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ABSTRACT

This paper is organized in two parts. The first part
examines four approaches to provide the abstraction of
a single system for a clusters of workstations: Berkley
NOW [4], MOSIX [6], ParaStation [26] and Microsoft
Cluster Service (MSCS) [24]. The criteria used to asses
each system are transparency, availability and perfor-
mance. The last section of this part proposes an alter-
native simpler design for MSCS that improves both per-
formance and availability. The second part of the paper
introduces the concept of adaptive replication, argues
its particular relevance to clusters and its the compati-
bility with well-known replication algorithms and finally
argues that a cluster-based replication service must sup-
port adaptive replication or face a steady (though low)
decrease in availability as the number of nodes in the
cluster increases.

Keywords: Workstation clusters, Networks of Work-
stations, Adaptive replication

1 INTRODUCTION

In this paper we define a cluster of workstations as a
special type of distributed system in which a collec-
tion of interconnected whole-computers act together as
a single computing system. FEach computer or node in
the cluster has local memory, disk and processing re-
sources which are semi-autonomously managed by its
local copy of some operating system. A number of
additional simplifying assumptions become realistic in
clusters of workstations. First, the cluster as a whole
comprises a single administrative and security domain.
Second, a higher level of node homogeneity (software
and hardware) that in general distributed systems can
be assumed. Third, cluster nodes can be assumed to be
geographically closed. Finally cluster nodes can be as-
sumed to be connected by fast network infrastructures.

This paper will not attempt to defend cluster of work-
stations as a superior architecture. For a fervent such
defense the reader can consult [19]. Instead, the paper

will examine different approaches to exploit the poten-
tial of clusters of workstations, for high performance and
highly available computation. Some of the benefits of
clusters, like scalability and availability, are directly in-
herited from its more general counterparts: distributed
systems. But clusters have additional potential benefits
derived from the stronger assumptions upon which they
are based, namely:

Fast /reliable communication
Single administrative and security
Platform homogeneity (Hardware/OS)

Throughout the paper, I will keep in mind a num-
ber of demands that I believe the next generation of
commodity distributed software will place on comput-
ing systems in general and clusters in particular. Some
of this demands include:

Node Scalability Cluster software should graciously
incorporate dynamic additions of nodes to the clus-
ter. This increase in number of nodes should gen-
erate a corresponding in crease in system capacity,
but should also increase (or at least maintain) avail-
ability.

365-24 Operation Cluster software should provide
continuous operation.

Not all the systems that I will examine were originally
designed with all of these demands in mind. There-
fore, it will be unfair to criticize them for not achieving
what their designers were not attempting to achieve. I
will, however, attempt to unfold any potential limita-
tions that these designs may present to their extension
to satisfy the unexpected demands.

As a first step towards understanding and organiz-
ing the body of research under study I have defined a
general scheme of three layers on which cluster-based
systems can be characterized. This scheme is not in-
tended to describe any real architecture of a cluster sys-
tem. Instead, its usefulness lies on its ability to help me
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Figure 1 Three layers of cluster-based software

understand the different problems being tackled by the
various research efforts. The three layers, shown in Fig-
ure 1, are: the network layer (NET), the coarse-grain
parallelism layer (CGP) and the fine-grain parallelism
layer (FGP). Each can be viewed as exporting a system
abstraction that can (but not necessarily) be used by
the layers above it. The goal of the network layer is
to export the abstraction of a system consisting of dis-
tributed nodes interconnected with very fast networks.
The coarse-grain layer implements the abstraction of a
single multi-programmed (e.g. Unix-like) system. An-
other name for this layer could be the network trans-
parency layer. Many distributed systems in the past
have attacked and solved different problems in imple-
menting precisely this layer. Two of this systems are
Sprite [18] and Amoeba [17].

The top-most layer (FGP) implements the abstrac-
tion of a massively-parallel processor (MPP). This lay-
ered approach has been directly followed by a num-
ber of real systems like PVM [11] and CYLK [23].
All these fine-grain parallel programming systems have
been ported to some flavor of Unix, an implementation
of the CGP layer.

My first use for this layered scheme will be to estab-
lish the focus of this paper. Together, the four systems
under study comprise design efforts in all three layers
above. A serious analysis of all the approaches to imple-
ment the different cluster software layers would require
more time and space that I have been allocated. Al-
though I will briefly explain the approach of each system
to implement each relevant layer, I will limit my analysis
to how each system implements the coarse-grain parallel
layer.. In particular I will make emphasis on how each
system exploits the potential of clusters of workstations
to achieve high performance and highly available net-
work transparency.

I have decided to focus the paper on the coarse-grain
layer for a reason. I believe the demand for highly avail-
able multi-programmed systems is growing more rapidly
than the demand for massively parallel processor ab-
stractions. The advent of the internet as a global infor-

mation repository is and important factor influencing
this demand. The software infrastructure of the inter-
net is all implemented at the coarse-grain level. More-
over, more and more content providers are becoming
aware of the necessity of maintaining their sites operat-
ing continuously. In the internet there is no such thing
as “business hours”.

In the last section of this first part, I present an alter-
nate design for MSCS that is simpler that the original
design and has the potential to provide higher availabil-
ity and performance.

