An Introduction to Equations in LATEX

Robert Andersen
University of Oxford
and
University of Western Ontario

ICPSR Summer Program, July 2002

Introduction to Math in LaTeX

- LaTeX has three basic modes:
 - 1. Text mode
 - 2. Inline math mode (allows math inside text)
 - 3. Display math mode (equations are separated from the text)
- Most math symbols can only be used in math mode (e.g., the hat and bar symbols above letters)
- Equations (and all math symbols) can be set within the text if they are surrounded by dollar signs (\$). For example: \$\hat{Y}=\alpha+\beta_1 X_1+\beta_2 X_1^2\$, gives:

$$\hat{Y} = \alpha + \beta_1 X_1 + \beta_2 X_1^2$$

- Complicated equations, however, are best set in display math environments
- Before we look at environments, it is useful to look at some math symbols

Basic Math (1)

- Subscripts and superscripts:
 - Carets (^) indicate superscripts, \$X^2\$
 - Underscores () indicate subscripts, \$X 1\$.
 - When the sub/superscript contains more than one character, it is enclosed in braces, \$X^{n+1}\$.
- Square Roots: \$\sqrt{X}\$
- Fractions and binomial coefficients:
 - Fractions: \$\frac{x}{y}\$, where x is the numerator and y is the denominator.
 - Binomials: \$\binom{x}{y}\$

$$x^5$$
 x_{n+1} $\frac{5}$ $\frac{1}{n+k+1}$

 x^5 x_{n+1} $\sqrt{5}$ $\frac{1}{n+k+1}$

Basic Math (2)

- Sums and integrals:
 - Sums: \sum (different from the \Sigma symbol).
 - Integrals: \int
 - Size is adjusted automatically according to the equation
 - Lower and upper limits are specified as subscripts and superscripts: \$\sum_{k=1}^n\$ \$\Sigma\$

$$\sum_{k=1}^{n}$$
 Σ

- Limits:
 - "\lim" produces the "lim" symbol

 $\lim_{x\to\infty}$

Basic Math (3)

Math Text:

- Text in math mode is normally *italicised*
- This can be avoided for certain functions by typing the following: \sin, \cos, \log, \ln, \exp, etc.
- Other text within equations is specified with an \mbox command (this command also keeps text together):

\$\widehat{\mbox{prestige}}=\alpha+\beta\mbox{income}\$

$$\widehat{\text{prestige}} = \alpha + \beta \widehat{\text{income}}$$

Greek letters (1)

- Greek letters are easily generated in MATH mode by typing a backslash and then spelling out the letter.
- Most of the codes are intuitive:

 α \alpha \theta β \beta ϑ \vartheta γ \gamma \iota δ \delta κ \kappa \epsilon λ \lambda \varepsilon $\mu \setminus mu$ ∖zeta ν \nu \eta \xi

Greek letters (2)

 A selection of Greek letters are also available in uppercase:

Decorations

• Some of the most commonly used decorations in math mode are:

```
 \widehat{y} \qquad \text{hat}\{y\} \\  \text{income} \qquad \text{widehat}\{\text{hbox}\{\text{income}\}\} \\  \widetilde{x} \qquad \text{tilde}\{x\} \\  \text{income} \qquad \text{widetilde}\{\text{hbox}\{\text{income}\}\} \\  \overline{x} \qquad \text{bar}\{x\} \\  \overrightarrow{x} \qquad \text{vec}\{x\} \\  X' \qquad \text{X^herime}
```

Relations, Operators and Deliminators

	Command		Command		Command
<	<	>	>	=	=
\leq	\leq or \le	\geq	\geq or \ge	=	\equiv
< ≪ ~</td <td>\II</td> <td>\gg</td> <td>\geq or \ge \gg</td> <td>\sim</td> <td>\sim</td>	\II	\gg	\geq or \ge \gg	\sim	\sim
\simeq	∖simeq	\approx	\approx		•
+	+	\pm	\pm	÷	\div
×	\times	\sum	\sum	П	\prod
ſ	\int				
(())		
[[]]		
{	{	}	}		
	/	ĺ	√backslash		

