterministic then the
equivalence relation is a bisimulation. Assume by contradiction that 7 /. is not
deterministic. Then, there exist X, X', X” € @}/ such that X — X’ and X — X".
However, since ~ is a bisimulation, there exists z, 2, 2" € Q,z € X,z' € X', 2" € X"
such that x — 2’ and z — 2”, which implies that T is non-deterministic. This

contradicts the hypothesis, which concludes the proof. O

Through Propositions 2 and 3, we can check if the quotient obtained in Algorithm
3 is a bisimulation quotient and, if so, guarantee that an exact solution to Problem 2
was obtained. However, since states of 7 /. that satisfy the formula or its negation

are not refined further, in general, Algorithm 3 does not lead to the construction of

bisimulation quotients.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

Even when the quotient 7 /. is not a bisimulation, we can guarantee that the
largest region of 7 satisfying an LTL formula ¢ (Problem 2) is obtained if the states
of 7/.. can be partitioned into satisfying the formula and its negation. In other

words,

Xgi/~ U X;‘/”N =Q. = con(Xgi/N) =>.¢3

In Section 4.2 we study further the conditions guaranteeing that an exact so-
lution to Problem 2 is obtained and use this information to introduce additional

optimizations to our method.

4.2 Formula Guided Refinement

In Section 4.1, our approach to Problem 2 involved combining state refinement in-
spired by the bisimulation algorithm, with model checking in an iterative procedure.
At each step, the set con(X:‘ﬁ /N) - X{’; provided an under-approximation of the
solution. This under-approximation could be improved by performing additional it-
erations but the termination of the algorithm with an exact solution could not be
guaranteed. In the following, we consider conditions guaranteeing that Equation
(4.1) holds and therefore an exact solution to Problem 2 can be computed. As al-
ready stated in Section 4.1, bisimulation is one such condition, but as it will become

clear later, it is unnecessarily strong.

4.2.1 ¢-equivalence

Definition 22. Given an (infinite) transition system T and an LTL formula ¢, an
observational equivalence relation ~ is a ¢-equivalence of T if and only if for all

states x1,T9 € QQ such that r, ~ 3,

T(z))FEpeT(x) Eo

We denote a ¢-equivalence relation as ~4 and refer to the quotient 7/ , a8 ¢-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

equivalent quotient. From Equation (2.13) it follows that a bisimulation relation
~ is a ¢-equivalence for all LTL formulas ¢. Bisimulation is a sufficient condition
guaranteeing that Equation (4.1) holds but since we are interested in the analysis of
T for a specific LTL formula ¢ it can be too restrictive.

Proposition 4. Given a transition system T and an LTL formula ¢, Equation (4.1)
15 satisfied if and only if ~ is a ¢-equivalence of T .

Proof. Assume that ~ is a ¢-equivalence. From Definition 22 it follows that Vz € Q
such that 7(z) F ¢,z € con(X),X € T/. we have T/ (X) E ¢. Then, Vz €
Q reX)oze con(Xﬁfi/N) and therefore X2 = con(X$/~). Assume that ~
is not a ¢-equivalence. Then, Jz;,zy, € @ such that 1 ~ x5, T(z1) E ¢ and
T(z2) ¥ ¢. Considering the equivalence class X € @/~ such that z,,z; € con(X)
we have 7/ (X) ¥ ¢. Then z; € X$ but z; ¢ con(X%N) and therefore X2 #
con(Xgi/N). O

Proposition 4 shows that ¢-equivalence is a necessary and sufficient condition for
Equation (4.1). Then, Problem 2 reduces to the computation of con(ng /~¢)’ where
T /~, is a finite, ¢-equivalent quotient for 7. We discuss the computation of formula
equivalent quotients in Section 4.2.2.

An example where a formula equivalent quotient is not a bisimulation quotient
is shown in Figure 4-2. The transition system shown in Figure 4-2-A forms three
equivalence classes under observational equivalence. The resulting finite quotient is
shown in Figure 4-2-B. The finite quotient is clearly not a bisimulation quotient and
the bisimulation property (Equation (2.9)) is violated at state X;. However, the
quotient is ¢-equivalent for LTL formula ¢ = (O(X, V X3) and can be equivalently
used instead of the original system for model checking against the formula.

Our approach described in Section 4.1 involved the iterative model checking and
refinement of simulation quotients of an infinite transition system. By model checking

with both an LTL formula and its negation we were able to target refinement to the

specific set of states from which some but not all runs satisfied the formula. Under

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

Figure 4-2: Formula equivalent quotient (B) of transition system (A).

some special conditions discussed in Section 4.1, the solution returned by Algorithm
3 can be exact rather than an under-approximation, in which case a formula for-
mula equivalent quotients had been constructed. However, a large number of model
checking and refinement steps was required to achieve this. The approach described
in this section aims directly at the construction of formula equivalent quotients and

is more efficient.

4.2.2 Constructing ¢-equivalent quotients

In this section we develop an algorithm for the computation of ¢-equivalent quotients
of (possibly infinite) transitions systems, leveraging ideas from the bisimulation al-
gorithm (Algorithm 1) and automata-based model checking. We assume that given
a deterministic transition system 7T and the observational equivalence relation ~,
the finite quotient 7'/ is computable (in Chapter 3 we showed that this is always
the case for 7z). For the sake of presentation, we also assume that LTL formula ¢
can be translated into a deterministic Biichi automaton By. In general, there exist
LTL formulas that can only be translated to non-deterministic Biichi automata and

a nondeterministic Biichi automaton cannot always be determinized [Safra, 1989].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

This restricts the expressivity of the method to a fragment of LTL but, by noting
that any LTL formula can be translated into a language-equivalent deterministic
Rabin automaton (see Section 2.7), our solution can be adapted to allow full LTL
expressivity. We will describe a method based on the use of deterministic Rabin
automata in Chapter 6.

Since the computation of ¢-equivalent quotients is guided by formula ¢, it is
most natural to perform the computation in the product automata P = 7/. ® B,
(Definition 23), where both the structure of the system (7 /.) and the specification

(By) is captured.

Definition 23. The product automaton P = 7 /.. ® By of a finite transition system
T/~ =(Q/~,—~,0,0.) and a Bichi automaton B, = (Sg, SO0, O, 0p,, F) accept-
ing the language Ly for some LTL formula ¢ is defined as P = (Sp, Spo,dp, Fp),
where

e Sp =)/ x Sg is the set of states,

o Spo=Q/~ x S0p is the set of initial states,

e Op 1is the transition function, where for a (X,s) € Sp,
6p((X,s)) = {(X',s") € Sp | X —~ X' and &' = dp,(s,0(X))},

e F'p=Q/. X Fg is the set of accepting states.

The product automaton is a nondeterministic Biichi automaton with input al-
phabet containing only one element, which is therefore omitted. An accepting run
rp = (X1,51)(X2,82) ... in P can be projected into a run r7;_ = X1X,... of T/,
such that o(X7)o(Xs) ... is accepted by By [Vardi and Wolper, 1986] and therefore
satisfies ¢. Let us denote by a: Sp — @/ ~, a(X, s) = X, the projection of states of
product automaton P to the states of 7 /..

The set X?/N can be computed as the projection a(Sy N Spy) C @/~ where
Sy C Sp is the set of states in P from which all runs are accepting (see Section

2.6). Sy can be efficiently computed following the method described in [Kloetzer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

and Belta, 2008a]. Specifically, a subset Fy C F of accepting states, from which
infinitely many revisits to Fp can be guaranteed is first identified. Sy is then a set
of states from which a visit to Fy can be guaranteed in zero or more steps.

We can also easily identify a set of states Sy C Sp of P from which no runs are
accepting. The projection a(Sy N Spg) C @/~ corresponds to X;‘f~ (i.e. the largest
set of states of 7 /. from which no runs satisfy ¢).

Let S; € Sp, S = Sp \ (Sy U Sy) be the set of states from which some but not
all runs are accepting in P. The projection a/(S7 N Spy) C @/~ corresponds to states
of T /. where both runs satisfying ¢ and —¢ originate. If transition system 7 is

deterministic, the ¢-equivalence property (Definition 22) is violated at those states.

Proposition 5. The equivalence relation ~ is a ¢- equivalence of a deterministic
transition system T if and only if (S» N Spg) = . Then, S; = () quarantees that ~

15 a ¢-equivalence.

Proof. Let (S N Spo) # 0,(X,s) € (S2 N Spp). Then X = a((X,s)) is a state of
T/~ such that 3z1,z9 € con(X), T (x1) F ¢, T (z2) F —¢ and therefore ~ is not a
¢-equivalence. Let (S? N Spg) = 0. Then VX € @/ we have Vz € con(X), 7T (z) F ¢
or Vz € con(X),T(x) E —¢ and therefore ~ is a ¢-equivalence. O

In general, the set S> is nonempty but can be made empty if accepting and
non-accepting runs from each state (X,s) € S, are separated through refinement.
Following from Proposition 5 and the discussion presented in Section 4.1 this provides
a solution to Problem 2. Since the structure of P is completely determined by By
and 7 /. and B, is fixed, the only way to refine states in P is through refinement of
T /~. We refine a state (X, s) € S» by applying the procedure REFINE (7 /., a(X, s))
that we described in Section 4.1. Once a state X €)/~ is refined in T/ . the states
and transitions of P must be updated accordingly (see Definition 23) by applying
the UPDATE(P, (X, s)) procedure, resulting in a refined product automata P. If

transition system 7 is nondeterministic, then the equivalence relation ~ can be a ¢-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

equivalence even if S is not empty. In this case, both runs satisfying the formula and
its negation originate in all states z € con(X) of 7T from all states X € a(Sy N Spg)

of 7/. and S, will not be made empty through additional refinement.

Algorithm 6 X?} = FORMULA-GUIDED-REFINEMENT(7, ¢): Compute satisfying

region X ? through formula guided refinement

/
Construct 7'/, such that ~ is observational equivalence
Construct deterministic BA By, such that Lz, = L,
Build product automaton P =T/. ® B,
Initialize T/ = T/, P = P
repeat
Compute Sy and Sy in p
S’z = SP\ (Sy USN)
for all (X,s) € S; do
if X not refined in 7'/.. and X is large enough then
T/.. =REFINE(T/.., X)
end if
if X refined in 7/ then
UPDATE(P, (X, 5))
end if
end for
until P not updated during previous iteration
return X,‘?/N = a(Sy N Spy)

The overall method discussed in this section is summarized in Algorithm 6. Since
the regions of 7" contain, in general, an infinite number of states, the algorithm might
perform an infinite number of refinement steps. As in Algorithm 3, to ensure the
algorithm terminates we refine a state only if it corresponds to a “large enough”
region of 7 (such a measure for 7z is discussed in Section 4.3). As a result, S; might
be nonempty when we force the algorithm to terminate, and we cannot guarantee
an exact solution to Problem 2.

It is important to note that if a state X is refined in 7'/, not every state (X, s)

is necessarily refined in P. There is a one-to-many correspondence between the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

refined product P and the refined quotient T/ ~, and the projection « is of the
type o : Sp — 99/~6. This might lead to a major reduction in the computational
complexity of the solution: the product automaton P after refinement might be
significantly smaller than the product automaton T/ ~® B, which we used for model
checking in the approach from Section 4.1 (Algorithm 3).

The overall complexity of the solution can be further reduced by enforcing a
specific order in Whiéh states of the product are refined. This optimization is based
on the decomposition of the product automaton into maximal strongly connected
components (SCCs). It can be shown that all states from a SCC belong to the
same set Sy, Sy, or S7. In addition, if all states from a SCC belongs to set Sy or
Sy then all states in other SCCs reachable from it must also belong to Sy or Sy,
respectively. Converting the product automaton to a SCC quotient graph provides
two major improvements. First, it allows for a more efficient computation of sets
Sy, Sy, and S.. Second, refinement in the product automaton can be performed

more efficiently in a bottom up manner, while unnecessary refinement is avoided.

4.3 Formal Analysis of PWA Systems

Through the embedding of PWA system = (Equation (3.1)) into an infinite transition
system 7z (Definition 20) discussed in Chapter 3, we reduced Problem 1 to Problem
2. In Section 4.1 we proposed a method for finding the largest region satisfying LTL
formula ¢ for a (possibly infinite) transition system through iterative refinement and
model checking, which provided a conservative solution to Problem 2. In Section
4.2 we discussed conditions guaranteeing that an exact solution is obtained and
proposed additional optimizations based on the construction of formula-equivalent
finite quotients. In this section we discuss the implementation of the algorithms from

Sections 4.1 and 4.2 for Tz=.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

In Chapter 3, we showed that when the matrix component of the parameters
of = was fixed, the quotient X;ZE). I8 finite and computable. Therefore, X;ZE /. can
be used in Algorithms 3 and 6 to provide a solution to Problem 1. When the
matrix component of the parameters of = was uncertain, we showed that a finite,
over-approximation quotient F/N can be computed. Following from Equation 3.7,

¢
XTE /-

- X?E . € Xgie, which allows us to use the over-approximation quotient in
Algorithms 3 and 6 to provide a (more conservative) solution to Problem 1.
Besides the computation of finite quotients, which was discussed in Chapter 3, an
implementation of the REFINE() function (Algorithm 4) is required to complete the
implementations of Algorithms 3 and 6 (note that both algorithms rely on the same
refinement procedure). In order to implement the function REFINE() (Algorithm
4 or 5), given states l;,ly € Q=/~ such that Iy € Postr,_(l1), we need to be able
to construct a state !, such that con(l’) = con(ly) N Prep.(con(ly)). From the
construction of Tz /.. in Chapter 3, for all states [€ Q=/~, con(l) = A&, and therefore
con(l") = con(ly) N Prer_(con(ly)) can be equivalently written as con(l') = &), N
Prer, (X,,). If the matrix component of the parameters is fixed (i.e. A, = P/ is
a singleton for all [€ L) and A; are invertible for all [€ L, this intersection is

computable as

Xy, N Prer.(X,) = X, N AN (X, ©P)),

where & denotes the Minkowski difference (Definition 8). Therefore, REFINE(T,/ ., X)
can be implemented using polyhedral operations. If a state [€ QQ=/. is refined into
states 1, ly, then con(l;) U con(ls) = con(l) and the procedure can be applied itera-
tively to l; and ls.

As already discussed in Section 4.1, if PP, € L are fixed then 7z is deterministic
and refinement can be performed more efficiently using Algorithm 5.

It is important to note that the results presented so far in this section can also

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

be used to demonstrate that the bisimulation algorithm (Algorithm 1) is computable
for PWA systems when the matrix component of their parameter is fixed. This is not
surprising, since our refinement procedure REFINE() was based on the application of
the bisimulation algorithm locally at a particular state of the quotient.

Although a finite over-approximation quotient m can be computed when the
parameters of the system are uncertain, Pres.() might be nonconvex, even when
applied to a convex set. In this case, we use a 2/V-tree inspired refinement approach,
where each state is split along each dimension and transitions are recomputed using
the over-approximation Postr.() in Equation (3.2).

Finally, in order to implement Algorithm 3, we need to be able to decide if a state
is “large enough” to undergo additional refinement. Given a state [, we compute the
radius of the largest sphere inscribed in polytope con(l) and apply the refinement
procedure only if it is larger than a certain predefined limit €. In other words, we
apply the refinement procedure to state [only if 7(X}) > ¢, where r(X}) is the radius
of the Chebyshev ball of &} (Definition 9).

4.4 Complexity

Our method involves model checking of the finite quotient 7=/ at each step of the
iterative procedilre. Even though the worst case complexity of LTL model checking
is exponential in the size of the formula, this upper limit is rarely reached in practice.
We use an in-house model checker, which allows us to model check 7=/ from specific
states only and perform computation (such as the construction of Biichi automata)
only once instead of recomputing at each step.

The construction and refinement of finite quotients used in our approach is based
on polyhedral operations, which also have an exponential upper bound. There-

fore, the applicability of the method depends on controlling the number of states

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

as refinement progresses. When applied to a state X, the refinement procedure
REFINE(7z/~, X) can, in general, produce a maximum of 2* subsets, where k =
|Postr,,.(X)| is the number of states reachable from state X. In the particular case
when the parameters of the PWA system are fixed, only k subsets can be produced.
To limit the explosion in the number of states in the quotient, we only refine states
when this can improve the solution. Even so, due to its inherent complexity, this
method is not suitable for the analysis of systems in high dimensions or when many
iterations are required to find a solution. As expected, the method performs best if
large portions of the state space can be characterized as satisfying the formula or its
negation during earlier iterations.

For the case studies presented in Section 4.5 the computation required under 20
sec for the fixed parameter, two dimensional model (N = 2) model and under 10
min for all the uncertain parameter ones, where the limit on refinement was set to
¢ =1 and € = 5. For a three dimensional system (N = 3) the computation required
under 20 min where ¢ = 5. All computation was performed on a 3.4GHz machine
with 1GB of memory.

It is important to note that some specifications (such as ¢; and ¢, in Section
4.5) can be formulated as invariance and reachability properties and checked using
more efficient tools [Kvasnica et al., 2004, Bemporad et al., 2000, Grieder, 2004].
However, such an approach does not apply to general LTL specifications (such as ¢4

in Section 4.5).

4.5 Implementation and Case Study

The algorithms presented in this chapter were implemented as a software tool for
Formal Analysis of Piecewise Affine Systems FAPAS, which is freely downloadable

at http://hyness.bu.edu/software. The tool is built under MATLAB, and uses

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

Table 4.1: Parameters of the PWA system used as a case study.

region (1) A by

1 [0.82 0.00 0.00 0.67] 16.68 25.55
[0.82 —0.37 0.00 0.67] 19.37 25.55
[0.82 0.00 0.00 067] | [3.08 2555 |
[0.82 0.00 —0.52 0.67] 16.68 43.34
[096 —0.39 —0.55 0.80 | [[14.66 42.97
[0.82 0.00 —0.52 0.67] 3.08 47.65

]

[0.82 0.00 0.00 0.67] 16.68 2.47
[0.82 —0.37 0.00 0.67 25.12 247
[0.82 0.00 0.00 0.67] [3.08 2.47]

O 00| ~J] O] U x| | D

LTL2BA [Gastin and Oddoux, 2001] for the conversion of an LTL formula to a Biichi
automaton and the MPT toolbox [Kvasnica et al., 2004] for polyhedral operations.
To demonstrate the methods proposed in the chapter, we present results from
the analysis of a simple discrete time PWA model. We study a two dimensional
(N = 2) system that has a total of nine rectangular regions X1, ..., Xy labeled by
L = {1,2,...,9}. The parameters for each region for an initial fixed parameter
model (where PlA, 73;’ are singletons A, by, respectively) are given in Table 4.11.
Under the fixed parameters, dynamics 3 and 7 have unique, asymptotically stable
equilibria inside rectangles X3 and A (see Figure 4-3). An interesting problem
is finding the regions of attraction for the two equilibria and exploring how those
regions change when parameter uncertainty is introduced. By exploiting convexity
properties of affine functions on polytopes, it can be easily proved that under the
fixed parameters, X5 and AX; are invariants for dynamics 3 and 7, respectively. From
this, we can immediately conclude that X5 and AX’; are regions of attraction for the two
equilibria. Therefore, our problem reduces to finding maximal regions satisfying LTL

formulas ¢, = ”003” and ¢ = "QO7”. In other words, we want to find maximal

Hor notational simplicity, all parameters are presented as reshaped row vectors

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

sets of initial conditions, from which trajectories will eventually reach regions Xs or
X7 and stay there forever.

To explore how the sizes of the attractor regions change, hyper-rectangular pa-
rameter uncertainty was introduced in the model by allowing each component of the
parameters A; and b, for region [€ L to vary in a range of size specified as a per-
centage of the fixed parameter value and centered around it (parameter components
equal to 0 were also allowed to vary in a small range). Results from the computation
with various levels of uncertainty are compared with the ones obtained under fixed
parameters (Figure 4-4). Because of the rectangular initial partition of the state
space, 2V-trees were used as an efficient splitting strategy for the uncertain parame-
ter case. Our method identifies only an attracting region for the equilibria at X5 for
5% uncertainty. As expected, increasing the level of uncertainty in the parameters
decreases the size of the identified regions of state space (but a region identified at
higher uncertainty is always a subset of the one identified at lower uncertainty).