The second part of the paper introduces adaptive
data replication in the context of clusters of worksta-
tions. Data replication comprises the study of algo-
rithms for maintaining multiple copies of data objects
in order to improve both performance and availability
in the presence of failures. In a cluster, failures can
be expected to occur more frequently as the number
of nodes is augmented to accommodate unexpected in-
creases in load. A number of systems have been de-
signed in the past to allow dynamic changes to the level
of replication of individual objects. These changes can
be triggered by either users or the system. However, to
the best of my knowledge, no system in the past has
been designed to maintain a desired level of availability
as the number of nodes changes. I therefore introduce
adaptive replication for clusters of workstations. Adap-
tive replication automates the process of determining
the necessary changes in levels of replication necessary
to maintain a desired level of availability in response to
changes to the cluster composition.

2 Berkeley NOW

The Berkeley NOW (Networks of Workstations) project
[3] focuses on exploiting the aggregate memory, disk and
processing capacity of a cluster of workstations. The
emphasis has been on achieving the best possible perfor-
mance for both parallel and sequential applications that
do not necessarily require very high availability. The
project has been divided in several sub-projects each of
which tackles fairly orthogonal problems. Three of these
projects are Active Messages [25] , Server-less Network
File Systems (xFS) [4] and Glunix [12]. The Active
Messages project investigates techniques for providing
fast interconnection infrastructures for clusters. The
xFS project devised a fully distributed log-structured
[20] network file system that stripes files [14] across
cluster nodes in order to exploit their aggregate I/O
bandwidth. GLUnix is a user-level software layer that
provides transparent remote execution. Together, these
three projects address the three layers of cluster soft-
ware. I will focus this paper on GLUnix and xFS as



they present approaches to provide coarse-grain level
abstractions for clusters of workstations.

2.1 xFS: A Server-less Distributed File
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Figure 2 Distributed striped log segments in xFS

The main idea behind xFS is to implement a RAID
storage system in software. As shown in Figure 2, xFS
stores data in a log format. That is, all data is written
sequentially at the end of the old data. The file system
combines the advantages of log-based storage (perfor-
mance, fast recovery) with those of stripping (availabil-
ity and performance).

In xFS, any file (including directories) can be located
anywhere in the cluster. In fact, a single file may be
partitioned across different nodes. In Figure 2, a client
stripes its set of dirty blocks, also called a log segment,
into 3 data stripes. The client also computes a fourth re-
dundant stripe containing parity bits that can be used to
reconstruct any lost stripe from any other three stripes.
The number of stripes is determined by the number of
nodes in the corresponding stripe group. In the Figure,
each server appends its new stripe to the end of its local
log.

2.1.1 Virtues and limitations

Transparency

xFS scores high on transparency. It provides an ab-
straction of a single file system uniform across all nodes.
Availability

Redundant stripes increase the availability of the xFS
system. They enable the file system to tolerate any sin-
gle node failure. The degree of tolerance to network
partitions in xFS is limited by the tolerance of the repli-
cation algorithm used to maintain the global data struc-
tures used to locate data. Unfortunately, the replication
algorithm had not been published at the time of this
writing.

xFS distributes both data and metadata (directories)
across all nodes in the cluster. This has a significant im-
pact on the complexity and, as is usually the case, the
reliability of the system. In order to distribute meta-
data, xFS need to maintain several data structures nec-
essary to locate information across all nodes. These
data structures constitute global state that must be kept
consistent and accessible to every node.

Log-structured file systems depends on ability of
clients to accumulate large numbers of dirty blocks in
order to assemble large enough log segments that gen-
erate large sequential writes to disk. This presents a
reliability problem due to the potentially high risk of
data loss as a result of a node failure. This appears to
be an inherent limitation of the log-based approach. In
[20] the designers of LFS assume that crashes are infre-
quent and users can afford to loose the last seconds or
minutes of work. A pretty strong assumption indeed.
In clusters, however, the frequency of failures increases
linearly with the number of nodes.

Performance

The fully distributed organization of data in xFS has
the potential to be transparently reorganized to balance
the load and remove hot spots resulting from unpre-
dictable usage patterns. The system can take advan-
tage of the aggregate bandwidth of all disks and I/O
channels. Implementing RAID in software avoids the
need of RAID-based hardware to provide highly avail-
able storage.

2.2 GLUnix

GLUnix implements transparent remote execution with
dynamic load balancing. In GlUnix supports the “home
node” model of transparency originally proposed in
Sprite [10]. In this model, users log-in into a single node,
their home node, and from there execute programs that
may end up running anywhere in the cluster. It is the
job of the cluster software to guarantee that the job runs
remotely as if it had run at the home node.
GLUnix provides the following services:

e Dynamic load balancing



e Channels I/O between the home and the execution
node

e Allows GLUnix jobs to create children GLUnix jobs

A GLUnix job is not a normal Unix process, but
rather a distributed collection if Unix processes. As a re-
sult, a user must wrap every Unix executable command
with a GLUnix command (glurun) that encapsulates
the knowledge about how to create a GLUnix job that
can execute remotely in the cluster.

GLUnix also provides an API that processes can use
to start GLUnix jobs.

2.2.1 Implementation

master node

master,
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glurun —l node
matlab @
fork

remote node

home node

Figure 3 Remote execution in GLUNix

Figure 3 illustrates the process involved in creating a
GLUnix job. The boxes represent nodes and the ovals
represent processes. In the Figure, the GLUnix job is
started by typing the command “glurun matlab” at the
home node. This command creates a startup process
inside the home node whose sole purpose is to serve a
liaison between the user and the remote process doing
the real work. The startup sends a request to a cen-
tralized master daemon process running at some well
known node. The request includes the command “mat-
lab” as well as environment data about the home node.
The master determines which node appears less loaded
and send a request to a per-node daemon running at
the selected node. The per node daemon and creates a
remote process that eventually executes the “matlab”
command.