Some other useful math commands

\dots; \cdots

 Horizontal ellipsis with dots on bottom of line and in centre of the line

\ddots

Diagonal ellipsis

\vdots

Vertical ellipsis

\overbrace; \underbrace

- Makes a brace over or under the text

\overline; \underline

Overlines or underlines text

An example using the ellipsis commands

```
\label{eq:continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous
```

Spacing in Math Mode

- All blank spaces are ignored inside math mode
- Usually LaTeX knows the proper distance to put between characters, but sometimes you may find it helpful to adjust the distance
- The "\quad" command adds horizontal space to separate to equations
- Other smaller spaces can be achieved with:
 - 1. \; a thick space
 - 2. \: a medium space
 - 3. \setminus , a thin space
 - 4. \! a negative thin space

Math Environments

- In display math modes (e.g., displaymath, equation, eqnarray, equation*), equations are displayed on separate lines from the regular text
- Most of the display mode that I'll show here uses the amsmath package, which should be loaded before the "\begin{document}" statement as follows: \usepackage{amsmath}
- The equation environment will number each equation; equation* will give the same equation without numbering it

\begin{equation}
\hat{y}=\alpha+\beta_1X_1+\beta_2X_2+\varepsilon
\end{equation}

$$\hat{y} = \alpha + \beta_1 X_1 + \beta_2 X_2 + \varepsilon \tag{1}$$

Equations are displayed differently in math environments than inline

• Examine the following example, using exactly the same commands but one using the \$ signs inline, and the other in the "equation" environment:

 $\lim_{n \rightarrow \infty} \lim_{k=1}^n \frac{1}{x^2}$

Inline with text:

$$\lim_{n\to\infty}\sum_{k=1}^n \frac{1}{x^2}$$

• Using the "equation" environment:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{x^2}$$

Often we need to "align" equations

- The "aligned" environment in the amsmath package makes it easy to align equations. The "&" indicates where the equations should be aligned at; the "\\" starts a new line
- This is particularly important considering that LaTeX will not break up your equations automatically

```
\begin{equation*}
\begin{aligned}
F_0&=\frac{\mbox{RegSS}/k}{\mbox{RSS}/(n-k-1)}\\
    &=\frac{n-k-1}{k}\times\frac{R^2}{1-R^2}
\end{aligned}
\end{equation*}
```

$$F_0 = \frac{\text{RegSS}/k}{\text{RSS}/(n-k-1)}$$
$$= \frac{n-k-1}{k} \times \frac{R^2}{1-R^2}$$

Arrays (1)

- The array environment arranges information into columns
- New rows are started by a "double-backslash" \\
- Column entries in each row are separated by the "and" sign &
- Column alignment is specified immediately after the start of the environment:
 - I is for left-adjusted columns
 - r is for right-justified columns
 - c is for centred columns

Arrays (2): An example

```
\begin {equation*}
\begin {array} {clcr}
X + y & 3 \times 4 & X^10 & 0\\
\beta_i + 3 & z & \frac{1}{2} & 5
\end{array}
\end{equation*}
```

Produces:

$$X + y \quad 3 \times 4 \quad X^{10} \quad 0$$

 $\beta_i + 3 \quad z \qquad \frac{1}{2} \quad 5$

Using the "array" environment to make matrices

- Once inside a math environment (such as "equation" or "displaymath") we can use the "array" environment to make matrices
- By putting "\left" and "\right" beside the left and right square brackets, LaTeX will now to make the brackets for the matrix large enough for the array

The "newcommand" command: Creating commands for often used symbols

- If we are doing a long equation that involves using different symbols over and over again, it is efficient to create your own command
- For example, when exploring the matrix formula for linear regression, the X matrix and the y matrix are used frequently
- Since they are matrices, they should be in bold symbols without a "newcommand" this could become very tedious and you would be likely to make many errors
- The new command allows you to make a simple command for these matrices

The "newcommand" command: Creating commands for often used symbols (2)

\begin{equation*}
\newcommand{\y}{\boldsymbol{y}}
\newcommand{\X}{\boldsymbol{X}}
\mbox{\bf{b}}=(\X^\prime\X)^-1\X^\prime\y
\end{equation*}

$$\mathbf{b} = (X'X)^{-1}X'y$$