Even if smaller limit € is used, under parameter uncertainty it is possible that a
subset of the state space is never included in the identified regions- a property re-
sulting from nondeterminism introduced in the embedding transitions system. Even
though complete partitioning of the state space might not be possible, decreasing e
provides further refinement and greater detail of the identified regions (initial iter-
ations attempt to capture large satisfying (or violating) regions, while subsequent

ones expand the solution less but provide greater resolution on its boundaries).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

100

100
N

b 7

ok N

60

50

40

30

20

0 10 20 30 40 50 60 70 80 90 100

(b) Uncertain parameter model

Figure 4-3: Simulated trajectories of the PWA system used as a case study. Initial
conditions are denoted by red squares.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

7

(a) ¢ for fixed parameters

i

(¢) ¢1 under 1% parameter uncertainty

(d) @2 under 1% parameter uncertainty

(e) ¢1 under 5% parameter uncertainty

Figure 4-4: Analysis results.

i : : =
E = e

(f) ¢2 under 5% parameter uncertainty

Regions satisfying the formula are shown in green

(lighter gray), while regions satisfying the negation are shown in red (darker gray).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Parameter Synthesis for PWA systems

To study the satisfaction of LTL formulas by trajectories of PWA system Z, in
Chapter 3 we defined the embedding transition system 7z, which was infinite. We
showed that finite quotients of 7z can be computed through polyhedral operations
and in Chapter 4 we used such quotients to develop an analysis procedure for PWA
systems. We discussed how this procedure can be used to find a region of initial
conditions of =, from which all trajectories are guaranteed to satisfy the specification.
Our procedure was also capable of handling PWA systems, where parameters were
uncertain but restricted to polytopic ranges. We assumed that parameter uncertainty
is inherent in the system and, in order to guarantee satisfaction, trajectories must
satisfy the specification regardless of the (nondeterministic) choice of parameters
from the allowed range.

In this chapter we take a different approach toward PWA systems with uncertain
parameters. The parameters of the system are allowed to vary in predefined polytopic
ranges as before, but in this chapter we assume that those ranges can be restricted
further. In other words, we treat the parameter ranges not as an uncertainty inherent
in the system, but rather as allowed ranges in which the system parameters can be
tuned. Our goal is to find subsets of the allowed parameters for each region, such
that the satisfaction of a specification can be guaranteed. Our approach involves
the construction of discrete abstractions in the form of finite transition systems as

described in Chapter 3.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

We use a counterexample-guided strategy to identify and eliminate parameters
leading to violating trajectories in the system. Unlike counterexample guided re-
finement [Clarke et al., 2003], where violating trajectories of a quotient are checked
against a concrete model and, if spurious, removed by refinement, we use counterex-
amples to remove a set of (possibly spurious) violating transitions from the quotient.
Then, we restrict the parameters of the systems based on the transitions removed
from its quotient.

Before we formulate the main problem considered in this chapter, we make a
small change in the notation used so far, in order to simplify the presentation. In
Chapter 3 we defined the uncertain parameter sets for PWA system = as P/* and P?.
For the discussion in this chapter, it will be helpful to consider a notation with only
a single parameters set for each region. We define the set of parameters P, for each
region [€ L, which is simply a polytope in R&*+¥) that combines the dimensions
of P and PP. The linear functions A : RIV**N) —, RNxN and p: RWVHN) _, RVx1
take the first N2 and the last N components of p € R™**+M) and form a N x N
matrix and N x 1 vector, respectively. The dynamics of the PWA system are then

described by
=z =Ap)zy +b0(p), zr € X, peP,le L, k=0,1,,... (6.1)

We are now ready to formulate the main problem we consider in this chapter:

Problem 3. Given a discrete-time piecewise affine system (3.1) and an LTL formula
@, find sets of parameters 73l¢ C P, for each region | € L and a set of initial states X2,
such that all trajectories of the system originating there satisfy the formula under all
wdentified parameters.

In other words, we are interested in excluding parameters from the allowed sets

P, for each region [€ L, for which the formula is not satisfied. As it will become

clear later, for each region | € L, the solution will be in the form of a union of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

disjoint open polytopes, which are subsets of the allowed polytope P;. In general,
it is possible that for some states, no allowed parameters can be found, such that
the satisfaction of the specification can be guaranteed. Therefore, the overall prob-
lem involves searching for both parameter ranges and initial states from which the
satisfaction of the specification can be guaranteed (Problem 3).

To provide a solution to Problem 3, we first embed PWA system = into the infi-
nite transition system 7z and construct the finite, over-approximation quotient f/N
whose language includes the language of 7z as described in Chapter 3. We then use
model checking to cut transitions from ?/N (see Section 5.1.1) and, correspondingly,
cut sets of parameters from = (see Section 5.1.2), until all its trajectories satisfy the
formula. Alternatively, in Section 5.2, we propose a method for the direct construc-
tion of a bisimulation quotient. In both approaches, our method is conservative, as

it will become clear later.

5.1 Counterexample-guided Parameter Synthesis

In Chapter 3 we showed that an over-approximation quotient ?/N can be con-
structed, and all operations involved are computable. In this section, we use LTL
model checking to “cut” transitions from 7:5/_~ until we obtain a transition system
@:d) satisfying the formula. Once a satisfying transition system is obtained, we
modify the original PWA system = (Equation (5.1)) by removing parameter values
in such a way that the language of the new embedding transition system is included
in the language of —’Z?(P. In other words, ?/N(p becomes a quotient of the modified

embedding which guarantees the satisfaction of the formula by PWA system Z.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

5.1.1 Construction of satisfying quotients

We initialize the satisfying region as the entire set of states =/~ and, using our
LTL model checker described in [Kloetzer and Belta, 2006a], we start by searching
for the shortest run® of ?/N satisfying the negation —¢ of LTL formula ¢. If such a
counterexample is found, then we eliminate it by removing one of its transitions in
—’TET and reiterate the process until we obtain the transition system ?/Nqb satisfying
@, when no more counterexamples can be generated.

In general, several different transitions are taken during the generation of a coun-
terexample and removing any one of them will remove the counterexample from the
language of the quotient. Selecting the best transition to remove at each step is
non-trivial and, in general, it is not clear if removing a particular transition will lead
to a solution (or to the best solution when more than one exists). In order to obtain
more general results, we exhaustively generate all solutions by testing all transitions
taken by a counterexample. This process can be seen as generating a tree, having the
initial finite quotient as its root. Each child node in the tree represents a quotient
that has the same set of states as the parent, but only a subset of its transitions. The
children for each node are generated by removing one different transition, appearing
in the shortest counterexample, from the parent.

When transitions are removed, a state of the quotient might become blocking,
resulting in the appearance of finite words in its language. Since the semantics of
LTL are defined only over infinite words, we make all blocking states unreachable by
removing all their incoming transitions through an iterative procedure. This allows
us to guarantee that blocking states are never reached. We must also guarantee that

the system is not initialized in such blocking state and, therefore, we remove any

! An infinite run can be represented by a finite prefix and suffix, where the suffix is repeated an
infinite number of times. The length of a run is the sum of the lengths of the prefix and suffix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

blocking states from the satisfying set.

A leaf node in the tree represents a quotient for which computation stopped and
no additional counterexamples can be generated. The quotients represented by such
nodes satisfy the LTL formula, since their languages are nonempty (all initial states
are non-blocking), do not contain finite words (no blocking states are reachable), and

have an empty set of counterexamples.

5.1.2 Parameter synthesis

The finite quotient 7z/.. is constructed so that it captures all possible transitions of
the embedding 7z. By Definition 20, transitions are included in the embedding if
and only if appropriate parameters for such a transition are allowed. Therefore, we
can relate the transitions present in the finite quotient to sets of allowed parameters

for the PWA system.

Definition 24. Given two polytopes X and Y in RV, the set of parameters PX*Y
for which the image of X does not have an intersection with Y, is defined as:

PX?PY = {p e RV*M) | A(p)z +b(p) €Y for all z € X} (5.2)

Proposition 6. Let X and Y be polytopes in RN given in V-representation as X =
Conv{vi, ... vn} and H-representation asY = {x e RN | Jz+d; <0, i =1,...,n},

respectively. Then,

pXAY — U{p e RV | T (A(p)v,; +b(p)) +d; > 0, forall j =1, ... ,m}

1==1]

is an under-approzimation of PX7Y (ie., PXAY C pX#Y)

Proof. Let p € UL, {p € R™¥**M | L(A(p)v; + b(p)) +d; > 0, forall j = 1,...,m}
Then there exists an ¢ such that ¢! (A(p)v; + b(p)) +d; > 0 for all j = 1,...,m.
Then, for any z € X, c] (A(p)z + b,) +d; > 0 and therefore A(p)z + b(p) € Y so
p € PXAY, n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

In other words, a conservative under-approximation PX#Y of PX#Y can be ob-
tained as the union of polyhedral sets from the V-representation of X and the H-
representation of Y.

We use the under-approximation from Proposition 6 to find sets of parameters
for each region [€ L, such that, for each node of the tree described in Section 5.1.1,
the corresponding PWA system is simulated by the quotient transition system at
that node. Specifically, for two polytopes X C A} and Y, if the parameters in region
| € L are restricted to the set P, N PX”Y then, by Proposition 6, the transition
T —. y will not appear in the embedding 7z, for any z € X and y € Y. This means
that, in the corresponding quotient, the transition X —z . Y will not exist.

Because of the over-approximation used in the construction of the quotient, a
spurious transition might appear in place of a deleted one ((X,Y) € =z< but
(X,Y) ¢—=.). We prevent this by enforcing that a deleted transition never reap-
pears in the quotient. Additionally, if a quotient refinement procedure is applied,
the structure of the PWA system allows different polytopes to share the same sets
of parameters. Therefore, it is possible that additional transitions are removed from
the quotient besides the target one. To account for this, we reconstruct the quotient
every time parameters are cut. If, during the removal of parameters, a set P; be-
comes empty, then we consider all polytopes from region [€ L as blocking states,
and make them unreachable.

By restricting the parameters as described above, we can ensure that, at every
node of the tree constructed in Section 5.1.1, the PWA system with restricted pa-
rameters is simulated by the quotient transition system at that node. As previously
stated, the leaf nodes of the computation tree contain quotients satisfying the for-
mula and their corresponding PWA systems provide a solution to Problem 3. Our

solution to Problem 3 is summarized in Algorithm 7, which returns the set of all

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

satisfying quotients and their corresponding PWA systems (the leaf nodes of the

computation tree).

Algorithm 7 T,,; =SYNTHESIZE-PARAMETERS(Z): Generate a set of PWA systems
satisfying ¢.

1: Tsat =

2: T=/.=QUOTIENT(Z)

3 Tur ={(2,72/~)}

4: while Tall 7é @ do

5. for each pair (Z/,7") € Ty, do

6: Tall = Tall \ (E/, T')

7: X?, =MODEL-CHECK(7",), ¢)

8

9

X;? =MODEL-CHECK(T", @', ~¢)
: X, =@\ (X% U X7
10: if X, =0 and X2, # 0 then

11: Add (Z/,7") to Tsay

12: else if X, # § then

13: generate the shortest counter-example ¢ € L4 (X,.) for formula ¢
14: for each transition X —'Y of counterexample ¢ do
15: Find A} such that X C AX]

16: Construct =" from E’ by setting P’ = P N PX~Y
17: Reconstruct quotient 7" from ="

18: Ensure no previously removed transitions reappear
19: Make blocking states of 7" unreachable

20: Add (E”, T") to Toy

21: end for

22: end if

23: end for
24: end while
25: return T,

Algorithm 7 is initialized with the pair (£, 7z/..), containing the PWA system and
the finite quotient of its embedding transition system. At each step, a counterexample
is generated and the parameters the PWA system are restricted in order to eliminate
it, as previously described. In order to prevent unnecessary computation, we combine
our method with model checking against both the formula and its negation. If initial

states from which the formula is satisfied are found then all trajectories of the system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

originating there satisfy the formula and restricting the parameters is unnecessary.
If there exist initial states from which the negation of the formula is satisfied, then
there are no satisfying trajectories originating there, so a solution will not be found
by refining the transitions (and corresponding parameters).

Algorithm 7 is guaranteed to terminate, since it exhaustively follows a tree of size
limited by the total number of transitions in the initial quotient. Moreover, given only
the purely discrete problem of modifying a quotient to satisfy a formula by taking
a subset of its transitions (Section 5.1.1), our approach is complete and guaranteed
to return a solution when one exists. In the combined problem of transition and
parameter removal, computation will still terminate but a potential solution might
be missed due to the approximations. If a solution is found, however, it is guaranteed
to be correct.

When it terminates, Algorithm 7 returns a (possibly empty) set T, of satisfying
PWA systems and their finite quotients. Given a pair (2%, 7z4/..) € Ty, the param-
eters of Z% are the satisfying parameters ’Pf’ from Problem 3. The satisfying set of
initial conditions can be obtained as X¢ = con(ng5 /~) (i.e. the concretization of
the set of states satisfying ¢ in 7z), which provides a solution to Problem 3.

Going back to the tree construction from Section 5.1.1, in general, our method
implemented in in Algorithm 7 will produce more than one solution (i.e. |Tsa| > 1).
Selecting the "best” solution is a non-trivial problem, and might depend on the
application. For example, it is possible to introduce additional constraints such
as the requirement that particular transitions are always present in the solution.
Alternatively, the size of the satisfying regions of potential solutions can be compared.
Finally, the total number of transitions of the solutions can be compared, since more
reachable states with more transitions result in a richer language. In the case study

presented at the end of this chapter, we chose the latter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

Both the number of states and transitions in the embedding T,/ - contribute to the
complexity of Algorithm 7. A high dimensional system with many regions of different
dynamics and propositions would be embedded with a high number of states. This,
together with the complexity of the LTL formula affects the time required to perform
model checking on the system. The number of transitions in the original embedding,
on the other hand, depends on the dynamics of the system and determines how many
times model checking must be performed, since the execution of the algorithm follows
a finite tree described in Section 5.1.1. As a result, Algorithm 7 can perform well

even on high dimensional systems, as long as the total number of transitions is low.

5.2 Construction of Bisimulation quotients

In this section we show that if the parameters of PWA system = (Equation (3.1))
are restricted to appropriate subseté, an exact finite bisimulation quotient can be
constructed without extensive iterative computation. Subsequently, satisfiability of
an LTL formula by the original PWA system can be proven through model checking.
Of course, by limiting the sets of parameters, certain transitions might disappear
from the system and, therefore, the richness of its language might be diminished.

Definition 25. Given two polytopes X andY in RY, the set of parameters for which
the image of X is completely included in'Y is defined as:

PX=Y — {p e RV*Y) | A(p)z + b(p) €Y forallze X} (5.3)

Proposition 7. Let X and Y be polytopes in RN given in the V-representation as
X = Conv{vi,...vn} and in the H-representation as Y = {x € RY | Tz + d; <
0, ¢=1,...,n}, respectively. Then

PX=Y = {p e RWVHN) | T (A(p)v; +b(p)) +ds <0,i=1,...,n, j= 1,...,m}

Proof. Let p € PX~Y. Then cI(A(p)x +b(p)) +d; < Oforallz € X,i=1,... n.
Then, p € {p € R¥**M | T (A(p)v; +b(p)) +d; <0, i=1,...,n, j = 1,...,m}.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

Let p € {p € RW*M | T(A(p)v; + b(p)) +di <0, i=1,...,n, j=1,...,m}
Then ¢! (A(p)v; +b(p)) +d; < Oforalli=1,...,.nand j=1,...,m. Letz € X,z =

> i Ajvj.
¢ (A(p)z + b(p)) + d; = cT (A(p) Z Av; + b(p)) + d;

Zm: I A(p)v; + aTb(p) +d—z/\]c v]—i-ZACTb +ZAd

=" X (el (A(p)v; + b(p)) + d)

J=1

Since A; > 0 then p € PX~Y, O

In other words, the polyhedral set of parameters PX—Y can be computed imme-
diately from the V-representation of X and the H-representation of Y.

Proposition 8. If in each location | € L, the parameters of the PWA system (3.1),
are restricted to PiN (U, P*™), then the quotient T,/ is a bisimulation quotient,

and is computable.

Proof. The proof for bisimulation follows immediately from Definitions 13, 20 and
Proposition 7. Transitions of the quotient, are given by (X,Y) €—,. if and only if
X C X and PN PX=Y £, O

5.3 Implementation and Case Study

The algorithms presented in this chapter were implemented as a software tool for
Parameter Synthesis for Piecewise Affine Systems PARSYPAS, which is freely down-
loadable at http://hyness.bu.edu/software. The tool is built under MATLAB,
and uses our in-house LTL model checker described in [Kloetzer and Belta, 2006a],
LTL2BA [Gastin and Oddoux, 2001] for the conversion of an LTL formula to a Biichi
automaton, and the MPT toolbox [Kvasnica et al., 2004] for polyhedral operations.

We illustrate methods proposed in this chapter by analyzing the simple PWA

system discussed in Chapter 4. The initial model is two dimensional (N = 2) and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

100 160
90t oot
80 20}
7ot A3 X5 A 70t A, 2y Y X6
60+ 60|
& 50 & 50
40+ 40}
b 1, % ZA 0l %3 % i1 Zis
20 20
o} 7 1 Py ol 22 %8 1o o
' ¢ ’ % s G2 15
l]l] 16 20 30 40 30 60 70 80 90 100 00 10 20 30 40 50 60 78 30 90 100
% ®
(a) Initial PWA model (b) Refined PWA model with additional re-
gions

Figure 5-1: State partition for the PWA system used as a case study for parameter
synthesis.

has a total of nine rectangular regions X}, ..., Xy labeled by L = {1,2,...,9} (Fig-
ure 5.1(a)). We are interested in analyzing the behavior of the system when it is
initialized with low values for both state variables. Therefore, we refine the initial
partition of the state space in order to include the required initial region &} in Figure
5.1(b). It is important to note that, while the refined partition contains more regions,
some share the same parameter ranges. For example, regions X, Xy, A5, and Aj in
Figure 5.1(b) are all subsets of &} in Figure 5.1(a) and therefore share the same set
of parameters.

We assume hyper-rectangular parameter sets and, by using Proposition 7, we

P*—=% ensuring that

restrict the parameters for each region [€ L to subsets of
X is an invariant of all trajectories of the system. The parameter ranges of the
system for all regions cannot be conveniently represented as text but are available
at http://hyness.bu.edu/software.

First, we apply the method outlined in Section 5.2 in order to modify the parame-

ters of the system and obtain a bisimulation quotient directly. The parameter ranges

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

computed by the algorithm are available at http://hyness.bu.edu/software and
a graphical representation of the resulting bisimulation quotient is shown in Figure
5.2(a). As expected, some transitions of the system are lost when parameters are
restricted to smaller sets. Due to the language equivalence between the bisimulation
quotient and the initial PWA system, the two systems can be used equivalently for
model checking, which could provide an useful analysis tool.

Next, we apply the approach of Section 5.1.2 and find subsets of the parameters
for each region of the system, such that the property ¢ = 1 A $(7 V 8) is satisfied.
In other words, we want to find parameters for the system such that all trajectories
originating in region X; eventually reach region X7 or A5. We use the same initial
PWA model as before. During the execution of Algorithm 8 a number of transitions
are removed from the quotient by removing appropriate sets of parameters of the
system. The quotient corresponding to a solution, obtained as a leaf node in the
computation tree (see Section 5.1.2) is shown in Figure 5.2(b). The set of satisfying
initial states is X7 and the regions of parameters for the PWA system obtained as
a solution to Problem 3 are available at http://hyness.bu.edu/software. It is
easy to see that under the remaining transitions (shown as black arrows in Figure
5.2(b)) all trajectories of the system originating in X must visit either region X7 or

Xz, which guarantees the satisfaction of the specification.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

100

90}

SB2 2 2D

0p "7 N 16
60t |

£ 50 7 /

|¢ y
0 X3 Xﬁ [}1 115
20 f '« N
A) |\
0 {r L 1’/ i \11 1 1 IJ
o b 22 3 40 S8 60 70 80 90 100

X
(a) Bisimulation Quotient

106 F

90}

80

70 .(‘ —Pxn X 16
60+

£ 50 7 L

40t NZ \.

30 ﬁﬁ ﬁ&) Yl s
0

" X //'14 X0 i4
D 1 i .x? A 119 i II"-’
0 1p 20 30 4 50 60 70 8 90 100

(b) Satisfying Simulation Quotient. Only transitions in the set of states
reachable from the initial Xy are shown.

Figure 5-2: Parameter Synthesis Results. Transitions are represented by black ar-
rows. Transitions removed during the execution of the algorithm are shown in red.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Formal Synthesis of Control Strategies for
PWA systems

In Chapters 3, 4, and 5 we considered autonomous PWA systems. We showed that
finite quotients of such systems can be computed and, based on this, developed
methods for analysis and parameter synthesis from temporal logic specifications.
Unlike the systems we discussed in previous chapters, which evolved autonomously,
in this chapter we consider PWA control systems, which can be affected externally
by applying a control signal. Then, it is possible to guarantee the satisfaction of a
specification by trajectories of a PWA control system if an appropriate control signal
is applied.