Local node load information is periodically computed
by the per-node daemon processes and propagated to
the master.

GLUnix runs as a user-level system on top of Unix.
It consists of the following components:

Per-cluster master daemon A centralized process
that coordinates communication among all the per-
node daemons and GLUnix processes. It maintains
a central repository of load information as well as
a central mapping from global process identifiers
(pids) to Unix pids local to nodes. Detects fail-
ures of nodes via timeouts and coordinates garbage
collections of processes related to those that were
running on the failed node.

Per-node daemon This per-node daemon process
gathers load information local to the node and com-
municates it to the master daemon. The per-node
daemon also carries out local actions (e.g. jobs stop
and restart) on behalf of the master daemon.

API Library This library implements the API used
to create cluster-aware applications. Includes fa-
cilities for spawning processes, process communica-
tion thru signals and barrier synchronization. The

APT implements a global name space for process
ids.

Commands GLUnix provides several shell commands
that allow users to execute and manage GLUnix
jobs.

2.2.2 Virtues and limitations

Transparency

GLUnix provides home node transparency. What
this means is that to a user or program spawning a
job the cluster appears as the single multiprogrammed
system where the job is created. This type of trans-
parency is not ideal because users and programs must
still be aware of the fact that the cluster is a collection
of systems. Home node transparency puts the burden
of maintaining a uniform image of the system across all
nodes on higher level subsystems and the system admin-
istrator. A slightly higher level of transparency could be
achieved if home nodes were determined on a per-user
basis independently of where the users happens to be
logged-in. This approach provides a consistent abstrac-
tion of the cluster to each user which can result in more
predictable behavior from the cluster. Users could be
assigned home nodes according to different policies. Of
cource, the problem with this approach is that the clus-
ter may look different to different users, but such was
the case when home nodes correponded to process cre-
ation points.

Another limitation to achieve transparency from the
point of view of processes in GLUnix is caused by the
lack of kernel support. After a process gets started at a
remote node, all the system calls that it generates are



handled by the remote kernel. Such system calls may
expose information about the environment at the re-
mote node that is inconsistent with the environment at
the home node. MOSIX fixes this problem by redirect-
ing potentially location dependent system calls to the
kernel at the home node. This mechanism is described
in more detail in section 3
Awvailability

GLUnix achieves some level of fault tolerance by au-
tomatically detecting, via timeouts, failures of the per-
node daemon or startup processes. The master is to-
tally responsible for detecting such failures and keep-
ing information about which processes are alive. Upon
detecting a failure, the master coordinates the process
by which any remnants of GLUnix jobs running on the
failed node are garbage collected. GLUnix cannot tol-
erate failures of the master daemon and it provides no
facility for automatically restarting failed jobs. Thus,
although failures are fairly isolated and the system as a
whole tolerates failures, the individual services provided
by nodes are not fault-tolerant.

Although the paper does not describe it, seems to me
like GLUnix could easily be extended support dynamic
addition of new or recovered nodes to the cluster. This
will require a mechanism such as heartbeats (see MSCS
below) to be implemented by each per-node daemon.
Tolerating failures of the master daemon would require
more sophisticated mechanisms. A new master node
would have to be elected and the master daemon state
recovered.

As a user-level solution, GLUnix is much less depen-
dent on the underlying operating system and is compat-
ible with old executables. Although GLUnix uses load
information to decide where to run jobs, it offers no
mechanism for preemptively migrating a running job to
another node in response to changes in system load dis-
tribution. Therefore it can only hope to achieve limited
load balancing.

Performance

GLUnix’s centralized approach to keeping the status
of GLUnix processes is simple and avoids the complexity
of replicated data management. It, however, represents
a single point of failure in the system as well as a po-
tential performance bottleneck for clusters with many
nodes. The authors present some evidence demonstrat-
ing that the centralized master daemon is far from be-
coming a performance bottleneck in a configuration of
100 nodes. This result may indicate that a centralized
approach combined with a fault-tolerant mechanism like
process pairs [7] to replicate the master daemon may of-
fer a suitable solution for environments where commu-
nication with the master is not frequent. In GLUnix,

communication flows to the master from startup pro-
cesses (to forward signals and start jobs) and per-node
daemons (to report load information).

3 The MOSIX Distributed OS

The main goal of the MOSIX [6] project is to implement
preemptive load balancing in clusters of workstations.
Preemptive load balancing attempts to maintain every
node in the cluster equally busy by reassigning processes
from heavily loaded nodes to less loaded nodes at any
time during their execution. Every process in MOSIX
starts to run at some node, called the home node, deter-
mined by the user or parent process that started the job.
However, process may migrate through several nodes
several times during its lifetime.

The designers of MOSIX selected a preemptive load
balancing approach because the foresaw large and hard
to predict variations in resource usage by processes.
Other simpler approaches to load balancing include
static load balancing and dynamic load balancing. In
both cases, processes run to termination once they are
assigned to a node. The difference between both ap-
proaches is that dynamic load balancing continuously
collects load information from all nodes. Assignments
of processes to nodes is based on the latest informa-
tion collected. Static load balancing works well when
the resource demands of each process are known or can
be accurately predicted ahead of time. Dynamic load
balancing predicts future resource demands based on
current resource demands and uses this information to
adapt its process assignment decisions. In neither case
is it possible to relieve a node overloaded with poorly
assigned processes by migrating work to other nodes. If
processes are relatively short lived, the complexity of a
process migration mechanism necessary for preemptive
load balancing may not be warranted.

MOSIX provides the illusion that the home node is a
powerful single multiprogrammed workstation. There-
fore, MOSIX implements the CGP layer of the layered
cluster model (Figure 1). MOSIX is a complete operat-
ing system providing the same user interface provided
by other versions of Unix. The main difference is that
users do not need to specify special commands to run
processes remotely. Instead, they start their processes
the same way they would to run them locally. Based on
information about the load of each node, MOSIX

Process migration in Mosix is completely transpar-
ent and universal. Any process can be migrated at any
time and, after migration is completed, will continue to
execute as if it was running at the node that it was orig-
inally started on. This behavior is guaranteed for both
interactive and batch jobs. Any process can run any-



where in the cluster. This high level of transparency
comes at a price in both performance and portability
which will be discussed in the “Virtues and Limitations”
section below.

3.1 Implementation

This section describes the load balancing algorithms
used by MOSIX. In MOSIX, process migration can be
triggered by the one of following events:

1 a process explicitly requests to be migrated

2 a node detects that migrating a process may im-
prove load balance

3 a node detects excessive remote I/O by a process
4 a node detects excessive forking by a process

5 a node shutdowns

T have been unable to find a description of the specific
algorithms used to determine events (3) and (4) above.
Events (1) and (5) are not triggered automatically by
MOSIX itself. Therefore, I will delimit by discussion
to how MOSIX migrates processes in response to load
imbalances. My description is based on [5].

The load information necessary to determine how to
reassign processes to processors is gathered indepen-
dently by each MOSIX node in a probabilistic fashion.
At regular intervals, a node calculates and exchanges
its local load information with some randomly selected
node. At all times, every node holds load information
from a subset of nodes of fixed size. The load informa-
tion about each node includes: processor speed, proces-
sor load, processor utilization and memory utilization.
MOSIX measures processor load as the number of pro-
cesses ready to run (in the ready queue).

As shown in Figure 4 process migration in MOSIX is
accomplished in the following steps:

1. a source node detects a load imbalance

2. the source node selects a candidate process for mi-
gration

3. the candidate process selects a target node to mi-
grate to

4. the process is temporarily suspended and its mem-
ory image and kernel state are transfered to the
target node

5. the process is restarted at the target node

Figure 4 Mosix process migration steps

I will now describe each step in more detail.

Every node in a MOSIX cluster independently con-
siders migrating one process out whenever new load in-
formation is received from another node and the new
information reflects that there is some less loaded node
in the cluster. This determination is made by procedure
load_balance shown in Figure 5 called by the kernel
at the source node. If a less loaded node is detected,
load balance selects the process p that has maximal
migration priority as a candidate for migration. The
migration priority is proportional to the process accu-
mulated CPU time and the process contribution to lo-
cal load. Processes that do not satisfy minimal condi-
tions for migration are not considered. For instance,
MOSIX does not migrate processes that have explicitly
requested not to be migrated. The selected candidate
process is marked and signaled for migration.

MOSIX delegates the responsibility to select a des-
tination node to the candidate process. Once signaled,
the process executes the consider procedure in Figure
5. The procedure computes a cost function C[j] for
each node j that the local node has load information
on. The set of nodes considered is small (8 or so for a
cluster of up to 512 nodes) and fixed. The cost func-
tion has three main components: expected CPU time
to completion, communication overhead and migration
time. Migration time is essentially proportional to pro-
cess size, so it remains constant for the same candidate
process (I don’t understand why it has to be considered
here). Each node keeps an execution profile for each lo-
cal process that is used in calculating each component
of the cost function. The node that minimizes the cost
function is selected as the target. If the target node is
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Figure 5 Load balancing procedures in MOSIX

the local node the process does not migrate.

During the next step, MOSIX copies the modified
pages of the virtual memory image of the migrating pro-
cess to the target node. Clean pages are brough in on
demand from MOSIXs file system. MOSIX also trans-
fers the process table entry.

The basic mechanism used to support transparent
process migration in MOSIX is the kernel-to-kernel
RPC. All location dependent system calls are processed
in two steps. The first step, executed at the calling node,
completes as much of the work as possible without rely-
ing on node location information. This first layer then
makes an RPC call to an ambassador process running at
the process’ home node. The ambassador, a lightweight
kernel process, completes the second step of the call by
making a real system call at the home node. The re-
sult of this home node system call is channeled back to
the calling process. Every system call executes locally
or travels one hop to the process home node. Longer
forwarding chains are not possible. Many UNIX system
calls can be processed locally using state information

transferred with the migrated process.

3.2 Virtues and Limitations
3.2.1 Transparency

Like GLUnix, MOSIX implements home node trans-
parency. However, unlike GLUnix, MOSIX does does
not expose location dependent environment information
at the remote node.

3.2.2 Availability

Randomness in the information load information diffu-
sion algorithm used by MOSIX achieves two main pur-
poses: fault-tolerance and scalability. Fault-tolerance
because the algorithm does not require to have informa-
tion about all nodes. Scalability because the algorithm
puts a bound on the number of nodes to which load
information is transferred periodically. MOSIX’s prob-
abilistic algorithms avoid the complexity of consensus-
based algorithms.

MOSIX does not rely in any centralized repository
of configuration information. Therefore, it avoids the
potential single point of failure that accompanies some
centralized approaches.