In this chapter we consider the following problem: given a PWA system with
polytopic control constraints, and a specification in the form of a Linear Temporal
Logic (LTL) formula over linear predicates in its state variables, find a set of initial
states and a feedback control strategy such that all trajectories of the closed loop
system originating in the initial set satisfy the formula (we formalize this problem in
Section 6.2). We assume that the state of the system cannot be measured precisely
and the applied inputs are corrupted by noise. Therefore, we seek control strategies
that are robust both with respect to measured state and applied input. Our approach
consists of two main steps. First, by partitioning the state and input spaces, we

construct a finite abstraction of the PWA system in the form of a control transition

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

system, which extends results presented in Chapter 3 to a control framework. Second,
by leveraging ideas and techniques from LTL model checking [Bianco and de Alfaro,
1995, Courcoubetis and Yannakakis, 1995] and Rabin games [Thomas, 2002], we
develop an algorithm to generate a control strategy for the finite abstraction.

The remainder of this chapter is ‘organized as follows. In Section 6.1 we extend
some of the definitions from Chapter 2 for a control framework. The problem is
formulated in Section 6.2, where we also present an overview of our approach. In
Section 6.3 we define the control transition system and outline an algorithm for its
computation. In Section 6.4, we present an approach for the synthesis of control
strategies on finite transition systems (such as the control transition system) from
temporal logic specifications. In Section 6.5 we use the results from Section 6.3 and
Section 6.4 to formulate a solution to the main problem. In Section 6.6 we discuss
a strategy for reducing the conservatism of the overall method by characterizing the
stuttering behavior inherent in the construction of the control transition system. We
outline the complexity associated with the proposed approach in Section 6.7 and

describe its implementation and results from its application in Section 6.8.

6.1 Preliminaries

Definition 26 (Transition System with Inputs). A nondeterministic transition sys-
tem with inputs is a tuple T = (Q, %, 4,0, 0), where Q and 3 are (possibly infinite)
sets of states and inputs, § : Q X ¥ — 29 is a (nondeterministic) transition map, O

is a set of observations, and o : @ — O is an observation map.

A transition §(¢,0) = @' indicates that, while the system is in state g it can
make a transition to any state ¢’ € @' C @ under input 0. We denote the set of
inputs available at state ¢ € Q by £? = {0 € ¥ | §(¢g,0) # 0}. A transition d(q, o)
is deterministic if |6(q,)| = 1 and the transition system 7 is deterministic if for all

states ¢ € @ and all inputs 0 € 9, §(q,0) is deterministic. Transition system 7 is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

finite if both its set of states () and set of inputs ¥ are finite. 7 is non-blocking if,
for every state ¢ € @, £? # (). In this work, we consider only non-blocking transition
systems.

An input word of the system is defined as an infinite sequence ggo105... € ¥, A
trajectory of 7 produced by input word o¢o105 ... and originating at state go € Q is
an infinite sequence t = goq1 ¢z . . . with the property that ¢, € @, and gx11 € 8(gx, o),
for all kK > 1. We denote the set of all trajectories of 7 originating at q by 7 (q)
(similarly, we use 7(Q') = Uyeq7(¢') to denote the set of all trajectories of T
originating in Q' C Q).

For an arbitrary set of states ' C @) and set of inputs X’ C X, we define the set
of states Post7 (@', L’) that can be reached from @’ in one step by applying an input
in ¥ as

Post7(Q,E)={qe Q|3 €@, o€, ¢ged(d,0)} (6.1)
Definition 27. A (history dependent) control function Q : Q* — X for transition
system T = (Q, %, 6,0, 0) maps a finite, nonempty sequence of states to an input of

T. A control function Q and a set of initial states Qo C @ provide a control strategy
for T.

We denote a control strategy by (Qo, 2), the set of all trajectories of the closed
loop system 7 under the control strategy by 7 (Qq,€2), and the set of all words
produced by the closed loop T as L7(Qo, §2). For any trajectory gogigz - .. € 7 (Qo,)

we have qo € Qo and g1 € 6{(qk, o%), where o, = Q(q1,...,qx), for all k> 1.

6.2 Problem Formulation and Approach

Let X, &), | € L be a set of open polytopes in RY, where L is a finite index set, such
that &y, A, = 0 for all I,lo € L,1) # Iy and cl(X) = U, cl(A), where cl(X))

denotes the closure of A;. A discrete-time piecewise affine (PWA) control system is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

defined as:

—

= L Tyl = Az + Biug + ¢, xp € X, up €U, (62)

where, at each time step k = 1,2,..., 7 € R is the state of the system, wuy is the
input restricted to a polytopic set Y C R™, and A; € RV*N B, € RV*M ¢, ¢ RN
are the system parameters for mode [€ L.

We assume that at each time step & the exact state of the system (z € X;,1 € L)
is unknown but we can observe the current mode /. The semantics of system (6.2)
are given over words in L“. Informally, a trajectory of the system produces a word
by listing the index of the polytope visited at each step (e.g., trajectory z1zoz3. ..
satisfying z1,z2 € A, and z3 € &), for some I1,l; € L will produce word 131115 . . .).
We assume that polytope X is an invariant for all trajectories of the system (in
Section 6.3.2 we will show that polyhedral control constraints guaranteeing this can
be computed). Therefore, only infinite words are produced by the system and such
words can be checked against the satisfaction of an LTL formula over L (see Section
2.6).

We consider the following problem:

Problem 4. Given a PWA system (6.2) and an LTL formula ¢ over L, find a control
strategy, such that all trajectories of the closed loop system satisfy ¢.

In order to complete the formulation of Problem 4, we need to formalize the
definitions of a control strategy for a PWA system (6.2) and satisfaction of LTL
formulas by trajectories of (6.2). As in Chapter 3, we do this through an embedding
into a transition system, for which both LTL satisfaction (Section 2.6) and a control
strategy (Definition 27) are clearly defined. Note that the embedding 7, used in this
chapter is different from the one defined in Chapter 3, since it is defined for a PWA
control system.

Definition 28. (Embedding transition system.) The embedding transition system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

1. = (Qe, Ze, be, Oc, 0c) for system (6.2) is defined as:

i Qe = UleL/Yl)
L Ze :u;

de(z,u) = {2’} if and only if ' € Q. and there existl € L and u € U such that
r € X and £’ = Az + Biu + ¢,

e O, = L,
oe(z) =1 if and only if x € A].

Note that the embedding transition system 7. is always deterministic and non-

blocking but both its set of states). and set of inputs Y, are infinite.

Definition 29. Trajectories of system (6.2) originating in Qo C Q. satisfy formula
¢ if and only if T,(Qo) satisfies ¢.

Problem 4 is an LTL control problem, where we seek a control strategy (Qo, Q) for
the infinite, deterministic transition system 7. In Section 6.4 we provide a solution
to the problem of controlling a finite, nondeterministic transition system from LTL
specifications (Problem 5). Then, the overall approach to Problem 4 involves the
construction of a finite abstraction for 7, (referred to as the control transition system
7.) such that a control strategy generated for 7, can be adapted for 7.

Our approach to Problem 4 is schematically represented in Figure 6-1. We con-
struct 7, through a two step process. In the first step, by using the state equivalence
relation induced by the polytopes from the definition of the PWA system, we con-
struct a quotient 7./, which has finitely many states but an infinite set of inputs.
This part of the procedure is similar to the methods we used in previous chapters,
with the exception that transition systems with inputs are considered. We then de-
fine an equivalence relation in the control space, which leads to the construction of
the finite control transition system 7. This control transition system is then synchro-

nized with a deterministic Rabin automaton R that accepts the language satisfying

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

Input: PWA System

Input: LTL Formula »1;‘”‘1‘

Embedding

Embedding Transition System 1,

State abstraction ti2dstar

Quotient Transition System T./..

Input abstraction
4

Contro! Transition System T, Deterministic Rabin Automaton 7%

Product Automaton P |«

Game solution

y

Control strategy for 1.

Adaptation for PWA

A

Output: Control strategy for PWA

Figure 6-1: Illustration of our approach to formal synthesis of control strategies for
PWA systems (Problem 4).

the formula to produce a product automaton P. A game-theoretic approach is then
used to generate a memoryless control strategy for P, which is then translated to a
(history dependent) control strategy for 7.. The solution to Problem 4 is obtained
by implementing the control strategy for T, as a feedback control automaton for
the initial PWA system that reads the index of the region visited at each step and
supplies the next input. As it will become clear later, our approach is robust in the
sense that the closed loop system is guaranteed to satisfy the specification even when
state measurements and applied inputs are perturbed.

The stuttering behavior (self transitions at a state of 7, that can be taken in-
finitely in 7. but do not correspond to real trajectories of 7;), which is also related

to the well known Zeno behavior, was a source of conservativeness in the abstraction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

procedure developed in Chapter 3. In this chapter, we explicitly characterize and

deal with such behavior in order to reduce the conservativeness of our methods.

6.3 Control Transition System

In this section, we define the control transition system 7, = (Q., X, I, O, o.) for
the embedding 7; = (Qe, X¢, d¢, Oe, 0.) (Definition 28) in Section 6.3.1 and present
an algorithm for its computation in Section 6.3.2. In Section 6.5, we will show how

7. is used to solve Problem 4.

6.3.1 Construction

As in Chapter 3, the observation map o, of 7. induces an observational equivalence
relation ~ over the set of states .. However, the systems we considered before were
autonomous and here, the quotient transition system 7,/ = (Q¢/~, Ze, .~ Oe, 0c ~)
induced by ~ has an infinite set of inputs ¥, = ¥, which is preserved from 7,. The
set of transitions of 7./~ are defined as I’ € J..(l,u) if and only if there exist
u€ X, ze X and ' € X' such that 2’ = d.(x,u). Note that 7./ is, in general
nondeterministic, even though 7 is deterministic. Indeed, for a state of the quotient
| € Q./~ it is possible that different states z,z’ € &} have transitions in 7, to states
from different equivalence classes under the same input. The set of observations
O, = L of 7./ .. is preserved from 7, and the observation map o.~ is identity.

The transition map 6, .. can be related to the transitions of 7, by using the Post

operator defined in Equation (2.6):
Se~(l,u) = {l' € Qc/~ | Postr, (X, {u}) N Xy # 0}, (6.3)

for all | € Q./~ and u € X.. For each state | € Q./~, we define an equivalence

relation =~ over the set of inputs X as (uy, ug) €~ iff de(l,u1) = de(l, uz). In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

other words, inputs u; and us are equivalent at state [if they produce the same set
of transitions in 7./.. Let UlLl, l € L, L' € 29/~ denote the equivalence classes of

Y. in the partition induced by the equivalence relation =~;:
U ={ue T, | de(lu) =L} (6.4)

Let c(UF) be an input in UF such that Yu € X,,d(c(UF),u) < ¢ = u € UF
where d(u,u') denotes the distance between inputs u,u' € 3, and € is a predefined
parameter specifying the robustness of the control strategy. As it will become clear
in Section 6.3.2, d(u,u’) is the Euclidian distance in R and ¢(U}') can be computed
as the center of a sphere inscribed in UL

Initially, the states of T, are the observations of T, (i.e., Q. = L). The set of
inputs available at a state [€ L is % = {c(UF) | I’ € 29¢/~} and the transition
map is 0.(l,c(UF)) = L'. In general, it is possible that at a given state [, X!\ =), in
which case state [is blocking. As it will become clear in Section 6.3.2, such states
are removed from the system in a recursive procedure together with their incoming
transitions and therefore @), C L. The set of observations and observation map of 7,
are preserved from 7./., which completes the construction of the control transition
system.

Following from the construction described so far, the control transition system 7.
is a finite transition system. In Section 6.5, we will show that a control strategy for
7. can be adapted as a robust control strategy (with respect to knowledge of exact
state and applied input) for the infinite 7,. This will allow us to use 7. as part of

our solution to Problem 4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

6.3.2 Computation

Initially, the states of the control transition system 7. are simply the labels L of
the polytopes from the definition of the PWA system (Equation (6.2)). To complete
its construction, we need to be able to compute the set of inputs ! available at
each state [€). and the transition map ., while eliminating the states that are
unreachable in order to guarantee that 7, remains non-blocking.

Given a polytope &; from the definition of the PWA system (Equation (6.2)), let
¥ = {u € %, | Postr, (A, u) C X} (6.5)

be the set of all inputs guaranteeing that all states from A} transit inside X (i.e.,
¥ is the set of all inputs allowed at [). In other words, regardless which u € %!
and z € A} are selected, x will transit inside X under u in 7,. Then, in order to
guarantee that A is an invariant for all trajectories of the system (an assumption
that we made in the formulation of Problem 4) it is sufficient to restrict the set of

inputs ! available at each state [€ Q. to &\ C L.

Proposition 9. Let X = {z € RY | Hxz < K} be the H-representation of the
polytope X from the definition of the PWA system (6.2). Then, ¥ is a polytope with

the following H-representation:
Y={uclU|Vwe VX)), HBu < K — H(Aw+¢)}, (6.6)

where V(X)) denotes the set of vertices of Aj.

Proof. Note that the set defined in Equation (6.5) can be equivalently written as

Y ={uel|Vr € X, Ax+ Bu+c¢ € X} (6.7)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

Let w € U such that Vz € &}, Ajx + Bju + ¢, € X. Then,

VxEXl,H(Al$+BlU+Cl)<K = ViIZE/Yl,HBlu<K—H(AlI'+Cl)$
= Yo e V(Xl),HBlu < K — H(Al’U'l'Cl)

Let u € U such that Vv € V(X}), HBju < K — H(Ajv+¢;). Then, Yo € V(X;), Ajv +
Bu+c¢ € X. Let m = |[V(X)|,z = ¥, \v;, where v; € V(&)),0 < A; < 1 for all
1=1,...,mand X2 A\, = 1. Then,

Aix+Bu+cg=AX2 vi+Bu+c¢ = EMNAvi+Bu+g)eX =
= VeeAX,Az+Bu+cqgeX

O
The set of states reachable from state [in 7./ under the allowed inputs is
Postr, (1,%') = {I' € Qc/~ | Postr,(X, ') N Xy # 0} (6.8)
and can be computed using polyhedral operations, since
Postr, (X, 2 = AX, + B! + . (6.9)

Given a polytope & from the definition of the PWA system (Equation (6.2)) and

an arbitrary polytope X, let
UX=* = {u € X, | Postr. (X, u) N X' # 0} (6.10)

denote the set of all inputs under which 7, can make a transition from a state in &
to a state inside X’. Equivalently, applying any input v € I, u &€ U%~%" guarantees
that 7, will not make a transition inside X', from any state in X;. The following

X!

proposition states that U is a polyhedral set that can be computed from the

V- (vertex) and H- (hyperplane) representations of X; and X"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

Proposition 10. Let H and K be the matrices in the H-representation of the fol-
lowing polytope:
{.’IATERN|3$€.%,AZ$+HA?+C[€X,} (6.11)

Then UM% s a polytope with the following H-representation:
Ub=* ={ycU | HBu < K} (6.12)

Proof. The set defined in Equation (6.11) is a polytope with the following

V-representation:
hull{v' — (Av +¢) | v € V(X), v/ € V(X')} (6.13)

Let 3z € &) such that Aiz + 2 + ¢ € A'. Let m = |V(X))| and x = £, \v;, where
0<A<lforalli=1,...,mand Z;\; = 1. Let n = [V(X')| and 7' = X}_, v},
where 0 < p; < 1forallj=1,...,nand ¥7_,u; = 1. Then,

AlEf;l)\ivi +Z4+¢= E?:LU,]"U; = I= E;L:ll,bj?);- — AlZf;l)\,-vi —C =
= N S5 i (V; — (A +a)) = 2 € hull{v — (Av+o)lv € V(AY), o' € V(X')}

Let 2 = X7, 8% vy(v; — (Aws +¢)), where 0 < vy < Lii=1,...,m,j=1,...,n
and X% 3% v = 1. Let Ay = X7 1145 and p; = X7 155, Of course, 0 < A; < 1 for all
i=1,...,m, 0<p;<lforallj=1,...,nand T2\ = B7_ju; = 32,50 v = 1.
Then, for z = X2 \v; and 2’ = X7, ujv; we have Aix + % + ¢, = 2’ and therefore
dz € A} such that Aix + 2 + ¢ € X’. To conclude the proof of Proposition 10, let
H, K be the matrices in the H-representation of the set defined in Equation (6.11)
and note that the set defined in Equation (6.10) can be equivalently written as

U=* ={ueclU |3z € X, Az + Bu+¢ € X'} (6.14)

O

Proposition 11. Given a state | € Q. and a set of states L' € 29, the set UlL/ from
Equation (6.4) can be computed as follows:

Ul / — m UX[-»XI/\ U UX;-—*Xl// (615)
l/ELI l//ng

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

Proof. From Equation (6.3) and (6.4) we have

UY = {ueX. |Vl eL, Postr,(X,u)N Xy #0,
VI" ¢ L', Posty (X, u) N X = 0} =
= {ue X |Vl € L', Postr, (X, u) N Xy # B} \
{ue X, | 3" &L, Postr,(X,u) N X # 0} =
— ﬂ Jri—xy \ U [Xi—Xu

rer gL

O

We can guarantee that if a state I’ is not reachable from state { in 7./~ (i.e.,
I' ¢ Postr,,.(l,%") then U%~* = () and therefore, U" = 0 if L' Z Post,;_(1,%")

and otherwise the computation in Equation (6.15) reduces to

UF = (U U U XX (6.16)
ver U"€Postr, . (LEO\L'

A non-empty input region UlL' is in general nonconvex but can always be repre-
sented as a finite union of open polytopes (see Equation (6.16)). In order to guarantee
the robustness of the control strategy (as described in Section 6.3.1) we only include
input sets that are "large enough” (i.e., 7(UF') > €, where € is a predefined robust-
ness parameter and () is the radius of the Chebyshev ball (Definition 9). Note that
in general this approach might be conservative, since a sphere inscribed in a union of
polytopes from UlL' might have a larger radius. Following from the results presented
in this section, the control transition system 7, can be computed using polyhedral

operations only (the computation is summarized in Algorithm 8).

6.4 LTL Control for Finite Transition Systems as a Rabin

Game

In this section, we consider the following problem:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

Algorithm 8 7, = CONTROL-TS(Z,¢): Construct control transition system 7

Input: PWA system (Equation (6.2)) and robustness parameter €
Output: Control transition system 7. = (Q., X, 6, O, 0.)

1: Q. =1L
2: for each |l €). do
3! := %! (Equation (6.5))
compute Postr,; (I, %) (Equation (6.8))
for each L' C Postz,,._(1,%) do
compute U} (Equation (6.16))
if #(U}') > € then
include input ¢(U}') in %
include transition 6.(, c(UF)) = L'
10: end if
11: end for
12: if L =0 then

13: recursively make state [unreachable and set Q. := Q. \ !
14: end if
15: end for

16: Lo = Upeq, 2t
17: return 7,

Problem 5. Given a finite (nondeterministic) transition system T (Definition 11)
and an LTL formula ¢, find a control strategy (Definition 27), such that all trajec-
tories of the closed loop system satisfy ¢.

Problem 5 is quite general, and can be seen as the dual control formulation of
the classical LTL model checking problem [Baier and Katoen, 2008, Clarke et al.,
1999]. In [Kloetzer and Belta, 2008a], a solution to Problem 5 for the particular
case when the LTL formula can be translated into a deterministic Biichi automaton
was proposed. This solution was conservative, since not all LTL formulas can be
translated into deterministic Biichi automata (e.g., $0¢ for any LTL formula ¢).
In this section, we extend the previous results and formulate a new method, capable
of handling specifications over the full LTL. We first reformulate Problem 5 as a

Rabin game and then adapt the solution of the Rabin game as a control strategy for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

T. As it will become clear later, the control strategy takes the form of a “feedback
automaton”, which reads the current state of 7 and produces the control input to
be applied at that state.

Given a finite transition system 7 = (@, %, 4, O, 0) and an LTL formula ¢ over O
we can translate ¢ into a deterministic Rabin automaton R = (S, Sy, O, dr, F) (see
Section 2.7) and construct the product automaton P = (Sp, Spo, 2, dp, Fp) of T and
R, where

e Sp =@ x S is the set of states,

Spo = @ X Sy is the set of initial states,

> is the input alphabet,

e 5p: Sp x X — 257 is the transition map, where 5((g,s),0) = {(¢’,s') € Sp |

q¢ € 6(q,0), and ¢’ = dr(s,0(q))}, and

Fp = {(Q@ x G1,Q x By),...,(Q x G,,Q x B,)} is the Rabin acceptance

condition.

The product automaton is a nondeterministic Rabin automaton with the same
input alphabet ¥ as 7. Each accepting run pp = (qo, S0)(q1, $1) ... of P can be
projected into a trajectory qoq . .. of 7, such that the word o(go)o(q1) . . . is accepted
by R (i.e., satisfies ¢) and vice versa [Vardi and Wolper, 1986]. This allows us to
reduce Problem 5 to finding a control strategy (Wpg, mp) for P, such that each run
of the closed loop P satisfies the Rabin acceptance condition Fp !. This problem can
be viewed as a Rabin game played on the product automaton between two players — a

protagonist and an adversary. A play is initiated in a state of the product automaton

1Control strategies for Rabin automata (such as P) are defined by a set of initial states Wpq
and a control function 7p as for transition systems (Definition 27). The behavior of the closed loop
system is analogous.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

and proceeds according to the following rule: at each state, the protagonist chooses
an input to be applied and the adversary determines the next state to be visited
under this input (z.e., the adversary resolves nondeterministic transitions). A play
produces an infinite sequence of states (i.e., a run) and it is won by the protagonist
if the produced run satisfies the Rabin condition. A solution to the Rabin game is a
control strategy: a control function determining moves of the protagonist and a set of
initial states called winning region, such that each play under the strategy is won by
the protagonist. Since winning strategies for Rabin games are memoryless [Emerson,
1985], the control function is simply a map 7p : Sp — X.

Rabin games can be solved by standard algorithms [Piterman and Pnueli, 2006,
Horn, 2005]. In this paper we follow the approach from [Horn, 2005], which can
be adapted to deal with stuttering behavior as we will explain in Section 6.6. The
basic step of the recursive algorithm is attractor construction. A protagonist’s (or
adversary’s) attractor of a set S’ C Sp is defined as a set of states from which the
protagonist (or the adversary, respectively) can enforce a visit to S’

Definition 30. (Protagonist’s direct attractor). The protagonist’s direct attractor of
S', denoted by AL(S’), is the set of all states s € Sp, such that there exists an input
o satisfying dp(s,0) C 5.

In other words, the protagonist can enforce a visit to S’ from a state s € AL(S’)

by applying an input o regardless of the following adversary’s choice.

Definition 31. (Adversary’s direct attractor). The adversary’s direct attractor of
S', denoted by AL(S'), is the set of all states s € Sp, such that there exists a state
s € b6p(s,0)N S’ for each input o € X°.

In other words, the adversary can enforce a visit to S’ from a state s € AL(S")
regardless of which input ¢ has been chosen by the protagonist.

The protagonist’s attractor of S’ can be computed iteratively via computation of

converging sequence A%, (S) € A%,(S) C Apy(S") C ..., where ALy(S) = S’ and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

Ap; 1 (S) = AR(AR;(S")). Intuitively A (S’) is the set from which a visit to the set
S’ can be enforced by the protagonist in at most ¢ steps. The adversary’s attractor
is computed analogously.

By solving the Rabin game outlined above we generate a control strategy (Wpq, 7p)
for P. In order to complete the solution to Problem 5, we adapt (Wpo,7p) as
a control strategy (Qo,2) for 7. Although the control function mp was memory-
less, € is history dependent and takes the form of a feedback control automaton
C = (5,850, Q,7,m,%), where the set of states S and initial states Sy are inherited
from R, the set of inputs @ is the set of states of 7, and the memory update function

7:8 x @ — S and output function 7 : § X Q — X are defined as

7(s,q) € 0r(s,0(q)) if (¢,s) € Wp,7(s,q) =L otherwise

7(s,q) = mp((q,8)) if (g,s) € Wp,m(s,q) =L otherwise

The set of initial states Qg of 7 is given by a(Wpy), where a : Sp — @ is the
projection from states of P to . The control function 2 is given by C as follows:
for a sequence qq...qn, o € Qo, we have Q(qo...q,) = o, where 0 = 7(s,, ¢n),
Siv1 = 7(8i, @), and giy1 € 8(qs, (54, q:)), for all i € {0,...,n}. It is easy to see that
the product automaton of 7 and C will have the same states as P but contains only
transitions of P closed under mp. Then, all trajectories of the closed loop 7 (Qo, £2)
satisfy ¢ and therefore (Qo,€?) is the solution to Problem 5. In Section 6.5, we will
use this result together with the construction of the control transition system 7,

described in Section 6.3 in order to provide a solution to Problem 4.

6.5 LTL Control of PWA Systems

In Section 6.3 we defined the control transition system 7. as a finite abstraction

of the infinite 7, and showed that it can be computed using polyhedral operations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

In Section 6.4, we presented an approach for controlling finite transition systems
(such as 7;) from specifications given as LTL formulas (Problem 5). In this section,
we show that a control strategy generated for 7, can be adapted to the infinite 7,
while the satisfaction of LTL formulas by the closed loop systems is preserved, which

completes the solution to Problem 4.

Definition 32. A control strategy (Q§,§2¢) for T. can be translated into a control
strategy (Qo,) for T, as follows. The initial set Qf C Q. gives the initial set
Qo = Uzng X, C Q.. Given a finite sequence of states qg . ..qr where go € Qo, the
control function is defined as Q(qo - . . qr) = Q2(0e(qo) - - - 0e(qr))-

Proposition 12. Given a control strategy (Q§,€2¢) for 1. translated as a control
strategy (Qo, Q) for To, L1.(Qo, Q) C L1.(Q§, Q°), which implies that if T.(Qg, 1)
satisfies an arbitrary LTL formula ¢, then so does To(Qo,).

Proof. Transition systems 7, and 7, have the same set of observations and therefore
the same LTL formula can be interpreted over both systems. Let go € Qo be an
initial state for 7;. Its observation is g§ = 0.(qo), which is a satisfying initial state for
T, (i.e., g5 € Q). The next input to be applied in 7, is given by the control function
(ug = Q(g5) € T, C) and we can guarantee that regardless which input ug € 2
such that d(uo,uf) < € is applied in T,, we have d.(qo, uo) € dc(gg, u§). This shows
that a finite fragment of a word in 7,(Qo,) is also a finite fragment of a word in
7.(Q5, Q) and the rest of the proof follows by induction.]

The overall solution to Problem 4 consists of constructing the control transition
system 7, (Section 6.3), finding a satisfying control strategy for 7. (Section 6.4) and
adapting it to the original 7;, or equivalently PWA system (Definition 32), which
from Proposition 12 guarantees the correctness of the solution. It is important to
note that a control strategy generated using this approach is robust with respect to
knowledge of the exact state of the system (i.e., the control strategy depends on the
observation of a state rather than the state itself). In addition, the control strategy
is robust with respect to perturbations in the applied input bounded by €, which can

be used as a tuning parameter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101
6.6 Conservatism and Stuttering Behavior

In Section 6.4 we described a solution to the problem of controlling a finite and
possibly nondeterministic transition system from LTL specifications (Problem 5).
In order to generate a control strategy for an infinite transition system such as
7. (Problem 4) we described the construction of a finite control abstraction 7. in
Section 6.3. However, due to spurious trajectories (i.e., trajectories of 7, not present
in 7,) we cannot guarantee that a control strategy will be found for 7. even if one
exists for 7. and therefore, the overall method is conservative. In Chapter 4, we
eliminated spurious trajectories through state refinement but the states of 7, cannot
be refined. Indeed, a control strategy cannot differentiate between states z,zs € Q.
when o(z;) = o(xz,) and therefore the states of 7, must satisfy o.(l1) = o.(l2) if and
only if I, = Iy for all 1,1l € Q.. In the following, we present an alternative approach
for reducing this conservatism.

Inspired by the abstraction of stutter steps described in [Baier and Katoen, 2008],
in this paper we characterize only a specific class of spurious trajectories, which we in-
troduce through an example (Figure 6-2). Assume that a constant input wuu . .. pro-
duces a trajectory T;zo%3T4. .. in T, where o(z1) = l1,0(z2) = o(z3) = ly,0(z4) = I3
(Figure 6-2-A). The corresponding word lilolsls . . . is a trajectory of 7; (i.e., I1,l3,l3 €
@.) and from the construction described in Section 6.3 it follows that ly € 6.(l1,u)
and {ly, 13} C 8.(lz,u) (Figure 6-2-B). Then, there exists a trajectory of 7. that re-
mains infinitely in state l; € Q. under input u, which is not necessarily true for 7.
Such spurious trajectories do not affect the correctness of a control strategy but in-
crease the overall conservativeness of the method. We address this by characterizing
stuttering inputs, which guarantee that the system will leave a state eventually, rather
than in a single step, and using this additional information during the construction

of the control strategy for 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

Figure 6-2: A trajectory remaining forever in state Iy exists in the finite abstraction
(B), although such a behavior is not necessarily possible in the concrete system (A)

Definition 33. (Stuttering inputs). Given a statel € Q. and a set of states L' € 29,
the set of inputs UlL' is stuttering «f and only if l € L' and for all input words upu; . . .,
where u; € UlL', there exists a finite k > 1 such that the trajectory xoz: . .. produced in
T, by the input word satisfies o(x;) =1 fori=1,...,k—1 and o(xx) =1" € L', I' #1.

Using Definition 33 we identify a stuttering subset $% C ! of the inputs available
at a state | € Q.. Let u = c(UY) € XL for some L’ € 29 be an input of 7, computed
as described in Section 6.3. Then u € X% if and only if UL is stuttering. Note
that a transition 8.(l,u) = L’ from a state | €). where u is stuttering is always
nondeterministic (z.e., |L’| > 1) and contains a self loop (i.e., [€ L') but the self loop
cannot be taken infinitely in a row (i.e., a trajectory of 7, cannot remain infinitely in
region X, under input word wuu...). An input u € =% = XL\ X! induces a transition
d.(l,u) = L' where: (1) when L' = {l} trajectories of 7. and 7. produced by input
word wuu . . . remain infinitely in state [and region X}, respectively, (2) when [¢ L'
trajectories of 7, and 7 leave state [and region Aj, respectively in one step under
input u, (3) when {l} C L' trajectories of 7. produced by input word uuu... can
potentially remain in region X infinitely. Although in case (3) it is also possible that

trajectories of 7, produced by input word uuw ... leave region A; in finite time, we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

have to be conservative in order to guarantee the correctness of the control strategy.

Note that our treatment of stuttering is different from [Baier and Katoen, 2008]
in two aspects. First, we require that 7, leaves a state after a finite number of tran-
sitions are taken under the same stuttering input and therefore an infinite stutter
cycle is never possible. Second, we identify a set of stuttering inputs rather than con-
structing 7, as a time abstract system. While we only characterize spurious infinite
self loops (i.e., cycles of length 1), in general, it is possible that cycles of arbitrary
length are spurious in 7. Considering higher order cycles is computationally chal-
lenging and decreases the conservativeness of the approach only for very specific
cases, while spurious self loops are commonly produced during the construction of
7. and can be identified or constructed through polyhedral operations as described

in Propositions 13 and 14.

Proposition 13. Given a state l € Q. and a set of states L' € 2@ input region
UlL' is stuttering if and only if | € L' and 0 € hull{(A; — I)vy + B, + ¢ | Yy, €
V(X), Vv, € V(UF)}, where hull denotes the convex hull, V(.) is the set of vertices

and I is the identity matriz.

Proof. (=) Let 0 € hull{(A; — vy + B, + ¢ | Yo, € V(A), Vo, € V(U O}
Then, there exists ¢ € &j,u € UlL' such that A;xz + Bju + ¢ = z and a trajectory of
the system produced by applying input sequence uuw ... and starting at x remains
forever inside X. Therefore, from Definition 33, U}’ is not stuttering.

(«<)Let 0 & hull{(A; — v, + By + ¢ | Yuz € V(A7), Vo, € V(U])}. From the
separating hyperplane theorem it follows that there exists a € R¥ such that, for all
z € hull{(A; — v, + Boy, + ¢ | Yo, € V(X)),aTz > 0. Then, any trajectory of
the system originating in X; and produced by input word w ugus . .., where u; € UlL/
will have a positive displacement along the direction of a” at every step. Since AX] is
bounded, all trajectories will leave it in a finite number of steps and, therefore, U, lL'

is stuttering. O

Proposition 13 provides a computational characterization of stuttering input re-

gions. In general, however, it is possible that an input region U, lLI cannot be identified

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

as stuttering but a stuttering subset UZL' C UF can be identified. Then, if such a
subset is ”large enough” (i.e., 7(UY) > €) it can be used in 7, and allow more general
control strategies. In Proposition 14 we describe the computation of such stuttering
subsets.

Proposition 14. Given an arbitrary a € RY, the input region UZL' ={ue€ UZL' | Vo €
V(X),a? Bu > —aT (4; — In)v — ¢}, where | € L' is always stuttering.

Proof.
UF = {ueUl Vv, e V(X),d? Bu> —a (A — v, — ¢} =
= {ueUF |V, e V(X),aT (A4 — v, + Bu+¢) >0} =
= 0 ¢ hull{(A; — v, + B, + ¢ | Yo, € V(&) Yo, € V(UF)},
which, from Proposition 13, guarantees that UlL' is stuttering. O

Although Proposition 14 is valid for an arbitrary a € RY, the volume of the
stuttering subset UlL' C UlL/ depends on a. Since only "large enough” input regions
are considered in 7, (see Algorithm 8), a should be chosen in such a way that the
radius T‘(UIL/) is maximized. This problem is beyond the scope of this work but a
possible (suboptimal) solution involves the uniform sampling of rotation groups as
discussed in [Mitchell, 2007]. In our current implementation discussed in Section 6.8,
only the characterization provided in Proposition 13 is used to identify stuttering
input sets.

The algorithm from [Horn, 2005] from Section 6.4 can be adapted to handle the
additional information about stuttering inputs captured in 7., while the correctness
and completeness of the control strategy computation for the product automaton P is
still guaranteed. P is constructed as in Section 6.4 and therefore it naturally inherits
the partitioned input set ¥} = ¥ U X% for each state | € Q.. Going back to the
Rabin game interpretation of the control problem discussed in Section 6.4, we need

to account for the fact that the adversary cannot take transitions under the same

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

stuttering input infinitely many times in a row. As a result, the construction of the
control strategy is still performed using Horn’s algorithm and only the computations
of the direct attractors (Definitions (30) and (31)) are modified as follows.

Let I € Q, and u € ¥ be a state and a stuttering input of 7. (Definition 33). We
are interested in edge (s, u, 8') of transition dp(s,u) = S’, where a(s) =l and s’ € S’
Edge (s,u,s’) is called u-nontransient edge if a(s) = a(s’) = [and transient other-
wise. Note that, even though (I, u,!) is a self loop in T, (s, u, s’) is not necessarily a
self loop in P. In addition, since there is at most one self loop at a state [€ (). and
R is deterministic, there is at most one u-nontransient edge leaving state s.

We refer to a sequence of edges (s1,us, S2)(S2, Uz, 83) ... (Sn_1, Un—1, Sn), Where
s; # s; for any 4,7 € {1,...,n} as a simple path, and to a simple path
(s1,u1,52) ... (Sn_1, Un_1, S) followed by (sn,un, s1) as a cycle. We can observe that
any sequence of u-nontransient edges (i.e. a run of the product automaton, or its
finite fragment) is of one of the following shapes: a cycle (called a u-nontransient
cycle), a lasso shape (a simple path leading to a u-nontransient cycle), or a simple
path ending at a state where the input u is not available at all. Informally, the
existence of a stuttering self loop in a state [under input u in 7, means that this self
loop cannot be followed infinitely many times in a row. Similarly, any u-nontransient
cycle in the product graph cannot be followed infinitely many times in a row without
leaving it. This leads us to the new definitions of protagonist’s and adversary’s direct

attractor.

Definition 34. (Protagonist’s direct attractor). The protagonist’s direct attractor of
S', denoted by AL(S’), is the set of all states s € Sp, such that there exists an input
u satisfying

(1) dp(s,u) CS', or

(2) s lies on a u-nontransient cycle, such that each state s’ of the cycle satisfies

that s" € S’ for all transient edges (s',u,s")

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

In other words, the protagonist can enforce a visit to S’ also by following a u-

nontransient cycle finitely many times and eventually leaving it to S’

Definition 35. (Adversary’s direct attractor). The adversary’s direct attractor of
S', denoted by AL(S’), is the set of all states s € Sp, such that for each input u there
exists a state s’ such that

(1) s € op(s,u)NS’, and

(2) ' does not lie on a u-nontransient cycle

In other words, the adversary cannot enforce a visit to S’ via an edge of a u-
nontransient cycle. This edge can be taken only finitely many times in row and
eventually different edge under input u has to be chosen.

By identifying stuttering inputs during the construction of the control transition
system 7. (Propositions 13 and 14) and modifying the approach from Section 6.4 to
handle this additional information during the construction of a control strategy for
7. (Definitions (34) and (35)), we can reduce the conservatism associated with the
overall method. Even so, our solution to Problem 4 remains conservative but it is
important to note that the only source of conservativeness is the construction of 7.

- the solution to the LTL control problem for 7, is complete.

6.7 Complexity

As our proposed solution to Problem 4 consists of (1) the construction of the control
transition system 7; and (2) the generation of a control strategy for 7., the overall
computational complexity is the cumulative complexity of the two parts. The com-
putation of 7, involves enumerating all subsets of L at any element of L, which gives
O(|L| - 2!H) iterations in the worst case, although in practice this can be reduced
(see Equation (6.16)). At each iteration, polyhedral operations are performed, which

scale exponentially with N, the size of the continuous state space. The character-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

ization of stuttering inputs described in this chapter checks each element from .
through polyhedral operations.

It is also possible to reduce the size of 7, after it is initially constructed without
sacrificing solutions. More “nondeterminism” available at a state does not result in
more winning strategies for the algorithm described in Section 6.4, while at the same
time unnecessarily increases the complexity of the method. Formally, let u; = ¢(U, ZL /1)
and uy = c(Ulle) where L'y, L'y € 29,L'; C L'y be inputs of 7, available at state
l € Q. (ie., {ur,ups} C X). If input uy is used in a control strategy, then the
specification is satisfied regardless of which state I’ € L'5 is visited in the next step.
Clearly, the same holds for input u; since L’y is a subset of L’y but keeping both
inputs is unnecessary. Therefore, at each state | € Q. we set ¥ = XU\ w, if
up, Uy € LY or B = B\ 4y if uy,us € X when the property described above
holds.

" The overall complexity of the control strategy synthesis by Horn is O(k!n*), where
n is the size of the product automaton and k is the number of pairs in the Rabin
condition of the product automaton. The modifications in the computation of the
direct attractor we made in order to adapt the algorithm to deal with stuttering
behavior do not change the overall complexity. Note that, in general, Rabin games
are NP-complete, so the exponential complexity with respect to k is not surprising.
However, LTL formulas are usually translated into Rabin automata with very few

tuples in their acceptance condition.

6.8 Implementation and Case Study

The method described in this paper was implemented in MATLAB as the software
package conPAS2, where all polyhedral operations were performed using the MPT

toolbox [Kvasnica et al., 2004]. The tool takes as input a PWA system (as defined in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

Equation (6.2)) and an LTL formula and produces a set of satisfying initial regions
and a feedback control strategy for the system (see Section 6.5). The tool is freely
downloadable from our web site at http://hyness.bu.edu/software.

For the sake of presentation, we analyzed a planar PWA system (N = M =2 in
Equation (6.2)) with 36 polytopes (Figure 6-3), where only the labels of the polytopes
are shown). The system is similar to the one used as a case study in Chapter 4 and
its trajectories go towards one of two possible stable equilibria located in regions Xq
and X7 (see Figure 6.3(a)).

We are interested in finding initial states and a control strategy satisfying the

following specification:
¢ =0010 ANO-(17V 18 V19V 20) (6.17)

or ”eventually visit region X9 and remain there forever and always avoid regions
X7, Xig, Xig, and Xoy”. Note that this specification cannot be translated into a
deterministic Biichi automaton, and therefore the method from [Kloetzer and Belta,
2008a] cannot be used to generate a control strategy.

A control transition system 7, with 36 states was constructed. Out of the total
396 nonempty input regions found (denoted by UlLl in Section 6.3), 274 were ”large
enough” (the radii of their inscribed spheres were larger than € = 0.05) to be consid-
ered for a robust control strategy and included in 7,. After reducing the size of 7,
(i.e., removing unnecessary nondeterministic transitions as explained in Section 6.7)
only 74 input regions were included out of which 25 were deterministic and 31 were
identified as stuttering. The specification ¢ (Equation (6.17)) translates into a de-
terministic Rabin automaton with 4 states and 1 pair in its acceptance condition.
The computation of 7, required under a minute and the construction of the control

strategy required an additional 3 minutes on a 3.4 GHz, Intel Pentium 4 machine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

with 1GB of memory. The satisfying initial region identified by conPAS2 is shown
in light gray in Figure 6.3(b)). Starting from random initial conditions, trajectories
of the closed loop system were simulated (Figure 6.3(b)), where at each step applied
inputs were corrupted by noise bounded by e. All simulated trajectories avoid the
unsafe regions (shown in dark gray in Figure 6.3(b)) and satisfy the specification,
thereby demonstrating the correctness and robustness of the control strategy.

For this particular case study, the target region X7y of specification ¢ is reach-
able only through transitions under stuttering inputs in 7.. Therefore, a satisfying
control strategy can be identified only from region AXjq, unless stuttering behavior
is considered. The additional computation described in Section 6.6 allowed us to
expand the satisfying initial set from Ay only to the entire region shown in light

gray in Figure 6.3(b).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

100

T L [)
70:9 21/%1})

3
11 \ / /
19
16
15

AN
5//////17/// /

e

20
d / A 28
{
70

N

NS4 RT/ AT/
10 /

0 Il L L
0 10 20 30 40 50 60

25 27
80 90 100

(a) Trajectories of the uncontrolled PWA system go towards one of
two possible stable equilibria located in regions Xj¢ and AXb7 (initial
states are shown as small circles).