3.2.3 Performance

A potential problem with MOSIX’s load balancing ap-
proach results from nodes making load balancing de-
cision independently using information that may vary
from node to node. One possibility is that many
nodes may decide to migrate processes to the same
lightly loaded node, thus flooding it with too much load.
MOSIX uses a technique that they call export loads to
ameliorate this problem. The measurements that they
present, however, do not measure the effectiveness of
this technique.

In MOSIX, the unit of load balancing is the process.
This approach seems appropriate when nodes execute a
rich and time varying collection of processes from which
to select candidates for migration. Such is not necessar-
ily the case, for instance, when the cluster is dedicated
to an internet information server. In this case, nodes
run a fairly stable number of daemon processes. In this
case it makes more sense to use requests as the unit of
load balancing. A preemptive load balancing scheme
using fully transparent process migration might not be
the most cost effective way to provide load balancing.

Preemptive load balancing also seems to be appropri-
ate when the cost of restarting a long running process is
much higher that the cost of migrating the process. An
alternative approach to preemptive load balancing may
place the burden of migration on long running processes.



These processes are the most likely to need transparent
migration. Each such migration-aware process may pro-
vide hooks that the kernel can use to signal the process
that migration is about to happen. The process can be
made responsible to perform any kind of application-
level checkpointing necessary to minimize restart time.
After checkpointing, the process simply dies. Migration
simply entails restarting the process at the target node.

The high level of transparency in MOSIX’s migra-
tion mechanism comes at a price in both performance
and portability. The price in performance result from
the extra communication overhead involved in forward-
ing some system calls to the process home node. As
demonstrated by a number of attempts to provide user-
level migration [16], this price seems unavoidable. The
price in portability comes from the extra kernel support
necessary to support transparent process migration. As
a result commodity operating systems cannot be easily
adapted to use MOSIX’s load balancing features.

4 ParaStation

For completeness, I now describe the essentials of the
ParaStation project. Since the project mostly deals
with the fine-grain layer and the network layer, my dis-
cussion is rather schematic.

The main goal for ParaStation project was the design
and implementation of fast networking hardware and
software. The researchers wanted create a high perfor-
mance massively parallel computer out of a cluster. The
ParaStation designers focused their effors at the network
and fine-grain layers of the layered cluster model. The
fine-grain parallel layer is implemented directly on top
of the network layer. The project designed and built a
new network interface card and implemented a user level
protocol stack. Processes syncronize their access to the
protocol software using semaphores. The semaphores,
however are implemnted at user level using processor
intructions specialized for this purpose.

ParaStation implements several well-known parallel
programming environements (e.g. PVM) on top of the
user-level implementation of the BDS Unix sockets com-
munication interface.

In ParaStation, workstations are connected to two
networks, one via a fast propietary network interface
card (NIC) and a second one via a standard (NIC). The
user-level protocol stack is only available to applications
that use the propietary network infrastructure. Users
can develop parellel applications using a variety of par-
allel programming environments.

5 Microsoft Cluster Service

(MSCS)

The Microsoft Cluster Service [24] is an extension to the
Microsoft NT operating system. My discussion here will
be limited to what the authors call the first developmen-
tal phase of MSCS. In this phase, MSCS is guaranteed
to work well for clusters of two nodes. The effort has
initially focused on providing the necessary support for
making off-the-shelf server applications highly available.
Future phases of MSCS will consider other issues includ-
ing scalability to large numbers of nodes, load balancing
and support for parallel applications.

MSCS provides two fundamental services: cluster
membership and resource management. The cluster
membership service automatically maintains a view of
the currently active nodes in the cluster. All cluster
members agree on the current view. MSCS notifies the
active members of any changes in cluster membership.
Changes in cluster membership may be caused by fail-
ures as well as by system administration actions. Upon
noticing a membership change, all the nodes cooperate
to maintain all the services provided by the previous
membership.

While the cluster membership service provides detec-
tion and recovery from node failures, the resource man-
agement service provides detection and recovery from
software failures. An MSCS resource is any hardware of
software component that is necessary to provide some
service. Examples of resources are disks, servers and IP
numbers. Resource dependencies can be used to bundle
resources together with other resources that they re-
quire to function properly. MSCS provide also provides
allows resource groups to be defined in case some rea-
son other that a direct dependency warrants grouping
resources. Resource groups are the unit of recovery in
MSCS. By grouping IP numbers with other resources
providing the service, requests can automatically get
forwarded to the node who provides the service.

MSCS resource management includes resource mon-
itoring and resource failover /failback. At regular inter-
vals MSCS polls the status of all its registered resources.
If a resource appears to be down, MSCS attempts to
restart it. If that doesn’t work, MSCS automatically
attempts to migrate the service, together with the rest
of the resources in its resource group, to another active
node.

The mechanism for persistent data failover in MSCS
is disk switchover. MSCS requires that all the nodes in
the clusters have physical access to the disks that con-
tain data that should failover across different nodes. I
will discuss the advantages and disadvantages of this ap-
proach to data failover in the “Virtues and Limitations”
section below.



5.1 Implementation
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Figure 6 Organization of the Microsoft Cluster Ser

Figure 6 shows the architecture of the MSCS. T
boxes in the picture correspond to processes and t
ovals inside the boxes to process modules. The s
vice consists a per-node process, the cluster service, a
several resource monitor processes. The cluster serv
implements most of the functionality of the MSCS. I
source monitor processes serve as liaison between t
cluster service and the actual resources. Communi
tion between the resource monitors and resources
done via dynamically linked resource control librar
(RCLs).