100 ————
34
24 | @
90' b1
"""/F-o 38
80}
| 23
70
60 <[33 \ 35
50 ———8 \\\\
D
40 30 \32
[|
2 \4 14 16 26 |28
10
o1 3 l 13 15 25 |27
U 1 1 1 1 1l

0 10 20 30 40 50 60 70 80 90 100

(b) Trajectories of the closed loop PWA system originating anywhere
in the satisfying region (light gray) satisfy the specification and even-
tually reach and remain in region X9, while always avoiding regions
X17, Xig, X1g, and Xy (dark gray).

Figure 6-3: Results from the formal synthesis of a control strategy for a PWA system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Applications to Synthetic Biology

In previous chapters, we developed methods for analysis, parameter synthesis, and
control of piecewise affine (PWA) systems from rich temporal logic specifications.
Since PWA systems can approximate nonlinear dynamics with arbitrary accuracy,
they provide a good formalism for modeling genetic regulatory networks (GRNs),
which can be studied using the formal methods developed in this work.

As discussed in Section 1.2, piecewise affine (PWA) models of GRNs can be
obtained by an identification procedure from input output data, collected experi-
mentally from the system. Such an approach is suitable in cases, where a system
that has been previously designed and constructed must be further validated or
tuned. An analysis procedure can also be incorporated at an earlier phase of the de-
sign process, before the actual system has been built, by constructing a model from
data, characterizing separate system components. This is perhaps more practical,
since it allows potential designs to be filtered a prior: and can prevent the costly
experimental construction of devices that don’t work as required.

In this chapter, we use an approach that combines the two strategies. We use
experimental data available from [Hooshangi et al., 2005] to obtain a system model
and then deduce properties of the different components of the system based on this
model. We treat those components as parts that can be recombined into novel
devices, and explore a subset of the space of such potential devices designs. We

apply the methods developed in this dissertation to construct finite abstractions of

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

the different PWA device models and analyze them formally, using specifications
expressed as linear temporal logic (LTL) formulas.

Our results indicate that requiring a specification to be satisfied by all trajecto-
ries of the model is, in general, too restrictive, but analysis can be used for model
invalidation. The procedure we developed in Chapter 4 relies on the computation of
both a satisfying region (i.e. a region of initial conditions, from which all trajecto-
ries of the model are guaranteed to satisfy the specification) and a violating region
(i.e. a region, from which all trajectories are guaranteed to satisfy the negation of
specification and, therefore, are violating). To guarantee that a model satisfies a.
specification, the satisfying region must cover the entire state space of the system.
As it will become clear in this chapter, such a guarantee is too strong and cannot be
obtained even for simple systems. However, the existence of violating trajectories can
be guaranteed, whenever a nonempty violating region is identified. This can be very
useful when evaluating a (potentially large) set of possible device designs. A design
can be considered “good” if our analysis procedure reveals a (large) satisfying region
and an empty or small violating region. A design is “bad”, whenever a substantial
violating region is found. Such an approach can be used to automatically explore the
large space of potential device designs that can be constructed from characterized
parts, available in online databases and repositories.

The methods we developed in previous chapters consider separately the satisfac-
tion of specifications by trajectories of the system originating in different regions.
Therefore, additional consideration must be taken when formulating certain spec-
ifications, such as the existence of multiple stable equilibria, and interpreting the
results. Intuitively, bistability can be expressed as the existence of two invariant
regions A and B (i.e. $ = A — UOA A B — [OB). However, such a specification will

be satisfied from some initial states even when only one of the regions is an invariant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

For example, consider a case where region A is an invariant of system trajectories
but region B is not. Our method will report that there exist a region satisfying
specification ¢ (namely, region A), which might lead to the erroneous conclusion
that the system is bistable. Even when both A and B are invariants, the relative
volume of the satisfying region obtained using our approach does not represent a re-
gion satisfying a bistability specification but rather the sum of the regions satisfying
two separate monostability specifications. To avoid such confusion, it is better to
consider specifications such as bistability by treating them as separate monostability
specifications. This leads to more informative results, since it allows the sizes of the
attractor regions for the separate equilibria to be compared. In addition, such an
approach also leads to efficiency improvements due to the smaller formulas used. We
follow this approach for the case studies considered in this chapter.

We implement our analysis procedure described in Chapter 4 as a tool for study-
ing synthetic gene networks. To make its use more intuitive, this implementation
takes as input a specification expressed as an LTL formula and a continuous time
description of the system, which is discretized internally. The formula guided re-
finement strategies described in Chapter 4 are not currently implemented. However,
the characterization of stuttering behavior described in Chapter 6 is provided as an
option to decrease the conservatism of the method. If this additional computation
is performed, the specification language is restricted to LT L—x (Linear Temporal
Logic without the “Next” operator) in order to guarantee the correctness of the
results.

The rest of this chapter is organized as follows. In Section 7.1, we discuss the de-
tails of the PWA models we consider, which are used as approximations of continuous
time ODE models. In Section 7.2, we present the results of the analysis of two simple

PWA models, inspired from the genetic toggle switch [Gardner et al., 2000] and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

repressilator [Elowitz and Leibler, 2000]. In Section 7.3, we construct a PWA model
of a synthetic transcriptional cascade [Hooshangi et al., 2005] based on a previously
identified model [Braun et al., 2005] and use this information to construct a set of
device designs based on the use of parts. In Section 7.4, we explore this space of
combinatorial device designs using the analysis procedures we developed as part of
this work.

Throughout this chapter, we use the terms “toggle switch” and “repressilator” to
describe circuit topologies similar to the ones from [Gardner et al., 2000] and [Elowitz
and Leibler, 2000], respectively, rather than to refer to the actual systems from
those works. For clarity of presentation, we use simpler models (i.e. more drastic
approximations) than what would be required for real applications, but the goal of
the case studies presented in this chapter is simply to demonstrate how our methods

can be applied to the field of synthetic biology.

7.1 PWA Models of GRNs

To illustrate the construction of PWA models used in this work, we consider a cross
inhibition, toggle switch topology, consisting of two genes, expressing repressor pro-
teins R; and R, (Figure 7.2(a)). Represéor R, binds to promoter P; to down-regulate
the expression of Ry and vice versa. We assume that a large number of well mixed
molecules are present in the system and transcription factor binding and unbinding to
promoters proceeds much faster than transcription or translation of genes [McAdams
and Shapiro, 1995]. Then, the gene regulation function (GRF), relating repressor
concentration to transcription rate from the regulated promoter, can be described
by a Hill type function [Hill, 1913] (see Figure 7.1(a)). The nonlinearity of GRFs
leads to systems of nonlinear differential equation as models of gene network, which

cannot be easily analyzed. Instead, we consider piecewise affine approximations of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

@
oy
o,

......

; 9, 6 6 6, 66,86
R, 9 R, 0, R,

(a) Hill function (b) Ramp function approxi- (¢) Finer piecewise affine ap-
mation proximation

Figure 7-1: Gene regulatory function and approximations. In Figures 7.1(b) and
7.1(c) the dashed lines represent the Hill function and the solid lines its piecewise
affine approximations.

GRFs.

The simplest such approximation (not considering the more restrictive, piecewise
constant step function) is a ramp function, which is defined by two threshold values,
inducing three regions of different dynamics (see Figure 7.1(b)). At low repressor
concentrations (i.e. Ry < 6') the regulated gene is fully expressed (i.e. oy, the rate
of transcription from promoter P; is maximal), at high repressor concentrations ((.e.
R, > 6')) expression is only basal and the response between the two thresholds is
graded. In order to obtain more accurate approximations of a GRF, more break-
points can be introduced resulting in general piecewise affine regulation functions and
a larger number of regulation regions (see Figure 7.1(c)). The problem of approx-
imating a function using linear segments is related to methods for piecewise linear
interpolation, which date back to ancient times [Meijering, 2002} but may result in an
unnecessary large number of regulation regions. More recent results allow accurate
piecewise linear approximations with less break points to be obtained automatically
using available algorithms [Ferrari-trecate et al., 2001].

Due to the simplicity of the resulting models, we use ramp approximations of

GRFs for the case studies discussed in this chapter. In addition, we only consider

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

promoters regulated from a single repressor but the effects from multiple repres-
sor/activator proteins or external inducers can be modeled through PWA functions
of higher dimension. By modeling transcription and translation as a single step, a
continuous time PWA model of the toggle switch network (Figure 7.2(a)) can be

written as

Rl = ag + Ckgn’l“_(Rz, eéa 9;) - 71R1

RQ = Od(l) + Ot’lnT'_(Rl, 9%, 0%) — ")’QRQ, (71)

where R; and R, denote the concentrations of the two repressor proteins! and v,
and 7y, are their respective degradation rates. o) is the basal and " is the maximal
rate of expression from promoter P; and r~ is a ramp function of the concentrations
of repressors R; and threshold values 6}, 6?, and ranges between 0 and 1. The parti-
tioning of the state space of the system is given by the thresholds of the regulation
functions. In order to obtain discrete time piecewise affine models, which can be
analyzed using the methods developed in this dissertation, the continuous dynamics
in each region are discretized using a time step that is small compared to the dy-
namics of the system. Such models can be easily extended into higher dimensions
to capture larger networks (e.g. the model for a repressilator system (Figure 7.2(b))

includes three state variables R;,Rs, and R3) or to capture explicitly dynamics of

other species, such as mRNA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

P, P, P, P, P,

(a) Toggle Switch (b) Repressilator

Figure 7-2: Gene regulatory network topologies used in our case studies (square
arrowheads indicate repression).

7.2 Analysis of a toggle switch and a repressilator

We construct a simple toggle switch system (Figure 7.2(a)) with the following pa-

rameters:

a? = 0.15,a = 1.55,0; = 40,67 = 80,v; = 0.01

o = 0.17, a5 = 0.92, 85 = 20,63 = 50,v, = 0.02 (7.2)

The maximum allowed concentration for both R; and R, is 100 (i.e. the system
is defined on the rectangle X = hull({[0, 0], [100,0],[100, 100], [0,100}}), which is
partitioned into 9 regions by the thresholds. A discrete time PWA model is obtained
from (7.1) with parameters (7.2) through discretization with time step T' = 20, as
described in Section 7.1. To introduce uncertainty in our model, we allow each
parameters to vary in a range, specified as a percentage of the values from (7.2).
Depending on their initial conditions, trajectories of the system go towards one of
two possible stable equilibria (Figure 7-3). When parameter uncertainty is introduced
in the model, trajectories from the same initial condition can go to both equilibria
(Figure 7.3(b)), i.e. the system is nondeterministic. As described earlier, we study
the regions of attractions for the two stable equilibria to asses the bistability of the

system. Using the system’s thresholds, the following linear predicates are defined:

Lhere, we use R; and Ry both as names of proteins and to denote their respective concentrations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

100
—— R, (10% noi
R | a0l A,r 4 (no!se)
-R, —— R, (10% noise)
80 S y
70Rg
5 5 60
£ g
‘§’ § 50r
3 &
8 O 401
30 =
201
101
00 1ll)0 260 360 460 560 G(‘)O 7(‘)0 8(‘]0 960 10‘00 00 1 (I)O 260 300 460 560 660 760 5(‘)0 960 10‘00
Time Time
(a) Deterministic model {b) Uncertain model
100 100
90
80
70)
60 \
550 B4 4 =
30 / : / p
20 /
d
10 /
UO lIO 2‘0 3‘0 40 5‘0 6‘0 7‘0 80 90 100 0 10 20 3‘0 40 5‘0 6‘0 70 80 50 100
x, X
(c) Deterministic model (state space) (d) Uncertain model (state space)

Figure 7-3: Numerical simulations of the deterministic and 10% parameter uncer-
tainty toggle switch models. Trajectories in both state space and time are shown.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

| Model | ¢ - time (figure) | ¢2 —¢o time (figure) |
deterministic | 19.5% 78.4% 15 sec (7.4(a)) | 78.4% 19.5% 14 sec (7.4(b))
1% noise 6.8% 65.4% 2 min (7.4(c)) | 55.4% 13.4% 3 min (7.4(d))
10% noise 0% 49.5% 11 min (7.4(e)) | 43.9% 6.6% 18 min (7.4(f))

Table 7.1: Relative volumes and computation times of satisfying and violating regions
for the toggle switch model with different amounts of parameter uncertainty.

m = Ry > 80, my := Ry < 40, m3 := Ry > 50, and 74 := Ry < 20. We consider

specifications ¢y = QU(m Amy) and ¢p = GU(me Amz). In other words, ¢, is satisfied
if all trajectories of the system eventually reach and stabilize in the region, where
the concentrations of R; are high (above 80) and the concentrations of Ry are low
(below 20). Similarly, ¢, is satisfied if all trajectories of the system eventually reach
and stabilize in the region, where R; is below 40 and R, is above 50. Exploring both
specifications separately allows us to identify the attractor regions of the two stable
equilibria of the system and compare their sizes.

The models were analyzed using the method described in Chapter 4, with a refine-
ment limit € = 1. The results from the analysis of the three models (deterministic, 1%
noise, and 10% noise) with specifications ¢; and ¢, are summarized in Table 7.1 and
the satisfying and violating regions are presented graphically in Figure 7.2. For the
deterministic model, satisfying states were identified for both specifications (Figures
7.4(a) and 7.4(b)), which suggest that the two equilibria are stable. The attractor
region for the equilibrium where Ry concentrations are high and R; concentrations
are low is larger. As expected, when parameter uncertainty is introduced in the
model, smaller satisfying and violating regions can be identified (Figures 7.4(¢) and
7.4(d)). When 10% uncertainty in the parameters is introduced, a satisfying region
cannot be identified for specification ¢y (Figures 7.4(e) and 7.4(f)) and, therefore,

bistability cannot be guaranteed.

We construct a symmetric repressilator model (Figure 7.2(b)) with the following

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

90

80

70

60

120

100

50

43

70

60

& 50 50
40 20
30 30
20 20
to 10
00 10 20 30 40 50 60 70 &0 950 100 00 10 20 30 40 50 60 70 R0 90 100
R| R,
(a) Deterministic system, ¢; (b) Deterministic system, ¢o
100 = 100 |
90 J %0
80 80
70 70
60 60
&' 50 J

40

(¢) 1% noise in parameters, ¢;

100

(d) 1% noise in parameters, ¢,

90

80

70

60

o 50
40

30

E

10 20 30 40 50 60 70 80 90
R
1

(f) 10% noise in parameters, ¢

(e) 10% noise in parameters, ¢;

Figure 7-4: Results from the analysis of fixed parameter (deterministic), and uncer-
tain parameter toggle switch model for specifications ¢, (eventually, the concentra-
tions of R, and R, stabilize in a high and a low state, respectively) and ¢, (eventually
the concentrations of R; and R, stabilize in a low and a high state, respectively).
Satisfying regions are shown in green (lighter gray) and violating regions are shown
in red (darker gray).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

70
65} N
—R
60} —R
T
55}
5 s0f
B |
T 451
2
8 40
35}
30t
v
20 '
0 100 200 300 400 500 600 700 800 900 1000

Time

Figure 7-5: Numerical simulation of the deterministic repressilator model.

parameters, identical for alli =1,...,3:
o) =0.02,0" = 1.6,0; = 30,67 = 60,~; = 0.02 (7.3)

The maximum allowed concentration for R;, R, and R3 is 100 and the system is a
cube partitioned by the thresholds into 27 regions. As before the discrete time PWA
model is obtained by discretizing the continuous model as described in Section 7.1.
To introduce uncertainty in the model, each parameter is allowed to vary in a 1%
range around the value from (7.3). Trajectories of the repressilator system oscillate
(Figure 7.2 and we focus specifically on characterizing the existence of oscillatory
behavior in the concentrations of R3. We define linear predicates 71 := R3 > 60 and

= R; < 30. We define LTL formula ¢ = O(¢m; A Omy), which specifies that
concentrations of R3 always oscillate, reaching values over 60 and below 30 (note

that 7; and 79 cannot be satisfied at the same time).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

A

i

: '/IA“%"_

(a) Deterministic system (b) Uncertain system

Figure 7-6: Results from the analysis of fixed parameter {deterministic), and uncer-
tain parameter (1% noise) repressilator model for specification ¢ = O(Omy A o).
The satisfaction of the specification can be guaranteed for trajectories of the system
originating anywhere but the region shown in black.

The models were analyzed using the method described in Chapger 4, with a
refinement limit € = 1. The results of the analysis of the repressilator system are
presented graphically in Figure 7-6. The relative volumes of the satisfying regions for
the deterministic and uncertain systems were 99.8% and 69%, and the computation
times were 11 min and 3h, respectively. No violating regions were identified for either
model. As expected, the identified satisfying region decreases when uncertainty is

introduced in the model.

7.3 Constructing Devices from Parts

To further demonstrate the use of the methods developed in this dissertation, we
study a PWA model of a transcriptional cascade (Figure 7.7(a)) that has been pre-
viously constructed [Hooshangi et al., 2005]. Parameters of a nonlinear ODE model
have been previously identified from experimental data [Braun et al., 2005] and a
piecewise multiaffine approximation has been constructed and studied in [Batt et al.,

2008], while a more accurate piecewise multiaffine model approximation was consid-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

P

Izaﬁ»-m» m»m»

laclq Ltet-O1 Plac MR-012)

(a) Transcriptional Cascade

L @ PLtet-O1
Pl —evo -

lacl Pl I
) R
cl

(b) A set of genetic parts

Figure 7-7: The original transcriptional cascade used in this case study and the set
of parts it is composed of.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

ered in [Batt et al., 2007b]. The previously developed models are specified in con-
tinuous time but the dynamics in each region of the state space can be discretized.
The framework developed in this dissertation cannot handle multiaffine dynamics di-
rectly but the previous model is multiaffine only in the concentrations of the external
inducer aTc. We consider separately the cases when a7'c¢ is absent from the system
and present in saturating concentrations (i.e. the repression of promoter Preso1 by
TetR is completely lifted). This results in two separate piecewise affine models that
describe the dynamics of the cascade with and without aTc¢. Similarly, additional
models can be constructed to describe the system for intermediate concentrations of
aTc, but such conditions are not considered for this case study. To construct the

cascade model, we use the following parameters:

ap, . =008 =221T8,
ap,, . o =3.28605aF = 903.86,
ap, = 3.39794,0f = 389.961,

Oy ony = 4:3154,0, = 4000, (7.4)
Oroir = 25,07, p = 100, yresr = 0.013045
07 ,..; = 100,02, = 2000, yz.c; = 0.014094
05, = 1500, 0%, = 4000, v¢c; = 0.015013

Veysp = 0.0122

Note that no thresholds are provided for eyfp, since it is not a repressor. Using ramp
functions, we model the transcriptional cascade in Equation (7.5), as described in
Section 7.1. Note that when aTc is present in the system, we consider a model where
the expression from promoter Prse;_o1 is a%mt_ or T OB o (i.e. regulation from

tetR is lifted). In Section 7.4.1, we present results from the analysis of this model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

TetR = a’,’%adq — YretrT €tR

Lacl = of, o +op 7 (TetR,Or g, 02, 1) — Yeact Lacl
Cl = af +af r(Lacl, 00,00, 0700) — YorCI (7.5)

. o ~
eyfp = APy pooiny T a’}&m_om)r (CIL,0¢1,621) — Yeypey o

The transcriptional cascade (Figure 7.7(a)) is composed of a number of separate
parts: promoter and repressor pairs that can be used to construct different devices
(Figure 7.7(b)). We ignore the constitutive promoter Pi,.;q and, assuming that the
concentrations of repressors tetR, lacl, and ¢l can be measured directly, ignore the
reporter eyfp. This leaves a set of genetic parts (3 repressor/promoter pairs) that we
use to construct and model new devices and analyze the results.

We focus on the toggle switch and repressilator topologies studied in Section 7.2
and construct all devices with those topologies, possible from the available parts
(note that due to the cyclic nature of the networks, only the relative order of the
repressors matters). The set of device designs is shown in Figure 7-8. To construct
device models, we follow the approach described in Section 7.1. As an example, we
show the model for the tetR /cl toggle switch device (Figure 7.8(e)) in Equation (7.6).
Note that for all devices except tetR/cl, we consider separate models for the case

when aTc is present and absent. We analyze the models of all devices in Section 7.4.

Lacl = By norn T a}?MR_Omr_(C’I,Gch, 02;) — Yracr Lacl
ClI = a?)lac + a1~ (Lacl, 01 uer> O2ner) — 101CI (7.6)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

aTc aTc
(R (Jacl_ > S S A R (> fac
PX(R-012) PLlet-O1 Plac PIac PLIet—O1 PA(R—O‘IZ)
(a) tetR/lacI/cl repressilator (b) tetR/cl/lacl repressilator
aTc aTc
(R > o [eR) g
Plac PLte(-O1 PA(R-012) PLlel—01 Pk(R-O12) Plac
(c) tetR/lacl toggle switch (d) tetR/cI toggle switch (e) cI/lacl toggle switch

Figure 7-8: A set of devices with a repressilator or a toggle switch topology, con-
structed from the parts from 7.7(b).

7.4 Formal Analysis of Device Models

In the previous section, we described the construction of a set of models from parts.
Starting from the original transcriptional cascade model, we constructed two separate
implementations of a repressilator topology, and three separate toggle switch circuits.
In this section, we apply our analysis procedure (Chapter 4) to study those system
models. For all results discussed in this section we do not impose a refinement limit

for our algorithm as before but, instead, limit the number of iterations to 50.

7.4.1 Cascade results

Trajectories of the transcriptional cascade model (Figure 7.7(a)) reach an equilib-
rium, where the concentration of eyfp is low when no aTc is present in the sys-
tem (Figure 7.9(a)), and high if aTc is available (Figure 7.9(b)). To study the
two equilibria, we define the following linear predicates m := eyfp < 1000 and
7y := eyfp > 30000. We define LTL formulas ¢, = O0m and ¢ = OUme. The

results of the analysis are summarized in Table 7.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

tetR

=
lacl -l lacl
L 4 .

eyfp

Concentration
[
T
—

Concentration

] 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800
Time Time
(a) without aTc (b) with aTc

Figure 7-9: Numerical simulations of the transcriptional cascade model.

[aTc | & -1 time | ¢ - time |
absent | 0.007% 0% 2h 40min | 0% 0.007% 3h
present 0% 99.8% 1.5sec | 99.7% 0% 24 min

Table 7.2: Relative volumes and computation times of satisfying and violating regions

for the cascade model.

7.4.2 Repressilator results

For the two repressilator topologies, which we denote as tetR/lacl/cI (Figure 7.8(a))
and tetR/cl/lacl (Figure 7.8(b)), we want to study the existence of oscillatory be-
havior. Specifically, we only consider oscillations in the concentration of one of the
proteins. From numerical simulations, it appears that trajectories of the tetR/lacl, /el
system do not oscillate but instead settle in an equilibrium where the concentration
of ¢l is high when no aTc is present in the system (Figure 7.10(a)), and low if aTc is
available (Figure 7.10(b)). Similarly, for the tetR/cl/lacl system it appears that the
concentration of lacl is high when no aTc is present (Figure 7.10(c)), and low if aTc
is available (Figure 7.10(d)). For systems tetR/lacl/cI and tetR/cl/lacl, we explore
the possibilities that the concentrations of cI and lacl, respectively, oscillate or settle

in either of the two equilibria. It is important to note that in the presence of aTc,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

x10

tetR
—= ~ lacl
cl

tetR
“—— lac!
cl

2.5}

Concentration
Concentration

1] 200 400 600 800 1000 1200 1400 1600 1800 600 800 1000 1200 1400 1600 1800

Time Time
(a) tetR/lacl/cI without aTc (b) tetR/lacl/cI with aTc
Sl 25t
tetR tetR
ol 3 cl
lacl lacl
2.5
g g 1.51
8 Q

;’3‘{,\
0 200 400 660 800 1006 1200 71’460 1600 1800
Time

(¢) tetR/cI/lacI without aTc (d) tetR/cl/lacl with aTc

[} 200 400 600 800 1000 1200 1400 1600 1800 2000
Time

Figure 7-10: Numerical simulations of the two repressilator models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

] aTc ‘ 01 ¢, time [P2 o time I o3 P time
absent | 0% 100% 1.5sec | 0% 100% 2.5sec | 0% 100% 2.5sec
present | 99.8% 0% 5sec | 0% 99.8% 1.5sec | 0% 99.8% 1.5 sec

Table 7.3: Relative volumes and computation times of satisfying and violating regions
for the tetR/lacl/cl repressilator model.

[aTc ‘ P4 oo time | Os “s time] 0% g time J
absent 0% 100% 2.5sec|245% 0% 35 min | 0% 99.96% 1.5 sec
present | 99.96% 0% 1.5sec| 0% 99.7% 1.5sec | 0% 99.96% 1.5 sec

Table 7.4: Relative volumes and computation times of satisfying and violating regions
for the tetR/cl/lacl repressilator model.

the feedback repressilator topology is broken and the systems reduce to transcrip-
tional cascades. Therefore, for those systems we can only hope to achieve oscillatory
behavior in the absence of aTc.

For tetR/lacl/cl, we define the following linear predicates m := ¢I < 1000 and
me = ¢l > 20000. We define LTL formulas ¢; = ¢Um, ¢ = GUmg, and ¢3 =
O(OmAOT). Similarly, for tetR/cl/lacl, we define predicates w3 := lacI < 1000 and
74 = lacl > 250000 and formulas ¢4 = GUms, @5 = Olny, and ¢g = O(Oms A Oma).
The analysis results for systems tetR/lacl/cI and tetR/cl/lacl are summarized in

tables 7.3 and 7.4, respectively.

7.4.3 Toggle switch results

We denote the three possible devices with a toggle switch topology, constructed
from the parts in Figure 7.7(b) as tetR/lacl (Figure 7.8(c)), tetR/cI (Figure 7.8(d)),
and cl/lacl (Figure 7.8(¢)). Using the analysis methods we have developed, we
explore whether the systems have two stable equilibria, and compare their regions of
attraction. As previously discussed, we express the existence of multiple equilibria
using separate LTL formulas. As for the represselator topologies discussed in the

previous section, in the presence of aTe, the feedback toggle switch topology is broken

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Concentration

130

tetR
-~ lacl

y G P

Concentration

P .
1000 1200 1400 1600 1800
Time

(a) tetR/lacl without aTc

200 400 600 80

Concentration

Concentration

600 800 1400

Time

1000 1200

(b) tetR/lacl with aTc

)
1600

TT400 600 800 1000 1200 1400 1600 1800 600 800 1000 1200 1400
Time Time
(c) tetR/cI without aTe (d) tetR/cI with aTc
10° ?
3 x 3 x 10
—d
— lacl lacl
25 25f
2 ol
8 §
g B
€15 € 15}
S 8
1 / 1t
0.5} 05f
. | s ——
0" Fraresooul e — e e S TR . i Y 0 s
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Time Time

(e) cl/lacl from random initial conditions

(f) cl/lacl from specific initial conditions

Figure 7-11: Numerical simulations of the three toggle switch models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

for the first two systems and they reduce to transcriptional cascades. Therefore, for
those devices we can only hope to achieve bistability in the absence of aTc. Only
one model is constructed for the cl/lacI device as there is no input from aTc.

Simulated trajectories of the tetR/lacl system reaches an equilibrium where the
concentration of lacl is low in the absence of aTc (Figure 7.11(a)) and high otherwise
(Figure 7.11(b)). Similarly, trajectories of the tetR/cI system reaches an equilibrium
where the concentration of cI is low in the absence of aTc (Figure 7.11(c)) and high
otherwise (Figure 7.11(d)). For the cI/lacl there is not aTc input initial simulations
from random initial conditions reveal an equilibrium, where the concentration of lacl
is low. For all three systems, results from numerical simulations suggest that only a
single stable equilibrium is present but for the tetR/lacl and tetR/cl systems, this
equilibrium can be switched using the external input. We verify and explore further
those results using the analysis procedures developed in this dissertation.

As for the toggle switch systems discussed in Section 7.2, we want to identify the
regions of attraction for the stable equilibria separately and compare their sizes. For
the tetR/lacl system, we define linear predicates m; := lacI > 60000, 7y := tetR >
25000, 73 := lacl < 250, and 74 := tetR < 250. We are interested in analyzing the
system for specifications ¢; = OU(m A my) and ¢ = $O(me A 73). For the tetR/cl
system, we define linear predicates w5 := c¢I > 60000, 7¢ := tetR > 300000, 77 :=
el < 250, and 7g := tetR < 500 and formulas ¢3 = $O(m5A7s) and ¢q = SO(meATy).
Finaily, for the cI/lacl system we define mg := cI > 20000, 7y := lacl > 250000,
71y = ¢l < 250, and 7 = lacIR < 500 and formulas ¢s = QO(mg A m12) and
¢s = OU(m10 A 711). Because the formulas for the different systems are qualitatively
similar, we simplify the notation and consider only formulas ¢, and ¢, (i.e. @, is ¢1
for tetR /lacl but ¢3 for tetR/cl). The results of the analysis are summarized in table

7.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

’ model [®a ¢, time ‘ Db @y time ‘
tetR/lacl without aTc | 0% 100% 1.5sec| 0.37% 0% 12 min
tetR/lacl with aTc 0% 100% 1 sec 0% 100% 1 sec
tetR /cI without aTc 0% 100% 1sec | 100% 0% 4 sec
tetR/cl with aTc 99.9% 0% 1 sec 0% 99.9% 1 sec

cl/lacl 0.4% 14.2% 2min | 12.65% 0.57% 2 min

Table 7.5: Relative volumes and computation times of satisfying and violating regions
for the three toggle switch models.

The analysis results of the cl/lacl system reveal that a second stable equilibrium
might exist. To confirm this, additional trajectories were simulated from initial
conditions, where the concentrations of lac/ were much higher than those of cl.
The simulations confirm the existence of a second stable equilibrium state (Figure

7.11(£)).

7.5 Discussion

In Section 7.2, we studied a bistable toggle switch and an oscillating repressilator
genetic network. The results demonstrated that the characteristic behavior of the
two systems can be captured as LTL specifications and validated using the analysis
procedures described in Chapter 4. In addition, we were able to study the sizes
of the satisfying and violating regions for each specification in order to gain more
information about the systems.

In Section 7.3, we described how the previously available model of a transcrip-
tional cascade can be used to derive the models of two repressilator and three toggle
switch circuits, constructed from the same set of parts. Based on the results from
Section 7.2, we expected that a repressilator topology would produce systems that
oscillate and a toggle switch topology would produce bistable systems. In Section 7.4,
we used our analysis procedure to test in silico, whether such design requirements

were indeed satisfied.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

First, we analyzed the unmodified transcriptional cascade model. For the case
when there is no aTc, our results identify only a very small region of initial conditions
for the system, from which low eyfp concentration (below 1000) is eventually and
stably reached. When a7Tc is present, we can guarantee that for a substantial region
of initial conditions, the concentration of eyfp will eventually reach and stabilize
at high values (over 30000). This is consistent with the expected behavior of the
transcriptional cascade.

For the tetR/lacl/cI repressilator circuit, oscillations of the concentration of cI
between values above 20000 and below 1000 are disproved from a large region of
initial conditions. Similarly, oscillations of the concentration of lacl between values
above 250000 and below 1000 are disproved for the tetR/cl/lacI circuit. Those results
hold both in the presence and absence of aTc. For the first system, concentration of
cl are likely to stabilize to low values when aTc is present but trajectories are not
likely to reach and stabilize in a region of either high (above 20000), or low (below
1000) concentrations of ¢/ when aTc is absent. While from simulations it appears
that cI stabilizes to values above 20000 in the absence of aTc the stability of the
region cannot be guaranteed, possibly as a result of other trajectories originating
there. For the second system, concentration of lacl again stabilize to low values
when aTc is present and in its absence, a small region from the system reaches and
remains at high concentrations of lacl is discovered. Our results indicate that, as
constructed, the repressilator systems do not produce the required oscillations and
must be tuned further to get this behavior.

For the tetR/lacl and tetR/cl toggle switch systems, the existence of two at-
tracting invariant regions cannot be confirmed by our analysis procedure. For the
tetR/lacl neither of the regions tested was identified as stable or attracting. For

the tetR/cl system, the results indicate that all trajectories of the system reach and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

remain in a region of high tetR and low cl concentrations in the absence of aTc, and
high ¢l and low tetR concentrations in the presence of aTc. For the cl/lacl toggle
switch system, our analysis revealed that two attracting invariant sets exist. Further
numerical simulations confirmed that the system can settle in two different stable
equilibria. Only one of the two equilibria was revealed initially through numerical
simulation, due to the small size of the attractor region of the other.

By using our analysis procedure, we were able to invalidate the two repressilator
device designs as they did not lead to the expected behavior. In addition, we were
able to correctly identify the bistable behavior of the tetR/cI system, that was missed
initially when exploring the system through simulations. As the set of biological
parts available in various repositories increases, device designs must be explored
automatically from high level specifications. Our analysis procedures can be applied
to computational models of synthetic gene networks to select potentially good device
design and filter out bad ones, which can reduce the experimental work required to

produce devices that work correctly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Conclusions and Future Work

The main focus of this work has been the development of a framework that allows
properties of synthetic gene networks to be specified formally using rich specifications,
resembling natural language. Methods for the fully automatic analysis of realistic
models of such systems were developed. Our approach was based on the construction
of finite abstractions of infinite systems and expanded the known class of hybrid
systems, for which finite quotients can be computed efficiently. Our framework led
to the implementation of several software tools for analysis, parameter synthesis, and
control of piecewise affine systems from temporal logic specifications. Applications
of our analysis procedure to the field of synthetic biology were demonstrated through
computational experiments.

The model of a previously constructed transcriptional cascade was used to de-
scribe the dynamics of its separate components. Those components were computa-
tionally recombined in different ways to construct novel devices, which were tested
against specifications of bistability and oscillatory behavior using our methods. We
showed that such an approach can be used to find device design that fail to operate
as required, which can save costly experimental validation. In addition, we showed
that our method can uncover behavior that is missed if only numerical simulations
are used to study the models.

As the complexity of devices constructed as part of synthetic biology increases

and more intricate functionality is required, tools allowing the automatic analysis of

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

models against rich specifications will be needed to guide design efforts. A number
of biological part databases are currently being developed and there is an ongoing
effort to characterize the available parts (i.e. provide measurement data that de-
scribes their behavior). Similarly to the applications demonstrated in this thesis,
such information can be used to explore the large space of potential device designs
in silico, by constructing mathematical models and analyzing them from high level
specifications. This approach can allow researchers to experimentally construct only
a small set of devices that are likely to work as required and validate them exper-
imentally. Focusing the experimental efforts to a smaller number of constructs can
save costly and time consuming experiments.

Currently available tools for biodesign automation allow parts from repositories to
be combined automatically into new devices, with the help of liquid handling robots.
As those methods improve, it will become possible to construct a large number of
devices with minimal effort. Our methods can add the extra layer of validation that
limits the construction efforts to a smaller set of devices that are more likely to work
as required. As more parts are characterized and more devices are constructed, the
quality of mathematical models will improve and analysis procedures such as the
ones developed as part of this thesis will hold more predictive power. There are
several extensions that can be implemented in our framework to improve the results
further.

The separate methods for analysis, parameter synthesis and control developed
in this thesis can be combined into one single procedure. Our analysis method can
be used first to identify regions of initial conditions, from which all trajectories of
a system satisfy a specification. For non-satisfying regions, our parameter synthesis
procedure can tune the system and guarantee its correctness. If non-satisfying regions

still remain, control strategies can be found to affect the system from those states

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

only (the controllers implementing those strategies can come online only when the
systems enters a specific region). In this way, the region from which satisfaction of
a specification can be guaranteed might be expanded further than if just a single
procedure was used.

The most significant extension of the methods described in this thesis would in-
volve transforming them from a nondeterministic into a probabilistic framework. Our
current approach does not consider the likelihood of an execution but requires that
all trajectories of the system satisfy the specification. As a result, our methods are
conservative and a single run that violates the specification is sufficient to invalidate
the model from a whole set of initial conditions. This is especially true when param-
eter uncertainty is considered. Intuitively, there is some distribution over the set of
possible parameters and some trajectories are more likely than others. In order to
account for such effects, the probability of individual executions must be captured.

A probabilistic framework would allow devices to be compared based on their
probability of satisfying a specification. In our current approach, we compare devices
based on the relative size of the satisfying (violating) region (the region from which
the satisfaction (violation) of the formula is guaranteed). However, even when the
sizes of the satisfying region of two devices are similar, their probabilities of satisfying
the specification might be very different. Maximizing the probability of satisfying
a specification can also be used to tune devices using various search strategies, in-
cluding genetic algorithms. In addition, probabilistic temporal logics can be used to
capture less restrictive specifications. Instead of requiring that the system oscillates,
which will be violated even if a very unlikely non-oscillating run exists, the slightly
weaker with probability over 90%, the system oscillates seems more appropriate for
biological systems.

There exist tools that can decide whether a finite probabilistic model satisfies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

a specification expressed as a probabilistic temporal logic formula. However, the
stochastic models used for biological systems are usually infinite, so a strategy for
abstraction, similar to the ones used in this thesis in a nondeterministic setting, must
be developed.

Additional extensions to the framework described in this thesis can address the
complexity of the resulting methods, which limits their application to relatively small
genetic networks. Larger systems can be broken up into modules, which are analyzed
separately. Methods for guaranteeing the correctness of a system from guarantees of
the correctness of its separate modules have been developed in the field of formal ver-
ification. For probabilistic systems, methods for statistical model checking consider
a subset of possible executions and provide only statistical guarantees of correctness
but can handle much larger systems.

Probabilistic versions of the methods from this thesis that can handle larger
systems can become valuable tools for the analysis of biological systems. Through
integration with other biodesign automation platforms, such tools can provide a
complete design solution for the field of synthetic biology. This can decrease the time
and cost associated with projects and allow researchers to attempt the construction

of more challenging designs, which can lead to more advanced applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

Alur, R., Belta, C., Ivancic, F., Kumar, V., Mintz, M., Pappas, G., and
Schug, J. (2001). Hybrid modelling and simulation of biomolecular net-
works. In Di Benedetto, M. and Sangiovanni-Vincentelli, A., editors,
Hybrid Systems: Computation and Control, volume 2034 of Lecture Notes
in Computer Science, pages 19-32. Springer Berlin / Heidelberg.

Alur, R., Courcoubetis, C., and Dill, D. (1990). Model-checking for real-
time systems. In IEEE Symposium on Logic in Computer Science, pages
414—425, Philadelphia, PA.

Alur, R., Courcoubetis, C., Henzinger, T. A., and Ho, P. H. (1993). Hybrid
automata: An algorithmic approach to the specification and verification of
hybrid systems. In Grossman, R., Nerode, A., Ravn, A., and Rischel, H.,
editors, Hybrid Systems, volume 736 of Lecture Notes in Computer Science,
pages 209-229. Springer Berlin / Heidelberg.

Alur, R., Dang, T., and Ivancic, F. (2002). Reachability analysis of hybrid
systems via predicate abstraction. In Tomlin, C. and Greenstreet, M.,
editors, Hybrid Systems: Computation and Control, volume 2289 of Lecture
Notes in Computer Science, pages 758-819. Springer Berlin / Heidelberg.

Alur, R. and Dill, D. L. (1994). A theory of timed automata. Theoretical
Computer Science, 126(2):183-235.

Alur, R., Henzinger, T., and Sontag, E., editors (1996). Hybrid Systems
III: Verification and Control, volume 1066 of Lecture Notes in Computer
Science. Springer-Verlag.

Alur, R., Henzinger, T. A., Lafferriere, G., and Pappas, G. J. (2000). Discrete
abstractions of hybrid systems. Proceedings of the IEEE, 88:971-984.

Anderson, J. C., Clarke, E. J., Arkin, A. P., and Voigt, C. A. (2006). En-
vironmentally controlled invasion of cancer cells by engineered bacteria.
Journal of Molecular Biology, 355:619-627.

Antoniotti, M. and Mishra, B. (1995). Discrete event models + temporal
logic = supervisory controller: Automatic synthesis of locomotion con-

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

trollers. In Proceedings of the 1995 IEEE International Conference on
Robotics and Automation, pages 1441-1446, Nagoya, Aichi, Japan.

Antoniotti, M., Park, F., Policriti, A., Ugel, N., and Mishra, B. (2003). Foun-
dations of a query and simulation system for the modeling of biochemical
and biological processes. In Proceedings of the Pacific Symposium of Bio-
computing (PSB03), pages 116-127.

Antunes, M., Ha, S., Tewari-Singh, N., Morey, K., Trofka, A., Kugrens, P.,
Deyholos, M., and Medford, J. (2006). A synthetic de-greening gene circuit
provides a reporting system that is remotely detectable and has a re-set
capacity. Journal of Plant Biotechnology, 4:605-622.

Aziz, A., Shiple, T., Singhal, V., Brayton, R., and Sangiovanni-Vincentelli,
A. (2002). Formula-dependent equivalence for compositional CTL model
checking. Formal Methods in System Design, 21:193-224.

Baier, C. and Katoen, J.-P. (2008). Principles of Model Checking. The MIT
Press.