In the remainder of this section I will discuss t
following implementation issues in more detail:

e Maintaining a global configuration database
¢ Cluster membership algorithms

e Resource failover

Central to the MSCS design is maintenance of a
configuration database that is replicated consistently
across all active nodes in the cluster. The configuration
database holds information about resources, resource
groups and resources dependencies. It also maintains
the current status of all nodes and all resources in the
system. Any node can initiate a modification to the
configuration database. Such modifications are imple-
mented using atomic multicasts and are logged persis-
tently in a special resource called the quorum resource.

The MSCS cluster membership algorithm tolerated
both node failures and communication failures includ-
ing network partitions. Detection of a failed node is
done via a heartbeat mechanism [7]. Nodes periodi-
cally emit heartbeat signals to other nodes. A node that
stops emitting heartbeats is assumed failed. Node fail-
ure detection triggers a regroup operation. This opera-
tion takes every node through several sequential rounds
of messages as depicted in Figure 7.

« determine nodes in its connected component

Activate
l « determines is its component is the primary
I a « elect new tie-breaker
C OS|ng « tie breaker node two-phase broadcasts its
l component as new membership

Pruning

« install new membership from tie breaker

Cleanup 1| - acknowledge “ready to commit’

|

Cleanup 2

« if not in the new membership halt

« if own quorum disk, log new membership

Figure 7 Message rounds in the MSCS regoup operation

The phases of the regroup operation are executed in



virtual synchrony [9]. Each node waits for every other
node to finish the previous phase before moving on.
During the Activate phase, each node calculates the set
of nodes that it can communicate with. During the
Closing phase each node determines if it belongs to the
primary component (using a decision rule described be-
low). During this phase a special node is elected as a
new tie breaker (see below) and as a coordinator in an
embedded two-phase commit of the new membership.
The tie-breaker node informs all other nodes of the new
membership. This message serves the purpose of the
“prepare to commit” message in standard two-phase
commit. During the Pruning phase all nodes that do
not belong to the primary component shut down qui-
etly. During the Cleanup 1 phase each nodes installs
the new membership propagated by the tie-breaker and
acknowledge “ready to commit”. During Cleanup 2, the
node that owns the quorum disk logs the new member-
ship persistently.

Partitions can divide the cluster membership in one
or more connected components. Allowing more that
one component to provide service can generate a “split
brain” situation in which each active component may
attempt to provide service isolated from other compo-
nents. The situation may lead to different components
simultaneously modifying shared data potentially bring-
ing such data to an inconsistent state. MSCS guaran-
tees that only one component, the primary, can continue
to provide service incorporating the following decision
rule into the Closing phase of its regroup operation. A
node knows its component is the primary if one of the
following conditions hold. The conditions are listed in
decreasing order of precedence.

1 the node component has a majority of the previous
membership

2 the node component has half the previous mem-
bership, one of them is a tie breaker node and the
number of members is at least two

3 the previous membership had two nodes, the num-
ber of nodes is one and the node owned the quorum
disk in the previous membership

This rule shows the second use for the quorum re-
source as a tie breaker. A node will not attempt owner-
ship of the quorum resource unless condition (3) above
applies. Nodes that detect being outside of the primary
component immediately shutdown.

After a regroup operation each node consults the
configuration database and independently determines
which resources it should own. These resources may
include resources previously owned by nodes no longer
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in the current membership. Each node brings the re-
sources it owns online. After this, the cluster is back in
full operation.

5.2 Virtues and limitations
5.2.1 Transparency

MSCS was specially designed for ...

MSCS supports a weaker form of migration than
MOSIX. Services are migrated by shutting down and
restarting. This places the burden of making restart
fast on the application. At the time that the applica-
tion receives a shut down message, it can persistently
save state to make restart faster. For the type of appli-
cation that MSCS was designed, the server, this level of
migration seems adequate.

5.2.2 Availability

MSCS achieves its goal of making off-the-shelf server
applications fault-tolerant. The system simply provides
a generic resource control library (RCL) that kills and
restarts the server process in response to resource man-
agement events.

MSCS assumes that any persistent data managed by
a highly available resource group be stored in a disk
that is physically connected to every node where the
resource group can migrate to. This approach to data
failback presents a potential availability problem since
every physically shared disk is a single point of failure
for the cluster. The availability of the entire cluster
is thus bounded by the availability of a disk subsys-
tem. There are a number of techniques for making disks
reliable (e.g. RAID) but this only moves our original
availability problem inside the disk. We will come back
to this point in section 7 when we will discuss an al-
ternative design for MSCS that uses replication as the
main mechanism for highly available persistent storage
for both configuration and application data.

MSCS dependence on a single quorum resource is
another potential source of both availability as well
as of performance bottleneck problems. The quorum
disk serves two purposes, each of which could be served
by any other node in the cluster. First, the quorum
resource logs changes to the configuration database.
There is no reason (except storage overhead) why each
node could not log these changes. The second role for
the quorum resource is to serve as a tie breaker in the
specific case when a primary component of two nodes
partitions and each nodes attempts to become the new
primary component. The elected tie-breaker node could
be used in this case.