Barmish, B. and Sankaran, J. (1979). The propagation of parametric uncer-
tainty via polytopes. IEEE Transactions on Automatic Control, 24:346—
249. '

Barnat, J., Brim, L., and Rockai, P. (2009). DiVinE 2.0: High-Performance
Model Checking. In Proceedings of the International Workshop on High
Performance Computational Systems Biology (HiBi), pages 31-32. IEEE
Computer Society Press.

Basu, S. and Kumar, R. (2006). Quotient based approach to control of
nondeterministic discrete-event systems with p-calculus specifcation. In
American Control Conference, Minneapolis, MN.

Batt, G., Belta, C., and Weiss, R. (2007a). Model checking liveness prop-
erties of genetic regulatory networks. In Grumberg, O. and Huth, M.,
editors, Tools and Algorithms for the Construction and Analysis of Sys-
tems, volume 4424 of Lecture Notes in Computer Science, pages 323-338.
Springer Berlin / Heidelberg.

Batt, G., Belta, C., and Weiss, R. (2008). Temporal logic analysis of gene
networks under parameter uncertainty. IEEE Transactions on Circuits
and Systems and IEEE Transactions on Automacit Control (joint special
issue on Systems Biology), 53:215-229.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M.,
and Schneider, D. (2005). Validation of qualitative models of genetic
regulatory networks by model checking : Analysis of the nutritional stress
response in Escherichia coli. Bioinformatics, 21(Suppl.1):119-i28.

Batt, G., Yordanov, B., Weiss, R., and Belta, C. (2007b). Robustness Analy-
sis and Tuning of Synthetic Gene Networks. Bioinformatics, 23(18):2415~
2422.

Belta, C., Esposito, J., Kim, J., and Kumar, V. (2005). Computational
techniques for analysis of genetic network dynamics. The International
Journal of Robotics Research, 24(2-3):219-235.

Belta, C., Finin, P., Habets, L., A, H., Imielinksi, M., V.Kumar, and Rubin,
H. (2004). Understanding the bacterial stringent response using reacha-
bility analysis of hybrid systems. In Alur, R. and Pappas, G. J., editors,
Hybrid Systems: Computation and Control, volume 2993 of Lecture Notes
in Computer Science, pages 107-116. Springer Berlin / Heidelberg.

Belta, C. and Habets, L. (2004). Constructing decidable hybrid systems
with velocity bounds. In 43rd IEEE Conference on Decision and Control,
Paradise Island, Bahamas.

Belta, C., Schug, J., Dang, T., Kumar, V., Pappas, G. J., Rubin, H., and
Dunlap, P. V. (2001). Stability and reachability analysis of a hybrid
model of luminescence in the marine bacterium Vibrio fischeri. In 40th
IEEE Conference on Decision and Control, Orlando, FL.

Bemporad, A., Garulli, A., Paoletti, S., and Vicino, A. (2003). A greedy
approach to identification of piecewise affine models. In Maler, O. and
Pnueli, A., editors, Hybrid Systems: Computation and Control, volume
2623 of Lecture Notes in Computer Science, pages 97-112. Springer Berlin
/ Heidelberg.

Bemporad, A., Giovanardi, L., and Torrisi, F. (2000). Performance driven
reachability analysis for optimal scheduling and control of hybrid systems.
In Proceedincs of the 39th IEEE Conference Decision and Control, pages
969 —974.

Bergmann, F. and Sauro, H. (2006). SBW-a modular framework for systems
biology. Proceedings of the 2006 Winter Simulation Conference, pages
1637-1645.

Bernot, G., Comet, J.-P., Richard, A., and Guespin, J. (2004). Application
of formal methods to biological regulatory networks: Extending Thomas’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

asynchronous logical approach with temporal logic. Journal of Theoretical
Biology, 229(3):339-347.

Bianco, A. and de Alfaro, L. (1995). Model checking of probabilistic and
nondeterministic systems. In Thiagarajan, P., editor, Foundations of Soft-
ware Technology and Theoretical Computer Science, volume 1026 of Lecture
Notes in Computer Science, pages 499 — 513. Springer Berlin / Heidelberg,.

Biofab (2009). The biofab:international open facility advancing biotechnol-
ogy (biofab). online at http://www.biofab.org/.

Blinov, M. L., Faeder, J. R., Goldstein, B., and Hlavacek, W. S. (2004).
BioNetGen: software for rule-based modeling of signal transduction based
on the interactions of molecular domains. Bioinformatics, 20(17):3289-91.

Bouajjani, A., Fernandez, J.-C., and Halbwachs, N. (1991). Minimal model
generation. In Clarke, E. and Kurshan, R., editors, Computer-Aided Veri-
fication, volume 531 of Lecture Notes in Computer Science, pages 197-203.
Springer Berlin / Heidelberg.

Brajnik, G. and Clancy, D. (1998). Focusing qualitative simulation using
temporal logic: theoretical foundations. Annals of Mathematics and Arti-
ficial Intelligence, 22(1-2):59-86.

Braun, D., Basu, S., and Weiss, R. (2005). Parameter estimation for two
synthetic gene networks: A case study. In Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing, pages
769-772.

Brutlag, D. L., Galper, A. R., and Millis, D. H. (1991). Knowledge-based
simulation of DNA metabolism: prediction of enzyme action. Computer
Applications in the Biosciences, 7(1):9-19.

Cai, Y., Hartnett, B., Gustafsson, C., and Peccoud, J. (2007). A syntac-
tic model to design and verify synthetic genetic constructs derived from
standard biological parts. Bioinformatics, 23(20):2760-2767.

Canton, B., Labno, A., and Endy, D. (2008). Refinement and standard-
ization of synthetic biological parts and devices. Nature Biotechnology,
26(7):787-93.

Cases, 1. and Lorenzo, V. D. (2005). Genetically modified organisms for the
environment,: stories of success and failure and what we have learned from
them. International Microbiology, 8(3):213-222.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., and Schachter,
V. (2004). Modeling and querying biomolecular interaction networks.
Theoretical Computer Science, 325(1):25-44.

Chandran, D., Bergmann, F. T., and Sauro, H. M. (2009). TinkerCell:
modular CAD tool for synthetic biology. Journal of Biological Engineering,
3:19.

Chutinan, A. and Krogh, B. (1998). Computing approximating automata
for a class of linear hybrid systems. In Antsaklis, P., Lemmon, M., Kohn,
W., Nerode, A., and Sastry, S., editors, Hybrid Systems V, volume 1567
of Lecture Notes in Computer Science, pages 637-637. Springer Berlin /
Heidelberg.

Chutinan, A. and Krogh, B. H. (2001). Verification of infinite-state dynamic
systems using approximate quotient transition systems. IEEE Transac-
tions on Automatic Control, 46(9):1401-1410.

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri,
M., Sebastiani, R., and Tacchella, A. (2002). NuSMV 2: An opensource
tool for symbolic model checking. In Brinksma, E. and Larsen, K., editors,
Computer Aided Verification, volume 2404 of Lecture Notes in Computer
Science, pages 241-268. Springer Berlin / Heidelberg.

Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., and
Theobald, M. (2003). Abstraction and counterexample-guided refinement
in model checking of hybrid systems. International Journal of Foundations

of Computer Science (IJFCS), 14(4):583-604.

Clarke, E. M. M., Peled, D., and Grumberg, O. (1999). Model checking.
MIT Press.

Cooling, M. T., Rouilly, V., Misirli, G., Lawson, J. R., Yu, T., Hallinan,
J., and Wipat, A. (2010). Standard virtual biological parts: a repository
of modular modeling components for synthetic biology. Bioinformatics,
26(7):925-31.

Courcoubetis, C. and Yannakakis, M. (1995). The complexity of probabilistic
verification. Journal of the ACM, 42(4):857-907.

Davoren, J. M., Coulthard, V., Markey, N., and Moor, T. (2004). Non-
deterministic temporal logics for general flow systems. In Alur, R. and
Pappas, G. J., editors, Hybrid Systems: Computation and Control, volume
2993 of Lecture Notes in Computer Science, pages 107-121. Springer Berlin
/ Heidelberg.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

de Jong, H. (2002). Modeling and simulation of genetic regulatory systems.
Journal of Computational Biology, 9(1):69-105.

de Jong, H., Geiselmann, J., Hernandez, C., and Page, M. (2003a). Genetic
network analyzer : Qualitative simulation of genetic regulatory networks.
Bioinformatics, 19(3):336-344.

de Jong, H., Gouzé, J.-L., Hernandez, C., Page, M., Sari, T., and Geisel-
mann, J. (2003b). Hybrid modeling and simulation of genetic regulatory
networks: A qualitative approach. In Maler, O. and Pnueli, A., editors,
Hybrid Systems: Computation and Control, volume 2623 of Lecture Notes
in Computer Science, pages 267-282. Springer Berlin / Heidelberg.

Del Vecchio, D., Ninfa, A. J., and Sontag, E. D. (2008). Modular cell biology:
retroactivity and insulation. Molecular Systems Biology, 4(161):161.

Densmore, D., Van Devender, A., Johnson, M., and Sritanyaratana, N.
(2009). A platform-based design environment for synthetic biological sys-
tems. ACM Press, New York, New York, USA.

Eker, S., Knapp, M., Laderoute, K., Lincoln, P., and Talcott, C. (2002).
Pathway logic: Executable models of biological networks. Electronic Notes
wn Theoretical Computer Science, 71.

Elowitz, M. B. and Leibler, S. (2000). A synthetic oscillatory network of
transcriptional regulators. Nature, 403(6767):335-8.

Emerson, E. A. (1985). Automata, tableaux and temporal logics (extended
abstract). In Proceedings of the Conference on Logic of Programs, pages
79-88.

Emerson, E. A. (1990). Temporal and modal logic. In van Leeuwen, J.,
editor, Handbook of Theoretical Computer Science: Formal Models and
Semantics, volume B, pages 995-1072. North-Holland Pub. Co./MIT

Press.

Endy, D. (2005). Foundations for engineering biology. Nature, 438(7067):449-
53.

Fages, F., Soliman, S., and Chabrier-Rivier, N. (2004). Modelling and query-
ing interaction networks in the biochemical abstract machine BIOCHAM.
Journal of Biological Physics and Chemistry, 4(64.73).

Fainekos, G. E., Kress-Gazit, H., and Pappas, G. J. (2005). Hybrid con-
trollers for path planning: a temporal logic approach. In IEEE Conference
on Decision and Control, pages 4885-4890, Seville, Spain.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

Ferrari-trecate, G., Muselli, M., Liberati, D., and Morari, M. (2001). A
learning algorithm for piecewise linear regression. In In Marinaro,M.
and Tagliaferri,R. (eds.) Neural Nets: WIRN Vietri-01, pages 114-119.
Springer.

Ferrari-Trecate, G., Muselli, M., Liberati, D., and Morari, M. (2003). A
clustering technique for the identification of piecewise affine systems. Au-
tomatica, 39(2):205-217.

Fiser, A., Do, R. K. G., and Sali, A. (2000). Modeling of loops in protein
structures. Protein Science, 9(9):1753-73.

Francois, P. and Hakim, V. (2004). Design of genetic networks with specified
functions by evolution in silico. Proceedings of the National Academy of
Sciences of the United States of America, 101:580-585.

Frehse, G., Jha, S., and Krogh, B. (2008). A counterexample-guided ap-
proach to parameter synthesis for linear hybrid automata. In Egerstedt,
M. and Mishra, B., editors, Hybrid Systems: Computation and Control, vol-

ume 4981 of Lecture Notes in Computer Science, pages 187-200. Springer
Berlin / Heidelberg.

Funahashi, A., Morohashi, M., Kitano, H., and Tanimura, N. (2003). Cellde-
signer: a process diagram editor for gene-regulatory and biochemical net-
works. Biosilico, 1:159-162.

Gardner, T., Cantor, C., and Collins, J. (2000). Construction of a genetic
toggle switch in Escherichia coli. Nature, 403:339-342.

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel,
R. D., and Bairoch, A. (2005). Protein Identification and Analysis Tools
on the ExPASy Server. In Walker, J. M., editor, The Proteomics Protocols
Handbook, pages 571-607. Humana Press.

Gastin, P. and Oddoux, D. (2001). Fast ltl to biichi automata translation.
In Berry, G., Comon, H., and Finkel, A., editors, Computer Aided Verifi-
cation, volume 2102 of Lecture Notes in Computer Science, pages 53—65.
Springer Berlin / Heidelberg.

Geyer, T., Torrisi, F., and Morari, M. (2003). Efficient mode enumeration
of compositional hybrid systems. In Maler, O. and Pnueli, A., editors,
Hybrid Systems: Computation and Control, volume 2623 of Lecture Notes
in Computer Science, pages 216-232. Springer Berlin / Heidelberg.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

Ghosh, R., Tiwari, A., and Tomlin, C. (2003). Automated symbolic reach-
ability analysis; with application to delta-notch signaling automata. In
Maler, O. and Pnueli, A., editors, Hybrid Systems: Computation and Con-
trol, volume 2623 of Lecture Notes in Computer Science, pages 233-248.
Springer Berlin / Heidelberg.

Ghosh, R. and Tomlin, C. J. (2004). Symbolic reachable set computation
of piecewise affine hybrid automata and its application to biological mod-
elling: Delta-Notch protein signalling. Systems Biology, 1(1):170-183.

Gibson, D. G., Glass, J. 1., Lartigue, C., Noskov, V. N.,; Chuang, R. Y.,
Algire, M. A., Benders, G. A., Montague, M. G., Ma, L., Moodie, M. M.,
Merryman, C., Vashee, S., Krishnakumar, R., Assad-Garcia, N., Andrews-
Pfannkoch, C., Denisova, E. A., Young, L., Qi, Z. Q., Segall-Shapiro, T. H.,
Calvey, C. H., Parmar, P. P., Hutchison, C. A., Smith, H. O., and Venter,
J. C. (2010). Creation of a Bacterial Cell Controlled by a Chemically
Synthesized Genome. Science, 52.

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical
reactions. Journal of Physical Chemistry, 81(25):2340-2361.

Gillespie, D. T. and Mangel, M. (1981). Conditioned Averages in Chemical
Kinetics. Journal of Chemical Physics, 75:704-709.

Girard, A. (2007). Approximately bisimilar finite abstractions of stable
linear systems. In Bemporad, A., Bicchi, A., and Buttazzo, G., editors,
Hybrid Systems: Computation and Control, volume 4416 of Lecture Notes
in Computer Science, pages 231-244. Springer Berlin / Heidelberg.

Glass, L. (1975). Classification of biological networks by their qualitative
dynamics. Journal of Theoretical Biology, 54:85-107.

Goler, J. (2004). BioJADE: a design and simulation tool for synthetic bi-
ological systems. online at http://dspace.mit.edu/handle/1721.1/7115.
AITR-2004-003.

Grieder, P. (2004). Efficient computation of feedback controllers for con-
strained systems. Ph.d. dissertation, ETH Ziirich.

Hedley, W. J., Nelson, M. R., Bellivant, D. P., and Nielsen, P. F. (2001). A
short introduction to CellML. Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences, 359(1783):1073—
1089.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

Heemels, W. P. M. H., Schutter, B. D., and Bemporad, A. (2001). Equiva-
lence of hybrid dynamical models. Automatica, 37(7):1085-1091.

Henzinger, T. and Sastry, S., editors (1998). Hybrid Systems: Computation
and Control, volume 1386 of Lecture Notes in Computer Science. Springer.

Henzinger, T. A., Kopke, P. W., Puri, A., and Varaiya, P. (1998). What
is decidable about hybrid automata? Journal of Computer and System
Sciences, 57:94-124.

Hill, A. V. (1913). The combinations of haemoglobin with oxygen and with
carbon monoxide. Biochemical Journal, 7(5):471-480.

Holzmann, G. (1997). The model checker SPIN. IEEE Transactions on
Software Engineering, 25(5):279-295.

Holzmann, G. (2004). The SPIN Model Checker, Primer and Reference
Manual. Addison-Wesley, Reading, Massachusetts.

Hooshangi, S., Thiberge, S., and Weiss, R. (2005). Ultrasensitivity and noise
propagation in a synthetic transcriptional cascade. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 102(10):3581.

Horn, F. (2005). Streett Games on Finite Graphs. In the 2nd Workshop on
Games in Design and Verification (GDV).

Hucka, M., Finney, A., Sauro, H., Bolouri, H., Doyle, J. C., Kitano, H.,
Arkin, A. P., Bornstein, B., Bray, D., Cornish-Bowden, A., Cuellar, A. A,
Dronov, S., Gilles, E. D., Ginkel, M., Gor, V., Goryanin, 1. ., Hedley,
W. J., Hodgman, T. C., Hofmeyr, J.-H., Hunter, P. J., Juty, N. S., Kas-
berger, J. L., Kremling, A., Kummer, U., Le Novere, N., Loew, L. M.,
Lucio, D., Mendes, P., Minch, E., Mjolsness, E. D., Nakayama, Y., Nelson,
M. R., Nielsen, P. F., Sakurada, T., Schaff, J. C., Shapiro, B. E., Shimizu,
T. S., Spence, H. D., Stelling, J., Takahashi, K., Tomita, M., Wagner, J.,
and Wang, J. (2003). The systems biology markup language (SBML): a
medium for representation and exchange of biochemical network models.
Bioinformatics, 19(4):524-531.

Jiang, S. and Kumar, R. (2006). Supervisory control of discrete event sys-
tems with CTL* temporal logic specifications. SIAM Journal on Control
and Optimization, 44(6):2079-2103.

Juloski, A., Wieland, S., and Heemels, W. P. M. H. (2005). A bayesian
approach to identification of hybrid systems. IEEE Transactions on Au-
tomatic Control, 50(10):1520-1533.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

Kanellakis, P. C. and Smolka, S. A. (1990). CCS expressions, finite-state pro-
cesses, and three problems of equivalence. Information and Computation,
86:43-68.

Karaman, S., Sanfelice, R. G., and Frazzoli, E. (2008). Optimal control
of mixed logical dynamical systems with linear temporal logic specifica-
tions. In Proceedings of the 47th IEEE Conference on Decision and Con-
trol (CDC), pages 2117-2122.

Kauffmann, S. A. (1969). Metabolic stability and epigenesis in randomly
constructed genetic nets. Journal of Theoretical Biology, 22:437-467.

Kelly, J. R., Rubin, A. J., Davis, J. H., Ajo-Franklin, C. M., Cumbers, J.,
Czar, M. J., de Mora, K., Glieberman, A. L., Monie, D. D., and Endy,
D. (2009). Measuring the activity of BioBrick promoters using an in vivo
reference standard. Journal of Biological Engineering, 3:4.

Klein, J. and Baier, C. (2006). Experiments with deterministic w-automata
for formulas of linear temporal logic. Theoretical Computer Science,
363(2):182-195.

Kloetzer, M. and Belta, C. (2006a). A fully automated framework for control
of linear systems from ltl specifications. In Hespanha, J. and Tiwari, A.,
editors, Hybrid Systems: Computation and Control, volume 3927 of Lecture
Notes in Computer Science, pages 333-347. Springer Berlin / Heidelberg.

Kloetzer, M. and Belta, C. (2006b). Ltl planning for groups of robots. In
IEEE International Conference on Networking, Sensing, and Control, Ft.
Lauderdale, FL.

Kloetzer, M. and Belta, C. (2008a). Dealing with non-determinism in sym-
bolic control. In Hybrid Systems: Computation and Control, volume 4981
of Lecture Notes in Computer Science, pages 287-300. Springer Berlin /
Heidelberg.

Kloetzer, M. and Belta, C. (2008b). A fully automated framework for control
of linear systems from temporal logic specifications. IEEE Transactions
on Automatic Control, 53(1):287-297.

Knight, T. (2003). Idempotent vector design for standard assembly of bio-
bricks. MIT Synthetic Biology Working Group.

Kuipers, B. (1981). Qualitative simulation. Artificial intelligence, 29:289-
388.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

Kvasnica, M. (2008). Efficient Software Tools for Control and Analysis of
Hybrid Systems. PhD thesis, Swiss Federal Institute of Technology (ETH)
Zurich.

Kvasnica, M., Grieder, P., and Baotié, M. (2004). Multi-Parametric Toolbox
(MPT).

Lafferriere, G., Pappas, G., and Yovine, S. (1999a). A new class of decid-
able hybrid systems. In Vaandrager, F. and van Schuppen, J., editors,
Hybrid Systems: Computation and Control, volume 1569 of Lecture Notes
in Computer Science, pages 137-151. Springer Berlin / Heidelberg.

Lafferriere, G., Pappas, G. J., and Sastry, S. (2000). O-minimal hybrid
systems. Mathematics of Control, Signals and Systems, 13(1):1-21.

Lafferriere, G., Pappas, G. J., and Yovine, S. (1999b). Reachability compu-
tation for linear hybrid systems. In Proceedings of the 14th IFAC World
Congress, pages 7-12, Beijing, P.R.C.

LaValle, S. M. (2006). Planning Algorithms. Cambridge University Press.

Le Novere, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M.,
Dharuri, H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J. L.,
and Hucka, M. (2006). BioModels Database: a free, centralized database
of curated, published, quantitative kinetic models of biochemical and cel-
lular systems. Nucleic Acids Research, 34(Database issue):D689-91.

Le Novere, N., Finney, A., Hucka, M., Bhalla, U. S., Campagne, F., Collado-
Vides, J., Crampin, E. J., Halstead, M., Klipp, E., Mendes, P., Nielsen,
P., Sauro, H., Shapiro, B., Snoep, J. L., Spence, H. D., and Wanner, B. L.
(2005). Minimum information requested in the annotation of biochemical
models (MIRIAM). Nature Biotechnology, 23(12):1509-15.

Levine, M. and Tjian, R. (2003). Transcription regulation and animal diver-
sity. Nature, 424(6945):147-51.

Lin, J.-N. and Unbehauen, R. (1992). Canonical piecewise-linear approxima-
tions. IEEE Transactions on Circuits and Systems I: Fundamental Theory
and Applications, 39(8):697-699.

Lloyd, C. M., Lawson, J. R., Hunter, P. J., and Nielsen, P. F. (2008). The
CellML Model Repository. Bioinformatics, 24(18):2122-3.

Loizou, S. G. and Kyriakopoulos, K. J. (2004). Automatic synthesis of
multiagent motion tasks based on LTL specifications. In IEEE Conference
on Decision and Control, volume 1, pages 153— 158.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

Longabaugh, W. J., Davidson, E. H., and Bolouri, H. (2005). Computational
representation of developmental genetic regulatory networks. Developmen-
tal Biology, 283(1):1 — 16.

Lynch, N. and Krogh, B. H., editors (2000). Hybrid Systems: Computation
and Control, volume 1790 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin.

McAdams, H. H. and Shapiro, L. (1995). Circuit simulation of genetic
networks. Science (New York, N.Y.), 269(5224):650-6.

Meijering, E. (2002). A chronology of interpolation: From ancient astron-
omy to modern signal and image processing. In Proceedings of the IEFE,
volume 90, pages 319-342.

Memon, M. A. (2003). Computational logic: Linear-time vs. branching-
time logics. Graduate Course Notes, Simon Fraser University, Burnaby,
Canada.

Mestl, T., Plathe, E., and Ombholt, S. W. (1995). Periodic solutions in
systems of piecewise-linear differential equations. Dynamics and stability
of systems, 10(2):179-193.

Milner, R. (1989). Communication and concurrency. Prentice-Hall, Engle-
wood Cliffs, NJ.

Mitchell, J. C. (2007). Discrete uniform sampling of rotation groups using
orthogonal images. SIAM Journal of Scientific Computing, 30(1):525-547.

Monteiro, P. T., Ropers, D., Mateescu, R., Freitas2, A. T., and de Jong, H.
(2008). Temporal logic patterns for querying dynamic models of cellular
interaction networks. Bioinformatics, 24(16):1227-1233. 10.1093/bioinfor-
matics/btn275.

Motzkin, T., H.Raiffa, Thompson, G., and R.M.Thrall (1953). The double
description method. In Kuhn, H. and Tucker, A., editors, Contributions
to Theory of Games, volume 2. Princeton University Press.

Nicollin, X., Olivero, A., Sifakis, J., and Yovine, S. (1993). An approach to
the description and analysis of hybrid systems. In Grossman, R., Nerode,
A., Ravn, A., and Rischel, H., editors, Hybrid Systems, volume 736 of
Lecture Notes in Computer Science, pages 149-178. Springer Berlin / Hei-
delberg.

Olivier, B. G. and Snoep, J. L. (2004). Web-based kinetic modelling using
JWS Online. Bioinformatics, 20(13):2143-4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

Pappas, G. J. (2003). Bisimilar linear systems. Automatica, 39(12):2035-
2047.

Peccoud, J., Blauvelt, M. F., Cai, Y., Cooper, K. L., Crasta, O., DeLalla,
E. C., Evans, C., Folkerts, O., Lyons, B. M., Mane, S. P., Shelton, R.,
Sweede, M. A., and Waldon, S. A. (2008). Targeted development of reg-
istries of biological parts. PloS one, 3(7):e2671.

Piterman, N. and Pnueli, A. (2006). Faster solutions of rabin and streett
games. In Proceedings of the 21st Annual IEEE Symposium on Logic in
Computer Science (LICS), pages 275-284, Washington, DC, USA. IEEE
Computer Society.

Puri, A. and Varaiya, P. (1994). Decidability of hybrid systems with rect-
angular differential inclusions. In Dill, D., editor, Computer Aided Veri-
fication, volume 818 of Lecture Notes in Computer Science, pages 95-104.
Springer Berlin / Heidelberg.

Purnick, P. E. M. and Weiss, R. (2009). The second wave of synthetic biol-
ogy: from modules to systems. Nature Reviews. Molecular Cell Biology,
10(6):410-22.

Quottrup, M. M., Bak, T., and Izadi-Zamanabadi, R. (2004). Multi-robot
motion planning: A timed automata approach. In [EEE International
Conference on Robotics and Automation, pages 4417-4422, New Orleans,
LA.

Rialle, S., Felicori, L., Dias-Lopes, C., Péres, S., El Atia, S., Thierry, A. R.,
Amar, P., and Molina, F. (2010). BioNetCAD: design, simulation and ex-
perimental validation of synthetic biochemical networks. Bioinformatics,
26(18):2298-304.

Riedel, M. D. (2010). The Next Frontier in Design Automation : Bio-Design
Automation (BDA). DAC.COM Knowledge Center Article.

Rizk, A., Batt, G., Fages, F., and Soliman, S. (2008). On a continuous
degree of satisfaction of temporal logic formulae with applications to sys-
tems biology. In Heiner, M. and Uhrmacher, A., editors, Computational
Methods in Systems Biology, volume 5307 of Lecture Notes in Computer
Science, pages 251-268. Springer Berlin / Heidelberg.

Ro, D.-K., Paradise, E. M., Ouellet, M., Fisher, K. J., Newman, K. L.,
Ndungu, J. M., Ho, K. A., Eachus, R. A., Ham, T. S., Kirby, J., Chang,
M. C. Y., Withers, S. T., Shiba, Y., Sarpong, R., and Keasling, J. D.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

(2006). Production of the antimalarial drug precursor artemisinic acid in
engineered yeast. Nature, 440:940-943.

Rodrigo, G., Carrera, J., and Jaramillo, A. (2007). Asmparts: assembly of
biological model parts. Systems and Synthetic Biology, 1(4):167-70.

Roll, J., Bemporad, A., and Ljung, L. (2004). Identification of piecewise
affine systems via mixed-integer programming. Automatica, 40(1):37-50.

Rosenfeld, N., Young, J., Alon, U., Swain, P., and Elowitz, M. (2007). Ac-
curate prediction of gene feedback circuit behavior from component prop-
erties. Molecular Systems Biology, 3(143).

Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S., and Elowitz, M. B.
(2005). Gene regulation at the single-cell level. Science (New York,
N.Y.), 307(5717):1962-5.

Safra, S. (1988). On the complexity of omega-automata. In Proceedings of
the 29th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 319-327.

Safra, S. (1989). Complexity of automata on infinite objects. PhD thesis,
The Weizman Institute of Science, Rehovot, Israel.

Salis, H. M., Mirsky, E. a., and Voigt, C. a. (2009). Automated design
of synthetic ribosome binding sites to control protein expression. Nature
Biotechnology, 27(10):946-50.

Savage, D. F., Way, J., and Silver, P. A. (2008). Defossiling fuel: how syn-
thetic biology can transform biofuel production. ACS Chemical Biology,
3:13-16.

Schlipf, T., Buechner, T., Fritz, R., Helms, M., and Koehl, J. (1997). Formal
verification made easy. IBM Journal of Research and Development, 41(4-
5):567-576.

Shults, B. and Kuipers, B. (1997). Proving properties of continuous systems:
Qualitative simulation and temporal logic. Artificial Intelligence, 92(1-
2):91-130.

Sontag, E. (1981). Nonlinear regulation: The piecewise linear approach.
IFEEE Trans. Automat. Contr., 26(2):346-358.

Tabuada, P. (2006). Symbolic control of linear systems based on symbolic
subsystems. IEEE Transactions on Automatic Control, 51(6):1003-1013.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

Tabuada, P. and Pappas, G. (2003). Model checking LTL over controllable
linear systems is decidable. In Maler, O. and Pnueli, A., editors, Hy-
brid Systems: Computation and Control, volume 2623 of Lecture Notes in
Computer Science, pages 498-513. Springer-Verlag.

Tabuada, P. and Pappas, G. (2006). Linear time logic control of discrete-time
linear systems. I[EEE Transactions on Automatic Control, 51(12):1862—
1877.

Thomas, R. (1991). Regulatory networks seen as asynchronous automata: a
logical description. Journal of Theoretical Biology, 153:1-23.

Thomas, W. (2002). Infinite games and verification. In Brinksma, E. and
Larsen, K., editors, Computer Aided Verification, volume 2404 of Lecture
Notes in Computer Science, pages 58—65. Springer Berlin / Heidelberg.

Tiwari, A. and Khanna, G. (2002). Series of abstractions for hybrid au-
tomata. In Tomlin, C. and Greenstreet, M., editors, Hybrid Systems:
Computation and Control, volume 2289 of Lecture Notes in Computer Sci-
ence, pages 425-438. Springer Berlin / Heidelberg.

Tamové, J., Yordanov, B., Belta, C., Cernd, I, , and Barnat, J. (2010). A
symbolic approach to controlling piecewise affine systems. In Proceedings
of the 49th IEEE Conference on Decision and Control, pages 4230-4235,
Atlanta, GA.

Tuttle, L. M., Salis, H., Tomshine, J., and Kaznessis, Y. N. (2005). Model-
driven designs of an oscillating gene network. Biophysical Journal, 89:3873—
3883.

Vaandrager, F. and van Schuppen, J., editors (1999). Hybrid Systems: Com-
putation and Control, volume 1569 of Lecture Notes in Computer Science.
Springer.

Vardi, M. (1999). Probabilistic linear-time model checking: An overview
of the automata-theoretic approach. In Katoen, J.-P., editor, Formal
Methods for Real-Time and Probabilistic Systems, volume 1601 of Lecture
Notes in Computer Science, pages 265-276. Springer Berlin / Heidelberg.

Vardi, M. (2001). Branching vs. linear time: Final showdown. In Tools and
Algorithms for the Construction and Analysis of Systems, volume 2031 of
Lecture Notes in Computer Science, pages 1-22. Springer-Verlag, London,
UK.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

Vardi, M. Y. and Wolper, P. (1986). An automata-theoretic approach to
automatic program verification. In Proceedings of the IEEE Symposium
on Logic in Computer Science (LICS), pages 332-344, Washington, DC,
USA. IEEE Computer Society.

Vidal, R., Soatto, S., Ma, Y., and Sastry, S. (2003). An algebraic geometric
approach to the identification of a class of linear hybrid systems. In
Proceedings of the 42nd IEEE Conference on Decision and Control.

Villalobos, A., Ness, J. E., Gustafsson, C., Minshull, J., and Govindarajan, S.
(2006). Gene Designer: a synthetic biology tool for constructing artificial
DNA segments. BMC Bioinformatics, 7:285.

Wolper, P., Vardi, M., and Sistla, A. (1983). Reasoning about infinite com-
putation paths. In et al., E. N., editor, IEEE Symposium on Foundations
of Computer Science, pages 185-194, Tucson, AZ.

Yordanov, B. and Belta, C. (2008a). Formal analysis of piecewise affine
systems under parameter uncertainty with application to gene networks.
In Proceedings of the American Control Conference, pages 2767 —2772.

Yordanov, B. and Belta, C. (2008b). Parameter synthesis for piecewise
affine systems from temporal logic specifications. In Egerstedt, M. and
Mishra, B., editors, Hybrid Systems: Computation and Control, volume
4981 of Lecture Notes in Computer Science, pages 542-555. Springer Berlin
/ Heidelberg.

Yordanov, B. and Belta, C. (2009). Temporal logic control of discrete-time
piecewise affine systems. In Proceedings of the 48th IEEE Conference on
Decision and Control, pages 3182 —3187, Shanghai, China.

Yordanov, B. and Belta, C. (2010). Formal analysis of discrete-time piecewise
affine systems. IEFE Transactions on Automatic Control, 55(12):2834—
2841.

Yordanov, B., Belta, C., and Batt, G. (2007). Model checking discrete
time piecewise affine systems: application to gene networks. In European
Control Conference (ECC), Kos, Greece.

Yordanov, B., Tamov4, J., Belta, C., Cerna, 1., , and Barnat, J. (2010). For-
mal analysis of piecewise affine systems through formula-guided refinement.
In Proceedings of the 49th IEEE Conference on Decision and Control, pages
5899-5904, Atlanta, GA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

Zhang, G. and Ignatova, Z. (2009). Generic algorithm to predict the speed
of translational elongation: implications for protein biogenesis. PloS one,
4(4):e5036.

Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization
prediction. Nucleic Acids Research, 31(13):3406-3415.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

Boyan Y. Yordanov

CONTACT Department of Biomedical Engineering
INFORMATION Boston University Cell: (508) 579-3543
HyNeSs Lab Faz: (617) 353-5548
15 Saint Mary‘s Street, Room 145 E-mail: yordanov@bu.edu
Brookline, MA 02446 Web: hyness.bu.edu/yordanov
RESEARCH I am interested in studying how the computation performed by bi-
INTERESTS ological systems leads to properties that make life possible. I focus

on exploring genetic regulatory networks designed as part of the
field of synthetic biology, where the complexity is manageable. 1
use mathematical models based on hybrid systems, which I analyze
formally using abstraction and model checking techniques.

EbDucATIiON Boston University, Boston, Massachusetts USA

Ph.D., Biomedical Engineering, January 2011
e Dissertation: A Formal Framework for Analysis and Design
of Synthetic Gene Networks
e Research Adviser: Professor Calin Belta
M.S., Biomedical Engineering, September 2009

e Research Adviser: Professor Calin Belta

Clark University, Worcester, Massachusetts USA
Magna cum Laude, Concentration in Bioinformatics.

B.A., Biochemistry and Molecular Biology, June 2005

e High Departmental Honors

e Thesis: Initial Conformational Changes of Transthyretin Trig-
gering Amyloid Formation: Molecular Dynamics Simulation
under Low pH Conditions.

e Research Adviser: Professor Shuanghong Huo

B.A., Computer Science, June 2005

e High Departmental Honors

e Thesis: Implementation of the Pebble Game Algorithm for
Flexibility Analysis of Proteins.

e Research Adviser: Professor Li Han

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

e Annual Center for Information and Systems Engineering (CISE)

AWARDS .
Award (Honorable Mention) 2007, 2008,
e Whitaker Fellowship, 2005,
e Outstanding Academic Achievement in Computer Science Award,
2004,
e James’39 and Ada Bickman Summer Science Research Intern-
ship Award, 2004.
JOURNAL B. Yordanov, J. Timovd, C. Belta, I. Cerns, J. Barnat, Tempo-
PAPERS AND ral Logic Control of Discrete-Time Piecewise Affine Systems, in
Book press, 2010.
CHAPTERS

B. Yordanov, C. Belta, Formal Analysis of Discrete-Time Piece-
wise Affine Systems, In Transactions on Automatic Control, vol-
ume 55(12), pages 2834-2841, 2010.

B. Yordanov, C. Belta, Parameter Synthesis for Piecewise Affine
Systems from Temporal Logic Specifications, In Lecture Notes in
Computer Science, volume 4981, pages 542-555, 2008.

G. Batt, B. Yordanov, R. Weiss, C. Belta, Robustness Analy-
sis and Tuning of Synthetic Gene Networks, In Bioinformatics,
volume 23(18), pages 2415-2422, 2007.

M. Yang, B. Yordanov, Y. Levy, R. Bruschweiler, S. Huo, The
Sequence-Dependent Unfolding Pathway Plays a Critical Role in
the Amyloidogenicity of Transthyretin, In Biochemistry, volume
45, 2006.

M. Yang, M. Lei, B. Yordanov, S. Huo, Peptide Plane Can Flip
in Two Opposite Directions:Implication in Amyloid Formation of
Transthyretin, In The Journal of Physical Chemistry B, volume
110, 2006.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

CONFERENCE B. Yordanov, J. Timovs, C. Belta, I. Cernd, J. Barnat, Formal

PROCEEDINGS Analysis of Piecewise Affine Systems through Formula-Guided
Refinement, In Proceedings of the 49th IEEE Conference on De-
cision and Control, Atlanta, GA, pages 5899-5904, 2010

J. Tamové, B. Yordanov, C. Belta, I. Cernd, J. Barnat, A Sym-
bolic Approach to Controlling Piecewise Affine Systems, In Pro-
ceedings of the 49th IEEE Conference on Decision and Control,
Atlanta, GA, pages 4230-4235, 2010.

B. Yordanov, C. Belta, Temporal Logic Control of Discrete-Time
Piecewise Affine Systems, In Proceedings of the 48th IEEE Con-
ference on Decision and Control, Shanghai, China, 2009.

B. Yordanov, C. Belta, Parameter Synthesis for Piecewise Affine
Systems from Temporal Logic Specifications, In 11th Interna-
tional Conference on Hybrid Systems: Computation and Control,
St. Louis, MO, 2008.

B. Yordanov, C. Belta, Formal Analysis of Piecewise Affine Sys-
tems under Parameter Uncertainty with Application to Gene Net-
works, In Proceedings of the 2008 American Control Conference,
Seattle, WA, pages 2767-2772, 2008.

B. Yordanov, C. Belta, G. Batt, Model Checking Discrete Time
piecewise Affine Systems: Application to Gene Networks, In Eu-
ropean Control Conference, Kos, Greece, 2007.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

CONFERENCE B. Yordanov, C. Belta, Formal Approaches to Analysis, Synthesis,
ABSTRACTS and Control of Synthetic Gene Networks, In Boston University
AND POSTERS Science and Engineering Research Symposium, 2010.

B. Yordanov, C. Belta, Formal Analysis and Parameter Synthesis
for Piecewise Affine Systems with Applications to Gene Networks,
In 4th Northeast Control Workshop, University of Maryland, Col-
lege Park, MD, April 26-27, 2008.

B. Yordanov, C. Belta, Formal Analysis and Parameter Synthesis
for Piecewise Affine Systems, In Boston University Science and
Engineering Research Symposium, 2008.

B. Yordanov, C. Belta, Formal Analysis of Piecewise Affine Sys-
tems under Parameter Uncertainty with Application to Gene
Networks, In 4th Annual RECOMB Satellite on Regulatory Ge-
nomacs, 2007.

B. Yordanov, C. Belta, G. Batt, Model Checking Discrete-Time
Piecewise Affine Systems: Applications to Gene Networks, In
Boston University Science and Engineering Research Symposium,
2007.

G. Batt, B. Yordanov, R. Weiss, and C. Belta, Robustness Anal-
ysis and Tuning of Synthetic Gene Networks. In Journées Ou-
vertes Biologie, Informatique et Mathématiques (JOBIM), Mar-
seille, France, 2007

G. Batt, B. Yordanov, R. Weiss, C. Belta, Robustness Analysis
and Tuning of Synthetic Gene Networks. In Proc. Synthetic
Biology 3.0, 2007.

G. Batt, B. Yordanov, R. Weiss, C. Belta, Robustness Analysis
and Tuning of Synthetic Gene Networks with Parameter Uncer-
tainties. In Fngineering Principles in Biological Systems, Cold
Spring Harbor, NY, 2006

SOFTWARE B. Yordanov and C. Belta, FaPAS: Formal Analysis of Piecewise
TooLs Affine Systems under Parameter Uncertainty.
B. Yordanov and C. Belta, ParSyPAS: Parameter Synthesis for
Piecewise Affine Systems.
B. Yordanov and C. Belta, conPAS: Temporal Logic Control of
Discrete-Time Piecewise Affine Systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

RESEARCH Graduate Research Assistant, 2006 - 2010:

EXPERIENCE HyNeSs Lab, Boston University, Boston MA
PI: Professor Calin Belta

Undergraduate Research Assistant, 2004 - 2005:

Biochemistry Dept., Clark University, Worcester MA,
PI: Professor Shuanghong Huo

Undergraduate Research Assistant, 2004 - 2005:

Computer Science Dept., Clark University, Worcester MA,
PI: Professor Li Han

Teaching Assistant
Computer Science Dept., Clark University, Worcester MA,
Introductory computer science courses (CSCI101, CSCI102)
Teaching Assistant
Bioinformatics, Clark University, Worcester MA,
Introductory Bioinformatics course (BINF101)

TEACHING
EXPERIENCE

ADDITIONAL Responsible Conduct of Research, 2010
TRAINING Laboratory Safety Training, 2008

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