5.2.3 Performance

MSCS uses a simple write-all [8] approach to maintain
the configuration database consistently replicated at ev-
ery node. In this approach, the cost of reads are low and
independent of the number of nodes. The cost of writes,
however, is high since every node must be contacted to
update its copy. Although the configuration database
only changes when components fail, for clusters of many
nodes this cost may be prohibitive. The rate of node
failures also increases linearly with the number of nodes.
For large clusters, maintaining the replicated data with
voting [13] [22] [1] may reduce the cost of writes at the
expense of increasing the cost of reads.

6 Summary and Comparison

The table in Figure 1 summarizes the achievements of
each system in each of the comparison criteria of inter-
est.

With respect to tramsparency, both GLUnix and
MOSIX achieve home node transparency, but MOSIX
provides a much stronger level as a result of its for-
warding of location dependent system calls directly to
the home node. MSCS on the other hand, provides a
completely different type of transparency. To clients of
an MSCS service, the cluster looks like a single server.
ParaStation supports the fine-grain parallel abstraction.

In terms of availability, both Berkeley NOW GLUNix
and MSCS have single points of failure. While GLUnix
cannot tolerate a single failure of its master process,
MSCS cannot tolerate a single failure of its quorum re-
source nor of its shared disks. Only MSCS provides
automatic application failover and restart. This results
in a reduction in mean time to repair (MTTR). MSCS
can maintain replicated data consistent across network
partitions. MOSIX can also tolerate partitions due to
its symmetric and probabilistic load diffusion algorithm.

GLUnix has one potential performance bottleneck in
its master daemon process. MSCS has potential per-
formance bottlenecks in its quorum resource and on its
shared disk bus. Both MOSIX and GLUnix offer some
sort of load balancing. ParaStation offers improved per-
formance with its user level implementation of network
protocols as well as with fast network interface card
(NIC) hardware.

7 An Alternative MSCS design
using replication

This section presents an alternative design for the Mi-
crosoft Cluster Service. Central to the new design is the
use of replication algorithms based in voting [13] [22]
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to provide a general replicated object service that can
be used to maintain the MSCS configuration database
congsistent and fully replicated. The design leverages
as much as possible on services already available from
MSCS.

7.1 DMotivation

A number of factors have influenced my decision to re-
design MSCS. First, MSCS uses different complex pro-
tocols to solve rather similar problems. As was first
demonstrated in [1], both the global update protocol
and the regroup protocol could be unified in a single sim-
ple protocol built on top of a transactional storage sys-
tem. The second factor is that although MSCS includes
all the algorithms necessary to implement a highly-
available replication service, it hides the service inside
the cluster service. Other applications do not have ac-
cess to the replicated data service. Finally, replication
removes the dependency of MSCS on disk switchover.
As I mentioned before, lack of support for replication in
MSCS forces disks to be physically shared and become
single points of failure.

7.2 System design

First, the design proposes the creation of a new resource
group consisting of three resources.

replication disk resource Used as for storing copies
of replicated data

distributed transaction resource provides a dis-
tributed transaction service across all nodes

replicated data resource Implements a
transactional replicated data storage service

These resources are never migrated and are mon-
itored using the failure management techniques (e.g.
RCLs) provided by MSCS.

The replication disk can simply be an instance of the
standard disk resource type, but it must be dedicated to
the replication service. The distributed transaction re-
source uses classical distributed transaction techniques
to present an interface through which clients can sub-
mit sequences of operations on objects that will be car-
ried out atomically. Transactions submitted to the dis-
tributed transaction resource may include operations on
remote objects, but references for such objects must in-
clude all the information necessary to locate them.

Objects and object copies are located by the repli-
cated data resource by keeping replicated directories.
In addition to the normal information kept in NT direc-
tories, replicated data resource directories include in-
formation necessary to locate multiple copies objects
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Figure 8 Transparency, availability and performance achieved by each system

among the different transaction services. The replicated
data resource service translates replicated data resource
(logical) operations on objects (reads and writes) into
transactions holding operations on copies of objects.

Creation of each new resource entails the implemen-
tation of corresponding resource control libraries. The
distributed transaction resource must implement the
standard transactional recovery procedures whenever it
is brought online.

Figure 9 shows the architecture of the new
replication-based MSCS. Note in particular how the
cluster membership service is now built on top of the
replicated storage service. The replicated storage ser-
vice communicates with the distributed transaction ser-
vice. Both resources are managed by the MSCS re-
source manager via resource control libraries. Since all
the resources in the new resource group are fixed and
supported at all nodes, their configuration information
is essentially fixed and does not require access to the
configuration data kept by the services themselves.

7.3 Virtues and Limitations
7.3.1 Transparency

The alternative design provides exactly the same level
of transparency as the original design.

7.3.2 Availability

The new design removes the dependency of MSCS on
switchover and can tolerate a number of failures on the
replication disks proportional to the level of replication
maintained. This has the potential to improve availabil-
ity substantially.
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7.3.3 Performance

The new design also improves performance by eliminat-
ing the potential performance and scalability bottleneck
of the shared disk bus.

In the remainder of the paper I will focus my at-
tention on a problem that hasn’t been dealt with op-
timally by any of the systems discussed so far: data
failover /failback.

8 Adaptive Replication for Data
Failover-Failback

Ideally, when a cluster node fails, the remaining nodes
should transparently take over the responsibilities of the
failed node. The system as a whole should not fail,
but rather should recover and continue operating at the
maximum capacity possible. This requires that the data
accessible to the failed node be made accessible to the
node or nodes taking over its duties. The process of
making data from a failed node available to other nodes
is called data failover. When the failed node recovers
it should get its (possibly updated) database from the
nodes that replaced it. This process is called data fail-
back.

A process similar to failback is also applied when
nodes are added to the cluster to increase system ca-
pacity. In this case data can be reorganized and the
new node is assigned some portion of the data.

There are two possible ways in which data
failover/failback can be implemented: switchover and
replication. 1 will describe each technique and argue
how replication can suit a cluster architecture better
than switchover. For the purposes of this explanation I
will call the failed node source and the replacing node
the target.
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Swithcover requires that the source and target no
physically share disks. During normal operation all vue
nodes work on disjoint subsets of data. As a result, ev-
ery single shared disk is a single point of failure. If it
can be assumed that all disks fail independently, as the
number of shared disks increases the situation worsens
since the failure rate increases linearly with the num-
ber of disks. The net decrease in availability could be
substantial.

An alternative to swithcover is replication. Repli-
cation simply stores multiple copies of objects across
different disks. When a node fails the object remains
available at some other node. As long a there is a way
to direct operations to the nodes that have copies of the
relevant objects available, the system can continue to
offer service.

An interesting problem results when one considers
how a cluster with replicated data should react to the
addition of a new node. In order to take advantage of
the increase in storage capacity the cluster software has
two basic alternatives. It can store additional copies of
objects in the new node (Figure 11) or it can migrate
(Figure 12) some copies of objects to the new node.
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Figure 10 Hierarchy of approaches to data failover and failba

If objects are very seldom written and most oftenly
read, the replicating is always an acceptable alternative.
This is due to the fact that many replication algorithms,
including voting and primary copy [2] are capable of
implementing much faster writes than reads. The more
interesting case is when the frequency of writes is large
enough that the increase in the cost on write operations
is not acceptable. In this case, migration should be
considered. But why not just use migration? In this
section I present arguments as to why relying exclusively
on migration will decreases availability.

A distributed storage system is said to be adaptively
replicated it incorporates algorithms that automate the
choice between migration and replication in order to
maintain a desired level of availability in the presence
to changes to the number of nodes. I know of no system
that incorporates such an algorithm. There have been
distributed file systems that provide a level of repli-
cation that is fixed at system configuration time [15].
Others provide facilities to create objects with different
levels of replication have been implemented in the past
[13]. Deceit [21] provides operations to dynamically al-
ter the level of replication of a file. However, none of
these systems automatically alters the level of replica-
tion in response to a change in the number of nodes.

Adaptive replication requires solving two problems:
(1) Deciding when to replicate and when to migrate,
and (2) carrying out the operations consistently in the
presence of failures. For this paper I will focus on (1).
I will accept the existence of systems that allow dy-
namic changes to the level of replication of objects as
convincing evidence that (2) is achievable with known
technology.

I have three hypotheses:



2 nodes
X X
y y
2 nodes
\addmd/
X X X X
y y y y
4 nodes

Figure 11 Replication increases the number of copies

H1 T a system relies exclusively on migration as a way
to use the storage capacity contributed by a new
node, its availability will decrease.

H2 A system must alternate migration with replication
if it wishes to maintaining a desired level of avail-
ability at minimal cost

H3 Replication should be applied much less often than
migration

H2 is not quite independent form the others. It fol-
lows from H1 and the fact that replication increases op-
eration costs.

I will now argue that H1 and H3 are true under the
following simplifying assumptions about a system with
n nodes.

A1l system keeps same number k of copies of each ob-
ject

A2 Initially n =k
A3 n increases k nodes at a time

A4 no network partitions occur

Under these assumptions a system of n nodes keeping
k copies per object can always be represented in matrix
form as shown in Figure 13. I such a system objects cab
be partitioned by a relation that associates objects that
have copies on exactly the same nodes. The number
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q represents the number of equivalence classes in such
partition.

The argument is twofold. First I argue that, if only
migration is used, the maximal availability attained by
a system of ¢ groups after adding k£ nodes is obtained by
partitioning the objects in g + 1 groups where the set of
nodes where each group has copies is disjoint with that
of any other group. The reason why this is true is that
in such a system each failure can only touch one group.
The probability that k nodes of the same group will fail,
with the consequent total failure, is smaller that when
the number of groups touched by each failure increases.
But this must be the case when the sets of nodes of
different, groups overlap.

The second part of the argument is easier to see. No-
tice that a total failure occurs when all the nodes in
one row fail. The probability that this happens is ¢ x p*
where p is the probability that each node fails. There-
fore the availability of the system is one minus this prob-
ability:

A(k,q) =1 —qxp" (1)

This result demonstrates that a system relying ex-
clusively on migration will suffer from steady decreases
in availability. It remains to be shown whether this de-
crease in availability is significant for real systems. Also,
I must determine the impact that relaxing the simplify-
ing assumptions will have on this result.
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9 Conclusion

I presented an analysis of four approaches to provide
various system abstractions on clusters of workstations.
The approaches have been evaluated using trasparency,
availability and performance as criteria. My most im-
portant comtributions are:

e Proposed an alternative simpler design for the Mi-
crosoft Cluster Service that should achieve both
higher availability and higher performance

e Proposed the idea of adaptive replication, main-
taining a desired level of availability by automat-
ically adjusting replication level in response to
changes in the configuration if the cluster

e Provided evidence of the need to support adaptive
replication in clusters

Further development of the idea of adaptive replica-
tion is necessary along the following lines:

e Must show that the rate of change of change in
availability as a consequency of migration is fast
enough to warrant adaptive replication in real clus-
ters

e Formal proofs of the arguments provided to support
the various hypotheses
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